diff options
Diffstat (limited to 'R/summary.nlmixr.mmkin.R')
-rw-r--r-- | R/summary.nlmixr.mmkin.R | 250 |
1 files changed, 250 insertions, 0 deletions
diff --git a/R/summary.nlmixr.mmkin.R b/R/summary.nlmixr.mmkin.R new file mode 100644 index 00000000..a023f319 --- /dev/null +++ b/R/summary.nlmixr.mmkin.R @@ -0,0 +1,250 @@ +#' Summary method for class "nlmixr.mmkin" +#' +#' Lists model equations, initial parameter values, optimised parameters +#' for fixed effects (population), random effects (deviations from the +#' population mean) and residual error model, as well as the resulting +#' endpoints such as formation fractions and DT50 values. Optionally +#' (default is FALSE), the data are listed in full. +#' +#' @importFrom stats confint sd +#' @param object an object of class [nlmixr.mmkin] +#' @param x an object of class [summary.nlmixr.mmkin] +#' @param data logical, indicating whether the full data should be included in +#' the summary. +#' @param verbose Should the summary be verbose? +#' @param distimes logical, indicating whether DT50 and DT90 values should be +#' included. +#' @param digits Number of digits to use for printing +#' @param \dots optional arguments passed to methods like \code{print}. +#' @return The summary function returns a list obtained in the fit, with at +#' least the following additional components +#' \item{nlmixrversion, mkinversion, Rversion}{The nlmixr, mkin and R versions used} +#' \item{date.fit, date.summary}{The dates where the fit and the summary were +#' produced} +#' \item{diffs}{The differential equations used in the degradation model} +#' \item{use_of_ff}{Was maximum or minimum use made of formation fractions} +#' \item{data}{The data} +#' \item{confint_back}{Backtransformed parameters, with confidence intervals if available} +#' \item{ff}{The estimated formation fractions derived from the fitted +#' model.} +#' \item{distimes}{The DT50 and DT90 values for each observed variable.} +#' \item{SFORB}{If applicable, eigenvalues of SFORB components of the model.} +#' The print method is called for its side effect, i.e. printing the summary. +#' @importFrom stats predict vcov +#' @author Johannes Ranke for the mkin specific parts +#' nlmixr authors for the parts inherited from nlmixr. +#' @examples +#' # Generate five datasets following DFOP-SFO kinetics +#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"), +#' m1 = mkinsub("SFO"), quiet = TRUE) +#' set.seed(1234) +#' k1_in <- rlnorm(5, log(0.1), 0.3) +#' k2_in <- rlnorm(5, log(0.02), 0.3) +#' g_in <- plogis(rnorm(5, qlogis(0.5), 0.3)) +#' f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3)) +#' k_m1_in <- rlnorm(5, log(0.02), 0.3) +#' +#' pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) { +#' mkinpredict(dfop_sfo, +#' c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1), +#' c(parent = 100, m1 = 0), +#' sampling_times) +#' } +#' +#' ds_mean_dfop_sfo <- lapply(1:5, function(i) { +#' mkinpredict(dfop_sfo, +#' c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i], +#' f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]), +#' c(parent = 100, m1 = 0), +#' sampling_times) +#' }) +#' names(ds_mean_dfop_sfo) <- paste("ds", 1:5) +#' +#' ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) { +#' add_err(ds, +#' sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2), +#' n = 1)[[1]] +#' }) +#' +#' \dontrun{ +#' # Evaluate using mmkin and nlmixr +#' f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo, +#' quiet = TRUE, error_model = "tc", cores = 5) +#' f_saemix_dfop_sfo <- mkin::saem(f_mmkin_dfop_sfo) +#' f_nlme_dfop_sfo <- mkin::nlme(f_mmkin_dfop_sfo) +#' f_nlmixr_dfop_sfo_saem <- nlmixr(f_mmkin_dfop_sfo, est = "saem") +#' # The following takes a very long time but gives +#' f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei") +#' AIC(f_nlmixr_dfop_sfo_saem$nm, f_nlmixr_dfop_sfo_focei$nm) +#' summary(f_nlmixr_dfop_sfo_sfo, data = TRUE) +#' } +#' +#' @export +summary.nlmixr.