diff options
Diffstat (limited to 'docs/articles')
92 files changed, 11684 insertions, 516 deletions
| diff --git a/docs/articles/FOCUS_D.html b/docs/articles/FOCUS_D.html index 3c8ad547..0d2f56f5 100644 --- a/docs/articles/FOCUS_D.html +++ b/docs/articles/FOCUS_D.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../reference/index.html">Functions and data</a> +  <a href="../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,16 @@ -      </header><script src="FOCUS_D_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore"> -      <h1 data-toc-skip>Example evaluation of FOCUS Example Dataset D</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +      <h1 data-toc-skip>Example evaluation of FOCUS Example Dataset +D</h1> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">Last change 31 January 2019 (rebuilt 2022-11-17)</h4> +            <h4 data-toc-skip class="date">Last change 31 January 2019 +(rebuilt 2023-04-20)</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/FOCUS_D.rmd" class="external-link"><code>vignettes/FOCUS_D.rmd</code></a></small>        <div class="hidden name"><code>FOCUS_D.rmd</code></div> @@ -120,7 +144,12 @@ -<p>This is just a very simple vignette showing how to fit a degradation model for a parent compound with one transformation product using <code>mkin</code>. After loading the library we look at the data. We have observed concentrations in the column named <code>value</code> at the times specified in column <code>time</code> for the two observed variables named <code>parent</code> and <code>m1</code>.</p> +<p>This is just a very simple vignette showing how to fit a degradation +model for a parent compound with one transformation product using +<code>mkin</code>. After loading the library we look at the data. We +have observed concentrations in the column named <code>value</code> at +the times specified in column <code>time</code> for the two observed +variables named <code>parent</code> and <code>m1</code>.</p>  <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">FOCUS_2006_D</span><span class="op">)</span></span></code></pre></div> @@ -169,8 +198,14 @@  <span><span class="co">## 42     m1  100  33.13</span></span>  <span><span class="co">## 43     m1  120  25.15</span></span>  <span><span class="co">## 44     m1  120  33.31</span></span></code></pre> -<p>Next we specify the degradation model: The parent compound degrades with simple first-order kinetics (SFO) to one metabolite named m1, which also degrades with SFO kinetics.</p> -<p>The call to mkinmod returns a degradation model. The differential equations represented in R code can be found in the character vector <code>$diffs</code> of the <code>mkinmod</code> object. If a C compiler (gcc) is installed and functional, the differential equation model will be compiled from auto-generated C code.</p> +<p>Next we specify the degradation model: The parent compound degrades +with simple first-order kinetics (SFO) to one metabolite named m1, which +also degrades with SFO kinetics.</p> +<p>The call to mkinmod returns a degradation model. The differential +equations represented in R code can be found in the character vector +<code>$diffs</code> of the <code>mkinmod</code> object. If a C compiler +(gcc) is installed and functional, the differential equation model will +be compiled from auto-generated C code.</p>  <div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">SFO_SFO</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"m1"</span><span class="op">)</span>, m1 <span class="op">=</span> <span class="fu"><a href="../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## Temporary DLL for differentials generated and loaded</span></span></code></pre> @@ -180,26 +215,32 @@  <span><span class="co">##                          "d_parent = - k_parent * parent" </span></span>  <span><span class="co">##                                                        m1 </span></span>  <span><span class="co">## "d_m1 = + f_parent_to_m1 * k_parent * parent - k_m1 * m1"</span></span></code></pre> -<p>We do the fitting without progress report (<code>quiet = TRUE</code>).</p> +<p>We do the fitting without progress report +(<code>quiet = TRUE</code>).</p>  <div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">fit</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">SFO_SFO</span>, <span class="va">FOCUS_2006_D</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## Warning in mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE): Observations with value</span></span> -<span><span class="co">## of zero were removed from the data</span></span></code></pre> -<p>A plot of the fit including a residual plot for both observed variables is obtained using the <code>plot_sep</code> method for <code>mkinfit</code> objects, which shows separate graphs for all compounds and their residuals.</p> +<pre><code><span><span class="co">## Warning in mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE): Observations with</span></span> +<span><span class="co">## value of zero were removed from the data</span></span></code></pre> +<p>A plot of the fit including a residual plot for both observed +variables is obtained using the <code>plot_sep</code> method for +<code>mkinfit</code> objects, which shows separate graphs for all +compounds and their residuals.</p>  <div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">fit</span>, lpos <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"topright"</span>, <span class="st">"bottomright"</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_D_files/figure-html/plot-1.png" width="768"></p> -<p>Confidence intervals for the parameter estimates are obtained using the <code>mkinparplot</code> function.</p> +<p>Confidence intervals for the parameter estimates are obtained using +the <code>mkinparplot</code> function.</p>  <div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../reference/mkinparplot.html">mkinparplot</a></span><span class="op">(</span><span class="va">fit</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_D_files/figure-html/plot_2-1.png" width="768"></p> -<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> +<p>A comprehensive report of the results is obtained using the +<code>summary</code> method for <code>mkinfit</code> objects.</p>  <div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">fit</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## mkin version used for fitting:    1.2.0 </span></span> -<span><span class="co">## R version used for fitting:       4.2.2 </span></span> -<span><span class="co">## Date of fit:     Thu Nov 17 14:04:21 2022 </span></span> -<span><span class="co">## Date of summary: Thu Nov 17 14:04:21 2022 </span></span> +<pre><code><span><span class="co">## mkin version used for fitting:    1.2.3 </span></span> +<span><span class="co">## R version used for fitting:       4.2.3 </span></span> +<span><span class="co">## Date of fit:     Thu Apr 20 07:37:14 2023 </span></span> +<span><span class="co">## Date of summary: Thu Apr 20 07:37:14 2023 </span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Equations:</span></span>  <span><span class="co">## d_parent/dt = - k_parent * parent</span></span> @@ -207,7 +248,7 @@  <span><span class="co">## </span></span>  <span><span class="co">## Model predictions using solution type analytical </span></span>  <span><span class="co">## </span></span> -<span><span class="co">## Fitted using 401 model solutions performed in 0.154 s</span></span> +<span><span class="co">## Fitted using 401 model solutions performed in 0.047 s</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Error model: Constant variance </span></span>  <span><span class="co">## </span></span> @@ -340,7 +381,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/FOCUS_D_files/figure-html/plot-1.png b/docs/articles/FOCUS_D_files/figure-html/plot-1.pngBinary files differ index f0b51c1f..c0832a1a 100644 --- a/docs/articles/FOCUS_D_files/figure-html/plot-1.png +++ b/docs/articles/FOCUS_D_files/figure-html/plot-1.png diff --git a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.pngBinary files differ index f6180470..02cfcfb4 100644 --- a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png +++ b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html index f02febc4..e47ed9d7 100644 --- a/docs/articles/FOCUS_L.html +++ b/docs/articles/FOCUS_L.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../reference/index.html">Functions and data</a> +  <a href="../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,16 @@ -      </header><script src="FOCUS_L_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore"> -      <h1 data-toc-skip>Example evaluation of FOCUS Laboratory Data L1 to L3</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +      <h1 data-toc-skip>Example evaluation of FOCUS Laboratory Data L1 +to L3</h1> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">Last change 18 May 2022 (rebuilt 2022-11-17)</h4> +            <h4 data-toc-skip class="date">Last change 18 May 2022 +(rebuilt 2023-04-20)</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/FOCUS_L.rmd" class="external-link"><code>vignettes/FOCUS_L.rmd</code></a></small>        <div class="hidden name"><code>FOCUS_L.rmd</code></div> @@ -123,7 +147,8 @@  <div class="section level2">  <h2 id="laboratory-data-l1">Laboratory Data L1<a class="anchor" aria-label="anchor" href="#laboratory-data-l1"></a>  </h2> -<p>The following code defines example dataset L1 from the FOCUS kinetics report, p. 284:</p> +<p>The following code defines example dataset L1 from the FOCUS kinetics +report, p. 284:</p>  <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="st"><a href="https://pkgdown.jrwb.de/mkin/">"mkin"</a></span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="va">FOCUS_2006_L1</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span> @@ -132,22 +157,29 @@  <span>             <span class="fl">72.0</span>, <span class="fl">71.9</span>, <span class="fl">50.3</span>, <span class="fl">59.4</span>, <span class="fl">47.0</span>, <span class="fl">45.1</span>,</span>  <span>             <span class="fl">27.7</span>, <span class="fl">27.3</span>, <span class="fl">10.0</span>, <span class="fl">10.4</span>, <span class="fl">2.9</span>, <span class="fl">4.0</span><span class="op">)</span><span class="op">)</span></span>  <span><span class="va">FOCUS_2006_L1_mkin</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L1</span><span class="op">)</span></span></code></pre></div> -<p>Here we use the assumptions of simple first order (SFO), the case of declining rate constant over time (FOMC) and the case of two different phases of the kinetics (DFOP). For a more detailed discussion of the models, please see the FOCUS kinetics report.</p> -<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>"SFO"</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p> +<p>Here we use the assumptions of simple first order (SFO), the case of +declining rate constant over time (FOMC) and the case of two different +phases of the kinetics (DFOP). For a more detailed discussion of the +models, please see the FOCUS kinetics report.</p> +<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation +like <code>"SFO"</code> for parent only degradation models. The +following two lines fit the model and produce the summary report of the +model fit. This covers the numerical analysis given in the FOCUS +report.</p>  <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">m.L1.SFO</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L1_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L1.SFO</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## mkin version used for fitting:    1.2.0 </span></span> -<span><span class="co">## R version used for fitting:       4.2.2 </span></span> -<span><span class="co">## Date of fit:     Thu Nov 17 14:04:25 2022 </span></span> -<span><span class="co">## Date of summary: Thu Nov 17 14:04:25 2022 </span></span> +<pre><code><span><span class="co">## mkin version used for fitting:    1.2.3 </span></span> +<span><span class="co">## R version used for fitting:       4.2.3 </span></span> +<span><span class="co">## Date of fit:     Thu Apr 20 07:37:15 2023 </span></span> +<span><span class="co">## Date of summary: Thu Apr 20 07:37:15 2023 </span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Equations:</span></span>  <span><span class="co">## d_parent/dt = - k_parent * parent</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Model predictions using solution type analytical </span></span>  <span><span class="co">## </span></span> -<span><span class="co">## Fitted using 133 model solutions performed in 0.033 s</span></span> +<span><span class="co">## Fitted using 133 model solutions performed in 0.011 s</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Error model: Constant variance </span></span>  <span><span class="co">## </span></span> @@ -221,7 +253,8 @@  <span><span class="co">##    21   parent     10.4    12.416  -2.0163</span></span>  <span><span class="co">##    30   parent      2.9     5.251  -2.3513</span></span>  <span><span class="co">##    30   parent      4.0     5.251  -1.2513</span></span></code></pre> -<p>A plot of the fit is obtained with the plot function for mkinfit objects.</p> +<p>A plot of the fit is obtained with the plot function for mkinfit +objects.</p>  <div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L1.SFO</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>, main <span class="op">=</span> <span class="st">"FOCUS L1 - SFO"</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-4-1.png" width="576"></p> @@ -241,19 +274,19 @@  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L1.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## Warning in sqrt(diag(covar)): NaNs produced</span></span></code></pre>  <pre><code><span><span class="co">## Warning in sqrt(1/diag(V)): NaNs produced</span></span></code></pre> -<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is</span></span> -<span><span class="co">## doubtful</span></span></code></pre> -<pre><code><span><span class="co">## mkin version used for fitting:    1.2.0 </span></span> -<span><span class="co">## R version used for fitting:       4.2.2 </span></span> -<span><span class="co">## Date of fit:     Thu Nov 17 14:04:25 2022 </span></span> -<span><span class="co">## Date of summary: Thu Nov 17 14:04:25 2022 </span></span> +<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result</span></span> +<span><span class="co">## is doubtful</span></span></code></pre> +<pre><code><span><span class="co">## mkin version used for fitting:    1.2.3 </span></span> +<span><span class="co">## R version used for fitting:       4.2.3 </span></span> +<span><span class="co">## Date of fit:     Thu Apr 20 07:37:16 2023 </span></span> +<span><span class="co">## Date of summary: Thu Apr 20 07:37:16 2023 </span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Equations:</span></span>  <span><span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Model predictions using solution type analytical </span></span>  <span><span class="co">## </span></span> -<span><span class="co">## Fitted using 369 model solutions performed in 0.08 s</span></span> +<span><span class="co">## Fitted using 369 model solutions performed in 0.025 s</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Error model: Constant variance </span></span>  <span><span class="co">## </span></span> @@ -316,14 +349,40 @@  <span><span class="co">## Estimated disappearance times:</span></span>  <span><span class="co">##        DT50  DT90 DT50back</span></span>  <span><span class="co">## parent 7.25 24.08     7.25</span></span></code></pre> -<p>We get a warning that the default optimisation algorithm <code>Port</code> did not converge, which is an indication that the model is overparameterised, <em>i.e.</em> contains too many parameters that are ill-defined as a consequence.</p> -<p>And in fact, due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the <span class="math inline">\(\chi^2\)</span> error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the parameters <code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have excessive confidence intervals, that span more than 25 orders of magnitude (!) when backtransformed to the scale of <code>alpha</code> and <code>beta</code>. Also, the t-test for significant difference from zero does not indicate such a significant difference, with p-values greater than 0.1, and finally, the parameter correlation of <code>log_alpha</code> and <code>log_beta</code> is 1.000, clearly indicating that the model is overparameterised.</p> -<p>The <span class="math inline">\(\chi^2\)</span> error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same <span class="math inline">\(\chi^2\)</span> error levels as the kinfit package and the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI was the first widely used standard package in this field. Also, the calculation of <span class="math inline">\(\chi^2\)</span> error levels was compared with KinGUII, CAKE and DegKin manager in a project sponsored by the German Umweltbundesamt <span class="citation">(Ranke 2014)</span>.</p> +<p>We get a warning that the default optimisation algorithm +<code>Port</code> did not converge, which is an indication that the +model is overparameterised, <em>i.e.</em> contains too many parameters +that are ill-defined as a consequence.</p> +<p>And in fact, due to the higher number of parameters, and the lower +number of degrees of freedom of the fit, the <span class="math inline">\(\chi^2\)</span> error level is actually higher for +the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the +parameters <code>log_alpha</code> and <code>log_beta</code> internally +fitted in the model have excessive confidence intervals, that span more +than 25 orders of magnitude (!) when backtransformed to the scale of +<code>alpha</code> and <code>beta</code>. Also, the t-test for +significant difference from zero does not indicate such a significant +difference, with p-values greater than 0.1, and finally, the parameter +correlation of <code>log_alpha</code> and <code>log_beta</code> is +1.000, clearly indicating that the model is overparameterised.</p> +<p>The <span class="math inline">\(\chi^2\)</span> error levels reported +in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to +integer percentages and partly deviate by one percentage point from the +results calculated by mkin. The reason for this is not known. However, +mkin gives the same <span class="math inline">\(\chi^2\)</span> error +levels as the kinfit package and the calculation routines of the kinfit +package have been extensively compared to the results obtained by the +KinGUI software, as documented in the kinfit package vignette. KinGUI +was the first widely used standard package in this field. Also, the +calculation of <span class="math inline">\(\chi^2\)</span> error levels +was compared with KinGUII, CAKE and DegKin manager in a project +sponsored by the German Umweltbundesamt <span class="citation">(Ranke +2014)</span>.</p>  </div>  <div class="section level2">  <h2 id="laboratory-data-l2">Laboratory Data L2<a class="anchor" aria-label="anchor" href="#laboratory-data-l2"></a>  </h2> -<p>The following code defines example dataset L2 from the FOCUS kinetics report, p. 287:</p> +<p>The following code defines example dataset L2 from the FOCUS kinetics +report, p. 287:</p>  <div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">FOCUS_2006_L2</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>  <span>  t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">1</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">28</span><span class="op">)</span>, each <span class="op">=</span> <span class="fl">2</span><span class="op">)</span>,</span> @@ -334,15 +393,28 @@  <div class="section level3">  <h3 id="sfo-fit-for-l2">SFO fit for L2<a class="anchor" aria-label="anchor" href="#sfo-fit-for-l2"></a>  </h3> -<p>Again, the SFO model is fitted and the result is plotted. The residual plot can be obtained simply by adding the argument <code>show_residuals</code> to the plot command.</p> +<p>Again, the SFO model is fitted and the result is plotted. The +residual plot can be obtained simply by adding the argument +<code>show_residuals</code> to the plot command.