aboutsummaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
Diffstat (limited to 'R')
-rw-r--r--R/anova.saem.mmkin.R106
-rw-r--r--R/aw.R36
-rw-r--r--R/illparms.R137
-rw-r--r--R/intervals.R5
-rw-r--r--R/llhist.R43
-rw-r--r--R/mhmkin.R192
-rw-r--r--R/mixed.mmkin.R3
-rw-r--r--R/mkinfit.R9
-rw-r--r--R/mmkin.R51
-rw-r--r--R/multistart.R224
-rw-r--r--R/nlme.R4
-rw-r--r--R/parms.R82
-rw-r--r--R/parms.mkinfit.R62
-rw-r--r--R/parplot.R105
-rw-r--r--R/plot.mixed.mmkin.R5
-rw-r--r--R/saem.R402
-rw-r--r--R/set_nd_nq.R164
-rw-r--r--R/status.R113
-rw-r--r--R/summary.mkinfit.R4
-rw-r--r--R/summary.mmkin.R56
-rw-r--r--R/summary.saem.mmkin.R27
21 files changed, 1617 insertions, 213 deletions
diff --git a/R/anova.saem.mmkin.R b/R/anova.saem.mmkin.R
new file mode 100644
index 00000000..9937a919
--- /dev/null
+++ b/R/anova.saem.mmkin.R
@@ -0,0 +1,106 @@
+#' Anova method for saem.mmkin objects
+#'
+#' Generate an anova object. The method to calculate the BIC is that from
+#' the saemix package. As in other prominent anova methods, models are sorted
+## by likelihood, and the test is relative to the model on the previous line.
+#'
+#' @param object An [saem.mmkin] object
+#' @param ... further such objects
+#' @param method Method for likelihood calculation: "is" (importance sampling),
+#' "lin" (linear approximation), or "gq" (Gaussian quadrature). Passed
+#' to [saemix::logLik.SaemixObject]
+#' @param test Should a likelihood ratio test be performed? If TRUE,
+#' the alternative models are tested against the first model. Should
+#' only be done for nested models.
+#' @param model.names Optional character vector of model names
+#' @importFrom stats anova logLik update pchisq terms
+#' @importFrom methods is
+#' @importFrom utils capture.output
+#' @export
+#' @return an "anova" data frame; the traditional (S3) result of anova()
+anova.saem.mmkin <- function(object, ...,
+ method = c("is", "lin", "gq"), test = FALSE, model.names = NULL)
+{
+ # The following code is heavily inspired by anova.lmer in the lme4 package
+ mCall <- match.call(expand.dots = TRUE)
+ dots <- list(...)
+ method <- match.arg(method)
+
+ is_model <- sapply(dots, is, "saem.mmkin")
+ if (any(is_model)) {
+ mods <- c(list(object), dots[is_model])
+
+ # Ensure same data, ignoring covariates
+ same_data <- sapply(dots[is_model], function(x) {
+ identical(object$data[c("ds", "name", "time", "value")],
+ x$data[c("ds", "name", "time", "value")])
+ })
+ if (!all(same_data)) {
+ stop(sum(!same_data), " objects have not been fitted to the same data")
+ }
+
+ if (is.null(model.names))
+ model.names <- vapply(as.list(mCall)[c(FALSE, TRUE, is_model)], deparse1, "")
+
+ # Sanitize model names
+ if (length(model.names) != length(mods))
+ stop("Model names vector and model list have different lengths")
+
+ if (any(duplicated(model.names)))
+ stop("Duplicate model names are not allowed")
+
+ if (max(nchar(model.names)) > 200) {
+ warning("Model names longer than 200 characters, assigning generic names")
+ model.names <- paste0("MODEL",seq_along(model.names))
+ }
+ names(mods) <- model.names
+
+ llks <- lapply(model.names, function(x) {
+ llk <- try(logLik(mods[[x]], method = method))
+ if (inherits(llk, "try-error"))
+ stop("Could not obtain log likelihood with '", method, "' method for ", x)
+ return(llk)
+ })
+
+ # Order models by increasing degrees of freedom:
+ npar <- vapply(llks, attr, FUN.VALUE=numeric(1), "df")
+ ii <- order(npar)
+ mods <- mods[ii]
+ llks <- llks[ii]
+ npar <- npar[ii]
+
+ # Describe data for the header, as in summary.saem.mmkin
+ header <- paste("Data:", nrow(object$data), "observations of",
+ length(unique(object$data$name)), "variable(s) grouped in",
+ length(unique(object$data$ds)), "datasets\n")
+
+ # Calculate statistics
+ llk <- unlist(llks)
+ chisq <- 2 * pmax(0, c(NA, diff(llk)))
+ dfChisq <- c(NA, diff(npar))
+
+ bic <- function(x, method) {
+ BIC(x$so, method = method)
+ }
+ val <- data.frame(
+ npar = npar,
+ AIC = sapply(llks, AIC),
+ BIC = sapply(mods, bic, method = method), # We use the saemix method here
+ Lik = llk,
+ row.names = names(mods), check.names = FALSE)
+
+ if (test) {
+ testval <- data.frame(
+ Chisq = chisq,
+ Df = dfChisq,
+ "Pr(>Chisq)" = ifelse(dfChisq == 0, NA,
+ pchisq(chisq, dfChisq, lower.tail = FALSE)),
+ row.names = names(mods), check.names = FALSE)
+ val <- cbind(val, testval)
+ }
+ class(val) <- c("anova", class(val))
+ structure(val, heading = c(header))
+ } else {
+ stop("Currently, no anova method is implemented for the case of a single saem.mmkin object")
+ }
+}
diff --git a/R/aw.R b/R/aw.R
index f46b20ec..b3992f94 100644
--- a/R/aw.R
+++ b/R/aw.R
@@ -30,6 +30,14 @@
#' @export
aw <- function(object, ...) UseMethod("aw")
+.aw <- function(all_objects) {
+ AIC_all <- sapply(all_objects, AIC)
+ delta_i <- AIC_all - min(AIC_all)
+ denom <- sum(exp(-delta_i/2))
+ w_i <- exp(-delta_i/2) / denom
+ return(w_i)
+}
+
#' @export
#' @rdname aw
aw.mkinfit <- function(object, ...) {
@@ -43,11 +51,7 @@ aw.mkinfit <- function(object, ...) {
}
}
all_objects <- list(object, ...)
- AIC_all <- sapply(all_objects, AIC)
- delta_i <- AIC_all - min(AIC_all)
- denom <- sum(exp(-delta_i/2))
- w_i <- exp(-delta_i/2) / denom
- return(w_i)
+ .aw(all_objects)
}
#' @export
@@ -56,3 +60,25 @@ aw.mmkin <- function(object, ...) {
if (ncol(object) > 1) stop("Please supply an mmkin column object")
do.call(aw, object)
}
+
+#' @export
+#' @rdname aw
+aw.mixed.mmkin <- function(object, ...) {
+ oo <- list(...)
+ data_object <- object$data[c("ds", "name", "time", "value")]
+ for (i in seq_along(oo)) {
+ if (!inherits(oo[[i]], "mixed.mmkin")) stop("Please supply objects inheriting from mixed.mmkin")
+ data_other_object <- oo[[i]]$data[c("ds", "name", "time", "value")]
+ if (!identical(data_object, data_other_object)) {
+ stop("It seems that the mixed.mmkin objects have not all been fitted to the same data")
+ }
+ }
+ all_objects <- list(object, ...)
+ .aw(all_objects)
+}
+
+#' @export
+#' @rdname aw
+aw.multistart <- function(object, ...) {
+ do.call(aw, object)
+}
diff --git a/R/illparms.R b/R/illparms.R
new file mode 100644
index 00000000..931d8f05
--- /dev/null
+++ b/R/illparms.R
@@ -0,0 +1,137 @@
+#' Method to get the names of ill-defined parameters
+#'
+#' The method for generalised nonlinear regression fits as obtained
+#' with [mkinfit] and [mmkin] checks if the degradation parameters
+#' pass the Wald test (in degradation kinetics often simply called t-test) for
+#' significant difference from zero. For this test, the parameterisation
+#' without parameter transformations is used.
+#'
+#' The method for hierarchical model fits, also known as nonlinear
+#' mixed-effects model fits as obtained with [saem] and [mhmkin]
+#' checks if any of the confidence intervals for the random
+#' effects expressed as standard deviations include zero, and if
+#' the confidence intervals for the error model parameters include
+#' zero.
+#'
+#' @param object The object to investigate
+#' @param x The object to be printed
+#' @param conf.level The confidence level for checking p values
+#' @param \dots For potential future extensions
+#' @param random For hierarchical fits, should random effects be tested?
+#' @param errmod For hierarchical fits, should error model parameters be
+#' tested?
+#' @return For [mkinfit] or [saem] objects, a character vector of parameter
+#' names. For [mmkin] or [mhmkin] objects, a matrix like object of class
+#' 'illparms.mmkin' or 'illparms.mhmkin'. The latter objects have a suitable
+#' printing method.
+#' @export
+illparms <- function(object, ...)
+{
+ UseMethod("illparms", object)
+}
+
+#' @rdname illparms
+#' @export
+#' @examples
+#' fit <- mkinfit("FOMC", FOCUS_2006_A, quiet = TRUE)
+#' illparms(fit)
+illparms.mkinfit <- function(object, conf.level = 0.95, ...) {
+ p_values <- suppressWarnings(summary(object)$bpar[, "Pr(>t)"])
+ na <- is.na(p_values)
+ failed <- p_values > 1 - conf.level
+ names(parms(object))[na | failed]
+}
+
+#' @rdname illparms
+#' @export
+#' @examples
+#' \dontrun{
+#' fits <- mmkin(
+#' c("SFO", "FOMC"),
+#' list("FOCUS A" = FOCUS_2006_A,
+#' "FOCUS C" = FOCUS_2006_C),
+#' quiet = TRUE)
+#' illparms(fits)
+#' }
+illparms.mmkin <- function(object, conf.level = 0.95, ...) {
+ result <- lapply(object,
+ function(fit) {
+ if (inherits(fit, "try-error")) return("E")
+ ill <- illparms(fit, conf.level = conf.level)
+ if (length(ill) > 0) {
+ return(paste(ill, collapse = ", "))
+ } else {
+ return("")
+ }
+ })
+ result <- unlist(result)
+ dim(result) <- dim(object)
+ dimnames(result) <- dimnames(object)
+ class(result) <- "illparms.mmkin"
+ return(result)
+}
+
+#' @rdname illparms
+#' @export
+print.illparms.mmkin <- function(x, ...) {
+ class(x) <- NULL
+ print(x, quote = FALSE)
+}
+
+#' @rdname illparms
+#' @export
+illparms.saem.mmkin <- function(object, conf.level = 0.95, random = TRUE, errmod = TRUE, ...) {
+ if (inherits(object, "try-error")) {
+ return(NA)
+ } else {
+ ints <- intervals(object, conf.level = conf.level)
+ failed <- NULL
+ if (random) {
+ failed_random <- ints$random[, "lower"] < 0
+ failed <- c(failed, names(which(failed_random)))
+ }
+ if (errmod) {
+ failed_errmod <- ints$errmod[, "lower"] < 0 & ints$errmod[, "est."] > 0
+ failed <- c(failed, names(which(failed_errmod)))
+ }
+ }
+ return(failed)
+}
+
+#' @rdname illparms
+#' @export
+illparms.mhmkin <- function(object, conf.level = 0.95, random = TRUE, errmod = TRUE, ...) {
+ if (inherits(object[[1]], "saem.mmkin")) {
+ check_failed <- function(x) if (inherits(x$so, "try-error")) TRUE else FALSE
+ }
+ result <- lapply(object,
+ function(fit) {
+ if (check_failed(fit)) {
+ return("E")
+ } else {
+ if (!is.null(fit$FIM_failed) &&
+ "random effects and error model parameters" %in% fit$FIM_failed) {
+ return("NA")
+ } else {
+ ill <- illparms(fit, conf.level = conf.level, random = random, errmod = errmod)
+ if (length(ill) > 0) {
+ return(paste(ill, collapse = ", "))
+ } else {
+ return("")
+ }
+ }
+ }
+ })
+ result <- unlist(result)
+ dim(result) <- dim(object)
+ dimnames(result) <- dimnames(object)
+ class(result) <- "illparms.mhmkin"
+ return(result)
+}
+
+#' @rdname illparms
+#' @export
+print.illparms.mhmkin <- function(x, ...) {
+ class(x) <- NULL
+ print(x, quote = FALSE)
+}
diff --git a/R/intervals.R b/R/intervals.R
index 258eb4ad..705ef6eb 100644
--- a/R/intervals.R
+++ b/R/intervals.R
@@ -77,8 +77,9 @@ intervals.saem.mmkin <- function(object, level = 0.95, backtransform = TRUE, ...
