diff options
Diffstat (limited to 'R')
-rw-r--r-- | R/mkinfit.R | 43 |
1 files changed, 25 insertions, 18 deletions
diff --git a/R/mkinfit.R b/R/mkinfit.R index 64edaba0..37eee330 100644 --- a/R/mkinfit.R +++ b/R/mkinfit.R @@ -26,25 +26,22 @@ mkinfit <- function(mkinmod, observed, state.ini = c(100, rep(0, length(mkinmod$diffs) - 1)),
fixed_parms = NULL,
fixed_initials = names(mkinmod$diffs)[-1],
- eigen = FALSE,
+ solution_type = "auto",
plot = FALSE, quiet = FALSE,
err = NULL, weight = "none", scaleVar = FALSE,
- atol = 1e-6,
+ atol = 1e-6, n.outtimes = 100,
...)
{
# Get the names of the state variables in the model
mod_vars <- names(mkinmod$diffs)
- # See which variant of the model specification was used
- use_of_ff <- mkinmod$use_of_ff
-
# Subset observed data with names of observed data in the model
observed <- subset(observed, name %in% names(mkinmod$map))
# Get names of observed variables
obs_vars = unique(as.character(observed$name))
- # Define initial values for parameters where not specified by the user
+ # Define starting values for parameters where not specified by the user
if (parms.ini[[1]] == "auto") parms.ini = vector()
defaultpar.names <- setdiff(mkinmod$parms, names(parms.ini))
for (parmname in defaultpar.names) {
@@ -54,7 +51,7 @@ mkinfit <- function(mkinmod, observed, if (grepl("free_bound$", parmname)) parms.ini[parmname] = 0.1
if (grepl("bound_free$", parmname)) parms.ini[parmname] = 0.02
# Default values for formation fractions
- if (substr(parmname, 1, 2) == "f_") parms.ini[parmname] = 0.1
+ if (substr(parmname, 1, 2) == "f_") parms.ini[parmname] = 0.2
# Default values for the FOMC, DFOP and HS models
if (parmname == "alpha") parms.ini[parmname] = 1
if (parmname == "beta") parms.ini[parmname] = 10
@@ -88,13 +85,21 @@ mkinfit <- function(mkinmod, observed, # Decide if the solution of the model can be based on a simple analytical
# formula, the spectral decomposition of the matrix (fundamental system)
# or a numeric ode solver from the deSolve package
- if (length(mkinmod$map) == 1) {
- solution = "analytical"
- } else {
- if (is.matrix(mkinmod$coefmat) && eigen) {
- solution = "eigen"
+ if (!solution_type %in% c("auto", "analytical", "eigen", "deSolve"))
+ stop("solution_type must be auto, analytical, eigen or de Solve")
+ if (solution_type == "analytical" && length(mkinmod$map) > 1)
+ stop("Analytical solution not implemented for models with metabolites.")
+ if (solution_type == "eigen" && !is.matrix(mkinmod$coefmat))
+ stop("Eigenvalue based solution not possible, coefficient matrix not present.")
+ if (solution_type == "auto") {
+ if (length(mkinmod$map) == 1) {
+ solution_type = "analytical"
} else {
- solution = "deSolve"
+ if (is.matrix(mkinmod$coefmat)) {
+ solution_type = "eigen"
+ } else {
+ solution_type = "deSolve"
+ }
}
}
@@ -107,7 +112,9 @@ mkinfit <- function(mkinmod, observed, assign("calls", calls+1, inherits=TRUE) # Increase the model solution counter
# Time points at which observed data are available
- outtimes = unique(observed$time)
+ # Make sure we include time 0, so initial values for state variables are for time 0
+ outtimes = sort(unique(c(observed$time,
+ seq(min(observed$time), max(observed$time), length.out=n.outtimes))))
if(length(state.ini.optim) > 0) {
odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed)
@@ -119,7 +126,7 @@ mkinfit <- function(mkinmod, observed, parms <- backtransform_odeparms(odeparms, mod_vars)
# Solve the system with current transformed parameter values
- out <- mkinpredict(mkinmod, parms, odeini, outtimes, solution_type = solution, ...)
+ out <- mkinpredict(mkinmod, parms, odeini, outtimes, solution_type = solution_type, ...)
assign("out_predicted", out, inherits=TRUE)
@@ -135,7 +142,7 @@ mkinfit <- function(mkinmod, observed, outtimes_plot = seq(min(observed$time), max(observed$time), length.out=100)
out_plot <- mkinpredict(mkinmod, parms, odeini, outtimes_plot,
- solution_type = solution, ...)
+ solution_type = solution_type, ...)
plot(0, type="n",
xlim = range(observed$time), ylim = range(observed$value, na.rm=TRUE),
@@ -158,8 +165,8 @@ mkinfit <- function(mkinmod, observed, fit <- modFit(cost, c(state.ini.optim, parms.optim), ...)
# We need to return some more data for summary and plotting
- fit$solution <- solution
- if (solution == "eigen") {
+ fit$solution_type <- solution_type
+ if (solution_type == "eigen") {
fit$coefmat <- mkinmod$coefmat
}
|