</p>  <div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">m.L2.SFO</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet<span class="op">=</span><span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.SFO</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>,</span>  <span>     main <span class="op">=</span> <span class="st">"FOCUS L2 - SFO"</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-8-1.png" width="672"></p> -<p>The <span class="math inline">\(\chi^2\)</span> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.</p> -<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p> -<p>We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a priori</em> why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.</p> +<p>The <span class="math inline">\(\chi^2\)</span> error level of 14% +suggests that the model does not fit very well. This is also obvious +from the plots of the fit, in which we have included the residual +plot.</p> +<p>In the FOCUS kinetics report, it is stated that there is no apparent +systematic error observed from the residual plot up to the measured DT90 +(approximately at day 5), and there is an underestimation beyond that +point.</p> +<p>We may add that it is difficult to judge the random nature of the +residuals just from the three samplings at days 0, 1 and 3. Also, it is +not clear <em>a priori</em> why a consistent underestimation after the +approximate DT90 should be irrelevant. However, this can be rationalised +by the fact that the FOCUS fate models generally only implement SFO +kinetics.</p>  </div>  <div class="section level3">  <h3 id="fomc-fit-for-l2">FOMC fit for L2<a class="anchor" aria-label="anchor" href="#fomc-fit-for-l2"></a> @@ -355,17 +427,17 @@  <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-9-1.png" width="672"></p>  <div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L2.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## mkin version used for fitting:    1.2.0 </span></span> -<span><span class="co">## R version used for fitting:       4.2.2 </span></span> -<span><span class="co">## Date of fit:     Thu Nov 17 14:04:26 2022 </span></span> -<span><span class="co">## Date of summary: Thu Nov 17 14:04:26 2022 </span></span> +<pre><code><span><span class="co">## mkin version used for fitting:    1.2.3 </span></span> +<span><span class="co">## R version used for fitting:       4.2.3 </span></span> +<span><span class="co">## Date of fit:     Thu Apr 20 07:37:16 2023 </span></span> +<span><span class="co">## Date of summary: Thu Apr 20 07:37:16 2023 </span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Equations:</span></span>  <span><span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Model predictions using solution type analytical </span></span>  <span><span class="co">## </span></span> -<span><span class="co">## Fitted using 239 model solutions performed in 0.048 s</span></span> +<span><span class="co">## Fitted using 239 model solutions performed in 0.015 s</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Error model: Constant variance </span></span>  <span><span class="co">## </span></span> @@ -423,7 +495,10 @@  <span><span class="co">## Estimated disappearance times:</span></span>  <span><span class="co">##          DT50  DT90 DT50back</span></span>  <span><span class="co">## parent 0.8092 5.356    1.612</span></span></code></pre> -<p>The error level at which the <span class="math inline">\(\chi^2\)</span> test passes is much lower in this case. Therefore, the FOMC model provides a better description of the data, as less experimental error has to be assumed in order to explain the data.</p> +<p>The error level at which the <span class="math inline">\(\chi^2\)</span> test passes is much lower in this +case. Therefore, the FOMC model provides a better description of the +data, as less experimental error has to be assumed in order to explain +the data.</p>  </div>  <div class="section level3">  <h3 id="dfop-fit-for-l2">DFOP fit for L2<a class="anchor" aria-label="anchor" href="#dfop-fit-for-l2"></a> @@ -436,10 +511,10 @@  <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-10-1.png" width="672"></p>  <div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L2.DFOP</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## mkin version used for fitting:    1.2.0 </span></span> -<span><span class="co">## R version used for fitting:       4.2.2 </span></span> -<span><span class="co">## Date of fit:     Thu Nov 17 14:04:27 2022 </span></span> -<span><span class="co">## Date of summary: Thu Nov 17 14:04:27 2022 </span></span> +<pre><code><span><span class="co">## mkin version used for fitting:    1.2.3 </span></span> +<span><span class="co">## R version used for fitting:       4.2.3 </span></span> +<span><span class="co">## Date of fit:     Thu Apr 20 07:37:16 2023 </span></span> +<span><span class="co">## Date of summary: Thu Apr 20 07:37:16 2023 </span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Equations:</span></span>  <span><span class="co">## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span></span> @@ -448,7 +523,7 @@  <span><span class="co">## </span></span>  <span><span class="co">## Model predictions using solution type analytical </span></span>  <span><span class="co">## </span></span> -<span><span class="co">## Fitted using 581 model solutions performed in 0.128 s</span></span> +<span><span class="co">## Fitted using 581 model solutions performed in 0.04 s</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Error model: Constant variance </span></span>  <span><span class="co">## </span></span> @@ -511,13 +586,15 @@  <span><span class="co">## Estimated disappearance times:</span></span>  <span><span class="co">##          DT50  DT90 DT50back DT50_k1 DT50_k2</span></span>  <span><span class="co">## parent 0.5335 5.311    1.599 0.03084   2.058</span></span></code></pre> -<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion.</p> +<p>Here, the DFOP model is clearly the best-fit model for dataset L2 +based on the chi^2 error level criterion.</p>  </div>  </div>  <div class="section level2">  <h2 id="laboratory-data-l3">Laboratory Data L3<a class="anchor" aria-label="anchor" href="#laboratory-data-l3"></a>  </h2> -<p>The following code defines example dataset L3 from the FOCUS kinetics report, p. 290.</p> +<p>The following code defines example dataset L3 from the FOCUS kinetics +report, p. 290.</p>  <div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">FOCUS_2006_L3</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>  <span>  t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">30</span>, <span class="fl">60</span>, <span class="fl">91</span>, <span class="fl">120</span><span class="op">)</span>,</span> @@ -526,26 +603,35 @@  <div class="section level3">  <h3 id="fit-multiple-models">Fit multiple models<a class="anchor" aria-label="anchor" href="#fit-multiple-models"></a>  </h3> -<p>As of mkin version 0.9-39 (June 2015), we can fit several models to one or more datasets in one call to the function <code>mmkin</code>. The datasets have to be passed in a list, in this case a named list holding only the L3 dataset prepared above.</p> +<p>As of mkin version 0.9-39 (June 2015), we can fit several models to +one or more datasets in one call to the function <code>mmkin</code>. The +datasets have to be passed in a list, in this case a named list holding +only the L3 dataset prepared above.</p>  <div class="sourceCode" id="cb23"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>  <span><span class="va">mm.L3</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span><span class="op">)</span>, cores <span class="op">=</span> <span class="fl">1</span>,</span>  <span>               <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"FOCUS L3"</span> <span class="op">=</span> <span class="va">FOCUS_2006_L3_mkin</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-12-1.png" width="700"></p> -<p>The <span class="math inline">\(\chi^2\)</span> error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the <span class="math inline">\(\chi^2\)</span> test passes of 7%. Fitting the four parameter DFOP model further reduces the <span class="math inline">\(\chi^2\)</span> error level considerably.</p> +<p>The <span class="math inline">\(\chi^2\)</span> error level of 21% as +well as the plot suggest that the SFO model does not fit very well. The +FOMC model performs better, with an error level at which the <span class="math inline">\(\chi^2\)</span> test passes of 7%. Fitting the +four parameter DFOP model further reduces the <span class="math inline">\(\chi^2\)</span> error level considerably.</p>  </div>  <div class="section level3">  <h3 id="accessing-mmkin-objects">Accessing mmkin objects<a class="anchor" aria-label="anchor" href="#accessing-mmkin-objects"></a>  </h3> -<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p> -<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p> +<p>The objects returned by mmkin are arranged like a matrix, with models +as a row index and datasets as a column index.</p> +<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, +using square brackets for indexing which will result in the use of the +summary and plot functions working on mkinfit objects.</p>  <div class="sourceCode" id="cb24"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## mkin version used for fitting:    1.2.0 </span></span> -<span><span class="co">## R version used for fitting:       4.2.2 </span></span> -<span><span class="co">## Date of fit:     Thu Nov 17 14:04:27 2022 </span></span> -<span><span class="co">## Date of summary: Thu Nov 17 14:04:28 2022 </span></span> +<pre><code><span><span class="co">## mkin version used for fitting:    1.2.3 </span></span> +<span><span class="co">## R version used for fitting:       4.2.3 </span></span> +<span><span class="co">## Date of fit:     Thu Apr 20 07:37:17 2023 </span></span> +<span><span class="co">## Date of summary: Thu Apr 20 07:37:17 2023 </span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Equations:</span></span>  <span><span class="co">## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span></span> @@ -554,7 +640,7 @@  <span><span class="co">## </span></span>  <span><span class="co">## Model predictions using solution type analytical </span></span>  <span><span class="co">## </span></span> -<span><span class="co">## Fitted using 376 model solutions performed in 0.078 s</span></span> +<span><span class="co">## Fitted using 376 model solutions performed in 0.024 s</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Error model: Constant variance </span></span>  <span><span class="co">## </span></span> @@ -631,20 +717,30 @@  <div class="sourceCode" id="cb26"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-13-1.png" width="700"></p> -<p>Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the <span class="math inline">\(\chi^2\)</span> error level criterion for laboratory data L3.</p> -<p>This is also an example where the standard t-test for the parameter <code>g_ilr</code> is misleading, as it tests for a significant difference from zero. In this case, zero appears to be the correct value for this parameter, and the confidence interval for the backtransformed parameter <code>g</code> is quite narrow.</p> +<p>Here, a look to the model plot, the confidence intervals of the +parameters and the correlation matrix suggest that the parameter +estimates are reliable, and the DFOP model can be used as the best-fit +model based on the <span class="math inline">\(\chi^2\)</span> error +level criterion for laboratory data L3.</p> +<p>This is also an example where the standard t-test for the parameter +<code>g_ilr</code> is misleading, as it tests for a significant +difference from zero. In this case, zero appears to be the correct value +for this parameter, and the confidence interval for the backtransformed +parameter <code>g</code> is quite narrow.</p>  </div>  </div>  <div class="section level2">  <h2 id="laboratory-data-l4">Laboratory Data L4<a class="anchor" aria-label="anchor" href="#laboratory-data-l4"></a>  </h2> -<p>The following code defines example dataset L4 from the FOCUS kinetics report, p. 293:</p> +<p>The following code defines example dataset L4 from the FOCUS kinetics +report, p. 293:</p>  <div class="sourceCode" id="cb27"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">FOCUS_2006_L4</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>  <span>  t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">30</span>, <span class="fl">60</span>, <span class="fl">91</span>, <span class="fl">120</span><span class="op">)</span>,</span>  <span>  parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">96.6</span>, <span class="fl">96.3</span>, <span class="fl">94.3</span>, <span class="fl">88.8</span>, <span class="fl">74.9</span>, <span class="fl">59.9</span>, <span class="fl">53.5</span>, <span class="fl">49.0</span><span class="op">)</span><span class="op">)</span></span>  <span><span class="va">FOCUS_2006_L4_mkin</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L4</span><span class="op">)</span></span></code></pre></div> -<p>Fits of the SFO and FOMC models, plots and summaries are produced below:</p> +<p>Fits of the SFO and FOMC models, plots and summaries are produced +below:</p>  <div class="sourceCode" id="cb28"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>  <span><span class="va">mm.L4</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span><span class="op">)</span>, cores <span class="op">=</span> <span class="fl">1</span>,</span> @@ -652,20 +748,24 @@  <span>               quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-15-1.png" width="700"></p> -<p>The <span class="math inline">\(\chi^2\)</span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline">\(\chi^2\)</span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p> +<p>The <span class="math inline">\(\chi^2\)</span> error level of 3.3% +as well as the plot suggest that the SFO model fits very well. The error +level at which the <span class="math inline">\(\chi^2\)</span> test +passes is slightly lower for the FOMC model. However, the difference +appears negligible.</p>  <div class="sourceCode" id="cb29"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"SFO"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## mkin version used for fitting:    1.2.0 </span></span> -<span><span class="co">## R version used for fitting:       4.2.2 </span></span> -<span><span class="co">## Date of fit:     Thu Nov 17 14:04:28 2022 </span></span> -<span><span class="co">## Date of summary: Thu Nov 17 14:04:29 2022 </span></span> +<pre><code><span><span class="co">## mkin version used for fitting:    1.2.3 </span></span> +<span><span class="co">## R version used for fitting:       4.2.3 </span></span> +<span><span class="co">## Date of fit:     Thu Apr 20 07:37:17 2023 </span></span> +<span><span class="co">## Date of summary: Thu Apr 20 07:37:17 2023 </span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Equations:</span></span>  <span><span class="co">## d_parent/dt = - k_parent * parent</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Model predictions using solution type analytical </span></span>  <span><span class="co">## </span></span> -<span><span class="co">## Fitted using 142 model solutions performed in 0.029 s</span></span> +<span><span class="co">## Fitted using 142 model solutions performed in 0.009 s</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Error model: Constant variance </span></span>  <span><span class="co">## </span></span> @@ -720,17 +820,17 @@  <span><span class="co">## parent  106  352</span></span></code></pre>  <div class="sourceCode" id="cb31"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"FOMC"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## mkin version used for fitting:    1.2.0 </span></span> -<span><span class="co">## R version used for fitting:       4.2.2 </span></span> -<span><span class="co">## Date of fit:     Thu Nov 17 14:04:28 2022 </span></span> -<span><span class="co">## Date of summary: Thu Nov 17 14:04:29 2022 </span></span> +<pre><code><span><span class="co">## mkin version used for fitting:    1.2.3 </span></span> +<span><span class="co">## R version used for fitting:       4.2.3 </span></span> +<span><span class="co">## Date of fit:     Thu Apr 20 07:37:17 2023 </span></span> +<span><span class="co">## Date of summary: Thu Apr 20 07:37:17 2023 </span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Equations:</span></span>  <span><span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Model predictions using solution type analytical </span></span>  <span><span class="co">## </span></span> -<span><span class="co">## Fitted using 224 model solutions performed in 0.046 s</span></span> +<span><span class="co">## Fitted using 224 model solutions performed in 0.014 s</span></span>  <span><span class="co">## </span></span>  <span><span class="co">## Error model: Constant variance </span></span>  <span><span class="co">## </span></span> @@ -792,9 +892,11 @@  <div class="section level2">  <h2 class="unnumbered" id="references">References<a class="anchor" aria-label="anchor" href="#references"></a>  </h2> -<div id="refs" class="references hanging-indent"> -<div id="ref-ranke2014"> -<p>Ranke, Johannes. 2014. “Prüfung und Validierung von Modellierungssoftware als Alternative zu ModelMaker 4.0.” Umweltbundesamt Projektnummer 27452.</p> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-ranke2014" class="csl-entry"> +Ranke, Johannes. 2014. <span>“<span class="nocase">Prüfung und +Validierung von Modellierungssoftware als Alternative zu ModelMaker +4.0</span>.”</span> Umweltbundesamt Projektnummer 27452.  </div>  </div>  </div> @@ -817,7 +919,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.pngBinary files differ index b2bff18f..11706305 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.pngBinary files differ index d613c035..daa488a3 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.pngBinary files differ index 8387a272..5caea744 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.pngBinary files differ index 74f0fc48..0dc9d57d 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.pngBinary files differ index 1c56cb20..13344b25 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.pngBinary files differ index 4247131e..ec234b6e 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.pngBinary files differ index b6130527..c3f55dd6 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.pngBinary files differ index dea51d58..d3551b47 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.pngBinary files differ index 05460304..5f8afc00 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png diff --git a/docs/articles/index.html b/docs/articles/index.html index f4f6d557..991f8994 100644 --- a/docs/articles/index.html +++ b/docs/articles/index.html @@ -17,13 +17,13 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.1</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3.1</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav"><li> -  <a href="../reference/index.html">Functions and data</a> +  <a href="../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -34,6 +34,8 @@    <ul class="dropdown-menu" role="menu"><li>        <a href="../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    <li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -41,22 +43,29 @@        <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>      </li> +    <li class="divider"> +    <li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    <li class="dropdown-header">Performance</li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -64,6 +73,14 @@      <li>        <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    <li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul></li>  <li>    <a href="../news/index.html">News</a> @@ -96,6 +113,12 @@          <dd>          </dd><dt><a href="mkin.html">Introduction to mkin</a></dt>          <dd> +        </dd><dt><a href="prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a></dt> +        <dd> +        </dd><dt><a href="prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a></dt> +        <dd> +        </dd><dt><a href="prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a></dt> +        <dd>          </dd><dt><a href="twa.html">Calculation of time weighted average concentrations with mkin</a></dt>          <dd>          </dd><dt><a href="web_only/FOCUS_Z.html">Example evaluation of FOCUS dataset Z</a></dt> @@ -122,7 +145,7 @@  </div>  <div class="pkgdown"> -  <p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +  <p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer></div> diff --git a/docs/articles/mkin.html b/docs/articles/mkin.html index da499501..88c63bef 100644 --- a/docs/articles/mkin.html +++ b/docs/articles/mkin.