attr(confint_ret, "label") <- "Fixed effects:"
# Random effects
- ranef_ret <- as.matrix(conf.int[paste0("SD.", pnames), c("lower", "est.", "upper")])
- rownames(ranef_ret) <- paste0(gsub("SD\\.", "sd(", rownames(ranef_ret)), ")")
+ sdnames <- intersect(rownames(conf.int), paste("SD", pnames, sep = "."))
+ ranef_ret <- as.matrix(conf.int[sdnames, c("lower", "est.", "upper")])
+ rownames(ranef_ret) <- paste0(gsub("SD\\.", "sd(", sdnames), ")")
attr(ranef_ret, "label") <- "Random effects:"
diff --git a/R/llhist.R b/R/llhist.R
new file mode 100644
index 00000000..e158495d
--- /dev/null
+++ b/R/llhist.R
@@ -0,0 +1,43 @@
+#' Plot the distribution of log likelihoods from multistart objects
+#'
+#' Produces a histogram of log-likelihoods. In addition, the likelihood of the
+#' original fit is shown as a red vertical line.
+#'
+#' @param object The [multistart] object
+#' @param breaks Passed to [hist]
+#' @param lpos Positioning of the legend.
+#' @param main Title of the plot
+#' @param \dots Passed to [hist]
+#' @seealso [multistart]
+#' @export
+llhist <- function(object, breaks = "Sturges", lpos = "topleft", main = "",
+ ...)
+{
+ oldpar <- par(no.readonly = TRUE)
+ on.exit(par(oldpar, no.readonly = TRUE))
+
+ if (inherits(object, "multistart.saem.mmkin")) {
+ llfunc <- function(object) {
+ if (inherits(object$so, "try-error")) return(NA)
+ else return(logLik(object$so))
+ }
+ } else {
+ stop("llhist is only implemented for multistart.saem.mmkin objects")
+ }
+
+ ll_orig <- logLik(attr(object, "orig"))
+ ll <- stats::na.omit(sapply(object, llfunc))
+
+ par(las = 1)
+ h <- hist(ll, freq = TRUE,
+ xlab = "", main = main,
+ ylab = "Frequency of log likelihoods", breaks = breaks, ...)
+
+ freq_factor <- h$counts[1] / h$density[1]
+
+ abline(v = ll_orig, col = 2)
+
+ legend(lpos, inset = c(0.05, 0.05), bty = "n",
+ lty = 1, col = c(2),
+ legend = "original fit")
+}
diff --git a/R/mhmkin.R b/R/mhmkin.R
new file mode 100644
index 00000000..7f3ff9fa
--- /dev/null
+++ b/R/mhmkin.R
@@ -0,0 +1,192 @@
+#' Fit nonlinear mixed-effects models built from one or more kinetic
+#' degradation models and one or more error models
+#'
+#' The name of the methods expresses that (**m**ultiple) **h**ierarchichal
+#' (also known as multilevel) **m**ulticompartment **kin**etic models are
+#' fitted. Our kinetic models are nonlinear, so we can use various nonlinear
+#' mixed-effects model fitting functions.
+#'
+#' @param objects A list of [mmkin] objects containing fits of the same
+#' degradation models to the same data, but using different error models.
+#' @param backend The backend to be used for fitting. Currently, only saemix is
+#' supported
+#' @param algorithm The algorithm to be used for fitting (currently not used)
+#' @param \dots Further arguments that will be passed to the nonlinear mixed-effects
+#' model fitting function.
+#' @param cores The number of cores to be used for multicore processing. This
+#' is only used when the \code{cluster} argument is \code{NULL}. On Windows
+#' machines, cores > 1 is not supported, you need to use the \code{cluster}
+#' argument to use multiple logical processors. Per default, all cores detected
+#' by [parallel::detectCores()] are used, except on Windows where the default
+#' is 1.
+#' @param cluster A cluster as returned by [makeCluster] to be used for
+#' parallel execution.
+#' @importFrom parallel mclapply parLapply detectCores
+#' @return A two-dimensional [array] of fit objects and/or try-errors that can
+#' be indexed using the degradation model names for the first index (row index)
+#' and the error model names for the second index (column index), with class
+#' attribute 'mhmkin'.
+#' @author Johannes Ranke
+#' @seealso \code{\link{[.mhmkin}} for subsetting [mhmkin] objects
+#' @export
+mhmkin <- function(objects, backend = "saemix", algorithm = "saem", ...) {
+ UseMethod("mhmkin")
+}
+
+#' @export
+#' @rdname mhmkin
+mhmkin.list <- function(objects, backend = "saemix",
+ ...,
+ cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(), cluster = NULL)
+{
+ call <- match.call()
+ dot_args <- list(...)
+ backend_function <- switch(backend,
+ saemix = "saem"
+ )
+
+ deg_models <- lapply(objects[[1]][, 1], function(x) x$mkinmod)
+ names(deg_models) <- dimnames(objects[[1]])$model
+ n.deg <- length(deg_models)
+
+ ds <- lapply(objects[[1]][1, ], function(x) x$data)
+
+ for (other in objects[-1]) {
+ # Check if the degradation models in all objects are the same
+ for (deg_model_name in names(deg_models)) {
+ if (!all.equal(other[[deg_model_name, 1]]$mkinmod$spec,
+ deg_models[[deg_model_name]]$spec))
+ {
+ stop("The mmkin objects have to be based on the same degradation models")
+ }
+ }
+ # Check if they have been fitted to the same dataset
+ other_object_ds <- lapply(other[1, ], function(x) x$data)
+ for (i in 1:length(ds)) {
+ if (!all.equal(ds[[i]][c("time", "variable", "observed")],
+ other_object_ds[[i]][c("time", "variable", "observed")]))
+ {
+ stop("The mmkin objects have to be fitted to the same datasets")
+ }
+ }
+ }
+
+ n.o <- length(objects)
+
+ error_models = sapply(objects, function(x) x[[1]]$err_mod)
+ n.e <- length(error_models)
+
+ n.fits <- n.deg * n.e
+ fit_indices <- matrix(1:n.fits, ncol = n.e)
+ dimnames(fit_indices) <- list(degradation = names(deg_models),
+ error = error_models)
+
+ fit_function <- function(fit_index) {
+ w <- which(fit_indices == fit_index, arr.ind = TRUE)
+ deg_index <- w[1]
+ error_index <- w[2]
+ mmkin_row <- objects[[error_index]][deg_index, ]
+ res <- try(do.call(backend_function, args = c(list(mmkin_row), dot_args)))
+ return(res)
+ }
+
+ fit_time <- system.time({
+ if (is.null(cluster)) {
+ results <- parallel::mclapply(as.list(1:n.fits), fit_function,
+ mc.cores = cores, mc.preschedule = FALSE)
+ } else {
+ results <- parallel::parLapply(cluster, as.list(1:n.fits), fit_function)
+ }
+ })
+
+ attributes(results) <- attributes(fit_indices)
+ attr(results, "call") <- call
+ attr(results, "time") <- fit_time
+ class(results) <- "mhmkin"
+ return(results)
+}
+
+#' Subsetting method for mhmkin objects
+#'
+#' @param x An [mhmkin] object.
+#' @param i Row index selecting the fits for specific models
+#' @param j Column index selecting the fits to specific datasets
+#' @param drop If FALSE, the method always returns an mhmkin object, otherwise
+#' either a list of fit objects or a single fit object.
+#' @return An object of class \code{\link{mhmkin}}.
+#' @rdname mhmkin
+#' @export
+`[.mhmkin` <- function(x, i, j, ..., drop = FALSE) {
+ class(x) <- NULL
+ x_sub <- x[i, j, drop = drop]
+
+ if (!drop) {
+ class(x_sub) <- "mhmkin"
+ }
+ return(x_sub)
+}
+
+#' Print method for mhmkin objects
+#'
+#' @rdname mhmkin
+#' @export
+print.mhmkin <- function(x, ...) {
+ cat("<mhmkin> object\n")
+ cat("Status of individual fits:\n\n")
+ print(status(x))
+}
+
+#' @export
+AIC.mhmkin <- function(object, ..., k = 2) {
+ if (inherits(object[[1]], "saem.mmkin")) {
+ check_failed <- function(x) if (inherits(x$so, "try-error")) TRUE else FALSE
+ }
+ res <- sapply(object, function(x) {
+ if (check_failed(x)) return(NA)
+ else return(AIC(x$so, k = k))
+ })
+ dim(res) <- dim(object)
+ dimnames(res) <- dimnames(object)
+ return(res)
+}
+
+#' @export
+BIC.mhmkin <- function(object, ...) {
+ if (inherits(object[[1]], "saem.mmkin")) {
+ check_failed <- function(x) if (inherits(x$so, "try-error")) TRUE else FALSE
+ }
+ res <- sapply(object, function(x) {
+ if (check_failed(x)) return(NA)
+ else return(BIC(x$so))
+ })
+ dim(res) <- dim(object)
+ dimnames(res) <- dimnames(object)
+ return(res)
+}
+
+#' @export
+update.mhmkin <- function(object, ..., evaluate = TRUE) {
+ call <- attr(object, "call")
+ # For some reason we get mhkin.list in call[[1]] when using mhmkin from the
+ # loaded package so we need to fix this so we do not have to export
+ # mhmkin.list in addition to the S3 method mhmkin
+ call[[1]] <- mhmkin
+
+ update_arguments <- match.call(expand.dots = FALSE)$...
