aboutsummaryrefslogtreecommitdiff
path: root/README.html
diff options
context:
space:
mode:
Diffstat (limited to 'README.html')
-rw-r--r--README.html6
1 files changed, 3 insertions, 3 deletions
diff --git a/README.html b/README.html
index 72406092..a661505d 100644
--- a/README.html
+++ b/README.html
@@ -143,9 +143,9 @@ $(document).ready(function () {
<div id="features" class="section level2">
<h2>Features</h2>
<ul>
-<li>Highly flexible model specification using <a href="http://kinfit.r-forge.r-project.org/mkin_static/mkinmod.html"><code>mkinmod</code></a>, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.</li>
-<li>As of version 0.9-39, fitting of several models to several datasets, optionally in parallel, is supported, see for example <a href="http://kinfit.r-forge.r-project.org/mkin_static/plot.mmkin.html"><code>plot.mmkin</code></a>.</li>
-<li>Model solution (forward modelling) in the function <a href="http://kinfit.r-forge.r-project.org/mkin_static/mkinpredict.html"><code>mkinpredict</code></a> is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the <code>deSolve</code> package (default is <code>lsoda</code>).</li>
+<li>Highly flexible model specification using <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/mkinmod.html"><code>mkinmod</code></a>, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.</li>
+<li>As of version 0.9-39, fitting of several models to several datasets, optionally in parallel, is supported, see for example <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/plot.mmkin.html"><code>plot.mmkin</code></a>.</li>
+<li>Model solution (forward modelling) in the function <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/mkinpredict.html"><code>mkinpredict</code></a> is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the <code>deSolve</code> package (default is <code>lsoda</code>).</li>
<li>If a C compiler is installed, the kinetic models are compiled from automatically generated C code, see<br />
<a href="http://kinfit.r-forge.r-project.org/mkin_static/articles/compiled_models.html">vignette <code>compiled_models</code></a>. The autogeneration of C code was inspired by the <a href="https://github.com/karlines/ccSolve"><code>ccSolve</code></a> package. Thanks to Karline Soetaert for her work on that.</li>
<li>By default, kinetic rate constants and kinetic formation fractions are transformed internally using <a href="http://kinfit.r-forge.r-project.org/mkin_static/reference/transform_odeparms.html"><code>transform_odeparms</code></a> so their estimators can more reasonably be expected to follow a normal distribution. This has the side effect that no constraints are needed in the optimisation. Thanks to René Lehmann for the nice cooperation on this, especially the isometric logration transformation that is now used for the formation fractions.</li>

Contact - Imprint