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../reference/index.html">Functions and data</a> +  <a href="../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,15 @@ -      </header><script src="mkin_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore">        <h1 data-toc-skip>Introduction to mkin</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">Last change 15 February 2021 (rebuilt 2022-11-17)</h4> +            <h4 data-toc-skip class="date">Last change 15 February 2021 +(rebuilt 2023-04-20)</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/mkin.rmd" class="external-link"><code>vignettes/mkin.rmd</code></a></small>        <div class="hidden name"><code>mkin.rmd</code></div> @@ -120,11 +143,21 @@ -<p><a href="https://www.jrwb.de" class="external-link">Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany</a><br> Privatdozent at the University of Freiburg</p> +<p><a href="https://www.jrwb.de" class="external-link">Wissenschaftlicher Berater, Kronacher +Str. 12, 79639 Grenzach-Wyhlen, Germany</a><br> Privatdozent at the +University of Freiburg</p>  <div class="section level2">  <h2 id="abstract">Abstract<a class="anchor" aria-label="anchor" href="#abstract"></a>  </h2> -<p>In the regulatory evaluation of chemical substances like plant protection products (pesticides), biocides and other chemicals, degradation data play an important role. For the evaluation of pesticide degradation experiments, detailed guidance has been developed, based on nonlinear optimisation. The <code>R</code> add-on package <code>mkin</code> implements fitting some of the models recommended in this guidance from within R and calculates some statistical measures for data series within one or more compartments, for parent and metabolites.</p> +<p>In the regulatory evaluation of chemical substances like plant +protection products (pesticides), biocides and other chemicals, +degradation data play an important role. For the evaluation of pesticide +degradation experiments, detailed guidance has been developed, based on +nonlinear optimisation. The <code>R</code> add-on package +<code>mkin</code> implements fitting some of the models recommended in +this guidance from within R and calculates some statistical measures for +data series within one or more compartments, for parent and +metabolites.</p>  <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="st"><a href="https://pkgdown.jrwb.de/mkin/">"mkin"</a></span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="co"># Define the kinetic model</span></span> @@ -159,95 +192,248 @@  <div class="section level2">  <h2 id="background">Background<a class="anchor" aria-label="anchor" href="#background"></a>  </h2> -<p>The <code>mkin</code> package <span class="citation">(Ranke 2021)</span> implements the approach to degradation kinetics recommended in the kinetics report provided by the FOrum for Co-ordination of pesticide fate models and their USe <span class="citation">(FOCUS Work Group on Degradation Kinetics 2006, 2014)</span>. It covers data series describing the decline of one compound, data series with transformation products (commonly termed metabolites) and data series for more than one compartment. It is possible to include back reactions. Therefore, equilibrium reactions and equilibrium partitioning can be specified, although this often leads to an overparameterisation of the model.</p> -<p>When the first <code>mkin</code> code was published in 2010, the most commonly used tools for fitting more complex kinetic degradation models to experimental data were KinGUI <span class="citation">(Schäfer et al. 2007)</span>, a MATLAB based tool with a graphical user interface that was specifically tailored to the task and included some output as proposed by the FOCUS Kinetics Workgroup, and ModelMaker, a general purpose compartment based tool providing infrastructure for fitting dynamic simulation models based on differential equations to data.</p> -<p>The ‘mkin’ code was first uploaded to the BerliOS development platform. When this was taken down, the version control history was imported into the R-Forge site (see <em>e.g.</em> <a href="https://cgit.jrwb.de/mkin/commit/?id=30cbb4092f6d2d3beff5800603374a0d009ad770" class="external-link">the initial commit on 11 May 2010</a>), where the code is still being updated.</p> -<p>At that time, the R package <code>FME</code> (Flexible Modelling Environment) <span class="citation">(Soetaert and Petzoldt 2010)</span> was already available, and provided a good basis for developing a package specifically tailored to the task. The remaining challenge was to make it as easy as possible for the users (including the author of this vignette) to specify the system of differential equations and to include the output requested by the FOCUS guidance, such as the <span class="math inline">\(\chi^2\)</span> error level as defined in this guidance.</p> -<p>Also, <code>mkin</code> introduced using analytical solutions for parent only kinetics for improved optimization speed. Later, Eigenvalue based solutions were introduced to <code>mkin</code> for the case of linear differential equations (<em>i.e.</em> where the FOMC or DFOP models were not used for the parent compound), greatly improving the optimization speed for these cases. This, has become somehow obsolete, as the use of compiled code described below gives even faster execution times.</p> -<p>The possibility to specify back-reactions and a biphasic model (SFORB) for metabolites were present in <code>mkin</code> from the very beginning.</p> +<p>The <code>mkin</code> package <span class="citation">(J. Ranke +2021)</span> implements the approach to degradation kinetics recommended +in the kinetics report provided by the FOrum for Co-ordination of +pesticide fate models and their USe <span class="citation">(FOCUS Work +Group on Degradation Kinetics 2006, 2014)</span>. It covers data series +describing the decline of one compound, data series with transformation +products (commonly termed metabolites) and data series for more than one +compartment. It is possible to include back reactions. Therefore, +equilibrium reactions and equilibrium partitioning can be specified, +although this often leads to an overparameterisation of the model.</p> +<p>When the first <code>mkin</code> code was published in 2010, the most +commonly used tools for fitting more complex kinetic degradation models +to experimental data were KinGUI <span class="citation">(Schäfer et al. +2007)</span>, a MATLAB based tool with a graphical user interface that +was specifically tailored to the task and included some output as +proposed by the FOCUS Kinetics Workgroup, and ModelMaker, a general +purpose compartment based tool providing infrastructure for fitting +dynamic simulation models based on differential equations to data.</p> +<p>The ‘mkin’ code was first uploaded to the BerliOS development +platform. When this was taken down, the version control history was +imported into the R-Forge site (see <em>e.g.</em> <a href="https://cgit.jrwb.de/mkin/commit/?id=30cbb4092f6d2d3beff5800603374a0d009ad770" class="external-link">the +initial commit on 11 May 2010</a>), where the code is still being +updated.</p> +<p>At that time, the R package <code>FME</code> (Flexible Modelling +Environment) <span class="citation">(Soetaert and Petzoldt 2010)</span> +was already available, and provided a good basis for developing a +package specifically tailored to the task. The remaining challenge was +to make it as easy as possible for the users (including the author of +this vignette) to specify the system of differential equations and to +include the output requested by the FOCUS guidance, such as the <span class="math inline">\(\chi^2\)</span> error level as defined in this +guidance.</p> +<p>Also, <code>mkin</code> introduced using analytical solutions for +parent only kinetics for improved optimization speed. Later, Eigenvalue +based solutions were introduced to <code>mkin</code> for the case of +linear differential equations (<em>i.e.</em> where the FOMC or DFOP +models were not used for the parent compound), greatly improving the +optimization speed for these cases. This, has become somehow obsolete, +as the use of compiled code described below gives even faster execution +times.</p> +<p>The possibility to specify back-reactions and a biphasic model +(SFORB) for metabolites were present in <code>mkin</code> from the very +beginning.</p>  <div class="section level3">  <h3 id="derived-software-tools">Derived software tools<a class="anchor" aria-label="anchor" href="#derived-software-tools"></a>  </h3> -<p>Soon after the publication of <code>mkin</code>, two derived tools were published, namely KinGUII (developed at Bayer Crop Science) and CAKE (commissioned to Tessella by Syngenta), which added a graphical user interface (GUI), and added fitting by iteratively reweighted least squares (IRLS) and characterisation of likely parameter distributions by Markov Chain Monte Carlo (MCMC) sampling.</p> -<p>CAKE focuses on a smooth use experience, sacrificing some flexibility in the model definition, originally allowing only two primary metabolites in parallel. The current version 3.4 of CAKE released in May 2020 uses a scheme for up to six metabolites in a flexible arrangement and supports biphasic modelling of metabolites, but does not support back-reactions (non-instantaneous equilibria).</p> -<p>KinGUI offers an even more flexible widget for specifying complex kinetic models. Back-reactions (non-instantaneous equilibria) were supported early on, but until 2014, only simple first-order models could be specified for transformation products. Starting with KinGUII version 2.1, biphasic modelling of metabolites was also available in KinGUII.</p> -<p>A further graphical user interface (GUI) that has recently been brought to a decent degree of maturity is the browser based GUI named <code>gmkin</code>. Please see its <a href="https://pkgdown.jrwb.de/gmkin/" class="external-link">documentation page</a> and <a href="https://pkgdown.jrwb.de/gmkin/articles/gmkin_manual.html" class="external-link">manual</a> for further information.</p> -<p>A comparison of scope, usability and numerical results obtained with these tools has been recently been published by <span class="citation">Ranke, Wöltjen, and Meinecke (2018)</span>.</p> +<p>Soon after the publication of <code>mkin</code>, two derived tools +were published, namely KinGUII (developed at Bayer Crop Science) and +CAKE (commissioned to Tessella by Syngenta), which added a graphical +user interface (GUI), and added fitting by iteratively reweighted least +squares (IRLS) and characterisation of likely parameter distributions by +Markov Chain Monte Carlo (MCMC) sampling.</p> +<p>CAKE focuses on a smooth use experience, sacrificing some flexibility +in the model definition, originally allowing only two primary +metabolites in parallel. The current version 3.4 of CAKE released in May +2020 uses a scheme for up to six metabolites in a flexible arrangement +and supports biphasic modelling of metabolites, but does not support +back-reactions (non-instantaneous equilibria).</p> +<p>KinGUI offers an even more flexible widget for specifying complex +kinetic models. Back-reactions (non-instantaneous equilibria) were +supported early on, but until 2014, only simple first-order models could +be specified for transformation products. Starting with KinGUII version +2.1, biphasic modelling of metabolites was also available in +KinGUII.</p> +<p>A further graphical user interface (GUI) that has recently been +brought to a decent degree of maturity is the browser based GUI named +<code>gmkin</code>. Please see its <a href="https://pkgdown.jrwb.de/gmkin/" class="external-link">documentation page</a> and <a href="https://pkgdown.jrwb.de/gmkin/articles/gmkin_manual.html" class="external-link">manual</a> +for further information.</p> +<p>A comparison of scope, usability and numerical results obtained with +these tools has been recently been published by <span class="citation">Johannes Ranke, Wöltjen, and Meinecke +(2018)</span>.</p>  </div>  </div>  <div class="section level2">  <h2 id="unique-features">Unique features<a class="anchor" aria-label="anchor" href="#unique-features"></a>  </h2> -<p>Currently, the main unique features available in <code>mkin</code> are</p> +<p>Currently, the main unique features available in <code>mkin</code> +are</p>  <ul> -<li>the <a href="https://pkgdown.jrwb.de/mkin/articles/web_only/compiled_models.html">speed increase</a> by using compiled code when a compiler is present,</li> -<li>parallel model fitting on multicore machines using the <a href="https://pkgdown.jrwb.de/mkin/reference/mmkin.html"><code>mmkin</code> function</a>,</li> -<li>the estimation of parameter confidence intervals based on transformed parameters (see below) and</li> -<li>the possibility to use the <a href="https://pkgdown.jrwb.de/mkin/reference/sigma_twocomp.html">two-component error model</a> +<li>the <a href="https://pkgdown.jrwb.de/mkin/articles/web_only/compiled_models.html">speed +increase</a> by using compiled code when a compiler is present,</li> +<li>parallel model fitting on multicore machines using the <a href="https://pkgdown.jrwb.de/mkin/reference/mmkin.html"><code>mmkin</code> +function</a>,</li> +<li>the estimation of parameter confidence intervals based on +transformed parameters (see below) and</li> +<li>the possibility to use the <a href="https://pkgdown.jrwb.de/mkin/reference/sigma_twocomp.html">two-component +error model</a>  </li>  </ul> -<p>The iteratively reweighted least squares fitting of different variances for each variable as introduced by <span class="citation">Gao et al. (2011)</span> has been available in mkin since <a href="https://pkgdown.jrwb.de/mkin/news/index.html#mkin-0-9-22-2013-10-26">version 0.9-22</a>. With <a href="https://pkgdown.jrwb.de/mkin/news/index.html#mkin-0-9-49-5-2019-07-04">release 0.9.49.5</a>, the IRLS algorithm has been complemented by direct or step-wise maximisation of the likelihood function, which makes it possible not only to fit the variance by variable error model but also a <a href="https://pkgdown.jrwb.de/mkin/reference/sigma_twocomp.html">two-component error model</a> inspired by error models developed in analytical chemistry <span class="citation">(Ranke and Meinecke 2019)</span>.</p> +<p>The iteratively reweighted least squares fitting of different +variances for each variable as introduced by <span class="citation">Gao +et al. (2011)</span> has been available in mkin since <a href="https://pkgdown.jrwb.de/mkin/news/index.html#mkin-0-9-22-2013-10-26">version +0.9-22</a>. With <a href="https://pkgdown.jrwb.de/mkin/news/index.html#mkin-0-9-49-5-2019-07-04">release +0.9.49.5</a>, the IRLS algorithm has been complemented by direct or +step-wise maximisation of the likelihood function, which makes it +possible not only to fit the variance by variable error model but also a +<a href="https://pkgdown.jrwb.de/mkin/reference/sigma_twocomp.html">two-component +error model</a> inspired by error models developed in analytical +chemistry <span class="citation">(Johannes Ranke and Meinecke +2019)</span>.</p>  </div>  <div class="section level2">  <h2 id="internal-parameter-transformations">Internal parameter transformations<a class="anchor" aria-label="anchor" href="#internal-parameter-transformations"></a>  </h2> -<p>For rate constants, the log transformation is used, as proposed by Bates and Watts <span class="citation">(1988, 77, 149)</span>. Approximate intervals are constructed for the transformed rate constants <span class="citation">(compare Bates and Watts 1988, 135)</span>, <em>i.e.</em> for their logarithms. Confidence intervals for the rate constants are then obtained using the appropriate backtransformation using the exponential function.</p> -<p>In the first version of <code>mkin</code> allowing for specifying models using formation fractions, a home-made reparameterisation was used in order to ensure that the sum of formation fractions would not exceed unity.</p> -<p>This method is still used in the current version of KinGUII (v2.1 from April 2014), with a modification that allows for fixing the pathway to sink to zero. CAKE uses penalties in the objective function in order to enforce this constraint.</p> -<p>In 2012, an alternative reparameterisation of the formation fractions was proposed together with René Lehmann <span class="citation">(Ranke and Lehmann 2012)</span>, based on isometric logratio transformation (ILR). The aim was to improve the validity of the linear approximation of the objective function during the parameter estimation procedure as well as in the subsequent calculation of parameter confidence intervals. In the current version of mkin, a logit transformation is used for parameters that are bound between 0 and 1, such as the g parameter of the DFOP model.</p> +<p>For rate constants, the log transformation is used, as proposed by +Bates and Watts <span class="citation">(1988, 77, 149)</span>. +Approximate intervals are constructed for the transformed rate constants +<span class="citation">(compare Bates and Watts 1988, 135)</span>, +<em>i.e.</em> for their logarithms. Confidence intervals for the rate +constants are then obtained using the appropriate backtransformation +using the exponential function.</p> +<p>In the first version of <code>mkin</code> allowing for specifying +models using formation fractions, a home-made reparameterisation was +used in order to ensure that the sum of formation fractions would not +exceed unity.</p> +<p>This method is still used in the current version of KinGUII (v2.1 +from April 2014), with a modification that allows for fixing the pathway +to sink to zero. CAKE uses penalties in the objective function in order +to enforce this constraint.</p> +<p>In 2012, an alternative reparameterisation of the formation fractions +was proposed together with René Lehmann <span class="citation">(J. Ranke +and Lehmann 2012)</span>, based on isometric logratio transformation +(ILR). The aim was to improve the validity of the linear approximation +of the objective function during the parameter estimation procedure as +well as in the subsequent calculation of parameter confidence intervals. +In the current version of mkin, a logit transformation is used for +parameters that are bound between 0 and 1, such as the g parameter of +the DFOP model.</p>  <div class="section level3">  <h3 id="confidence-intervals-based-on-transformed-parameters">Confidence intervals based on transformed parameters<a class="anchor" aria-label="anchor" href="#confidence-intervals-based-on-transformed-parameters"></a>  </h3> -<p>In the first attempt at providing improved parameter confidence intervals introduced to <code>mkin</code> in 2013, confidence intervals obtained from FME on the transformed parameters were simply all backtransformed one by one to yield asymmetric confidence intervals for the backtransformed parameters.</p> -<p>However, while there is a 1:1 relation between the rate constants in the model and the transformed parameters fitted in the model, the parameters obtained by the isometric logratio transformation are calculated from the set of formation fractions that quantify the paths to each of the compounds formed from a specific parent compound, and no such 1:1 relation exists.</p> -<p>Therefore, parameter confidence intervals for formation fractions obtained with this method only appear valid for the case of a single transformation product, where currently the logit transformation is used for the formation fraction.</p> -<p>The confidence intervals obtained by backtransformation for the cases where a 1:1 relation between transformed and original parameter exist are considered by the author of this vignette to be more accurate than those obtained using a re-estimation of the Hessian matrix after backtransformation, as implemented in the FME package.</p> +<p>In the first attempt at providing improved parameter confidence +intervals introduced to <code>mkin</code> in 2013, confidence intervals +obtained from FME on the transformed parameters were simply all +backtransformed one by one to yield asymmetric confidence intervals for +the backtransformed parameters.