+
+ if (length(update_arguments) > 0) {
+ update_arguments_in_call <- !is.na(match(names(update_arguments), names(call)))
+ }
+
+ for (a in names(update_arguments)[update_arguments_in_call]) {
+ call[[a]] <- update_arguments[[a]]
+ }
+
+ update_arguments_not_in_call <- !update_arguments_in_call
+ if(any(update_arguments_not_in_call)) {
+ call <- c(as.list(call), update_arguments[update_arguments_not_in_call])
+ call <- as.call(call)
+ }
+ if(evaluate) eval(call, parent.frame())
+ else call
+}
diff --git a/R/mixed.mmkin.R b/R/mixed.mmkin.R
index 682a9a34..fd6d975f 100644
--- a/R/mixed.mmkin.R
+++ b/R/mixed.mmkin.R
@@ -1,5 +1,6 @@
#' Create a mixed effects model from an mmkin row object
#'
+#' @importFrom rlang !!!
#' @param object An [mmkin] row object
#' @param method The method to be used
#' @param \dots Currently not used
@@ -65,7 +66,7 @@ mixed.mmkin <- function(object, method = c("none"), ...) {
function(x) x$data[c("variable", "time", "observed", "predicted", "residual")])
names(ds_list) <- ds_names
- res$data <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
+ res$data <- vctrs::vec_rbind(!!!ds_list, .names_to = "ds")
names(res$data)[1:4] <- c("ds", "name", "time", "value")
res$data$name <- as.character(res$data$name)
res$data$ds <- ordered(res$data$ds, levels = unique(res$data$ds))
diff --git a/R/mkinfit.R b/R/mkinfit.R
index 1c2f8b5e..693778fd 100644
--- a/R/mkinfit.R
+++ b/R/mkinfit.R
@@ -844,8 +844,13 @@ mkinfit <- function(mkinmod, observed,
}
}
+ dim_hessian <- length(c(degparms, errparms))
+
fit$hessian <- try(numDeriv::hessian(cost_function, c(degparms, errparms), OLS = FALSE,
update_data = FALSE), silent = TRUE)
+ if (inherits(fit$hessian, "try-error")) {
+ fit$hessian <- matrix(NA, nrow = dim_hessian, ncol = dim_hessian)
+ }
dimnames(fit$hessian) <- list(names(c(degparms, errparms)),
names(c(degparms, errparms)))
@@ -858,7 +863,9 @@ mkinfit <- function(mkinmod, observed,
fit$hessian_notrans <- try(numDeriv::hessian(cost_function, c(bparms.optim, errparms),
OLS = FALSE, trans = FALSE, update_data = FALSE), silent = TRUE)
-
+ if (inherits(fit$hessian_notrans, "try-error")) {
+ fit$hessian_notrans <- matrix(NA, nrow = dim_hessian, ncol = dim_hessian)
+ }
dimnames(fit$hessian_notrans) <- list(names(c(bparms.optim, errparms)),
names(c(bparms.optim, errparms)))
})
diff --git a/R/mmkin.R b/R/mmkin.R
index fe04129e..01e53290 100644
--- a/R/mmkin.R
+++ b/R/mmkin.R
@@ -114,15 +114,18 @@ mmkin <- function(models = c("SFO", "FOMC", "DFOP"), datasets,
return(res)
}
- if (is.null(cluster)) {
- results <- parallel::mclapply(as.list(1:n.fits), fit_function,
- mc.cores = cores, mc.preschedule = FALSE)
- } else {
- results <- parallel::parLapply(cluster, as.list(1:n.fits), fit_function)
- }
+ fit_time <- system.time({
+ if (is.null(cluster)) {
+ results <- parallel::mclapply(as.list(1:n.fits), fit_function,
+ mc.cores = cores, mc.preschedule = FALSE)
+ } else {
+ results <- parallel::parLapply(cluster, as.list(1:n.fits), fit_function)
+ }
+ })
attributes(results) <- attributes(fit_indices)
attr(results, "call") <- call
+ attr(results, "time") <- fit_time
class(results) <- "mmkin"
return(results)
}
@@ -168,41 +171,7 @@ mmkin <- function(models = c("SFO", "FOMC", "DFOP"), datasets,
print.mmkin <- function(x, ...) {
cat("<mmkin> object\n")
cat("Status of individual fits:\n\n")
- all_summary_warnings <- character()
- sww <- 0 # Counter for Shapiro-Wilks warnings
-
- display <- lapply(x,
- function(fit) {
- if (inherits(fit, "try-error")) return("E")
- sw <- fit$summary_warnings
- swn <- names(sw)
- if (length(sw) > 0) {
- if (any(grepl("S", swn))) {
- sww <<- sww + 1
- swn <- gsub("S", paste0("S", sww), swn)
- }
- warnstring <- paste(swn, collapse = ", ")
- names(sw) <- swn
- all_summary_warnings <<- c(all_summary_warnings, sw)
- return(warnstring)
- } else {
- return("OK")
- }
- })
- display <- unlist(display)
- dim(display) <- dim(x)
- dimnames(display) <- dimnames(x)
- print(display, quote = FALSE)
-
- cat("\n")
- if (any(display == "OK")) cat("OK: No warnings\n")
- if (any(display == "E")) cat("E: Error\n")
- u_swn <- unique(names(all_summary_warnings))
- u_w <- all_summary_warnings[u_swn]
- for (i in seq_along(u_w)) {
- cat(names(u_w)[i], ": ", u_w[i], "\n", sep = "")
- }
-
+ print(status(x))
}
#' @export
diff --git a/R/multistart.R b/R/multistart.R
new file mode 100644
index 00000000..61ef43dc
--- /dev/null
+++ b/R/multistart.R
@@ -0,0 +1,224 @@
+#' Perform a hierarchical model fit with multiple starting values
+#'
+#' The purpose of this method is to check if a certain algorithm for fitting
+#' nonlinear hierarchical models (also known as nonlinear mixed-effects models)
+#' will reliably yield results that are sufficiently similar to each other, if
+#' started with a certain range of reasonable starting parameters. It is
+#' inspired by the article on practical identifiabiliy in the frame of nonlinear
+#' mixed-effects models by Duchesne et al (2021).
+#'
+#' @param object The fit object to work with
+#' @param n How many different combinations of starting parameters should be
+#' used?
+#' @param cores How many fits should be run in parallel (only on posix platforms)?
+#' @param cluster A cluster as returned by [parallel::makeCluster] to be used
+#' for parallel execution.
+#' @param \dots Passed to the update function.
+#' @param x The multistart object to print
+#' @return A list of [saem.mmkin] objects, with class attributes
+#' 'multistart.saem.mmkin' and 'multistart'.
+#' @seealso [parplot], [llhist]
+#'
+#' @references Duchesne R, Guillemin A, Gandrillon O, Crauste F. Practical
+#' identifiability in the frame of nonlinear mixed effects models: the example
+#' of the in vitro erythropoiesis. BMC Bioinformatics. 2021 Oct 4;22(1):478.
+#' doi: 10.1186/s12859-021-04373-4.
+#' @export
+#' @examples
+#' \dontrun{
+#' library(mkin)
+#' dmta_ds <- lapply(1:7, function(i) {
+#' ds_i <- dimethenamid_2018$ds[[i]]$data
+#' ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+#' ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+#' ds_i
+#' })
+#' names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+#' dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+#' dmta_ds[["Elliot 1"]] <- dmta_ds[["Elliot 2"]] <- NULL
+#'
+#' f_mmkin <- mmkin("DFOP", dmta_ds, error_model = "tc", cores = 7, quiet = TRUE)
+#' f_saem_full <- saem(f_mmkin)
+#' f_saem_full_multi <- multistart(f_saem_full, n = 16, cores = 16)
+#' parplot(f_saem_full_multi, lpos = "topleft")
+#' illparms(f_saem_full)
+#'
+#' f_saem_reduced <- update(f_saem_full, no_random_effect = "log_k2")
+#' illparms(f_saem_reduced)
+#' # On Windows, we need to create a cluster first. When working with
+#' # such a cluster, we need to export the mmkin object to the cluster
+#' # nodes, as it is referred to when updating the saem object on the nodes.
+#' library(parallel)
+#' cl <- makePSOCKcluster(12)
+#' f_saem_reduced_multi <- multistart(f_saem_reduced, n = 16, cluster = cl)
+#' parplot(f_saem_reduced_multi, lpos = "topright")
+#' stopCluster(cl)
+#' }
+multistart <- function(object, n = 50,
+ cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(),
+ cluster = NULL, ...)
+{
+ UseMethod("multistart", object)
+}
+
+#' @rdname multistart
+#' @export
+multistart.saem.mmkin <- function(object, n = 50, cores = 1,
+ cluster = NULL, ...) {
+ call <- match.call()
+ if (n <= 1) stop("Please specify an n of at least 2")
+
+ mmkin_object <- object$mmkin
+
+ mmkin_parms <- parms(mmkin_object, errparms = FALSE,
+ transformed = object$transformations == "mkin")
+ start_parms <- apply(
+ mmkin_parms, 1,
+ function(x) stats::runif(n, min(x), max(x)))
+
+ saem_call <- object$call
+ saem_call[[1]] <- saem
+ saem_call[[2]] <- mmkin_object
+ i_startparms <- which(names(saem_call) == "degparms_start")
+
+ fit_function <- function(x) {
+
+ new_startparms <- str2lang(
+ paste0(capture.output(dput(start_parms[x, ])),
+ collapse = ""))
+
+ if (length(i_startparms) == 0) {
+ saem_call <- c(as.list(saem_call), degparms_start = new_startparms)
+ saem_call <- as.call(saem_call)
+ } else {
+ saem_call[i_startparms] <- new_startparms
+ }
+
+ ret <- eval(saem_call)
+
+ return(ret)
+ }
+
+ if (is.null(cluster)) {
+ res <- parallel::mclapply(1:n, fit_function, mc.cores = cores)
+ } else {
+ res <- parallel::parLapply(cluster, 1:n, fit_function)
+ }
+ attr(res, "orig") <- object
+ attr(res, "start_parms") <- start_parms
+ attr(res, "call") <- call
+ class(res) <- c("multistart.saem.mmkin", "multistart")
+ return(res)
+}
+
+#' @export
+status.multistart <- function(object, ...) {
+ all_summary_warnings <- character()
+
+ result <- lapply(object,
+ function(fit) {
+ if (inherits(fit, "try-error")) return("E")
+ else {
+ return("OK")
+ }
+ })
+ result <- unlist(result)
+
+ class(result) <- "status.multistart"
+ return(result)
+}
+
+#' @export
+status.multistart.saem.mmkin <- function(object, ...) {
+ all_summary_warnings <- character()
+
+ result <- lapply(object,
+ function(fit) {
+ if (inherits(fit$so, "try-error")) return("E")
+ else {
+ return("OK")
+ }
+ })
+ result <- unlist(result)
+
+ class(result) <- "status.multistart"
+ return(result)
+}
+
+#' @export
+print.status.multistart <- function(x, ...) {
+ class(x) <- NULL
+ print(table(x, dnn = NULL))
+ if (any(x == "OK")) cat("OK: Fit terminated successfully\n")
+ if (any(x == "E")) cat("E: Error\n")
+}
+
+#' @rdname multistart
+#' @export
+print.multistart <- function(x, ...) {
+ cat("<multistart> object with", length(x), "fits:\n")
+ print(status(x))
+}
+
+#' @rdname multistart
+#' @export
+best <- function(object, ...)
+{
+ UseMethod("best", object)
+}
+
+#' @export
+#' @return The object with the highest likelihood
+#' @rdname multistart
+best.default <- function(object, ...)
+{
+ return(object[[which.best(object)]])
+}
+
+#' @return The index of the object with the highest likelihood
+#' @rdname multistart
+#' @export
+which.best <- function(object, ...)