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...) { + + mod_vars <- names(object$mkinmod$diffs) + + conf.int <- confint(object$nm) + dpnames <- setdiff(rownames(conf.int), names(object$mean_ep_start)) + ndp <- length(dpnames) + + confint_trans <- as.matrix(conf.int[dpnames, c(1, 3, 4)]) + colnames(confint_trans) <- c("est.", "lower", "upper") + + bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod, + object$transform_rates, object$transform_fractions) + bpnames <- names(bp) + + # Transform boundaries of CI for one parameter at a time, + # with the exception of sets of formation fractions (single fractions are OK). + f_names_skip <- character(0) + for (box in mod_vars) { # Figure out sets of fractions to skip + f_names <- grep(paste("^f", box, sep = "_"), dpnames, value = TRUE) + n_paths <- length(f_names) + if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names) + } + + confint_back <- matrix(NA, nrow = length(bp), ncol = 3, + dimnames = list(bpnames, colnames(confint_trans))) + confint_back[, "est."] <- bp + + for (pname in dpnames) { + if (!pname %in% f_names_skip) { + par.lower <- confint_trans[pname, "lower"] + par.upper <- confint_trans[pname, "upper"] + names(par.lower) <- names(par.upper) <- pname + bpl <- backtransform_odeparms(par.lower, object$mkinmod, + object$transform_rates, + object$transform_fractions) + bpu <- backtransform_odeparms(par.upper, object$mkinmod, + object$transform_rates, + object$transform_fractions) + confint_back[names(bpl), "lower"] <- bpl + confint_back[names(bpu), "upper"] <- bpu + } + } + + # Correlation of fixed effects (inspired by summary.nlme) + varFix <- vcov(object$nm) + stdFix <- sqrt(diag(varFix)) + object$corFixed <- array( + t(varFix/stdFix)/stdFix, + dim(varFix), + list(dpnames, dpnames)) + + object$confint_trans <- confint_trans + object$confint_back <- confint_back + + object$date.summary = date() + object$use_of_ff = object$mkinmod$use_of_ff + + object$diffs <- object$mkinmod$diffs + object$print_data <- data # boolean: Should we print the data? + + names(object$data)[4] <- "observed" # rename value to observed + + object$verbose <- verbose + + object$fixed <- object$mmkin_orig[[1]]$fixed + object$AIC = AIC(object$nm) + object$BIC = BIC(object$nm) + object$logLik = logLik(object$nm) + + ep <- endpoints(object) + if (length(ep$ff) != 0) + object$ff <- ep$ff + if (distimes) object$distimes <- ep$distimes + if (length(ep$SFORB) != 0) object$SFORB <- ep$SFORB + class(object) <- c("summary.nlmixr.mmkin") + return(object) +} + +#' @rdname summary.nlmixr.mmkin +#' @export +print.summary.nlmixr.mmkin <- function(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) { + cat("nlmixr version used for fitting: ", x$nlmixrversion, "\n") + cat("mkin version used for pre-fitting: ", x$mkinversion, "\n") + cat("R version used for fitting: ", x$Rversion, "\n") + + cat("Date of fit: ", x$date.fit, "\n") + cat("Date of summary:", x$date.summary, "\n") + + cat("\nEquations:\n") + nice_diffs <- gsub("^(d.*) =", "\\1/dt =", x[["diffs"]]) + writeLines(strwrap(nice_diffs, exdent = 11)) + + cat("\nData:\n") + cat(nrow(x$data), "observations of", + length(unique(x$data$name)), "variable(s) grouped in", + length(unique(x$data$ds)), "datasets\n") + + cat("\nDegradation model predictions using RxODE\n") + + cat("\nFitted in", x$time[["elapsed"]], "s\n") + + cat("\nVariance model: ") + cat(switch(x$err_mod, + const = "Constant variance", + obs = "Variance unique to each observed variable", + tc = "Two-component variance function", + obs_tc = "Two-component variance unique to each observed variable"), "\n") + + cat("\nMean of starting values for individual parameters:\n") + print(x$mean_dp_start, digits = digits) + + cat("\nMean of starting values for error model parameters:\n") + print(x$mean_ep_start, digits = digits) + + cat("\nFixed degradation parameter values:\n") + if(length(x$fixed$value) == 0) cat("None\n") + else print(x$fixed, digits = digits) + + cat("\nResults:\n\n") + cat("Likelihood calculated by", nlmixr::getOfvType(x$nm), " \n") + print(data.frame(AIC = x$AIC, BIC = x$BIC, logLik = x$logLik, + row.names = " "), digits = digits) + + cat("\nOptimised parameters:\n") + print(x$confint_trans, digits = digits) + + if (nrow(x$confint_trans) > 1) { + corr <- x$corFixed + class(corr) <- "correlation" + print(corr, title = "\nCorrelation:", ...) + } + + cat("\nRandom effects (omega):\n") + print(x$nm$omega, digits = digits) + + cat("\nVariance model:\n") + print(x$nm$sigma, digits = digits) + + cat("\nBacktransformed parameters:\n") + print(x$confint_back, digits = digits) + + printSFORB <- !is.null(x$SFORB) + if(printSFORB){ + cat("\nEstimated Eigenvalues of SFORB model(s):\n") + print(x$SFORB, digits = digits,...) + } + + printff <- !is.null(x$ff) + if(printff){ + cat("\nResulting formation fractions:\n") + print(data.frame(ff = x$ff), digits = digits,...) + } + + printdistimes <- !is.null(x$distimes) + if(printdistimes){ + cat("\nEstimated disappearance times:\n") + print(x$distimes, digits = digits,...) + } + + if (x$print_data){ + cat("\nData:\n") + print(format(x$data, digits = digits, ...), row.names = FALSE) + } + + invisible(x) +} |