</p> +<p>However, while there is a 1:1 relation between the rate constants in +the model and the transformed parameters fitted in the model, the +parameters obtained by the isometric logratio transformation are +calculated from the set of formation fractions that quantify the paths +to each of the compounds formed from a specific parent compound, and no +such 1:1 relation exists.</p> +<p>Therefore, parameter confidence intervals for formation fractions +obtained with this method only appear valid for the case of a single +transformation product, where currently the logit transformation is used +for the formation fraction.</p> +<p>The confidence intervals obtained by backtransformation for the cases +where a 1:1 relation between transformed and original parameter exist +are considered by the author of this vignette to be more accurate than +those obtained using a re-estimation of the Hessian matrix after +backtransformation, as implemented in the FME package.</p>  </div>  <div class="section level3">  <h3 id="parameter-t-test-based-on-untransformed-parameters">Parameter t-test based on untransformed parameters<a class="anchor" aria-label="anchor" href="#parameter-t-test-based-on-untransformed-parameters"></a>  </h3> -<p>The standard output of many nonlinear regression software packages includes the results from a test for significant difference from zero for all parameters. Such a test is also recommended to check the validity of rate constants in the FOCUS guidance <span class="citation">(FOCUS Work Group on Degradation Kinetics 2014, 96ff)</span>.</p> -<p>It has been argued that the precondition for this test, <em>i.e.</em> normal distribution of the estimator for the parameters, is not fulfilled in the case of nonlinear regression <span class="citation">(Ranke and Lehmann 2015)</span>. However, this test is commonly used by industry, consultants and national authorities in order to decide on the reliability of parameter estimates, based on the FOCUS guidance mentioned above. Therefore, the results of this one-sided t-test are included in the summary output from <code>mkin</code>.</p> -<p>As it is not reasonable to test for significant difference of the transformed parameters (<em>e.g.</em> <span class="math inline">\(log(k)\)</span>) from zero, the t-test is calculated based on the model definition before parameter transformation, <em>i.e.</em> in a similar way as in packages that do not apply such an internal parameter transformation. A note is included in the <code>mkin</code> output, pointing to the fact that the t-test is based on the unjustified assumption of normal distribution of the parameter estimators.</p> +<p>The standard output of many nonlinear regression software packages +includes the results from a test for significant difference from zero +for all parameters. Such a test is also recommended to check the +validity of rate constants in the FOCUS guidance <span class="citation">(FOCUS Work Group on Degradation Kinetics 2014, +96ff)</span>.</p> +<p>It has been argued that the precondition for this test, <em>i.e.</em> +normal distribution of the estimator for the parameters, is not +fulfilled in the case of nonlinear regression <span class="citation">(J. +Ranke and Lehmann 2015)</span>. However, this test is commonly used by +industry, consultants and national authorities in order to decide on the +reliability of parameter estimates, based on the FOCUS guidance +mentioned above. Therefore, the results of this one-sided t-test are +included in the summary output from <code>mkin</code>.</p> +<p>As it is not reasonable to test for significant difference of the +transformed parameters (<em>e.g.</em> <span class="math inline">\(log(k)\)</span>) from zero, the t-test is +calculated based on the model definition before parameter +transformation, <em>i.e.</em> in a similar way as in packages that do +not apply such an internal parameter transformation. A note is included +in the <code>mkin</code> output, pointing to the fact that the t-test is +based on the unjustified assumption of normal distribution of the +parameter estimators.</p>  </div>  </div>  <div class="section level2">  <h2 id="references">References<a class="anchor" aria-label="anchor" href="#references"></a>  </h2>  <!-- vim: set foldmethod=syntax: --> -<div id="refs" class="references hanging-indent"> -<div id="ref-bates1988"> -<p>Bates, D., and D. Watts. 1988. <em>Nonlinear Regression and Its Applications</em>. Wiley-Interscience.</p> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-bates1988" class="csl-entry"> +Bates, D., and D. Watts. 1988. <em>Nonlinear Regression and Its +Applications</em>. Wiley-Interscience.  </div> -<div id="ref-FOCUS2006"> -<p>FOCUS Work Group on Degradation Kinetics. 2006. <em>Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration. Report of the Focus Work Group on Degradation Kinetics</em>. <a href="http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics" class="external-link">http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a>.</p> +<div id="ref-FOCUS2006" class="csl-entry"> +FOCUS Work Group on Degradation Kinetics. 2006. <em>Guidance Document on +Estimating Persistence and Degradation Kinetics from Environmental Fate +Studies on Pesticides in EU Registration. Report of the FOCUS Work Group +on Degradation Kinetics</em>. <a href="http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics" class="external-link">http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a>.  </div> -<div id="ref-FOCUSkinetics2014"> -<p>———. 2014. <em>Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration</em>. 1.1 ed. <a href="http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics" class="external-link">http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a>.</p> +<div id="ref-FOCUSkinetics2014" class="csl-entry"> +———. 2014. <em>Generic Guidance for Estimating Persistence and +Degradation Kinetics from Environmental Fate Studies on Pesticides in EU +Registration</em>. 1.1 ed. <a href="http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics" class="external-link">http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a>.  </div> -<div id="ref-gao11"> -<p>Gao, Z., J. W. Green, J. Vanderborght, and W. Schmitt. 2011. “Improving Uncertainty Analysis in Kinetic Evaluations Using Iteratively Reweighted Least Squares.” Journal. <em>Environmental Science and Technology</em> 45: 4429–37.</p> +<div id="ref-gao11" class="csl-entry"> +Gao, Z., J. W. Green, J. Vanderborght, and W. Schmitt. 2011. +<span>“Improving Uncertainty Analysis in Kinetic Evaluations Using +Iteratively Reweighted Least Squares.”</span> Journal. <em>Environmental +Science and Technology</em> 45: 4429–37.  </div> -<div id="ref-pkg:mkin"> -<p>Ranke, J. 2021. <em>‘mkin‘: Kinetic Evaluation of Chemical Degradation Data</em>. <a href="https://CRAN.R-project.org/package=mkin" class="external-link">https://CRAN.R-project.org/package=mkin</a>.</p> +<div id="ref-pkg:mkin" class="csl-entry"> +Ranke, J. 2021. <em>‘<span class="nocase">mkin</span>‘: +<span>K</span>inetic Evaluation of Chemical Degradation Data</em>. <a href="https://CRAN.R-project.org/package=mkin" class="external-link">https://CRAN.R-project.org/package=mkin</a>.  </div> -<div id="ref-ranke2012"> -<p>Ranke, J., and R. Lehmann. 2012. “Parameter Reliability in Kinetic Evaluation of Environmental Metabolism Data - Assessment and the Influence of Model Specification.” In <em>SETAC World 20-24 May</em>. Berlin. <a href="https://jrwb.de/posters/Poster_SETAC_2012_Kinetic_parameter_uncertainty_model_parameterization_Lehmann_Ranke.pdf" class="external-link">https://jrwb.de/posters/Poster_SETAC_2012_Kinetic_parameter_uncertainty_model_parameterization_Lehmann_Ranke.pdf</a>.</p> +<div id="ref-ranke2012" class="csl-entry"> +Ranke, J., and R. Lehmann. 2012. <span>“Parameter Reliability in Kinetic +Evaluation of Environmental Metabolism Data - Assessment and the +Influence of Model Specification.”</span> In <em>SETAC World 20-24 +May</em>. Berlin. <a href="https://jrwb.de/posters/Poster_SETAC_2012_Kinetic_parameter_uncertainty_model_parameterization_Lehmann_Ranke.pdf" class="external-link">https://jrwb.de/posters/Poster_SETAC_2012_Kinetic_parameter_uncertainty_model_parameterization_Lehmann_Ranke.pdf</a>.  </div> -<div id="ref-ranke2015"> -<p>———. 2015. “To T-Test or Not to T-Test, That Is the Question.” In <em>XV Symposium on Pesticide Chemistry 2-4 September 2015</em>. Piacenza. <a href="https://jrwb.de/posters/piacenza_2015.pdf" class="external-link">https://jrwb.de/posters/piacenza_2015.pdf</a>.</p> +<div id="ref-ranke2015" class="csl-entry"> +———. 2015. <span>“To t-Test or Not to t-Test, That Is the +Question.”</span> In <em>XV Symposium on Pesticide Chemistry 2-4 +September 2015</em>. Piacenza. <a href="https://jrwb.de/posters/piacenza_2015.pdf" class="external-link">https://jrwb.de/posters/piacenza_2015.pdf</a>.  </div> -<div id="ref-ranke2019"> -<p>Ranke, Johannes, and Stefan Meinecke. 2019. “Error Models for the Kinetic Evaluation of Chemical Degradation Data.” <em>Environments</em> 6 (12). <a href="https://doi.org/10.3390/environments6120124" class="external-link">https://doi.org/10.3390/environments6120124</a>.</p> +<div id="ref-ranke2019" class="csl-entry"> +Ranke, Johannes, and Stefan Meinecke. 2019. <span>“Error Models for the +Kinetic Evaluation of Chemical Degradation Data.”</span> +<em>Environments</em> 6 (12). <a href="https://doi.org/10.3390/environments6120124" class="external-link">https://doi.org/10.3390/environments6120124</a>.  </div> -<div id="ref-ranke2018"> -<p>Ranke, Johannes, Janina Wöltjen, and Stefan Meinecke. 2018. “Comparison of Software Tools for Kinetic Evaluation of Chemical Degradation Data.” <em>Environmental Sciences Europe</em> 30 (1): 17. <a href="https://doi.org/10.1186/s12302-018-0145-1" class="external-link">https://doi.org/10.1186/s12302-018-0145-1</a>.</p> +<div id="ref-ranke2018" class="csl-entry"> +Ranke, Johannes, Janina Wöltjen, and Stefan Meinecke. 2018. +<span>“Comparison of Software Tools for Kinetic Evaluation of Chemical +Degradation Data.”</span> <em>Environmental Sciences Europe</em> 30 (1): +17. <a href="https://doi.org/10.1186/s12302-018-0145-1" class="external-link">https://doi.org/10.1186/s12302-018-0145-1</a>.  </div> -<div id="ref-schaefer2007"> -<p>Schäfer, D., B. Mikolasch, P. Rainbird, and B. Harvey. 2007. “KinGUI: A New Kinetic Software Tool for Evaluations According to FOCUS Degradation Kinetics.” In <em>Proceedings of the Xiii Symposium Pesticide Chemistry</em>, edited by Del Re A. A. M., Capri E., Fragoulis G., and Trevisan M., 916–23. Piacenza.</p> +<div id="ref-schaefer2007" class="csl-entry"> +Schäfer, D., B. Mikolasch, P. Rainbird, and B. Harvey. 2007. +<span>“<span>KinGUI</span>: A New Kinetic Software Tool for Evaluations +According to <span>FOCUS</span> Degradation Kinetics.”</span> In +<em>Proceedings of the XIII Symposium Pesticide Chemistry</em>, edited +by Del Re A. A. M., Capri E., Fragoulis G., and Trevisan M., 916–23. +Piacenza.  </div> -<div id="ref-soetaert2010"> -<p>Soetaert, Karline, and Thomas Petzoldt. 2010. “Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME.” <em>Journal of Statistical Software</em> 33 (3): 1–28. <a href="https://doi.org/10.18637/jss.v033.i03" class="external-link">https://doi.org/10.18637/jss.v033.i03</a>.</p> +<div id="ref-soetaert2010" class="csl-entry"> +Soetaert, Karline, and Thomas Petzoldt. 2010. <span>“Inverse Modelling, +Sensitivity and Monte Carlo Analysis in <span>R</span> Using Package +<span>FME</span>.”</span> <em>Journal of Statistical Software</em> 33 +(3): 1–28. <a href="https://doi.org/10.18637/jss.v033.i03" class="external-link">https://doi.org/10.18637/jss.v033.i03</a>.  </div>  </div>  </div> @@ -270,7 +456,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png b/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.pngBinary files differ index 63246387..7ba861ea 100644 --- a/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png +++ b/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png diff --git a/docs/articles/prebuilt/2022_cyan_pathway.html b/docs/articles/prebuilt/2022_cyan_pathway.html new file mode 100644 index 00000000..cd63fa3c --- /dev/null +++ b/docs/articles/prebuilt/2022_cyan_pathway.html @@ -0,0 +1,5657 @@ +<!DOCTYPE html> +<!-- Generated by pkgdown: do not edit by hand --><html lang="en"> +<head> +<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> +<meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> +<title>Testing hierarchical pathway kinetics with residue data on cyantraniliprole • mkin</title> +<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"> +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../../bootstrap-toc.css"> +<script src="../../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../../pkgdown.css" rel="stylesheet"> +<script src="../../pkgdown.js"></script><meta property="og:title" content="Testing hierarchical pathway kinetics with residue data on cyantraniliprole"> +<meta property="og:description" content="mkin"> +<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> +</head> +<body data-spy="scroll" data-target="#toc"> +     + +    <div class="container template-article"> +      <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> +        <span class="sr-only">Toggle navigation</span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <span class="navbar-brand"> +        <a class="navbar-link" href="../../index.html">mkin</a> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3.1</span> +      </span> +    </div> + +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +<li> +  <a href="../../reference/index.html">Reference</a> +</li> +<li class="dropdown"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> +    Articles +      +    <span class="caret"></span> +  </a> +  <ul class="dropdown-menu" role="menu"> +<li> +      <a href="../../articles/mkin.html">Introduction to mkin</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li> +    <li> +      <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> +    </li> +    <li> +      <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> +    </li> +    <li> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li> +    <li> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a> +    </li> +    <li> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a> +    </li> +    <li> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a> +    </li> +    <li> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a> +    </li> +    <li> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li> +  </ul> +</li> +<li> +  <a href="../../news/index.html">News</a> +</li> +      </ul> +<ul class="nav navbar-nav navbar-right"> +<li> +  <a href="https://github.com/jranke/mkin/" class="external-link"> +    <span class="fab fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +</div> +<!--/.nav-collapse --> +  </div> +<!--/.container --> +</div> +<!--/.navbar --> + +       + +      </header><div class="row"> +  <div class="col-md-9 contents"> +    <div class="page-header toc-ignore"> +      <h1 data-toc-skip>Testing hierarchical pathway kinetics with +residue data on cyantraniliprole</h1> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> +             +            <h4 data-toc-skip class="date">Last change on 20 April 2023, +last compiled on 20 April 2023</h4> +       +      <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/prebuilt/2022_cyan_pathway.rmd" class="external-link"><code>vignettes/prebuilt/2022_cyan_pathway.rmd</code></a></small> +      <div class="hidden name"><code>2022_cyan_pathway.rmd</code></div> + +    </div> + +     +     +<div class="section level2"> +<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a> +</h2> +<p>The purpose of this document is to test demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS, with serial formation of two or more metabolites can +be fitted with the mkin package.</p> +<p>It was assembled in the course of work package 1.2 of Project Number +173340 (Application of nonlinear hierarchical models to the kinetic +evaluation of chemical degradation data) of the German Environment +Agency carried out in 2022 and 2023.</p> +<p>The mkin package is used in version 1.2.3 which is currently under +development. The newly introduced functionality that is used here is a +simplification of excluding random effects for a set of fits based on a +related set of fits with a reduced model, and the documentation of the +starting parameters of the fit, so that all starting parameters of +<code>saem</code> fits are now listed in the summary. The +<code>saemix</code> package is used as a backend for fitting the NLHM, +but is also loaded to make the convergence plot function available.</p> +<p>This document is processed with the <code>knitr</code> package, which +also provides the <code>kable</code> function that is used to improve +the display of tabular data in R markdown documents. For parallel +processing, the <code>parallel</code> package is used.</p> +<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://yihui.org/knitr/" class="external-link">knitr</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">parallel</span><span class="op">)</span></span> +<span><span class="va">n_cores</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/detectCores.html" class="external-link">detectCores</a></span><span class="op">(</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># We need to start a new cluster after defining a compiled model that is</span></span> +<span><span class="co"># saved as a DLL to the user directory, therefore we define a function</span></span> +<span><span class="co"># This is used again after defining the pathway model</span></span> +<span><span class="va">start_cluster</span> <span class="op"><-</span> <span class="kw">function</span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span> <span class="op">{</span></span> +<span>  <span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/Sys.info.html" class="external-link">Sys.info</a></span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="st">"sysname"</span><span class="op">]</span> <span class="op">==</span> <span class="st">"Windows"</span><span class="op">)</span> <span class="op">{</span></span> +<span>    <span class="va">ret</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makePSOCKcluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span>  <span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span> +<span>    <span class="va">ret</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makeForkCluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span>  <span class="op">}</span></span> +<span>  <span class="kw"><a href="https://rdrr.io/r/base/function.html" class="external-link">return</a></span><span class="op">(</span><span class="va">ret</span><span class="op">)</span></span> +<span><span class="op">}</span></span> +<span><span class="va">cl</span> <span class="op"><-</span> <span class="fu">start_cluster</span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span></code></pre></div> +<div class="section level3"> +<h3 id="test-data">Test data<a class="anchor" aria-label="anchor" href="#test-data"></a> +</h3> +<p>The example data are taken from the final addendum to the DAR from +2014 and are distributed with the mkin package. Residue data and time +step normalisation factors are read in using the function +<code>read_spreadsheet</code> from the mkin package. This function also +performs the time step normalisation.</p> +<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">data_file</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/system.file.html" class="external-link">system.file</a></span><span class="op">(</span></span> +<span>  <span class="st">"testdata"</span>, <span class="st">"cyantraniliprole_soil_efsa_2014.xlsx"</span>,</span> +<span>  package <span class="op">=</span> <span class="st">"mkin"</span><span class="op">)</span></span> +<span><span class="va">cyan_ds</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/read_spreadsheet.html">read_spreadsheet</a></span><span class="op">(</span><span class="va">data_file</span>, parent_only <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div> +<p>The following tables show the covariate data and the 5 datasets that +were read in from the spreadsheet file.