+{
+ UseMethod("which.best", object)
+}
+
+#' @rdname multistart
+#' @export
+which.best.default <- function(object, ...)
+{
+ llfunc <- function(object) {
+ ret <- try(logLik(object))
+ if (inherits(ret, "try-error")) return(NA)
+ else return(ret)
+ }
+ ll <- sapply(object, llfunc)
+ return(which.max(ll))
+}
+
+#' @export
+update.multistart <- function(object, ..., evaluate = TRUE) {
+ call <- attr(object, "call")
+ # For some reason we get multistart.saem.mmkin in call[[1]] when using multistart
+ # from the loaded package so we need to fix this so we do not have to export
+ # multistart.saem.mmkin
+ call[[1]] <- multistart
+
+ update_arguments <- match.call(expand.dots = FALSE)$...
+
+ if (length(update_arguments) > 0) {
+ update_arguments_in_call <- !is.na(match(names(update_arguments), names(call)))
+ }
+
+ for (a in names(update_arguments)[update_arguments_in_call]) {
+ call[[a]] <- update_arguments[[a]]
+ }
+
+ update_arguments_not_in_call <- !update_arguments_in_call
+ if(any(update_arguments_not_in_call)) {
+ call <- c(as.list(call), update_arguments[update_arguments_not_in_call])
+ call <- as.call(call)
+ }
+ if(evaluate) eval(call, parent.frame())
+ else call
+}
diff --git a/R/nlme.R b/R/nlme.R
index 8762f137..6b2d06d0 100644
--- a/R/nlme.R
+++ b/R/nlme.R
@@ -125,7 +125,7 @@ nlme_function <- function(object) {
}
#' @rdname nlme
-#' @importFrom purrr map_dfr
+#' @importFrom rlang !!!
#' @return A \code{\link{groupedData}} object
#' @export
nlme_data <- function(object) {
@@ -134,7 +134,7 @@ nlme_data <- function(object) {
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
- ds_nlme <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
+ ds_nlme <- vctrs::vec_rbind(!!!ds_list, .names_to = "ds")
ds_nlme$variable <- as.character(ds_nlme$variable)
ds_nlme$ds <- ordered(ds_nlme$ds, levels = unique(ds_nlme$ds))
ds_nlme_renamed <- data.frame(ds = ds_nlme$ds, name = ds_nlme$variable,
diff --git a/R/parms.R b/R/parms.R
new file mode 100644
index 00000000..bd4e479b
--- /dev/null
+++ b/R/parms.R
@@ -0,0 +1,82 @@
+#' Extract model parameters
+#'
+#' This function returns degradation model parameters as well as error
+#' model parameters per default, in order to avoid working with a fitted model
+#' without considering the error structure that was assumed for the fit.
+#'
+#' @param object A fitted model object.
+#' @param \dots Not used
+#' @return Depending on the object, a numeric vector of fitted model parameters,
+#' a matrix (e.g. for mmkin row objects), or a list of matrices (e.g. for
+#' mmkin objects with more than one row).
+#' @seealso [saem], [multistart]
+#' @examples
+#' # mkinfit objects
+#' fit <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)
+#' parms(fit)
+#' parms(fit, transformed = TRUE)
+#'
+#' # mmkin objects
+#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
+#' function(x) subset(x$data[c("name", "time", "value")]))
+#' names(ds) <- paste("Dataset", 6:10)
+#' \dontrun{
+#' fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE, cores = 1)
+#' parms(fits["SFO", ])
+#' parms(fits[, 2])
+#' parms(fits)
+#' parms(fits, transformed = TRUE)
+#' }
+#' @export
+parms <- function(object, ...)
+{
+ UseMethod("parms", object)
+}
+
+#' @param transformed Should the parameters be returned as used internally
+#' during the optimisation?
+#' @param errparms Should the error model parameters be returned
+#' in addition to the degradation parameters?
+#' @rdname parms
+#' @export
+parms.mkinfit <- function(object, transformed = FALSE, errparms = TRUE, ...)
+{
+ res <- if (transformed) object$par
+ else c(object$bparms.optim, object$errparms)
+ if (!errparms) {
+ res[setdiff(names(res), names(object$errparms))]
+ }
+ else return(res)
+}
+
+#' @rdname parms
+#' @export
+parms.mmkin <- function(object, transformed = FALSE, errparms = TRUE, ...)
+{
+ if (nrow(object) == 1) {
+ res <- sapply(object, parms, transformed = transformed,
+ errparms = errparms, ...)
+ colnames(res) <- colnames(object)
+ } else {
+ res <- list()
+ for (i in 1:nrow(object)) {
+ res[[i]] <- parms(object[i, ], transformed = transformed,
+ errparms = errparms, ...)
+ }
+ names(res) <- rownames(object)
+ }
+ return(res)
+}
+
+#' @param exclude_failed For [multistart] objects, should rows for failed fits
+#' be removed from the returned parameter matrix?
+#' @rdname parms
+#' @export
+parms.multistart <- function(object, exclude_failed = TRUE, ...) {
+ res <- t(sapply(object, parms))
+ successful <- which(!is.na(res[, 1]))
+ first_success <- successful[1]
+ colnames(res) <- names(parms(object[[first_success]]))
+ if (exclude_failed) res <- res[successful, ]
+ return(res)
+}
diff --git a/R/parms.mkinfit.R b/R/parms.mkinfit.R
deleted file mode 100644
index a1f2d209..00000000
--- a/R/parms.mkinfit.R
+++ /dev/null
@@ -1,62 +0,0 @@
-#' Extract model parameters from mkinfit models
-#'
-#' This function always returns degradation model parameters as well as error
-#' model parameters, in order to avoid working with a fitted model without
-#' considering the error structure that was assumed for the fit.
-#'
-#' @param object A fitted model object. Methods are implemented for
-#' [mkinfit()] objects and for [mmkin()] objects.
-#' @param \dots Not used
-#' @return For mkinfit objects, a numeric vector of fitted model parameters.
-#' For mmkin row objects, a matrix with the parameters with a
-#' row for each dataset. If the mmkin object has more than one row, a list of
-#' such matrices is returned.
-#' @examples
-#' # mkinfit objects
-#' fit <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)
-#' parms(fit)
-#' parms(fit, transformed = TRUE)
-#'
-#' # mmkin objects
-#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
-#' function(x) subset(x$data[c("name", "time", "value")]))
-#' names(ds) <- paste("Dataset", 6:10)
-#' \dontrun{
-#' fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE, cores = 1)
-#' parms(fits["SFO", ])
-#' parms(fits[, 2])
-#' parms(fits)
-#' parms(fits, transformed = TRUE)
-#' }
-#' @export
-parms <- function(object, ...)
-{
- UseMethod("parms", object)
-}
-
-#' @param transformed Should the parameters be returned
-#' as used internally during the optimisation?
-#' @rdname parms
-#' @export
-parms.mkinfit <- function(object, transformed = FALSE, ...)
-{
- if (transformed) object$par
- else c(object$bparms.optim, object$errparms)
-}
-
-#' @rdname parms
-#' @export
-parms.mmkin <- function(object, transformed = FALSE, ...)
-{
- if (nrow(object) == 1) {
- res <- sapply(object, parms, transformed = transformed, ...)
- colnames(res) <- colnames(object)
- } else {
- res <- list()
- for (i in 1:nrow(object)) {
- res[[i]] <- parms(object[i, ], transformed = transformed, ...)
- }
- names(res) <- rownames(object)
- }
- return(res)
-}
diff --git a/R/parplot.R b/R/parplot.R
new file mode 100644
index 00000000..627a4eb8
--- /dev/null
+++ b/R/parplot.R
@@ -0,0 +1,105 @@
+#' Plot parameter variability of multistart objects
+#'
+#' Produces a boxplot with all parameters from the multiple runs, scaled
+#' either by the parameters of the run with the highest likelihood,
+#' or by their medians as proposed in the paper by Duchesne et al. (2021).
+#'
+#' @param object The [multistart] object
+#' @param llmin The minimum likelihood of objects to be shown
+#' @param scale By default, scale parameters using the best available fit.
+#' If 'median', parameters are scaled using the median parameters from all fits.
+#' @param main Title of the plot
+#' @param lpos Positioning of the legend.
+#' @param \dots Passed to [boxplot]
+#' @references Duchesne R, Guillemin A, Gandrillon O, Crauste F. Practical
+#' identifiability in the frame of nonlinear mixed effects models: the example
+#' of the in vitro erythropoiesis. BMC Bioinformatics. 2021 Oct 4;22(1):478.
+#' doi: 10.1186/s12859-021-04373-4.
+#' @seealso [multistart]
+#' @importFrom stats median
+#' @export
+parplot <- function(object, ...) {
+ UseMethod("parplot")
+}
+
+#' @rdname parplot
+#' @export
+parplot.multistart.saem.mmkin <- function(object, llmin = -Inf, scale = c("best", "median"),
+ lpos = "bottomleft", main = "", ...)
+{
+ oldpar <- par(no.readonly = TRUE)
+ on.exit(par(oldpar, no.readonly = TRUE))
+
+ orig <- attr(object, "orig")
+ orig_parms <- parms(orig)
+ start_parms <- orig$mean_dp_start
+ all_parms <- parms(object)
+
+ if (inherits(object, "multistart.saem.mmkin")) {
+ llfunc <- function(object) {
+ if (inherits(object$so, "try-error")) return(NA)
+ else return(logLik(object$so))
+ }
+ } else {
+ stop("parplot is only implemented for multistart.saem.mmkin objects")
+ }
+ ll <- sapply(object, llfunc)
+ selected <- which(ll > llmin)
+ selected_parms <- all_parms[selected, ]
+
+ par(las = 1)
+ if (orig$transformations == "mkin") {
+ degparm_names_transformed <- names(start_parms)
+ degparm_index <- which(names(orig_parms) %in% degparm_names_transformed)
+ orig_parms[degparm_names_transformed] <- backtransform_odeparms(
+ orig_parms[degparm_names_transformed],
+ orig$mmkin[[1]]$mkinmod,
+ transform_rates = orig$mmkin[[1]]$transform_rates,
+ transform_fractions = orig$mmkin[[1]]$transform_fractions)
+ start_parms <- backtransform_odeparms(start_parms,
+ orig$mmkin[[1]]$mkinmod,
+ transform_rates = orig$mmkin[[1]]$transform_rates,
+ transform_fractions = orig$mmkin[[1]]$transform_fractions)
+ degparm_names <- names(start_parms)
+
+ names(orig_parms) <- c(degparm_names, names(orig_parms[-degparm_index]))
+
+ selected_parms[, degparm_names_transformed] <-
+ t(apply(selected_parms[, degparm_names_transformed], 1, backtransform_odeparms,
+ orig$mmkin[[1]]$mkinmod,
+ transform_rates = orig$mmkin[[1]]$transform_rates,
+ transform_fractions = orig$mmkin[[1]]$transform_fractions))
+ colnames(selected_parms)[1:length(degparm_names)] <- degparm_names
+ }
+
+ scale <- match.arg(scale)
+ parm_scale <- switch(scale,
+ best = selected_parms[which.best(object[selected]), ],
+ median = apply(selected_parms, 2, median)
+ )
+
+ # Boxplots of all scaled parameters
+ selected_scaled_parms <- t(apply(selected_parms, 1, function(x) x / parm_scale))
+ boxplot(selected_scaled_parms, log = "y", main = main, ,
+ ylab = "Normalised parameters", ...)
+
+ # Show starting parameters
+ start_scaled_parms <- rep(NA_real_, length(orig_parms))
+ names(start_scaled_parms) <- names(orig_parms)
+ start_scaled_parms[names(start_parms)] <-
+ start_parms / parm_scale[names(start_parms)]
+ points(start_scaled_parms, col = 3, cex = 3)
+
+ # Show parameters of original run
+ orig_scaled_parms <- orig_parms / parm_scale
+ points(orig_scaled_parms, col = 2, cex = 2)
+
+ abline(h = 1, lty = 2)
+
+ legend(lpos, inset = c(0.05, 0.05), bty = "n",
+ pch = 1, col = 3:1, lty = c(NA, NA, 1),
+ legend = c(
+ "Starting parameters",
+ "Original run",
+ "Multistart runs"))
+}
diff --git a/R/plot.mixed.mmkin.R b/R/plot.mixed.mmkin.R
index 3a444253..6815bfd2 100644
--- a/R/plot.mixed.mmkin.R
+++ b/R/plot.mixed.mmkin.R
@@ -153,7 +153,7 @@ plot.mixed.mmkin <- function(x,
outtimes <- sort(unique(c(x$data$time,
seq(xlim[1], xlim[2], length.out = 50))))
- pred_ds <- purrr::map_dfr(i, function(ds_i) {
+ pred_list <- lapply(i, function(ds_i) {
odeparms_trans <- degparms_all[ds_i, odeparms_names]
names(odeparms_trans) <- odeparms_names # needed if only one odeparm
if (backtransform) {
@@ -171,8 +171,9 @@ plot.mixed.mmkin <- function(x,
out <- mkinpredict(x$mkinmod, odeparms, odeini,
outtimes, solution_type = solution_type,
atol = fit_1$atol, rtol = fit_1$rtol)
- return(cbind(as.data.frame(out), ds = ds_names[ds_i]))
})
+ names(pred_list) <- ds_names[i]
+ pred_ds <- vctrs::vec_rbind(!!!pred_list, .names_to = "ds")
odeparms_pop_trans <- degparms_all_pop[odeparms_names]
diff --git a/R/saem.R b/R/saem.R
index 36997ad7..090ed3bf 100644
--- a/R/saem.R
+++ b/R/saem.R
@@ -15,35 +15,46 @@ utils::globalVariables(c("predicted", "std"))
#'
#' @importFrom utils packageVersion
#' @param object An [mmkin] row object containing several fits of the same
-#' [mkinmod] model to different datasets
+#' [mkinmod] model to different datasets
#' @param verbose Should we print information about created objects of
-#' type [saemix::SaemixModel] and [saemix::SaemixData]?
+#' type [saemix::SaemixModel] and [saemix::SaemixData]?
#' @param transformations Per default, all parameter transformations are done
-#' in mkin. If this argument is set to 'saemix', parameter transformations
-#' are done in 'saemix' for the supported cases. Currently this is only
-#' supported in cases where the initial concentration of the parent is not fixed,
-#' SFO or DFOP is used for the parent and there is either no metabolite or one.
+#' in mkin. If this argument is set to 'saemix', parameter transformations
+#' are done in 'saemix' for the supported cases, i.e. (as of version 1.1.2)
+#' SFO, FOMC, DFOP and HS without fixing `parent_0`, and SFO or DFOP with
+#' one SFO metabolite.
#' @param degparms_start Parameter values given as a named numeric vector will
-#' be used to override the starting values obtained from the 'mmkin' object.
+#' be used to override the starting values obtained from the 'mmkin' object.
#' @param test_log_parms If TRUE, an attempt is made to use more robust starting
-#' values for population parameters fitted as log parameters in mkin (like
-#' rate constants) by only considering rate constants that pass the t-test
-#' when calculating mean degradation parameters using [mean_degparms].
+#' values for population parameters fitted as log parameters in mkin (like
+#' rate constants) by only considering rate constants that pass the t-test
+#' when calculating mean degradation parameters using [mean_degparms].
#' @param conf.level Possibility to adjust the required confidence level
-#' for parameter that are tested if requested by 'test_log_parms'.
+#' for parameter that are tested if requested by 'test_log_parms'.
#' @param solution_type Possibility to specify the solution type in case the
-#' automatic choice is not desired
+#' automatic choice is not desired
+#' @param no_random_effect Character vector of degradation parameters for
+#' which there should be no variability over the groups. Only used
+#' if the covariance model is not explicitly specified.
+#' @param covariance.model Will be passed to [saemix::SaemixModel()]. Per
+#' default, uncorrelated random effects are specified for all degradation
+#' parameters.
+#' @param covariates A data frame with covariate data for use in
+#' 'covariate_models', with dataset names as row names.
+#' @param covariate_models A list containing linear model formulas with one explanatory
+#' variable, i.e. of the type 'parameter ~ covariate'. Covariates must be available
+#' in the 'covariates' data frame.
#' @param fail_with_errors Should a failure to compute standard errors
-#' from the inverse of the Fisher Information Matrix be a failure?
+#' from the inverse of the Fisher Information Matrix be a failure?
#' @param quiet Should we suppress the messages saemix prints at the beginning
-#' and the end of the optimisation process?
+#' and the end of the optimisation process?
#' @param nbiter.saemix Convenience option to increase the number of
-#' iterations
+#' iterations
#' @param control Passed to [saemix::saemix].
#' @param \dots Further parameters passed to [saemix::saemixModel].
#' @return An S3 object of class 'saem.mmkin', containing the fitted
-#' [saemix::SaemixObject] as a list component named 'so'. The
-#' object also inherits from 'mixed.mmkin'.
+#' [saemix::SaemixObject] as a list component named 'so'. The
+#' object also inherits from 'mixed.mmkin'.
#' @seealso [summary.saem.mmkin] [plot.mixed.mmkin]
#' @examples
#' \dontrun{
@@ -58,7 +69,13 @@ utils::globalVariables(c("predicted", "std"))
#' f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#' f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#' f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#' anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
+#' anova(f_saem_sfo, f_saem_dfop, test = TRUE)
+#' illparms(f_saem_dfop)
+#' f_saem_dfop_red <- update(f_saem_dfop, no_random_effect = "g_qlogis")
+#' anova(f_saem_dfop, f_saem_dfop_red, test = TRUE)
#'
+#' anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
#' # The returned saem.mmkin object contains an SaemixObject, therefore we can use
#' # functions from saemix
#' library(saemix)
@@ -70,7 +87,7 @@ utils::globalVariables(c("predicted", "std"))
#'
#' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
#' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
-#' compare.saemix(f_saem_fomc$so, f_saem_fomc_tc$so)
+#' anova(f_saem_fomc, f_saem_fomc_tc, test = TRUE)
#'
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
@@ -118,6 +135,10 @@ saem.mmkin <- function(object,
test_log_parms = TRUE,
conf.level = 0.6,
solution_type = "auto",
+ covariance.model = "auto",
+ covariates = NULL,
+ covariate_models = NULL,
+ no_random_effect = NULL,
nbiter.saemix = c(300, 100),
control = list(displayProgress = FALSE, print = FALSE,
nbiter.saemix = nbiter.saemix,
@@ -125,56 +146,68 @@ saem.mmkin <- function(object,
fail_with_errors = TRUE,
verbose = FALSE, quiet = FALSE, ...)
{
+ call <- match.call()
transformations <- match.arg(transformations)
m_saemix <- saemix_model(object, verbose = verbose,
degparms_start = degparms_start,
test_log_parms = test_log_parms, conf.level = conf.level,
solution_type = solution_type,
- transformations = transformations, ...)
- d_saemix <- saemix_data(object, verbose = verbose)
+ transformations = transformations,
+ covariance.model = covariance.model,
+ covariates = covariates,
+ covariate_models = covariate_models,
+ no_random_effect = no_random_effect,
+ ...)
+ d_saemix <- saemix_data(object, covariates = covariates, verbose = verbose)
+ fit_failed <- FALSE
+ FIM_failed <- NULL
fit_time <- system.time({
- utils::capture.output(f_saemix <- saemix::saemix(m_saemix, d_saemix, control), split = !quiet)
- FIM_failed <- NULL
+ utils::capture.output(f_saemix <- try(saemix::saemix(m_saemix, d_saemix, control)), split = !quiet)
+ if (inherits(f_saemix, "try-error")) fit_failed <- TRUE
+ })
+
+ return_data <- nlme_data(object)
+
+ if (!fit_failed) {
if (any(is.na(f_saemix@results@se.fixed))) FIM_failed <- c(FIM_failed, "fixed effects")
if (any(is.na(c(f_saemix@results@se.omega, f_saemix@results@se.respar)))) {
- FIM_failed <- c(FIM_failed, "random effects and residual error parameters")
+ FIM_failed <- c(FIM_failed, "random effects and error model parameters")
}
if (!is.null(FIM_failed) & fail_with_errors) {
stop("Could not invert FIM for ", paste(FIM_failed, collapse = " and "))
}
- })
- transparms_optim <- f_saemix@results@fixed.effects
- names(transparms_optim) <- f_saemix@results@name.fixed
+ transparms_optim <- f_saemix@results@fixed.effects
+ names(transparms_optim) <- f_saemix@results@name.fixed
- if (transformations == "mkin") {
- bparms_optim <- backtransform_odeparms(transparms_optim,
- object[[1]]$mkinmod,
- object[[1]]$transform_rates,
- object[[1]]$transform_fractions)
- } else {
- bparms_optim <- transparms_optim
- }
+ if (transformations == "mkin") {
+ bparms_optim <- backtransform_odeparms(transparms_optim,
+ object[[1]]$mkinmod,
+ object[[1]]$transform_rates,
+ object[[1]]$transform_fractions)
+ } else {
+ bparms_optim <- transparms_optim
+ }
- return_data <- nlme_data(object)
- saemix_data_ds <- f_saemix@data@data$ds
- mkin_ds_order <- as.character(unique(return_data$ds))
- saemix_ds_order <- unique(saemix_data_ds)
-
- psi <- saemix::psi(f_saemix)
- rownames(psi) <- saemix_ds_order
- return_data$predicted <- f_saemix@model@model(
- psi = psi[mkin_ds_order, ],
- id = as.numeric(return_data$ds),
- xidep = return_data[c("time", "name")])
-
- return_data <- transform(return_data,
- residual = value - predicted,
- std = sigma_twocomp(predicted,
- f_saemix@results@respar[1], f_saemix@results@respar[2]))
- return_data <- transform(return_data,
- standardized = residual / std)
+ saemix_data_ds <- f_saemix@data@data$ds
+ mkin_ds_order <- as.character(unique(return_data$ds))
+ saemix_ds_order <- unique(saemix_data_ds)
+
+ psi <- saemix::psi(f_saemix)
+ rownames(psi) <- saemix_ds_order
+ return_data$predicted <- f_saemix@model@model(
+ psi = psi[mkin_ds_order, ],
+ id = as.numeric(return_data$ds),
+ xidep = return_data[c("time", "name")])
+
+ return_data <- transform(return_data,
+ residual = value - predicted,
+ std = sigma_twocomp(predicted,
+ f_saemix@results@respar[1], f_saemix@results@respar[2]))
+ return_data <- transform(return_data,
+ standardized = residual / std)
+ }
result <- list(
mkinmod = object[[1]]$mkinmod,
@@ -183,14 +216,14 @@ saem.mmkin <- function(object,
transformations = transformations,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions,
+ sm = m_saemix,
so = f_saemix,
+ call = call,
time = fit_time,
+ FIM_failed = FIM_failed,
mean_dp_start = attr(m_saemix, "mean_dp_start"),
- bparms.optim = bparms_optim,
bparms.fixed = object[[1]]$bparms.fixed,
data = return_data,
- mkin_ds_order = mkin_ds_order,
- saemix_ds_order = saemix_ds_order,
err_mod = object[[1]]$err_mod,
date.fit = date(),
saemixversion = as.character(utils::packageVersion("saemix")),
@@ -198,6 +231,12 @@ saem.mmkin <- function(object,
Rversion = paste(R.version$major, R.version$minor, sep=".")