</p> +<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">pH</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/attr.html" class="external-link">attr</a></span><span class="op">(</span><span class="va">cyan_ds</span>, <span class="st">"covariates"</span><span class="op">)</span></span> +<span><span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="va">pH</span>, caption <span class="op">=</span> <span class="st">"Covariate data"</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<caption>Covariate data</caption> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">pH</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">Nambsheim</td> +<td align="right">7.90</td> +</tr> +<tr class="even"> +<td align="left">Tama</td> +<td align="right">6.20</td> +</tr> +<tr class="odd"> +<td align="left">Gross-Umstadt</td> +<td align="right">7.04</td> +</tr> +<tr class="even"> +<td align="left">Sassafras</td> +<td align="right">4.62</td> +</tr> +<tr class="odd"> +<td align="left">Lleida</td> +<td align="right">8.05</td> +</tr> +</tbody> +</table> +<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">for</span> <span class="op">(</span><span class="va">ds_name</span> <span class="kw">in</span> <span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">cyan_ds</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span> +<span>  <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span></span> +<span>    <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mkin_long_to_wide.html">mkin_long_to_wide</a></span><span class="op">(</span><span class="va">cyan_ds</span><span class="op">[[</span><span class="va">ds_name</span><span class="op">]</span><span class="op">]</span><span class="op">)</span>,</span> +<span>      caption <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"Dataset"</span>, <span class="va">ds_name</span><span class="op">)</span>,</span> +<span>      booktabs <span class="op">=</span> <span class="cn">TRUE</span>, row.names <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">)</span></span> +<span>    <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"\n\\clearpage\n"</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +<table class="table"> +<caption>Dataset Nambsheim</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9C38</th> +<th align="right">JSE76</th> +<th align="right">J9Z38</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">105.79</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">3.210424</td> +<td align="right">77.26</td> +<td align="right">7.92</td> +<td align="right">11.94</td> +<td align="right">5.58</td> +<td align="right">9.12</td> +</tr> +<tr class="odd"> +<td align="right">7.490988</td> +<td align="right">57.13</td> +<td align="right">15.46</td> +<td align="right">16.58</td> +<td align="right">12.59</td> +<td align="right">11.74</td> +</tr> +<tr class="even"> +<td align="right">17.122259</td> +<td align="right">37.74</td> +<td align="right">15.98</td> +<td align="right">13.36</td> +<td align="right">26.05</td> +<td align="right">10.77</td> +</tr> +<tr class="odd"> +<td align="right">23.543105</td> +<td align="right">31.47</td> +<td align="right">6.05</td> +<td align="right">14.49</td> +<td align="right">34.71</td> +<td align="right">4.96</td> +</tr> +<tr class="even"> +<td align="right">43.875788</td> +<td align="right">16.74</td> +<td align="right">6.07</td> +<td align="right">7.57</td> +<td align="right">40.38</td> +<td align="right">6.52</td> +</tr> +<tr class="odd"> +<td align="right">67.418893</td> +<td align="right">8.85</td> +<td align="right">10.34</td> +<td align="right">6.39</td> +<td align="right">30.71</td> +<td align="right">8.90</td> +</tr> +<tr class="even"> +<td align="right">107.014116</td> +<td align="right">5.19</td> +<td align="right">9.61</td> +<td align="right">1.95</td> +<td align="right">20.41</td> +<td align="right">12.93</td> +</tr> +<tr class="odd"> +<td align="right">129.487080</td> +<td align="right">3.45</td> +<td align="right">6.18</td> +<td align="right">1.36</td> +<td align="right">21.78</td> +<td align="right">6.99</td> +</tr> +<tr class="even"> +<td align="right">195.835832</td> +<td align="right">2.15</td> +<td align="right">9.13</td> +<td align="right">0.95</td> +<td align="right">16.29</td> +<td align="right">7.69</td> +</tr> +<tr class="odd"> +<td align="right">254.693596</td> +<td align="right">1.92</td> +<td align="right">6.92</td> +<td align="right">0.20</td> +<td align="right">13.57</td> +<td align="right">7.16</td> +</tr> +<tr class="even"> +<td align="right">321.042348</td> +<td align="right">2.26</td> +<td align="right">7.02</td> +<td align="right">NA</td> +<td align="right">11.12</td> +<td align="right">8.66</td> +</tr> +<tr class="odd"> +<td align="right">383.110535</td> +<td align="right">NA</td> +<td align="right">5.05</td> +<td align="right">NA</td> +<td align="right">10.64</td> +<td align="right">5.56</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">105.57</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">3.210424</td> +<td align="right">78.88</td> +<td align="right">12.77</td> +<td align="right">11.94</td> +<td align="right">5.47</td> +<td align="right">9.12</td> +</tr> +<tr class="even"> +<td align="right">7.490988</td> +<td align="right">59.94</td> +<td align="right">15.27</td> +<td align="right">16.58</td> +<td align="right">13.60</td> +<td align="right">11.74</td> +</tr> +<tr class="odd"> +<td align="right">17.122259</td> +<td align="right">39.67</td> +<td align="right">14.26</td> +<td align="right">13.36</td> +<td align="right">29.44</td> +<td align="right">10.77</td> +</tr> +<tr class="even"> +<td align="right">23.543105</td> +<td align="right">30.21</td> +<td align="right">16.07</td> +<td align="right">14.49</td> +<td align="right">35.90</td> +<td align="right">4.96</td> +</tr> +<tr class="odd"> +<td align="right">43.875788</td> +<td align="right">18.06</td> +<td align="right">9.44</td> +<td align="right">7.57</td> +<td align="right">42.30</td> +<td align="right">6.52</td> +</tr> +<tr class="even"> +<td align="right">67.418893</td> +<td align="right">8.54</td> +<td align="right">5.78</td> +<td align="right">6.39</td> +<td align="right">34.70</td> +<td align="right">8.90</td> +</tr> +<tr class="odd"> +<td align="right">107.014116</td> +<td align="right">7.26</td> +<td align="right">4.54</td> +<td align="right">1.95</td> +<td align="right">23.33</td> +<td align="right">12.93</td> +</tr> +<tr class="even"> +<td align="right">129.487080</td> +<td align="right">3.60</td> +<td align="right">4.22</td> +<td align="right">1.36</td> +<td align="right">23.56</td> +<td align="right">6.99</td> +</tr> +<tr class="odd"> +<td align="right">195.835832</td> +<td align="right">2.84</td> +<td align="right">3.05</td> +<td align="right">0.95</td> +<td align="right">16.21</td> +<td align="right">7.69</td> +</tr> +<tr class="even"> +<td align="right">254.693596</td> +<td align="right">2.00</td> +<td align="right">2.90</td> +<td align="right">0.20</td> +<td align="right">15.53</td> +<td align="right">7.16</td> +</tr> +<tr class="odd"> +<td align="right">321.042348</td> +<td align="right">1.79</td> +<td align="right">0.94</td> +<td align="right">NA</td> +<td align="right">9.80</td> +<td align="right">8.66</td> +</tr> +<tr class="even"> +<td align="right">383.110535</td> +<td align="right">NA</td> +<td align="right">1.82</td> +<td align="right">NA</td> +<td align="right">9.49</td> +<td align="right">5.56</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Tama</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9Z38</th> +<th align="right">JSE76</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">106.14</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">2.400833</td> +<td align="right">93.47</td> +<td align="right">6.46</td> +<td align="right">2.85</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">5.601943</td> +<td align="right">88.39</td> +<td align="right">10.86</td> +<td align="right">4.65</td> +<td align="right">3.85</td> +</tr> +<tr class="even"> +<td align="right">12.804442</td> +<td align="right">72.29</td> +<td align="right">11.97</td> +<td align="right">4.91</td> +<td align="right">11.24</td> +</tr> +<tr class="odd"> +<td align="right">17.606108</td> +<td align="right">65.79</td> +<td align="right">13.11</td> +<td align="right">6.63</td> +<td align="right">13.79</td> +</tr> +<tr class="even"> +<td align="right">32.811382</td> +<td align="right">53.16</td> +<td align="right">11.24</td> +<td align="right">8.90</td> +<td align="right">23.40</td> +</tr> +<tr class="odd"> +<td align="right">50.417490</td> +<td align="right">44.01</td> +<td align="right">11.34</td> +<td align="right">9.98</td> +<td align="right">29.56</td> +</tr> +<tr class="even"> +<td align="right">80.027761</td> +<td align="right">33.23</td> +<td align="right">8.82</td> +<td align="right">11.31</td> +<td align="right">35.63</td> +</tr> +<tr class="odd"> +<td align="right">96.833591</td> +<td align="right">40.68</td> +<td align="right">5.94</td> +<td align="right">8.32</td> +<td align="right">29.09</td> +</tr> +<tr class="even"> +<td align="right">146.450803</td> +<td align="right">20.65</td> +<td align="right">4.49</td> +<td align="right">8.72</td> +<td align="right">36.88</td> +</tr> +<tr class="odd"> +<td align="right">190.466072</td> +<td align="right">17.71</td> +<td align="right">4.66</td> +<td align="right">11.10</td> +<td align="right">40.97</td> +</tr> +<tr class="even"> +<td align="right">240.083284</td> +<td align="right">14.86</td> +<td align="right">2.27</td> +<td align="right">11.62</td> +<td align="right">40.11</td> +</tr> +<tr class="odd"> +<td align="right">286.499386</td> +<td align="right">12.02</td> +<td align="right">NA</td> +<td align="right">10.73</td> +<td align="right">42.58</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">109.11</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">2.400833</td> +<td align="right">96.84</td> +<td align="right">5.52</td> +<td align="right">2.04</td> +<td align="right">2.02</td> +</tr> +<tr class="even"> +<td align="right">5.601943</td> +<td align="right">85.29</td> +<td align="right">9.65</td> +<td align="right">2.99</td> +<td align="right">4.39</td> +</tr> +<tr class="odd"> +<td align="right">12.804442</td> +<td align="right">73.68</td> +<td align="right">12.48</td> +<td align="right">5.05</td> +<td align="right">11.47</td> +</tr> +<tr class="even"> +<td align="right">17.606108</td> +<td align="right">64.89</td> +<td align="right">12.44</td> +<td align="right">6.29</td> +<td align="right">15.00</td> +</tr> +<tr class="odd"> +<td align="right">32.811382</td> +<td align="right">52.27</td> +<td align="right">10.86</td> +<td align="right">7.65</td> +<td align="right">23.30</td> +</tr> +<tr class="even"> +<td align="right">50.417490</td> +<td align="right">42.61</td> +<td align="right">10.54</td> +<td align="right">9.37</td> +<td align="right">31.06</td> +</tr> +<tr class="odd"> +<td align="right">80.027761</td> +<td align="right">34.29</td> +<td align="right">10.02</td> +<td align="right">9.04</td> +<td align="right">37.87</td> +</tr> +<tr class="even"> +<td align="right">96.833591</td> +<td align="right">30.50</td> +<td align="right">6.34</td> +<td align="right">8.14</td> +<td align="right">33.97</td> +</tr> +<tr class="odd"> +<td align="right">146.450803</td> +<td align="right">19.21</td> +<td align="right">6.29</td> +<td align="right">8.52</td> +<td align="right">26.15</td> +</tr> +<tr class="even"> +<td align="right">190.466072</td> +<td align="right">17.55</td> +<td align="right">5.81</td> +<td align="right">9.89</td> +<td align="right">32.08</td> +</tr> +<tr class="odd"> +<td align="right">240.083284</td> +<td align="right">13.22</td> +<td align="right">5.99</td> +<td align="right">10.79</td> +<td align="right">40.66</td> +</tr> +<tr class="even"> +<td align="right">286.499386</td> +<td align="right">11.09</td> +<td align="right">6.05</td> +<td align="right">8.82</td> +<td align="right">42.90</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Gross-Umstadt</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9Z38</th> +<th align="right">JSE76</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">103.03</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">2.1014681</td> +<td align="right">87.85</td> +<td align="right">4.79</td> +<td align="right">3.26</td> +<td align="right">0.62</td> +</tr> +<tr class="odd"> +<td align="right">4.9034255</td> +<td align="right">77.35</td> +<td align="right">8.05</td> +<td align="right">9.89</td> +<td align="right">1.32</td> +</tr> +<tr class="even"> +<td align="right">10.5073404</td> +<td align="right">69.33</td> +<td align="right">9.74</td> +<td align="right">12.32</td> +<td align="right">4.74</td> +</tr> +<tr class="odd"> +<td align="right">21.0146807</td> +<td align="right">55.65</td> +<td align="right">14.57</td> +<td align="right">13.59</td> +<td align="right">9.84</td> +</tr> +<tr class="even"> +<td align="right">31.5220211</td> +<td align="right">49.03</td> +<td align="right">14.66</td> +<td align="right">16.71</td> +<td align="right">12.32</td> +</tr> +<tr class="odd"> +<td align="right">42.0293615</td> +<td align="right">41.86</td> +<td align="right">15.97</td> +<td align="right">13.64</td> +<td align="right">15.53</td> +</tr> +<tr class="even"> +<td align="right">63.0440422</td> +<td align="right">34.88</td> +<td align="right">18.20</td> +<td align="right">14.12</td> +<td align="right">22.02</td> +</tr> +<tr class="odd"> +<td align="right">84.0587230</td> +<td align="right">28.26</td> +<td align="right">15.64</td> +<td align="right">14.06</td> +<td align="right">25.60</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">104.05</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">2.1014681</td> +<td align="right">85.25</td> +<td align="right">2.68</td> +<td align="right">7.32</td> +<td align="right">0.69</td> +</tr> +<tr class="even"> +<td align="right">4.9034255</td> +<td align="right">77.22</td> +<td align="right">7.28</td> +<td align="right">8.37</td> +<td align="right">1.45</td> +</tr> +<tr class="odd"> +<td align="right">10.5073404</td> +<td align="right">65.23</td> +<td align="right">10.73</td> +<td align="right">10.93</td> +<td align="right">4.74</td> +</tr> +<tr class="even"> +<td align="right">21.0146807</td> +<td align="right">57.78</td> +<td align="right">12.29</td> +<td align="right">14.80</td> +<td align="right">9.05</td> +</tr> +<tr class="odd"> +<td align="right">31.5220211</td> +<td align="right">54.83</td> +<td align="right">14.05</td> +<td align="right">12.01</td> +<td align="right">11.05</td> +</tr> +<tr class="even"> +<td align="right">42.0293615</td> +<td align="right">45.17</td> +<td align="right">12.12</td> +<td align="right">17.89</td> +<td align="right">15.71</td> +</tr> +<tr class="odd"> +<td align="right">63.0440422</td> +<td align="right">34.83</td> +<td align="right">12.90</td> +<td align="right">15.86</td> +<td align="right">22.52</td> +</tr> +<tr class="even"> +<td align="right">84.0587230</td> +<td align="right">26.59</td> +<td align="right">14.28</td> +<td align="right">14.91</td> +<td align="right">28.48</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">104.62</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.8145225</td> +<td align="right">97.21</td> +<td align="right">NA</td> +<td align="right">4.00</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">1.9005525</td> +<td align="right">89.64</td> +<td align="right">3.59</td> +<td align="right">5.24</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">4.0726125</td> +<td align="right">87.90</td> +<td align="right">4.10</td> +<td align="right">9.58</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">8.1452251</td> +<td align="right">86.90</td> +<td align="right">5.96</td> +<td align="right">9.45</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">12.2178376</td> +<td align="right">74.74</td> +<td align="right">7.83</td> +<td align="right">15.03</td> +<td align="right">5.33</td> +</tr> +<tr class="odd"> +<td align="right">16.2904502</td> +<td align="right">74.13</td> +<td align="right">8.84</td> +<td align="right">14.41</td> +<td align="right">5.10</td> +</tr> +<tr class="even"> +<td align="right">24.4356753</td> +<td align="right">65.26</td> +<td align="right">11.84</td> +<td align="right">18.33</td> +<td align="right">6.71</td> +</tr> +<tr class="odd"> +<td align="right">32.5809004</td> +<td align="right">57.70</td> +<td align="right">12.74</td> +<td align="right">19.93</td> +<td align="right">9.74</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">101.94</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">0.8145225</td> +<td align="right">99.94</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">1.9005525</td> +<td align="right">94.87</td> +<td align="right">NA</td> +<td align="right">4.56</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">4.0726125</td> +<td align="right">86.96</td> +<td align="right">6.75</td> +<td align="right">6.90</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">8.1452251</td> +<td align="right">80.51</td> +<td align="right">10.68</td> +<td align="right">7.43</td> +<td align="right">2.58</td> +</tr> +<tr class="odd"> +<td align="right">12.2178376</td> +<td align="right">78.38</td> +<td align="right">10.35</td> +<td align="right">9.46</td> +<td align="right">3.69</td> +</tr> +<tr class="even"> +<td align="right">16.2904502</td> +<td align="right">70.05</td> +<td align="right">13.73</td> +<td align="right">9.27</td> +<td align="right">7.18</td> +</tr> +<tr class="odd"> +<td align="right">24.4356753</td> +<td align="right">61.28</td> +<td align="right">12.57</td> +<td align="right">13.28</td> +<td align="right">13.19</td> +</tr> +<tr class="even"> +<td align="right">32.5809004</td> +<td align="right">52.85</td> +<td align="right">12.67</td> +<td align="right">12.95</td> +<td align="right">13.69</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Sassafras</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9Z38</th> +<th align="right">JSE76</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">102.17</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">2.216719</td> +<td align="right">95.49</td> +<td align="right">1.11</td> +<td align="right">0.10</td> +<td align="right">0.83</td> +</tr> +<tr class="odd"> +<td align="right">5.172343</td> +<td align="right">83.35</td> +<td align="right">6.43</td> +<td align="right">2.89</td> +<td align="right">3.30</td> +</tr> +<tr class="even"> +<td align="right">11.083593</td> +<td align="right">78.18</td> +<td align="right">10.00</td> +<td align="right">5.59</td> +<td align="right">0.81</td> +</tr> +<tr class="odd"> +<td align="right">22.167186</td> +<td align="right">70.44</td> +<td align="right">17.21</td> +<td align="right">4.23</td> +<td align="right">1.09</td> +</tr> +<tr class="even"> +<td align="right">33.250779</td> +<td align="right">68.00</td> +<td align="right">20.45</td> +<td align="right">5.86</td> +<td align="right">1.17</td> +</tr> +<tr class="odd"> +<td align="right">44.334371</td> +<td align="right">59.64</td> +<td align="right">24.64</td> +<td align="right">3.17</td> +<td align="right">2.72</td> +</tr> +<tr class="even"> +<td align="right">66.501557</td> +<td align="right">50.73</td> +<td align="right">27.50</td> +<td align="right">6.19</td> +<td align="right">1.27</td> +</tr> +<tr class="odd"> +<td align="right">88.668742</td> +<td align="right">45.65</td> +<td align="right">32.77</td> +<td align="right">5.69</td> +<td align="right">4.54</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">100.43</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">2.216719</td> +<td align="right">95.34</td> +<td align="right">3.21</td> +<td align="right">0.14</td> +<td align="right">0.46</td> +</tr> +<tr class="even"> +<td align="right">5.172343</td> +<td align="right">84.38</td> +<td align="right">5.73</td> +<td align="right">4.75</td> +<td align="right">0.62</td> +</tr> +<tr class="odd"> +<td align="right">11.083593</td> +<td align="right">78.50</td> +<td align="right">11.89</td> +<td align="right">3.99</td> +<td align="right">0.73</td> +</tr> +<tr class="even"> +<td align="right">22.167186</td> +<td align="right">71.17</td> +<td align="right">17.28</td> +<td align="right">4.39</td> +<td align="right">0.66</td> +</tr> +<tr class="odd"> +<td align="right">33.250779</td> +<td align="right">59.41</td> +<td align="right">18.73</td> +<td align="right">11.85</td> +<td align="right">2.65</td> +</tr> +<tr class="even"> +<td