)
+ if (!fit_failed) {
+ result$mkin_ds_order <- mkin_ds_order
+ result$saemix_ds_order <- saemix_ds_order
+ result$bparms.optim <- bparms_optim
+ }
+
class(result) <- c("saem.mmkin", "mixed.mmkin")
return(result)
}
@@ -217,18 +256,20 @@ print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
length(unique(x$data$name)), "variable(s) grouped in",
length(unique(x$data$ds)), "datasets\n")
- cat("\nLikelihood computed by importance sampling\n")
- print(data.frame(
- AIC = AIC(x$so, type = "is"),
- BIC = BIC(x$so, type = "is"),
- logLik = logLik(x$so, type = "is"),
- row.names = " "), digits = digits)
-
- cat("\nFitted parameters:\n")
- conf.int <- x$so@results@conf.int[c("estimate", "lower", "upper")]
- rownames(conf.int) <- x$so@results@conf.int[["name"]]
- conf.int.var <- grepl("^Var\\.", rownames(conf.int))
- print(conf.int[!conf.int.var, ], digits = digits)
+ if (inherits(x$so, "try-error")) {
+ cat("\nFit did not terminate successfully\n")
+ } else {
+ cat("\nLikelihood computed by importance sampling\n")
+ print(data.frame(
+ AIC = AIC(x$so, type = "is"),
+ BIC = BIC(x$so, type = "is"),
+ logLik = logLik(x$so, type = "is"),
+ row.names = " "), digits = digits)
+
+ cat("\nFitted parameters:\n")
+ conf.int <- parms(x, ci = TRUE)
+ print(conf.int, digits = digits)
+ }
invisible(x)
}
@@ -236,14 +277,23 @@ print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
#' @rdname saem
#' @return An [saemix::SaemixModel] object.
#' @export
-saemix_model <- function(object, solution_type = "auto", transformations = c("mkin", "saemix"),
- degparms_start = numeric(), test_log_parms = FALSE, conf.level = 0.6, verbose = FALSE, ...)
+saemix_model <- function(object, solution_type = "auto",
+ transformations = c("mkin", "saemix"), degparms_start = numeric(),
+ covariance.model = "auto", no_random_effect = NULL,
+ covariates = NULL, covariate_models = NULL,
+ test_log_parms = FALSE, conf.level = 0.6, verbose = FALSE, ...)
{
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
degparms_optim <- mean_degparms(object, test_log_parms = test_log_parms)
+ na_degparms <- names(which(is.na(degparms_optim)))
+ if (length(na_degparms) > 0) {
+ message("Did not find valid starting values for ", paste(na_degparms, collapse = ", "), "\n",
+ "Now trying with test_log_parms = FALSE")
+ degparms_optim <- mean_degparms(object, test_log_parms = FALSE)
+ }
if (transformations == "saemix") {
degparms_optim <- backtransform_odeparms(degparms_optim,
object[[1]]$mkinmod,
@@ -252,7 +302,8 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
}
degparms_fixed <- object[[1]]$bparms.fixed
- # Transformations are done in the degradation function
+ # Transformations are done in the degradation function by default
+ # (transformations = "mkin")
transform.par = rep(0, length(degparms_optim))
odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
@@ -275,7 +326,10 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
# Parent only
if (length(mkin_model$spec) == 1) {
parent_type <- mkin_model$spec[[1]]$type
- if (length(odeini_fixed) == 1) {
+ if (length(odeini_fixed) == 1 && !grepl("_bound$", names(odeini_fixed))) {
+ if (transformations == "saemix") {
+ stop("saemix transformations are not supported for parent fits with fixed initial parent value")
+ }
if (parent_type == "SFO") {
stop("saemix needs at least two parameters to work on.")
}
@@ -303,6 +357,9 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
}
}
} else {
+ if (length(odeini_fixed) == 2) {
+ stop("SFORB with fixed initial parent value is not supported")
+ }
if (parent_type == "SFO") {
if (transformations == "mkin") {
model_function <- function(psi, id, xidep) {
@@ -316,8 +373,15 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
}
}
if (parent_type == "FOMC") {
- model_function <- function(psi, id, xidep) {
- psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2])
+ if (transformations == "mkin") {
+ model_function <- function(psi, id, xidep) {
+ psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2])
+ }
+ } else {
+ model_function <- function(psi, id, xidep) {
+ psi[id, 1] / (xidep[, "time"]/psi[id, 3] + 1)^psi[id, 2]
+ }
+ transform.par = c(0, 1, 1)
}
}
if (parent_type == "DFOP") {
@@ -338,14 +402,57 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
transform.par = c(0, 1, 1, 3)
}
}
+ if (parent_type == "SFORB") {
+ if (transformations == "mkin") {
+ model_function <- function(psi, id, xidep) {
+ k_12 <- exp(psi[id, 3])
+ k_21 <- exp(psi[id, 4])
+ k_1output <- exp(psi[id, 2])
+ t <- xidep[, "time"]
+
+ sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 + k_12 * k_21 - (k_12 + k_1output) * k_21)
+ b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp
+ b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp
+
+ psi[id, 1] * (((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) +
+ ((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t))
+ }
+ } else {
+ model_function <- function(psi, id, xidep) {
+ k_12 <- psi[id, 3]
+ k_21 <- psi[id, 4]
+ k_1output <- psi[id, 2]
+ t <- xidep[, "time"]
+
+ sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 + k_12 * k_21 - (k_12 + k_1output) * k_21)
+ b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp
+ b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp
+
+ psi[id, 1] * (((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) +
+ ((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t))
+ }
+ transform.par = c(0, 1, 1, 1)
+ }
+ }
if (parent_type == "HS") {
- model_function <- function(psi, id, xidep) {
- tb <- exp(psi[id, 4])
- t <- xidep[, "time"]
- k1 = exp(psi[id, 2])
- psi[id, 1] * ifelse(t <= tb,
- exp(- k1 * t),
- exp(- k1 * tb) * exp(- exp(psi[id, 3]) * (t - tb)))
+ if (transformations == "mkin") {
+ model_function <- function(psi, id, xidep) {
+ tb <- exp(psi[id, 4])
+ t <- xidep[, "time"]
+ k1 <- exp(psi[id, 2])
+ psi[id, 1] * ifelse(t <= tb,
+ exp(- k1 * t),
+ exp(- k1 * tb) * exp(- exp(psi[id, 3]) * (t - tb)))
+ }
+ } else {
+ model_function <- function(psi, id, xidep) {
+ tb <- psi[id, 4]
+ t <- xidep[, "time"]
+ psi[id, 1] * ifelse(t <= tb,
+ exp(- psi[id, 2] * t),
+ exp(- psi[id, 2] * tb) * exp(- psi[id, 3] * (t - tb)))
+ }
+ transform.par = c(0, 1, 1, 1)
}
}
}
@@ -518,8 +625,52 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
degparms_psi0 <- degparms_optim
degparms_psi0[names(degparms_start)] <- degparms_start
- psi0_matrix <- matrix(degparms_psi0, nrow = 1)
- colnames(psi0_matrix) <- names(degparms_psi0)
+ psi0_matrix <- matrix(degparms_psi0, nrow = 1,
+ dimnames = list("(Intercept)", names(degparms_psi0)))
+
+ if (covariance.model[1] == "auto") {
+ covariance_diagonal <- rep(1, length(degparms_optim))
+ if (!is.null(no_random_effect)) {
+ degparms_no_random <- which(names(degparms_psi0) %in% no_random_effect)
+ covariance_diagonal[degparms_no_random] <- 0
+ }
+ covariance.model = diag(covariance_diagonal)
+ }
+
+ if (is.null(covariate_models)) {
+ covariate.model <- matrix(nrow = 0, ncol = 0) # default in saemixModel()
+ } else {
+ degparms_dependent <- sapply(covariate_models, function(x) as.character(x[[2]]))
+ covariates_in_models = unique(unlist(lapply(
+ covariate_models, function(x)
+ colnames(attr(terms(x), "factors"))
+ )))
+ covariates_not_available <- setdiff(covariates_in_models, names(covariates))
+ if (length(covariates_not_available) > 0) {
+ stop("Covariate(s) ", paste(covariates_not_available, collapse = ", "),
+ " used in the covariate models not available in the covariate data")
+ }
+ psi0_matrix <- rbind(psi0_matrix,
+ matrix(0, nrow = length(covariates), ncol = ncol(psi0_matrix),
+ dimnames = list(names(covariates), colnames(psi0_matrix))))
+ covariate.model <- matrix(0, nrow = length(covariates),
+ ncol = ncol(psi0_matrix),
+ dimnames = list(
+ covariates = names(covariates),
+ degparms = colnames(psi0_matrix)))
+ if (transformations == "saemix") {
+ stop("Covariate models with saemix transformations currently not supported")
+ }
+ parms_trans <- as.data.frame(t(sapply(object, parms, transformed = TRUE)))
+ for (covariate_model in covariate_models) {
+ covariate_name <- as.character(covariate_model[[2]])
+ model_data <- cbind(parms_trans, covariates)
+ ini_model <- lm(covariate_model, data = model_data)
+ ini_coef <- coef(ini_model)
+ psi0_matrix[names(ini_coef), covariate_name] <- ini_coef
+ covariate.model[names(ini_coef)[-1], covariate_name] <- as.numeric(as.logical(ini_coef[-1]))
+ }
+ }
res <- saemix::saemixModel(model_function,
psi0 = psi0_matrix,
@@ -527,6 +678,8 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
transform.par = transform.par,
error.model = error.model,
verbose = verbose,
+ covariance.model = covariance.model,
+ covariate.model = covariate.model,
...
)
attr(res, "mean_dp_start") <- degparms_optim
@@ -534,26 +687,107 @@ saemix_model <- function(object, solution_type = "auto", transformations = c("mk
}
#' @rdname saem
+#' @importFrom rlang !!!
#' @return An [saemix::SaemixData] object.