align="right">44.334371</td> +<td align="right">64.57</td> +<td align="right">22.93</td> +<td align="right">5.13</td> +<td align="right">2.01</td> +</tr> +<tr class="odd"> +<td align="right">66.501557</td> +<td align="right">49.08</td> +<td align="right">33.39</td> +<td align="right">5.67</td> +<td align="right">3.63</td> +</tr> +<tr class="even"> +<td align="right">88.668742</td> +<td align="right">40.41</td> +<td align="right">39.60</td> +<td align="right">5.93</td> +<td align="right">6.17</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Lleida</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9Z38</th> +<th align="right">JSE76</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">102.71</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">2.821051</td> +<td align="right">79.11</td> +<td align="right">5.70</td> +<td align="right">8.07</td> +<td align="right">0.97</td> +</tr> +<tr class="odd"> +<td align="right">6.582451</td> +<td align="right">70.03</td> +<td align="right">7.17</td> +<td align="right">11.31</td> +<td align="right">4.72</td> +</tr> +<tr class="even"> +<td align="right">14.105253</td> +<td align="right">50.93</td> +<td align="right">10.25</td> +<td align="right">14.84</td> +<td align="right">9.95</td> +</tr> +<tr class="odd"> +<td align="right">28.210505</td> +<td align="right">33.43</td> +<td align="right">10.40</td> +<td align="right">14.82</td> +<td align="right">24.06</td> +</tr> +<tr class="even"> +<td align="right">42.315758</td> +<td align="right">24.69</td> +<td align="right">9.75</td> +<td align="right">16.38</td> +<td align="right">29.38</td> +</tr> +<tr class="odd"> +<td align="right">56.421010</td> +<td align="right">22.99</td> +<td align="right">10.06</td> +<td align="right">15.51</td> +<td align="right">29.25</td> +</tr> +<tr class="even"> +<td align="right">84.631516</td> +<td align="right">14.63</td> +<td align="right">5.63</td> +<td align="right">14.74</td> +<td align="right">31.04</td> +</tr> +<tr class="odd"> +<td align="right">112.842021</td> +<td align="right">12.43</td> +<td align="right">4.17</td> +<td align="right">13.53</td> +<td align="right">33.28</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">99.31</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">2.821051</td> +<td align="right">82.07</td> +<td align="right">6.55</td> +<td align="right">5.60</td> +<td align="right">1.12</td> +</tr> +<tr class="even"> +<td align="right">6.582451</td> +<td align="right">70.65</td> +<td align="right">7.61</td> +<td align="right">8.01</td> +<td align="right">3.21</td> +</tr> +<tr class="odd"> +<td align="right">14.105253</td> +<td align="right">53.52</td> +<td align="right">11.48</td> +<td align="right">10.82</td> +<td align="right">12.24</td> +</tr> +<tr class="even"> +<td align="right">28.210505</td> +<td align="right">35.60</td> +<td align="right">11.19</td> +<td align="right">15.43</td> +<td align="right">23.53</td> +</tr> +<tr class="odd"> +<td align="right">42.315758</td> +<td align="right">34.26</td> +<td align="right">11.09</td> +<td align="right">13.26</td> +<td align="right">27.42</td> +</tr> +<tr class="even"> +<td align="right">56.421010</td> +<td align="right">21.79</td> +<td align="right">4.80</td> +<td align="right">18.30</td> +<td align="right">30.20</td> +</tr> +<tr class="odd"> +<td align="right">84.631516</td> +<td align="right">14.06</td> +<td align="right">6.30</td> +<td align="right">16.35</td> +<td align="right">32.32</td> +</tr> +<tr class="even"> +<td align="right">112.842021</td> +<td align="right">11.51</td> +<td align="right">5.57</td> +<td align="right">12.64</td> +<td align="right">32.51</td> +</tr> +</tbody> +</table> +</div> +</div> +<div class="section level2"> +<h2 id="parent-only-evaluations">Parent only evaluations<a class="anchor" aria-label="anchor" href="#parent-only-evaluations"></a> +</h2> +<p>As the pathway fits have very long run times, evaluations of the +parent data are performed first, in order to determine for each +hierarchical parent degradation model which random effects on the +degradation model parameters are ill-defined.</p> +<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">cyan_sep_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span>, <span class="st">"SFORB"</span>, <span class="st">"HS"</span><span class="op">)</span>,</span> +<span>  <span class="va">cyan_ds</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, cores <span class="op">=</span> <span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="va">cyan_sep_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">cyan_sep_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="va">cyan_saem_full</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">cyan_sep_const</span>, <span class="va">cyan_sep_tc</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">SFORB</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">HS</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>All fits converged successfully.</p> +<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">sd(cyan_0)</td> +<td align="left">sd(cyan_0)</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">sd(log_beta)</td> +<td align="left">sd(cyan_0)</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">sd(cyan_0)</td> +<td align="left">sd(cyan_0), sd(log_k1)</td> +</tr> +<tr class="even"> +<td align="left">SFORB</td> +<td align="left">sd(cyan_free_0)</td> +<td align="left">sd(cyan_free_0), sd(log_k_cyan_free_bound)</td> +</tr> +<tr class="odd"> +<td align="left">HS</td> +<td align="left">sd(cyan_0)</td> +<td align="left">sd(cyan_0)</td> +</tr> +</tbody> +</table> +<p>In almost all models, the random effect for the initial concentration +of the parent compound is ill-defined. For the biexponential models DFOP +and SFORB, the random effect of one additional parameter is ill-defined +when the two-component error model is used.</p> +<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO const</td> +<td align="right">5</td> +<td align="right">833.9</td> +<td align="right">832.0</td> +<td align="right">-412.0</td> +</tr> +<tr class="even"> +<td align="left">SFO tc</td> +<td align="right">6</td> +<td align="right">831.6</td> +<td align="right">829.3</td> +<td align="right">-409.8</td> +</tr> +<tr class="odd"> +<td align="left">FOMC const</td> +<td align="right">7</td> +<td align="right">709.1</td> +<td align="right">706.4</td> +<td align="right">-347.6</td> +</tr> +<tr class="even"> +<td align="left">FOMC tc</td> +<td align="right">8</td> +<td align="right">689.2</td> +<td align="right">686.1</td> +<td align="right">-336.6</td> +</tr> +<tr class="odd"> +<td align="left">DFOP const</td> +<td align="right">9</td> +<td align="right">703.0</td> +<td align="right">699.5</td> +<td align="right">-342.5</td> +</tr> +<tr class="even"> +<td align="left">SFORB const</td> +<td align="right">9</td> +<td align="right">701.3</td> +<td align="right">697.8</td> +<td align="right">-341.7</td> +</tr> +<tr class="odd"> +<td align="left">HS const</td> +<td align="right">9</td> +<td align="right">718.6</td> +<td align="right">715.1</td> +<td align="right">-350.3</td> +</tr> +<tr class="even"> +<td align="left">DFOP tc</td> +<td align="right">10</td> +<td align="right">703.1</td> +<td align="right">699.2</td> +<td align="right">-341.6</td> +</tr> +<tr class="odd"> +<td align="left">SFORB tc</td> +<td align="right">10</td> +<td align="right">700.1</td> +<td align="right">696.2</td> +<td align="right">-340.1</td> +</tr> +<tr class="even"> +<td align="left">HS tc</td> +<td align="right">10</td> +<td align="right">716.7</td> +<td align="right">712.8</td> +<td align="right">-348.3</td> +</tr> +</tbody> +</table> +<p>Model comparison based on AIC and BIC indicates that the +two-component error model is preferable for all parent models with the +exception of DFOP. The lowest AIC and BIC values are are obtained with +the FOMC model, followed by SFORB and DFOP.</p> +<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">stopCluster</a></span><span class="op">(</span><span class="va">cl</span><span class="op">)</span></span></code></pre></div> +</div> +<div class="section level2"> +<h2 id="pathway-fits">Pathway fits<a class="anchor" aria-label="anchor" href="#pathway-fits"></a> +</h2> +<div class="section level3"> +<h3 id="evaluations-with-pathway-established-previously">Evaluations with pathway established previously<a class="anchor" aria-label="anchor" href="#evaluations-with-pathway-established-previously"></a> +</h3> +<p>To test the technical feasibility of coupling the relevant parent +degradation models with different transformation pathway models, a list +of <code>mkinmod</code> models is set up below. As in the EU evaluation, +parallel formation of metabolites JCZ38 and J9Z38 and secondary +formation of metabolite JSE76 from JCZ38 is used.</p> +<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="op">!</span><span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.exists</a></span><span class="op">(</span><span class="st">"cyan_dlls"</span><span class="op">)</span><span class="op">)</span> <span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="st">"cyan_dlls"</span><span class="op">)</span></span> +<span><span class="va">cyan_path_1</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span> +<span>  sfo_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>    name <span class="op">=</span> <span class="st">"sfo_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span> +<span>  fomc_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>    name <span class="op">=</span> <span class="st">"fomc_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span> +<span>  dfop_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>    name <span class="op">=</span> <span class="st">"dfop_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span> +<span>  sforb_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>    name <span class="op">=</span> <span class="st">"sforb_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span> +<span>  hs_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"HS"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>    name <span class="op">=</span> <span class="st">"hs_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span><span class="op">)</span></span> +<span><span class="va">cl_path_1</span> <span class="op"><-</span> <span class="fu">start_cluster</span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span></code></pre></div> +<p>To obtain suitable starting values for the NLHM fits, separate +pathway fits are performed for all datasets.</p> +<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_sep_1_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span> +<span>  <span class="va">cyan_path_1</span>,</span> +<span>  <span class="va">cyan_ds</span>,</span> +<span>  error_model <span class="op">=</span> <span class="st">"const"</span>,</span> +<span>  cluster <span class="op">=</span> <span class="va">cl_path_1</span>,</span> +<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_1_const</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Nambsheim</th> +<th align="left">Tama</th> +<th align="left">Gross-Umstadt</th> +<th align="left">Sassafras</th> +<th align="left">Lleida</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +</tr> +</tbody> +</table> +<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_sep_1_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_1_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_1_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Nambsheim</th> +<th align="left">Tama</th> +<th align="left">Gross-Umstadt</th> +<th align="left">Sassafras</th> +<th align="left">Lleida</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>Most separate fits converged successfully. The biggest convergence +problems are seen when using the HS model with constant variance.</p> +<p>For the hierarchical pathway fits, those random effects that could +not be quantified in the corresponding parent data analyses are +excluded.</p> +<p>In the code below, the output of the <code>illparms</code> function +for the parent only fits is used as an argument +<code>no_random_effect</code> to the <code>mhmkin</code> function. The +possibility to do so was introduced in mkin version <code>1.2.2</code> +which is currently under development.</p> +<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_1_const</span>, <span class="va">f_sep_1_tc</span><span class="op">)</span>,</span> +<span>  no_random_effect <span class="op">=</span> <span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span>,</span> +<span>  cluster <span class="op">=</span> <span class="va">cl_path_1</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">Fth, FO</td> +<td align="left">Fth, FO</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">Fth, FO</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">Fth, FO</td> +<td align="left">Fth, FO</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">Fth, FO</td> +<td align="left">Fth, FO</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">Fth, FO</td> +<td align="left">Fth, FO</td> +</tr> +</tbody> +</table> +<p>The status information from the individual fits shows that all fits +completed successfully. The matrix entries Fth and FO indicate that the +Fisher Information Matrix could not be inverted for the fixed effects +(theta) and the random effects (Omega), respectively. For the affected +fits, ill-defined parameters cannot be determined using the +<code>illparms</code> function, because it relies on the Fisher +Information Matrix.</p> +<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<colgroup> +<col width="18%"> +<col width="77%"> +<col width="4%"> +</colgroup> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">NA</td> +<td align="left">NA</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">sd(log_k_J9Z38), sd(f_cyan_ilr_2), +sd(f_JCZ38_qlogis)</td> +<td align="left">NA</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">NA</td> +<td align="left">NA</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">NA</td> +<td align="left">NA</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">NA</td> +<td align="left">NA</td> +</tr> +</tbody> +</table> +<p>The model comparison below suggests that the pathway fits using DFOP +or SFORB for the parent compound provide the best fit.</p> +<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1 const</td> +<td align="right">16</td> +<td align="right">2692.8</td> +<td align="right">2686.6</td> +<td align="right">-1330.4</td> +</tr> +<tr class="even"> +<td align="left">sfo_path_1 tc</td> +<td align="right">17</td> +<td align="right">2657.7</td> +<td align="right">2651.1</td> +<td align="right">-1311.9</td> +</tr> +<tr class="odd"> +<td align="left">fomc_path_1 const</td> +<td align="right">18</td> +<td align="right">2427.8</td> +<td align="right">2420.8</td> +<td align="right">-1195.9</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1 tc</td> +<td align="right">19</td> +<td align="right">2423.4</td> +<td align="right">2416.0</td> +<td align="right">-1192.7</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1 const</td> +<td align="right">20</td> +<td align="right">2403.2</td> +<td align="right">2395.4</td> +<td align="right">-1181.6</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1 const</td> +<td align="right">20</td> +<td align="right">2401.4</td> +<td align="right">2393.6</td> +<td align="right">-1180.7</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1 const</td> +<td align="right">20</td> +<td align="right">2427.3</td> +<td align="right">2419.5</td> +<td align="right">-1193.7</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_1 tc</td> +<td align="right">20</td> +<td align="right">2398.0</td> +<td align="right">2390.2</td> +<td align="right">-1179.0</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_1 tc</td> +<td align="right">20</td> +<td align="right">2399.8</td> +<td align="right">2392.0</td> +<td align="right">-1179.9</td> +</tr> +<tr class="even"> +<td align="left">hs_path_1 tc</td> +<td align="right">21</td> +<td align="right">2422.3</td> +<td align="right">2414.1</td> +<td align="right">-1190.2</td> +</tr> +</tbody> +</table> +<p>For these two parent model, successful fits are shown below. Plots of +the fits with the other parent models are shown in the Appendix.</p> +<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"dfop_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-7-1.png" alt="DFOP pathway fit with two-component error" width="700"><p class="caption"> +DFOP pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-8-1.png" alt="SFORB pathway fit with two-component error" width="700"><p class="caption"> +SFORB pathway fit with two-component error +</p> +</div> +<p>A closer graphical analysis of these Figures shows that the residues +of transformation product JCZ38 in the soils Tama and Nambsheim observed +at later time points are strongly and systematically underestimated.</p> +<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">stopCluster</a></span><span class="op">(</span><span class="va">cl_path_1</span><span class="op">)</span></span></code></pre></div> +</div> +<div class="section level3"> +<h3 id="alternative-pathway-fits">Alternative pathway fits<a class="anchor" aria-label="anchor" href="#alternative-pathway-fits"></a> +</h3> +<p>To improve the fit for JCZ38, a back-reaction from JSE76 to JCZ38 was +introduced in an alternative version of the transformation pathway, in +analogy to the back-reaction from K5A78 to K5A77. Both pairs of +transformation products are pairs of an organic acid with its +corresponding amide (Addendum 2014, p. 109). As FOMC provided the best +fit for the parent, and the biexponential models DFOP and SFORB provided +the best initial pathway fits, these three parent models are used in the +alternative pathway fits.</p> +<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">cyan_path_2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span> +<span>  fomc_path_2 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JCZ38"</span><span class="op">)</span>,</span> +<span>    name <span class="op">=</span> <span class="st">"fomc_path_2"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>    dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>,</span> +<span>    overwrite <span class="op">=</span> <span class="cn">TRUE</span></span> +<span>  <span class="op">)</span>,</span> +<span>  dfop_path_2 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JCZ38"</span><span class="op">)</span>,</span> +<span>    name <span class="op">=</span> <span class="st">"dfop_path_2"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>    dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>,</span> +<span>    overwrite <span class="op">=</span> <span class="cn">TRUE</span></span> +<span>  <span class="op">)</span>,</span> +<span>  sforb_path_2 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JCZ38"</span><span class="op">)</span>,</span> +<span>    name <span class="op">=</span> <span class="st">"sforb_path_2"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>    dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>,</span> +<span>    overwrite <span class="op">=</span> <span class="cn">TRUE</span></span> +<span>  <span class="op">)</span></span> +<span><span class="op">)</span></span> +<span></span> +<span><span class="va">cl_path_2</span> <span class="op"><-</span> <span class="fu">start_cluster</span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="va">f_sep_2_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span> +<span>  <span class="va">cyan_path_2</span>,</span> +<span>  <span class="va">cyan_ds</span>,</span> +<span>  error_model <span class="op">=</span> <span class="st">"const"</span>,</span> +<span>  cluster <span class="op">=</span> <span class="va">cl_path_2</span>,</span> +<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_2_const</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Nambsheim</th> +<th align="left">Tama</th> +<th align="left">Gross-Umstadt</th> +<th align="left">Sassafras</th> +<th align="left">Lleida</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>Using constant variance, separate fits converge with the exception of +the fits to the Sassafras soil data.