#' @export
-saemix_data <- function(object, verbose = FALSE, ...) {
+saemix_data <- function(object, covariates = NULL, verbose = FALSE, ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
ds_names <- colnames(object)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
- ds_saemix_all <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
+ ds_saemix_all <- vctrs::vec_rbind(!!!ds_list, .names_to = "ds")
ds_saemix <- data.frame(ds = ds_saemix_all$ds,
name = as.character(ds_saemix_all$variable),
time = ds_saemix_all$time,
value = ds_saemix_all$observed,
stringsAsFactors = FALSE)
+ if (!is.null(covariates)) {
+ name.covariates <- names(covariates)
+ covariates$ds <- rownames(covariates)
+ ds_saemix <- merge(ds_saemix, covariates, sort = FALSE)
+ } else {
+ name.covariates <- character(0)
+ }
res <- saemix::saemixData(ds_saemix,
name.group = "ds",
name.predictors = c("time", "name"),
name.response = "value",
+ name.covariates = name.covariates,
verbose = verbose,
...)
return(res)
}
+
+#' logLik method for saem.mmkin objects
+#'
+#' @param object The fitted [saem.mmkin] object
+#' @param \dots Passed to [saemix::logLik.SaemixObject]
+#' @param method Passed to [saemix::logLik.SaemixObject]
+#' @export
+logLik.saem.mmkin <- function(object, ..., method = c("is", "lin", "gq")) {
+ method <- match.arg(method)
+ return(logLik(object$so, method = method))
+}
+
+#' @export
+update.saem.mmkin <- function(object, ..., evaluate = TRUE) {
+ call <- object$call
+ # For some reason we get saem.mmkin in the call when using mhmkin
+ # so we need to fix this so we do not have to export saem.mmkin in
+ # addition to the S3 method
+ call[[1]] <- saem
+
+ # We also need to provide the mmkin object in the call, so it
+ # will also be found when called by testthat or pkgdown
+ call[[2]] <- object$mmkin
+
+ update_arguments <- match.call(expand.dots = FALSE)$...
+
+ if (length(update_arguments) > 0) {
+ update_arguments_in_call <- !is.na(match(names(update_arguments), names(call)))
+ }
+
+ for (a in names(update_arguments)[update_arguments_in_call]) {
+ call[[a]] <- update_arguments[[a]]
+ }
+
+ update_arguments_not_in_call <- !update_arguments_in_call
+ if(any(update_arguments_not_in_call)) {
+ call <- c(as.list(call), update_arguments[update_arguments_not_in_call])
+ call <- as.call(call)
+ }
+ if(evaluate) eval(call, parent.frame())
+ else call
+}
+
+#' @export
+#' @rdname saem
+#' @param ci Should a matrix with estimates and confidence interval boundaries
+#' be returned? If FALSE (default), a vector of estimates is returned.
+parms.saem.mmkin <- function(object, ci = FALSE, ...) {
+ cov.mod <- object$sm@covariance.model
+ n_cov_mod_parms <- sum(cov.mod[upper.tri(cov.mod, diag = TRUE)])
+ n_parms <- length(object$sm@name.modpar) +
+ n_cov_mod_parms +
+ length(object$sm@name.sigma)
+
+ if (inherits(object$so, "try-error")) {
+ conf.int <- matrix(rep(NA, 3 * n_parms), ncol = 3)
+ colnames(conf.int) <- c("estimate", "lower", "upper")
+ } else {
+ conf.int <- object$so@results@conf.int[c("estimate", "lower", "upper")]
+ rownames(conf.int) <- object$so@results@conf.int[["name"]]
+ conf.int.var <- grepl("^Var\\.", rownames(conf.int))
+ conf.int <- conf.int[!conf.int.var, ]
+ conf.int.cov <- grepl("^Cov\\.", rownames(conf.int))
+ conf.int <- conf.int[!conf.int.cov, ]
+ }
+ estimate <- conf.int[, "estimate"]
+
+ names(estimate) <- rownames(conf.int)
+
+ if (ci) return(conf.int)
+ else return(estimate)
+}
diff --git a/R/set_nd_nq.R b/R/set_nd_nq.R
new file mode 100644
index 00000000..37b9a894
--- /dev/null
+++ b/R/set_nd_nq.R
@@ -0,0 +1,164 @@
+#' Set non-detects and unquantified values in residue series without replicates
+#'
+#' This function automates replacing unquantified values in residue time and
+#' depth series. For time series, the function performs part of the residue
+#' processing proposed in the FOCUS kinetics guidance for parent compounds
+#' and metabolites. For two-dimensional residue series over time and depth,
+#' it automates the proposal of Boesten et al (2015).
+#'
+#' @param res_raw Character vector of a residue time series, or matrix of
+#' residue values with rows representing depth profiles for a specific sampling
+#' time, and columns representing time series of residues at the same depth.
+#' Values below the limit of detection (lod) have to be coded as "nd", values
+#' between the limit of detection and the limit of quantification, if any, have
+#' to be coded as "nq". Samples not analysed have to be coded as "na". All
+#' values that are not "na", "nd" or "nq" have to be coercible to numeric
+#' @param lod Limit of detection (numeric)
+#' @param loq Limit of quantification(numeric). Must be specified if the FOCUS rule to
+#' stop after the first non-detection is to be applied
+#' @param time_zero_presence Do we assume that residues occur at time zero?
+#' This only affects samples from the first sampling time that have been
+#' reported as "nd" (not detected).
+#' @references Boesten, J. J. T. I., van der Linden, A. M. A., Beltman, W. H.
+#' J. and Pol, J. W. (2015). Leaching of plant protection products and their
+#' transformation products; Proposals for improving the assessment of leaching
+#' to groundwater in the Netherlands — Version 2. Alterra report 2630, Alterra
+#' Wageningen UR (University & Research centre)
+#' @references FOCUS (2014) Generic Guidance for Estimating Persistence and Degradation
+#' Kinetics from Environmental Fate Studies on Pesticides in EU Registration, Version 1.1,
+#' 18 December 2014, p. 251
+#' @return A numeric vector, if a vector was supplied, or a numeric matrix otherwise
+#' @export
+#' @examples
+#' # FOCUS (2014) p. 75/76 and 131/132
+#' parent_1 <- c(.12, .09, .05, .03, "nd", "nd", "nd", "nd", "nd", "nd")
+#' set_nd_nq(parent_1, 0.02)
+#' parent_2 <- c(.12, .09, .05, .03, "nd", "nd", .03, "nd", "nd", "nd")
+#' set_nd_nq(parent_2, 0.02)
+#' set_nd_nq_focus(parent_2, 0.02, loq = 0.05)
+#' parent_3 <- c(.12, .09, .05, .03, "nd", "nd", .06, "nd", "nd", "nd")
+#' set_nd_nq(parent_3, 0.02)
+#' set_nd_nq_focus(parent_3, 0.02, loq = 0.05)
+#' metabolite <- c("nd", "nd", "nd", 0.03, 0.06, 0.10, 0.11, 0.10, 0.09, 0.05, 0.03, "nd", "nd")
+#' set_nd_nq(metabolite, 0.02)
+#' set_nd_nq_focus(metabolite, 0.02, 0.05)
+#' #
+#' # Boesten et al. (2015), p. 57/58
+#' table_8 <- matrix(
+#' c(10, 10, rep("nd", 4),
+#' 10, 10, rep("nq", 2), rep("nd", 2),
+#' 10, 10, 10, "nq", "nd", "nd",
+#' "nq", 10, "nq", rep("nd", 3),
+#' "nd", "nq", "nq", rep("nd", 3),
+#' rep("nd", 6), rep("nd", 6)),
+#' ncol = 6, byrow = TRUE)
+#' set_nd_nq(table_8, 0.5, 1.5, time_zero_presence = TRUE)
+#' table_10 <- matrix(
+#' c(10, 10, rep("nd", 4),
+#' 10, 10, rep("nd", 4),
+#' 10, 10, 10, rep("nd", 3),
+#' "nd", 10, rep("nd", 4),
+#' rep("nd", 18)),
+#' ncol = 6, byrow = TRUE)
+#' set_nd_nq(table_10, 0.5, time_zero_presence = TRUE)
+set_nd_nq <- function(res_raw, lod, loq = NA, time_zero_presence = FALSE) {
+ if (!is.character(res_raw)) {
+ stop("Please supply a vector or a matrix of character values")
+ }
+ if (is.vector(res_raw)) {
+ was_vector <- TRUE
+ res_raw <- as.matrix(res_raw)
+ } else {
+ was_vector <- FALSE
+ if (!is.matrix(res_raw)) {
+ stop("Please supply a vector or a matrix of character values")
+ }
+ }
+ nq <- 0.5 * (loq + lod)
+ nda <- 0.5 * lod # not detected but adjacent to detection
+ res_raw[res_raw == "nq"] <- nq
+
+ if (!time_zero_presence) {
+ for (j in 1:ncol(res_raw)) {
+ if (res_raw[1, j] == "nd") res_raw[1, j] <- "na"
+ }
+ }
+ res_raw[res_raw == "na"] <- NA
+
+ not_nd_na <- function(value) !(grepl("nd", value) | is.na(value))
+
+ for (i in 1:nrow(res_raw)) {
+ for (j in 1:ncol(res_raw)) {
+ if (!is.na(res_raw[i, j]) && res_raw[i, j] == "nd") {
+ if (i > 1) { # check earlier sample in same layer
+ if (not_nd_na(res_raw[i - 1, j])) res_raw[i, j] <- "nda"
+ }
+ if (i < nrow(res_raw)) { # check later sample
+ if (not_nd_na(res_raw[i + 1, j])) res_raw[i, j] <- "nda"
+ }
+ if (j > 1) { # check above sample at the same time
+ if (not_nd_na(res_raw[i, j - 1])) res_raw[i, j] <- "nda"
+ }
+ if (j < ncol(res_raw)) { # check sample below at the same time
+ if (not_nd_na(res_raw[i, j + 1])) res_raw[i, j] <- "nda"
+ }
+ }
+ }
+ }
+ res_raw[res_raw == "nda"] <- nda
+ res_raw[res_raw == "nd"] <- NA
+
+ result <- as.numeric(res_raw)
+ dim(result) <- dim(res_raw)
+ dimnames(result) <- dimnames(res_raw)
+ if (was_vector) result <- as.vector(result)
+ return(result)
+}
+
+#' @describeIn set_nd_nq Set non-detects in residue time series according to FOCUS rules
+#' @param set_first_sample_nd Should the first sample be set to "first_sample_nd_value"
+#' in case it is a non-detection?
+#' @param first_sample_nd_value Value to be used for the first sample if it is a non-detection
+#' @param ignore_below_loq_after_first_nd Should we ignore values below the LOQ after the first
+#' non-detection that occurs after the quantified values?