</p> +<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_sep_2_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_2_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_2_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Nambsheim</th> +<th align="left">Tama</th> +<th align="left">Gross-Umstadt</th> +<th align="left">Sassafras</th> +<th align="left">Lleida</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>Using the two-component error model, all separate fits converge with +the exception of the alternative pathway fit with DFOP used for the +parent and the Sassafras dataset.</p> +<div class="sourceCode" id="cb21"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_2</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_2_const</span>, <span class="va">f_sep_2_tc</span><span class="op">)</span>,</span> +<span>  no_random_effect <span class="op">=</span> <span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">[</span><span class="fl">2</span><span class="op">:</span><span class="fl">4</span>, <span class="op">]</span><span class="op">)</span>,</span> +<span>  cluster <span class="op">=</span> <span class="va">cl_path_2</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">OK</td> +<td align="left">FO</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>The hierarchical fits for the alternative pathway completed +successfully.</p> +<div class="sourceCode" id="cb23"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<colgroup> +<col width="14%"> +<col width="42%"> +<col width="42%"> +</colgroup> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +<td align="left">NA</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +</tr> +</tbody> +</table> +<p>In both fits, the random effects for the formation fractions for the +pathways from JCZ38 to JSE76, and for the reverse pathway from JSE76 to +JCZ38 are ill-defined.</p> +<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2 const</td> +<td align="right">20</td> +<td align="right">2308.3</td> +<td align="right">2300.5</td> +<td align="right">-1134.2</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_2 tc</td> +<td align="right">21</td> +<td align="right">2248.3</td> +<td align="right">2240.1</td> +<td align="right">-1103.2</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_2 const</td> +<td align="right">22</td> +<td align="right">2289.6</td> +<td align="right">2281.0</td> +<td align="right">-1122.8</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_2 const</td> +<td align="right">22</td> +<td align="right">2284.1</td> +<td align="right">2275.5</td> +<td align="right">-1120.0</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_2 tc</td> +<td align="right">22</td> +<td align="right">2234.4</td> +<td align="right">2225.8</td> +<td align="right">-1095.2</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_2 tc</td> +<td align="right">22</td> +<td align="right">2240.4</td> +<td align="right">2231.8</td> +<td align="right">-1098.2</td> +</tr> +</tbody> +</table> +<p>The variants using the biexponential models DFOP and SFORB for the +parent compound and the two-component error model give the lowest AIC +and BIC values and are plotted below. Compared with the original +pathway, the AIC and BIC values indicate a large improvement. This is +confirmed by the plots, which show that the metabolite JCZ38 is fitted +much better with this model.</p> +<div class="sourceCode" id="cb25"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"fomc_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-13-1.png" alt="FOMC pathway fit with two-component error, alternative pathway" width="700"><p class="caption"> +FOMC pathway fit with two-component error, alternative pathway +</p> +</div> +<div class="sourceCode" id="cb26"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"dfop_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-14-1.png" alt="DFOP pathway fit with two-component error, alternative pathway" width="700"><p class="caption"> +DFOP pathway fit with two-component error, alternative pathway +</p> +</div> +<div class="sourceCode" id="cb27"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"sforb_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-15-1.png" alt="SFORB pathway fit with two-component error, alternative pathway" width="700"><p class="caption"> +SFORB pathway fit with two-component error, alternative pathway +</p> +</div> +</div> +<div class="section level3"> +<h3 id="refinement-of-alternative-pathway-fits">Refinement of alternative pathway fits<a class="anchor" aria-label="anchor" href="#refinement-of-alternative-pathway-fits"></a> +</h3> +<p>All ill-defined random effects that were identified in the parent +only fits and in the above pathway fits, are excluded for the final +evaluations below. For this purpose, a list of character vectors is +created below that can be indexed by row and column indices, and which +contains the degradation parameter names for which random effects should +be excluded for each of the hierarchical fits contained in +<code>f_saem_2</code>.</p> +<div class="sourceCode" id="cb28"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">no_ranef</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/matrix.html" class="external-link">matrix</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="op">)</span>, nrow <span class="op">=</span> <span class="fl">3</span>, ncol <span class="op">=</span> <span class="fl">2</span>, dimnames <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/dimnames.html" class="external-link">dimnames</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"fomc_path_2"</span>, <span class="st">"const"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"log_beta"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"fomc_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_0"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"dfop_path_2"</span>, <span class="st">"const"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_0"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"dfop_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_0"</span>, <span class="st">"log_k1"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"sforb_path_2"</span>, <span class="st">"const"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_free_0"</span>,</span> +<span>  <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"sforb_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_free_0"</span>, <span class="st">"log_k_cyan_free_bound"</span>,</span> +<span>  <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="fu"><a href="https://rdrr.io/r/parallel/clusterApply.html" class="external-link">clusterExport</a></span><span class="op">(</span><span class="va">cl_path_2</span>, <span class="st">"no_ranef"</span><span class="op">)</span></span> +<span></span> +<span><span class="va">f_saem_3</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem_2</span>,</span> +<span>  no_random_effect <span class="op">=</span> <span class="va">no_ranef</span>,</span> +<span>  cluster <span class="op">=</span> <span class="va">cl_path_2</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb29"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem_3</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">E</td> +<td align="left">Fth</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">Fth</td> +<td align="left">Fth</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">Fth</td> +<td align="left">Fth</td> +</tr> +</tbody> +</table> +<p>With the exception of the FOMC pathway fit with constant variance, +all updated fits completed successfully. However, the Fisher Information +Matrix for the fixed effects (Fth) could not be inverted, so no +confidence intervals for the optimised parameters are available.</p> +<div class="sourceCode" id="cb30"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_3</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">E</td> +<td align="left"></td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left"></td> +<td align="left"></td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left"></td> +<td align="left"></td> +</tr> +</tbody> +</table> +<div class="sourceCode" id="cb31"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_3</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2 tc</td> +<td align="right">19</td> +<td align="right">2250.9</td> +<td align="right">2243.5</td> +<td align="right">-1106.5</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2 const</td> +<td align="right">20</td> +<td align="right">2281.7</td> +<td align="right">2273.9</td> +<td align="right">-1120.8</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2 const</td> +<td align="right">20</td> +<td align="right">2279.5</td> +<td align="right">2271.7</td> +<td align="right">-1119.7</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2 tc</td> +<td align="right">20</td> +<td align="right">2231.5</td> +<td align="right">2223.7</td> +<td align="right">-1095.8</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2 tc</td> +<td align="right">20</td> +<td align="right">2235.7</td> +<td align="right">2227.9</td> +<td align="right">-1097.9</td> +</tr> +</tbody> +</table> +<p>While the AIC and BIC values of the best fit (DFOP pathway fit with +two-component error) are lower than in the previous fits with the +alternative pathway, the practical value of these refined evaluations is +limited as no confidence intervals are obtained.</p> +<div class="sourceCode" id="cb32"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">stopCluster</a></span><span class="op">(</span><span class="va">cl_path_2</span><span class="op">)</span></span></code></pre></div> +</div> +</div> +<div class="section level2"> +<h2 id="conclusion">Conclusion<a class="anchor" aria-label="anchor" href="#conclusion"></a> +</h2> +<p>It was demonstrated that a relatively complex transformation pathway +with parallel formation of two primary metabolites and one secondary +metabolite can be fitted even if the data in the individual datasets are +quite different and partly only cover the formation phase.</p> +<p>The run times of the pathway fits were several hours, limiting the +practical feasibility of iterative refinements based on ill-defined +parameters and of alternative checks of parameter identifiability based +on multistart runs.</p> +</div> +<div class="section level2"> +<h2 id="acknowledgements">Acknowledgements<a class="anchor" aria-label="anchor" href="#acknowledgements"></a> +</h2> +<p>The helpful comments by Janina Wöltjen of the German Environment +Agency are gratefully acknowledged.</p> +</div> +<div class="section level2"> +<h2 id="appendix">Appendix<a class="anchor" aria-label="anchor" href="#appendix"></a> +</h2> +<div class="section level3"> +<h3 id="plots-of-fits-that-were-not-refined-further">Plots of fits that were not refined further<a class="anchor" aria-label="anchor" href="#plots-of-fits-that-were-not-refined-further"></a> +</h3> +<div class="sourceCode" id="cb33"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"sfo_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-20-1.png" alt="SFO pathway fit with two-component error" width="700"><p class="caption"> +SFO pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb34"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"fomc_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-21-1.png" alt="FOMC pathway fit with two-component error" width="700"><p class="caption"> +FOMC pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb35"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-22-1.png" alt="HS pathway fit with two-component error" width="700"><p class="caption"> +HS pathway fit with two-component error +</p> +</div> +</div> +<div class="section level3"> +<h3 id="hierarchical-fit-listings">Hierarchical fit listings<a class="anchor" aria-label="anchor" href="#hierarchical-fit-listings"></a> +</h3> +<div class="section level4"> +<h4 id="pathway-1">Pathway 1<a class="anchor" aria-label="anchor" href="#pathway-1"></a> +</h4> +<caption> +Hierarchical SFO path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:44:55 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - k_cyan * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 431.793 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +        cyan_0     log_k_cyan    log_k_JCZ38    log_k_J9Z38    log_k_JSE76  +       95.3304        -3.8459        -3.1305        -5.0678        -5.3196  +  f_cyan_ilr_1   f_cyan_ilr_2 f_JCZ38_qlogis  +        0.8158        22.5404        10.4289  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_0          4.797     0.0000       0.000       0.000      0.0000 +log_k_cyan      0.000     0.9619       0.000       0.000      0.0000 +log_k_JCZ38     0.000     0.0000       2.139       0.000      0.0000 +log_k_J9Z38     0.000     0.0000       0.000       1.639      0.0000 +log_k_JSE76     0.000     0.0000       0.000       0.000      0.7894 +f_cyan_ilr_1    0.000     0.0000       0.000       0.000      0.0000 +f_cyan_ilr_2    0.000     0.0000       0.000       0.000      0.0000 +f_JCZ38_qlogis  0.000     0.0000       0.000       0.000      0.0000 +               f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis +cyan_0               0.0000        0.000           0.00 +log_k_cyan           0.0000        0.000           0.00 +log_k_JCZ38          0.0000        0.000           0.00 +log_k_J9Z38          0.0000        0.000           0.00 +log_k_JSE76          0.0000        0.000           0.00 +f_cyan_ilr_1         0.7714        0.000           0.00 +f_cyan_ilr_2         0.0000        8.684           0.00 +f_JCZ38_qlogis       0.0000        0.000          13.48 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2693 2687  -1330 + +Optimised parameters: +                     est. lower upper +cyan_0            95.0946    NA    NA +log_k_cyan        -3.8544    NA    NA +log_k_JCZ38       -3.0402    NA    NA +log_k_J9Z38       -5.0109    NA    NA +log_k_JSE76       -5.2857    NA    NA +f_cyan_ilr_1       0.8069    NA    NA +f_cyan_ilr_2      16.6623    NA    NA +f_JCZ38_qlogis     1.3602    NA    NA +a.1                4.8326    NA    NA +SD.log_k_cyan      0.5842    NA    NA +SD.log_k_JCZ38     1.2680    NA    NA +SD.log_k_J9Z38     0.3626    NA    NA +SD.log_k_JSE76     0.5244    NA    NA +SD.f_cyan_ilr_1    0.2752    NA    NA +SD.f_cyan_ilr_2    2.3556    NA    NA +SD.f_JCZ38_qlogis  0.2400    NA    NA + +Correlation is not available + +Random effects: +                    est. lower upper +SD.log_k_cyan     0.5842    NA    NA +SD.log_k_JCZ38    1.2680    NA    NA +SD.log_k_J9Z38    0.3626    NA    NA +SD.log_k_JSE76    0.5244    NA    NA +SD.f_cyan_ilr_1   0.2752    NA    NA +SD.f_cyan_ilr_2   2.3556    NA    NA +SD.f_JCZ38_qlogis 0.2400    NA    NA + +Variance model: +     est. lower upper +a.1 4.833    NA    NA + +Backtransformed parameters: +                      est. lower upper +cyan_0           95.094581    NA    NA +k_cyan            0.021186    NA    NA +k_JCZ38           0.047825    NA    NA +k_J9Z38           0.006665    NA    NA +k_JSE76           0.005063    NA    NA +f_cyan_to_JCZ38   0.757885    NA    NA +f_cyan_to_J9Z38   0.242115    NA    NA +f_JCZ38_to_JSE76  0.795792    NA    NA + +Resulting formation fractions: +                   ff +cyan_JCZ38  7.579e-01 +cyan_J9Z38  2.421e-01 +cyan_sink   5.877e-10 +JCZ38_JSE76 7.958e-01 +JCZ38_sink  2.042e-01 + +Estimated disappearance times: +        DT50   DT90 +cyan   32.72 108.68 +JCZ38  14.49  48.15 +J9Z38 103.99 345.46 +JSE76 136.90 454.76 + +</code></pre> +<p></p> +<caption> +Hierarchical SFO path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:44:53 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - k_cyan * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 429.526 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +        cyan_0     log_k_cyan    log_k_JCZ38    log_k_J9Z38    log_k_JSE76  +       96.0039        -3.8907        -3.1276        -5.0069        -4.9367  +  f_cyan_ilr_1   f_cyan_ilr_2 f_JCZ38_qlogis  +        0.7937        20.0030        15.1336  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_0          4.859      0.000        0.00        0.00      0.0000 +log_k_cyan      0.000      0.962        0.00        0.00      0.0000 +log_k_JCZ38     0.000      0.000        2.04        0.00      0.0000 +log_k_J9Z38     0.000      0.000        0.00        1.72      0.0000 +log_k_JSE76     0.000      0.000        0.00        0.00      0.9076 +f_cyan_ilr_1    0.000      0.000        0.00        0.00      0.0000 +f_cyan_ilr_2    0.000      0.000        0.00        0.00      0.0000 +f_JCZ38_qlogis  0.000      0.000        0.00        0.00      0.0000 +               f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis +cyan_0               0.0000        0.000           0.00 +log_k_cyan           0.0000        0.000           0.00 +log_k_JCZ38          0.0000        0.000           0.00 +log_k_J9Z38          0.0000        0.000           0.00 +log_k_JSE76          0.0000        0.000           0.00 +f_cyan_ilr_1         0.7598        0.000           0.00 +f_cyan_ilr_2         0.0000        7.334           0.00 +f_JCZ38_qlogis       0.0000        0.000          11.78 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2658 2651  -1312 + +Optimised parameters: +                      est. lower upper +cyan_0            94.72923    NA    NA +log_k_cyan        -3.91670    NA    NA +log_k_JCZ38       -3.12917    NA    NA +log_k_J9Z38       -5.06070    NA    NA +log_k_JSE76       -5.09254    NA    NA +f_cyan_ilr_1       0.81116    NA    NA +f_cyan_ilr_2      39.97850    NA    NA +f_JCZ38_qlogis     3.09728    NA    NA +a.1                3.95044    NA    NA +b.1                0.07998    NA    NA +SD.log_k_cyan      0.58855    NA    NA +SD.log_k_JCZ38     1.29753    NA    NA +SD.log_k_J9Z38     0.62851    NA    NA +SD.log_k_JSE76     0.37235    NA    NA +SD.f_cyan_ilr_1    0.37346    NA    NA +SD.f_cyan_ilr_2    1.41667    NA    NA +SD.f_JCZ38_qlogis  1.81467    NA    NA + +Correlation is not available + +Random effects: +                    est. lower upper +SD.log_k_cyan     0.5886    NA    NA +SD.log_k_JCZ38    1.2975    NA    NA +SD.log_k_J9Z38    0.6285    NA    NA +SD.log_k_JSE76    0.3724    NA    NA +SD.f_cyan_ilr_1   0.3735    NA    NA +SD.f_cyan_ilr_2   1.4167    NA    NA +SD.f_JCZ38_qlogis 1.8147    NA    NA + +Variance model: +       est. lower upper +a.1 3.95044    NA    NA +b.1 0.07998    NA    NA + +Backtransformed parameters: +                      est. lower upper +cyan_0           94.729229    NA    NA +k_cyan            0.019907    NA    NA +k_JCZ38           0.043754    NA    NA +k_J9Z38           0.006341    NA    NA +k_JSE76           0.006142    NA    NA +f_cyan_to_JCZ38   0.758991    NA    NA +f_cyan_to_J9Z38   0.241009    NA    NA +f_JCZ38_to_JSE76  0.956781    NA    NA + +Resulting formation fractions: +                 ff +cyan_JCZ38  0.75899 +cyan_J9Z38  0.24101 +cyan_sink   0.00000 +JCZ38_JSE76 0.95678 +JCZ38_sink  0.04322 + +Estimated disappearance times: +        DT50   DT90 +cyan   34.82 115.67 +JCZ38  15.84  52.63 +J9Z38 109.31 363.12 +JSE76 112.85 374.87 + +</code></pre> +<p></p> +<caption> +Hierarchical FOMC path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:45:50 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 477.996 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      101.2314        -3.3680        -5.1108        -5.9416         0.7144  +  f_cyan_ilr_2 f_JCZ38_qlogis      log_alpha       log_beta  +        7.3870        15.7604        -0.1791         2.9811  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          5.416       0.000         0.0       0.000       0.0000 +log_k_JCZ38     0.000       2.439         0.0       0.000       0.0000 +log_k_J9Z38     0.000       0.000         1.7       0.000       0.0000 +log_k_JSE76     0.000       0.000         0.0       1.856       0.0000 +f_cyan_ilr_1    0.000       0.000         0.0       0.000       0.7164 +f_cyan_ilr_2    0.000       0.000         0.0       0.000       0.0000 +f_JCZ38_qlogis  0.000       0.000         0.0       0.000       0.0000 +log_alpha       0.000       0.000         0.0       0.000       0.0000 +log_beta        0.000       0.000         0.0       0.000       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta +cyan_0                 0.00           0.00    0.0000   0.0000 +log_k_JCZ38            0.00           0.00    0.0000   0.0000 +log_k_J9Z38            0.00           0.00    0.0000   0.0000 +log_k_JSE76            0.00           0.00    0.0000   0.0000 +f_cyan_ilr_1           0.00           0.00    0.0000   0.0000 +f_cyan_ilr_2          