+#' @export
+set_nd_nq_focus <- function(res_raw, lod, loq = NA,
+ set_first_sample_nd = TRUE, first_sample_nd_value = 0,
+ ignore_below_loq_after_first_nd = TRUE)
+{
+
+ if (!is.vector(res_raw)) stop("FOCUS rules are only specified for one-dimensional time series")
+
+ if (ignore_below_loq_after_first_nd & is.na(loq)) {
+ stop("You need to specify an LOQ")
+ }
+
+ n <- length(res_raw)
+ if (ignore_below_loq_after_first_nd) {
+ for (i in 3:n) {
+ if (!res_raw[i - 2] %in% c("na", "nd")) {
+ if (res_raw[i - 1] == "nd") {
+ res_remaining <- res_raw[i:n]
+ res_remaining_unquantified <- ifelse(res_remaining == "na", TRUE,
+ ifelse(res_remaining == "nd", TRUE,
+ ifelse(res_remaining == "nq", TRUE,
+ ifelse(suppressWarnings(as.numeric(res_remaining)) < loq, TRUE, FALSE))))
+ res_remaining_numeric <- suppressWarnings(as.numeric(res_remaining))
+ res_remaining_below_loq <- ifelse(res_remaining == "nq", TRUE,
+ ifelse(!is.na(res_remaining_numeric) & res_remaining_numeric < loq, TRUE, FALSE))
+ if (all(res_remaining_unquantified)) {
+ res_raw[i:n] <- ifelse(res_remaining_below_loq, "nd", res_remaining)
+ }
+ }
+ }
+ }
+ }
+
+ result <- set_nd_nq(res_raw, lod = lod, loq = loq)
+
+ if (set_first_sample_nd) {
+ if (res_raw[1] == "nd") result[1] <- first_sample_nd_value
+ }
+
+ return(result)
+}
diff --git a/R/status.R b/R/status.R
new file mode 100644
index 00000000..8bcd3a16
--- /dev/null
+++ b/R/status.R
@@ -0,0 +1,113 @@
+#' Method to get status information for fit array objects
+#'
+#' @param object The object to investigate
+#' @param x The object to be printed
+#' @param \dots For potential future extensions
+#' @return An object with the same dimensions as the fit array
+#' suitable printing method.
+#' @export
+status <- function(object, ...)
+{
+ UseMethod("status", object)
+}
+
+#' @rdname status
+#' @export
+#' @examples
+#' \dontrun{
+#' fits <- mmkin(
+#' c("SFO", "FOMC"),
+#' list("FOCUS A" = FOCUS_2006_A,
+#' "FOCUS B" = FOCUS_2006_C),
+#' quiet = TRUE)
+#' status(fits)
+#' }
+status.mmkin <- function(object, ...) {
+ all_summary_warnings <- character()
+ sww <- 0 # Counter for Shapiro-Wilks warnings
+
+ result <- lapply(object,
+ function(fit) {
+ if (inherits(fit, "try-error")) return("E")
+ sw <- fit$summary_warnings
+ swn <- names(sw)
+ if (length(sw) > 0) {
+ if (any(grepl("S", swn))) {
+ sww <<- sww + 1
+ swn <- gsub("S", paste0("S", sww), swn)
+ }
+ warnstring <- paste(swn, collapse = ", ")
+ names(sw) <- swn
+ all_summary_warnings <<- c(all_summary_warnings, sw)
+ return(warnstring)
+ } else {
+ return("OK")
+ }
+ })
+ result <- unlist(result)
+ dim(result) <- dim(object)
+ dimnames(result) <- dimnames(object)
+
+ u_swn <- unique(names(all_summary_warnings))
+ attr(result, "unique_warnings") <- all_summary_warnings[u_swn]
+ class(result) <- "status.mmkin"
+ return(result)
+}
+
+#' @rdname status
+#' @export
+print.status.mmkin <- function(x, ...) {
+ u_w <- attr(x, "unique_warnings")
+ attr(x, "unique_warnings") <- NULL
+ class(x) <- NULL
+ print(x, quote = FALSE)
+ cat("\n")
+ for (i in seq_along(u_w)) {
+ cat(names(u_w)[i], ": ", u_w[i], "\n", sep = "")
+ }
+ if (any(x == "OK")) cat("OK: No warnings\n")
+ if (any(x == "E")) cat("E: Error\n")
+}
+
+#' @rdname status
+#' @export
+status.mhmkin <- function(object, ...) {
+ if (inherits(object[[1]], "saem.mmkin")) {
+ test_func <- function(fit) {
+ if (inherits(fit$so, "try-error")) {
+ return("E")
+ } else {
+ if (!is.null(fit$FIM_failed)) {
+ return_values <- c("fixed effects" = "Fth",
+ "random effects and error model parameters" = "FO")
+ return(paste(return_values[fit$FIM_failed], collapse = ", "))
+ } else {
+ return("OK")
+ }
+ }
+ }
+ } else {
+ stop("Only mhmkin objects containing saem.mmkin objects currently supported")
+ }
+ result <- lapply(object, test_func)
+ result <- unlist(result)
+ dim(result) <- dim(object)
+ dimnames(result) <- dimnames(object)
+
+ class(result) <- "status.mhmkin"
+ return(result)
+}
+
+#' @rdname status
+#' @export
+print.status.mhmkin <- function(x, ...) {
+ class(x) <- NULL
+ print(x, quote = FALSE)
+ cat("\n")
+ if (any(x == "OK")) cat("OK: Fit terminated successfully\n")
+ if (any(x == "Fth")) cat("Fth: Could not invert FIM for fixed effects\n")
+ if (any(x == "FO")) cat("FO: Could not invert FIM for random effects and error model parameters\n")
+ if (any(x == "Fth, FO")) cat("Fth, FO: Could not invert FIM for fixed effects, nor for random effects and error model parameters\n")
+ if (any(x == "E")) cat("E: Error\n")
+}
+
diff --git a/R/summary.mkinfit.R b/R/summary.mkinfit.R
index f9858c32..4122873f 100644
--- a/R/summary.mkinfit.R
+++ b/R/summary.mkinfit.R
@@ -47,7 +47,7 @@
#' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics}
#' @examples
#'
-#' summary(mkinfit(mkinmod(parent = mkinsub("SFO")), FOCUS_2006_A, quiet = TRUE))
+#' summary(mkinfit("SFO", FOCUS_2006_A, quiet = TRUE))
#'
#' @export
summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05, ...) {
@@ -172,7 +172,7 @@ summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05,
if (distimes) ans$distimes <- ep$distimes
if (length(ep$SFORB) != 0) ans$SFORB <- ep$SFORB
if (!is.null(object$d_3_message)) ans$d_3_message <- object$d_3_message
- class(ans) <- c("summary.mkinfit", "summary.modFit")
+ class(ans) <- "summary.mkinfit"
return(ans)
}
diff --git a/R/summary.mmkin.R b/R/summary.mmkin.R
new file mode 100644
index 00000000..06472e18
--- /dev/null
+++ b/R/summary.mmkin.R
@@ -0,0 +1,56 @@
+#' Summary method for class "mmkin"
+#'
+#' Shows status information on the [mkinfit] objects contained in the object
+#' and gives an overview of ill-defined parameters calculated by [illparms].
+#'
+#' @param object an object of class [mmkin]
+#' @param x an object of class \code{summary.mmkin}.
+#' @param conf.level confidence level for testing parameters
+#' @param digits number of digits to use for printing
+#' @param \dots optional arguments passed to methods like \code{print}.
+#' @examples
+#'
+#' fits <- mmkin(
+#' c("SFO", "FOMC"),
+#' list("FOCUS A" = FOCUS_2006_A,
+#' "FOCUS C" = FOCUS_2006_C),
+#' quiet = TRUE, cores = 1)
+#' summary(fits)
+#'
+#' @export
+summary.mmkin <- function(object, conf.level = 0.95, ...) {
+
+ ans <- list(
+ err_mod = object[[1, 1]]$err_mod,
+ time = attr(object, "time"),
+ illparms = illparms(object),
+ status = status(object)
+ )
+
+ class(ans) <- c("summary.mmkin")
+ return(ans)
+}
+
+#' @rdname summary.mmkin
+#' @export
+print.summary.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
+ if (!is.null(x$err_mod)) {
+ cat("Error model: ")
+ cat(switch(x$err_mod,
+ const = "Constant variance",
+ obs = "Variance unique to each observed variable",
+ tc = "Two-component variance function"), "\n")
+ }
+ cat("Fitted in", x$time[["elapsed"]], "s\n")
+
+ cat("\nStatus:\n")
+ print(x$status)
+
+ if (any(x$illparms != "")) {
+ cat("\nIll-defined parameters:\n")
+ print(x$illparms)
+ }
+
+ invisible(x)
+}
+
diff --git a/R/summary.saem.mmkin.R b/R/summary.saem.mmkin.R
index fa52a579..651cc29e 100644
--- a/R/summary.saem.mmkin.R
+++ b/R/summary.saem.mmkin.R
@@ -73,7 +73,12 @@
#' f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,
#' quiet = TRUE, error_model = "tc", cores = 5)
#' f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo)
-#' summary(f_saem_dfop_sfo, data = TRUE)
+#' print(f_saem_dfop_sfo)
+#' illparms(f_saem_dfop_sfo)
+#' f_saem_dfop_sfo_2 <- update(f_saem_dfop_sfo, covariance.model = diag(c(0, 0, 1, 1, 1, 0)))
+#' illparms(f_saem_dfop_sfo_2)
+#' intervals(f_saem_dfop_sfo_2)
+#' summary(f_saem_dfop_sfo_2, data = TRUE)
#' }
#'
#' @export
@@ -82,18 +87,19 @@ summary.saem.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes =
mod_vars <- names(object$mkinmod$diffs)
pnames <- names(object$mean_dp_start)
- np <- length(pnames)
+ names_fixed_effects <- object$so@results@name.fixed
+ n_fixed <- length(names_fixed_effects)
conf.int <- object$so@results@conf.int
rownames(conf.int) <- conf.int$name
- confint_trans <- as.matrix(conf.int[pnames, c("estimate", "lower", "upper")])
+ confint_trans <- as.matrix(parms(object, ci = TRUE))
colnames(confint_trans)[1] <- "est."
# In case objects were produced by earlier versions of saem
if (is.null(object$transformations)) object$transformations <- "mkin"
if (object$transformations == "mkin") {
- bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod,
+ bp <- backtransform_odeparms(confint_trans[pnames, "est."], object$mkinmod,
object$transform_rates, object$transform_fractions)
bpnames <- names(bp)
@@ -126,20 +132,20 @@ summary.saem.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes =
}
}
} else {
- confint_back <- confint_trans
+ confint_back <- confint_trans[names_fixed_effects, ]
}
# Correlation of fixed effects (inspired by summary.nlme)
- varFix <- vcov(object$so)[1:np, 1:np]
+ varFix <- vcov(object$so)[1:n_fixed, 1:n_fixed]
stdFix <- sqrt(diag(varFix))
object$corFixed <- array(
t(varFix/stdFix)/stdFix,
dim(varFix),
- list(pnames, pnames))
+ list(names_fixed_effects, names_fixed_effects))
# Random effects
- rnames <- paste0("SD.", pnames)
- confint_ranef <- as.matrix(conf.int[rnames, c("estimate", "lower", "upper")])
+ sdnames <- intersect(rownames(conf.int), paste0("SD.", pnames))
+ confint_ranef <- as.matrix(conf.int[sdnames, c("estimate", "lower", "upper")])
colnames(confint_ranef)[1] <- "est."
# Error model
@@ -147,7 +153,6 @@ summary.saem.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes =
confint_errmod <- as.matrix(conf.int[enames, c("estimate", "lower", "upper")])
colnames(confint_errmod)[1] <- "est."
-
object$confint_trans <- confint_trans
object$confint_ranef <- confint_ranef
object$confint_errmod <- confint_errmod
@@ -202,7 +207,7 @@ print.summary.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3)
cat("\nModel predictions using solution type", x$solution_type, "\n")
cat("\nFitted in", x$time[["elapsed"]], "s\n")
- cat("Using", paste(x$so@options$nbiter.saemix, collapse = ", "),
+ cat("Using", paste(x$so@options$nbiter.saemix, collapse = ", "),
"iterations and", x$so@options$nb.chains, "chains\n")
cat("\nVariance model: ")

Contact - Imprint