12.33           0.00    0.0000   0.0000 +f_JCZ38_qlogis         0.00          20.42    0.0000   0.0000 +log_alpha              0.00           0.00    0.4144   0.0000 +log_beta               0.00           0.00    0.0000   0.5077 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2428 2421  -1196 + +Optimised parameters: +                      est.     lower    upper +cyan_0            101.0225 98.306270 103.7387 +log_k_JCZ38        -3.3786 -4.770657  -1.9866 +log_k_J9Z38        -5.2603 -5.902085  -4.6186 +log_k_JSE76        -6.1427 -7.318336  -4.9671 +f_cyan_ilr_1        0.7437  0.421215   1.0663 +f_cyan_ilr_2        0.9108  0.267977   1.5537 +f_JCZ38_qlogis      2.0487  0.524897   3.5724 +log_alpha          -0.2268 -0.618049   0.1644 +log_beta            2.8986  2.700701   3.0964 +a.1                 3.4058  3.169913   3.6416 +SD.cyan_0           2.5279  0.454190   4.6016 +SD.log_k_JCZ38      1.5636  0.572824   2.5543 +SD.log_k_J9Z38      0.5316 -0.004405   1.0677 +SD.log_k_JSE76      0.9903  0.106325   1.8742 +SD.f_cyan_ilr_1     0.3464  0.112066   0.5807 +SD.f_cyan_ilr_2     0.2804 -0.393900   0.9546 +SD.f_JCZ38_qlogis   0.9416 -0.152986   2.0362 +SD.log_alpha        0.4273  0.161044   0.6936 + +Correlation:  +               cyan_0  l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 log_lph +log_k_JCZ38    -0.0156                                                         +log_k_J9Z38    -0.0493  0.0073                                                 +log_k_JSE76    -0.0329  0.0018  0.0069                                         +f_cyan_ilr_1   -0.0086  0.0180 -0.1406  0.0012                                 +f_cyan_ilr_2   -0.2629  0.0779  0.2826  0.0274  0.0099                         +f_JCZ38_qlogis  0.0713 -0.0747 -0.0505  0.1169 -0.1022 -0.4893                 +log_alpha      -0.0556  0.0120  0.0336  0.0193  0.0036  0.0840 -0.0489         +log_beta       -0.2898  0.0460  0.1305  0.0768  0.0190  0.4071 -0.1981  0.2772 + +Random effects: +                    est.     lower  upper +SD.cyan_0         2.5279  0.454190 4.6016 +SD.log_k_JCZ38    1.5636  0.572824 2.5543 +SD.log_k_J9Z38    0.5316 -0.004405 1.0677 +SD.log_k_JSE76    0.9903  0.106325 1.8742 +SD.f_cyan_ilr_1   0.3464  0.112066 0.5807 +SD.f_cyan_ilr_2   0.2804 -0.393900 0.9546 +SD.f_JCZ38_qlogis 0.9416 -0.152986 2.0362 +SD.log_alpha      0.4273  0.161044 0.6936 + +Variance model: +     est. lower upper +a.1 3.406  3.17 3.642 + +Backtransformed parameters: +                      est.     lower     upper +cyan_0           1.010e+02 9.831e+01 1.037e+02 +k_JCZ38          3.409e-02 8.475e-03 1.372e-01 +k_J9Z38          5.194e-03 2.734e-03 9.867e-03 +k_JSE76          2.149e-03 6.633e-04 6.963e-03 +f_cyan_to_JCZ38  6.481e-01        NA        NA +f_cyan_to_J9Z38  2.264e-01        NA        NA +f_JCZ38_to_JSE76 8.858e-01 6.283e-01 9.727e-01 +alpha            7.971e-01 5.390e-01 1.179e+00 +beta             1.815e+01 1.489e+01 2.212e+01 + +Resulting formation fractions: +                ff +cyan_JCZ38  0.6481 +cyan_J9Z38  0.2264 +cyan_sink   0.1255 +JCZ38_JSE76 0.8858 +JCZ38_sink  0.1142 + +Estimated disappearance times: +        DT50    DT90 DT50back +cyan   25.15  308.01    92.72 +JCZ38  20.33   67.54       NA +J9Z38 133.46  443.35       NA +JSE76 322.53 1071.42       NA + +</code></pre> +<p></p> +<caption> +Hierarchical FOMC path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:45:45 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 480.648 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +     101.13827       -3.32493       -5.08921       -5.93478        0.71330  +  f_cyan_ilr_2 f_JCZ38_qlogis      log_alpha       log_beta  +      10.05989       12.79248       -0.09621        3.10646  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          5.643       0.000       0.000        0.00       0.0000 +log_k_JCZ38     0.000       2.319       0.000        0.00       0.0000 +log_k_J9Z38     0.000       0.000       1.731        0.00       0.0000 +log_k_JSE76     0.000       0.000       0.000        1.86       0.0000 +f_cyan_ilr_1    0.000       0.000       0.000        0.00       0.7186 +f_cyan_ilr_2    0.000       0.000       0.000        0.00       0.0000 +f_JCZ38_qlogis  0.000       0.000       0.000        0.00       0.0000 +log_alpha       0.000       0.000       0.000        0.00       0.0000 +log_beta        0.000       0.000       0.000        0.00       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta +cyan_0                 0.00           0.00    0.0000   0.0000 +log_k_JCZ38            0.00           0.00    0.0000   0.0000 +log_k_J9Z38            0.00           0.00    0.0000   0.0000 +log_k_JSE76            0.00           0.00    0.0000   0.0000 +f_cyan_ilr_1           0.00           0.00    0.0000   0.0000 +f_cyan_ilr_2          12.49           0.00    0.0000   0.0000 +f_JCZ38_qlogis         0.00          20.19    0.0000   0.0000 +log_alpha              0.00           0.00    0.3142   0.0000 +log_beta               0.00           0.00    0.0000   0.7331 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2423 2416  -1193 + +Optimised parameters: +                       est. lower upper +cyan_0            100.57649    NA    NA +log_k_JCZ38        -3.46250    NA    NA +log_k_J9Z38        -5.24442    NA    NA +log_k_JSE76        -5.75229    NA    NA +f_cyan_ilr_1        0.68480    NA    NA +f_cyan_ilr_2        0.61670    NA    NA +f_JCZ38_qlogis     87.97407    NA    NA +log_alpha          -0.15699    NA    NA +log_beta            3.01540    NA    NA +a.1                 3.11518    NA    NA +b.1                 0.04445    NA    NA +SD.log_k_JCZ38      1.40732    NA    NA +SD.log_k_J9Z38      0.56510    NA    NA +SD.log_k_JSE76      0.72067    NA    NA +SD.f_cyan_ilr_1     0.31199    NA    NA +SD.f_cyan_ilr_2     0.36894    NA    NA +SD.f_JCZ38_qlogis   6.92892    NA    NA +SD.log_alpha        0.25662    NA    NA +SD.log_beta         0.35845    NA    NA + +Correlation is not available + +Random effects: +                    est. lower upper +SD.log_k_JCZ38    1.4073    NA    NA +SD.log_k_J9Z38    0.5651    NA    NA +SD.log_k_JSE76    0.7207    NA    NA +SD.f_cyan_ilr_1   0.3120    NA    NA +SD.f_cyan_ilr_2   0.3689    NA    NA +SD.f_JCZ38_qlogis 6.9289    NA    NA +SD.log_alpha      0.2566    NA    NA +SD.log_beta       0.3585    NA    NA + +Variance model: +       est. lower upper +a.1 3.11518    NA    NA +b.1 0.04445    NA    NA + +Backtransformed parameters: +                      est. lower upper +cyan_0           1.006e+02    NA    NA +k_JCZ38          3.135e-02    NA    NA +k_J9Z38          5.277e-03    NA    NA +k_JSE76          3.175e-03    NA    NA +f_cyan_to_JCZ38  5.991e-01    NA    NA +f_cyan_to_J9Z38  2.275e-01    NA    NA +f_JCZ38_to_JSE76 1.000e+00    NA    NA +alpha            8.547e-01    NA    NA +beta             2.040e+01    NA    NA + +Resulting formation fractions: +                ff +cyan_JCZ38  0.5991 +cyan_J9Z38  0.2275 +cyan_sink   0.1734 +JCZ38_JSE76 1.0000 +JCZ38_sink  0.0000 + +Estimated disappearance times: +        DT50   DT90 DT50back +cyan   25.50 281.29    84.68 +JCZ38  22.11  73.44       NA +J9Z38 131.36 436.35       NA +JSE76 218.28 725.11       NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:46:41 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +           * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 528.713 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      102.0644        -3.4008        -5.0024        -5.8613         0.6855  +  f_cyan_ilr_2 f_JCZ38_qlogis         log_k1         log_k2       g_qlogis  +        1.2365        13.7245        -1.8641        -4.5063        -0.6468  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          4.466       0.000       0.000       0.000       0.0000 +log_k_JCZ38     0.000       2.382       0.000       0.000       0.0000 +log_k_J9Z38     0.000       0.000       1.595       0.000       0.0000 +log_k_JSE76     0.000       0.000       0.000       1.245       0.0000 +f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6852 +f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000 +f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000 +log_k1          0.000       0.000       0.000       0.000       0.0000 +log_k2          0.000       0.000       0.000       0.000       0.0000 +g_qlogis        0.000       0.000       0.000       0.000       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis +cyan_0                 0.00           0.00 0.0000 0.0000    0.000 +log_k_JCZ38            0.00           0.00 0.0000 0.0000    0.000 +log_k_J9Z38            0.00           0.00 0.0000 0.0000    0.000 +log_k_JSE76            0.00           0.00 0.0000 0.0000    0.000 +f_cyan_ilr_1           0.00           0.00 0.0000 0.0000    0.000 +f_cyan_ilr_2           1.28           0.00 0.0000 0.0000    0.000 +f_JCZ38_qlogis         0.00          16.11 0.0000 0.0000    0.000 +log_k1                 0.00           0.00 0.9866 0.0000    0.000 +log_k2                 0.00           0.00 0.0000 0.5953    0.000 +g_qlogis               0.00           0.00 0.0000 0.0000    1.583 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2403 2395  -1182 + +Optimised parameters: +                      est. lower upper +cyan_0            102.6079    NA    NA +log_k_JCZ38        -3.4855    NA    NA +log_k_J9Z38        -5.1686    NA    NA +log_k_JSE76        -5.6697    NA    NA +f_cyan_ilr_1        0.6714    NA    NA +f_cyan_ilr_2        0.4986    NA    NA +f_JCZ38_qlogis     55.4760    NA    NA +log_k1             -1.8409    NA    NA +log_k2             -4.4915    NA    NA +g_qlogis           -0.6403    NA    NA +a.1                 3.2387    NA    NA +SD.log_k_JCZ38      1.4524    NA    NA +SD.log_k_J9Z38      0.5151    NA    NA +SD.log_k_JSE76      0.6514    NA    NA +SD.f_cyan_ilr_1     0.3023    NA    NA +SD.f_cyan_ilr_2     0.2959    NA    NA +SD.f_JCZ38_qlogis   1.9984    NA    NA +SD.log_k1           0.5188    NA    NA +SD.log_k2           0.3894    NA    NA +SD.g_qlogis         0.8579    NA    NA + +Correlation is not available + +Random effects: +                    est. lower upper +SD.log_k_JCZ38    1.4524    NA    NA +SD.log_k_J9Z38    0.5151    NA    NA +SD.log_k_JSE76    0.6514    NA    NA +SD.f_cyan_ilr_1   0.3023    NA    NA +SD.f_cyan_ilr_2   0.2959    NA    NA +SD.f_JCZ38_qlogis 1.9984    NA    NA +SD.log_k1         0.5188    NA    NA +SD.log_k2         0.3894    NA    NA +SD.g_qlogis       0.8579    NA    NA + +Variance model: +     est. lower upper +a.1 3.239    NA    NA + +Backtransformed parameters: +                      est. lower upper +cyan_0           1.026e+02    NA    NA +k_JCZ38          3.064e-02    NA    NA +k_J9Z38          5.692e-03    NA    NA +k_JSE76          3.449e-03    NA    NA +f_cyan_to_JCZ38  5.798e-01    NA    NA +f_cyan_to_J9Z38  2.243e-01    NA    NA +f_JCZ38_to_JSE76 1.000e+00    NA    NA +k1               1.587e-01    NA    NA +k2               1.120e-02    NA    NA +g                3.452e-01    NA    NA + +Resulting formation fractions: +                ff +cyan_JCZ38  0.5798 +cyan_J9Z38  0.2243 +cyan_sink   0.1958 +JCZ38_JSE76 1.0000 +JCZ38_sink  0.0000 + +Estimated disappearance times: +        DT50   DT90 DT50back DT50_k1 DT50_k2 +cyan   25.21 167.73    50.49   4.368   61.87 +JCZ38  22.62  75.15       NA      NA      NA +J9Z38 121.77 404.50       NA      NA      NA +JSE76 200.98 667.64       NA      NA      NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:49:05 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +           * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 673.139 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      101.3964        -3.3626        -4.9792        -5.8727         0.6814  +  f_cyan_ilr_2 f_JCZ38_qlogis         log_k1         log_k2       g_qlogis  +        6.7799        13.7245        -1.9222        -4.5035        -0.7172  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          5.317       0.000       0.000       0.000       0.0000 +log_k_JCZ38     0.000       2.272       0.000       0.000       0.0000 +log_k_J9Z38     0.000       0.000       1.633       0.000       0.0000 +log_k_JSE76     0.000       0.000       0.000       1.271       0.0000 +f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6838 +f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000 +f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000 +log_k1          0.000       0.000       0.000       0.000       0.0000 +log_k2          0.000       0.000       0.000       0.000       0.0000 +g_qlogis        0.000       0.000       0.000       0.000       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis +cyan_0                 0.00           0.00 0.0000 0.0000    0.000 +log_k_JCZ38            0.00           0.00 0.0000 0.0000    0.000 +log_k_J9Z38            0.00           0.00 0.0000 0.0000    0.000 +log_k_JSE76            0.00           0.00 0.0000 0.0000    0.000 +f_cyan_ilr_1           0.00           0.00 0.0000 0.0000    0.000 +f_cyan_ilr_2          11.77           0.00 0.0000 0.0000    0.000 +f_JCZ38_qlogis         0.00          16.11 0.0000 0.0000    0.000 +log_k1                 0.00           0.00 0.9496 0.0000    0.000 +log_k2                 0.00           0.00 0.0000 0.5846    0.000 +g_qlogis               0.00           0.00 0.0000 0.0000    1.719 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2398 2390  -1179 + +Optimised parameters: +                      est. lower upper +cyan_0            100.8076    NA    NA +log_k_JCZ38        -3.4684    NA    NA +log_k_J9Z38        -5.0844    NA    NA +log_k_JSE76        -5.5743    NA    NA +f_cyan_ilr_1        0.6669    NA    NA +f_cyan_ilr_2        0.7912    NA    NA +f_JCZ38_qlogis     84.1825    NA    NA +log_k1             -2.1671    NA    NA +log_k2             -4.5447    NA    NA +g_qlogis           -0.5631    NA    NA +a.1                 2.9627    NA    NA +b.1                 0.0444    NA    NA +SD.log_k_JCZ38      1.4044    NA    NA +SD.log_k_J9Z38      0.6410    NA    NA +SD.log_k_JSE76      0.5391    NA    NA +SD.f_cyan_ilr_1     0.3203    NA    NA +SD.f_cyan_ilr_2     0.5038    NA    NA +SD.f_JCZ38_qlogis   3.5865    NA    NA +SD.log_k2           0.3119    NA    NA +SD.g_qlogis         0.8276    NA    NA + +Correlation is not available + +Random effects: +                    est. lower upper +SD.log_k_JCZ38    1.4044    NA    NA +SD.log_k_J9Z38    0.6410    NA    NA +SD.log_k_JSE76    0.5391    NA    NA +SD.f_cyan_ilr_1   0.3203    NA    NA +SD.f_cyan_ilr_2   0.5038    NA    NA +SD.f_JCZ38_qlogis 3.5865    NA    NA +SD.log_k2         0.3119    NA    NA +SD.g_qlogis       0.8276    NA    NA + +Variance model: +      est. lower upper +a.1 2.9627    NA    NA +b.1 0.0444    NA    NA + +Backtransformed parameters: +                      est. lower upper +cyan_0           1.008e+02    NA    NA +k_JCZ38          3.117e-02    NA    NA +k_J9Z38          6.193e-03    NA    NA +k_JSE76          3.794e-03    NA    NA +f_cyan_to_JCZ38  6.149e-01    NA    NA +f_cyan_to_J9Z38  2.395e-01    NA    NA +f_JCZ38_to_JSE76 1.000e+00    NA    NA +k1               1.145e-01    NA    NA +k2               1.062e-02    NA    NA +g                3.628e-01    NA    NA + +Resulting formation fractions: +                ff +cyan_JCZ38  0.6149 +cyan_J9Z38  0.2395 +cyan_sink   0.1456 +JCZ38_JSE76 1.0000 +JCZ38_sink  0.0000 + +Estimated disappearance times: +        DT50   DT90 DT50back DT50_k1 DT50_k2 +cyan   26.26 174.32    52.47   6.053   65.25 +JCZ38  22.24  73.88       NA      NA      NA +J9Z38 111.93 371.82       NA      NA      NA +JSE76 182.69 606.88       NA      NA      NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:46:35 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * +           cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * +           cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 +           * JCZ38 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 +           * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 531.17 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound  +             102.0643               -2.8987               -2.7077  +log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38  +              -3.4717               -3.4008               -5.0024  +          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2  +              -5.8613                0.6855                1.2366  +       f_JCZ38_qlogis  +              13.7418  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0                 4.466          0.0000                 0.000 +log_k_cyan_free             0.000          0.6158                 0.000 +log_k_cyan_free_bound       0.000          0.0000                 1.463 +log_k_cyan_bound_free       0.000          0.0000                 0.000 +log_k_JCZ38                 0.000          0.0000                 0.000 +log_k_J9Z38                 0.000          0.0000                 0.000 +log_k_JSE76                 0.000          0.0000                 0.000 +f_cyan_ilr_1                0.000          0.0000                 0.000 +f_cyan_ilr_2                0.000          0.0000                 0.000 +f_JCZ38_qlogis              0.000          0.0000                 0.000 +                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0                           0.000       0.000       0.000       0.000 +log_k_cyan_free                       0.000       0.000       0.000       0.000 +log_k_cyan_free_bound                 0.000       0.000       0.000       0.000 +log_k_cyan_bound_free                 1.058       0.000       0.000       0.000 +log_k_JCZ38                           0.000       2.382       0.000       0.000 +log_k_J9Z38                           0.000       0.000       1.595       0.000 +log_k_JSE76                           0.000       0.000       0.000       1.245 +f_cyan_ilr_1                          0.000       0.000       0.000       0.000 +f_cyan_ilr_2                          0.000       0.000       0.000       0.000 +f_JCZ38_qlogis                        0.000       0.000       0.000       0.000 +                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis +cyan_free_0                 0.0000         0.00           0.00 +log_k_cyan_free             0.0000         0.00           0.00 +log_k_cyan_free_bound       0.0000         0.00           0.00 +log_k_cyan_bound_free       0.0000         0.00           0.00 +log_k_JCZ38                 0.0000         0.00           0.00 +log_k_J9Z38                 0.0000         0.00           0.00 +log_k_JSE76                 0.0000         0.00           0.00 +f_cyan_ilr_1                0.6852         0.00           0.00 +f_cyan_ilr_2                0.0000         1.28           0.00 +f_JCZ38_qlogis              0.0000         0.00          16.14 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2401 2394  -1181 + +Optimised parameters: +                             est. lower upper +cyan_free_0              102.7803    NA    NA +log_k_cyan_free           -2.8068    NA    NA +log_k_cyan_free_bound     -2.5714    NA    NA +log_k_cyan_bound_free     -3.4426    NA    NA +log_k_JCZ38               -3.4994    NA    NA +log_k_J9Z38               -5.1148    NA    NA +log_k_JSE76               -5.6335    NA    NA +f_cyan_ilr_1               0.6597    NA    NA +f_cyan_ilr_2               0.5132    NA    NA +f_JCZ38_qlogis            37.2090    NA    NA +a.1                        3.2367    NA    NA +SD.log_k_cyan_free         0.3161    NA    NA +SD.log_k_cyan_free_bound   0.8103    NA    NA +SD.log_k_cyan_bound_free   0.5554    NA    NA +SD.log_k_JCZ38             1.4858    NA    NA +SD.log_k_J9Z38             0.5859    NA    NA +SD.log_k_JSE76             0.6195    NA    NA +SD.f_cyan_ilr_1            0.3118    NA    NA +SD.f_cyan_ilr_2            0.3344    NA    NA +SD.f_JCZ38_qlogis          0.5518    NA    NA + +Correlation is not available + +Random effects: +                           est. lower upper +SD.log_k_cyan_free       0.3161    NA    NA +SD.log_k_cyan_free_bound 0.8103    NA    NA +SD.log_k_cyan_bound_free 0.5554    NA    NA +SD.log_k_JCZ38           1.4858    NA    NA +SD.log_k_J9Z38           0.5859    NA    NA +SD.log_k_JSE76           0.6195    NA    NA +SD.f_cyan_ilr_1          0.3118    NA    NA +SD.f_cyan_ilr_2          0.3344    NA    NA +SD.f_JCZ38_qlogis        0.5518    NA    NA + +Variance model: +     est. lower upper +a.1 3.237    NA    NA + +Backtransformed parameters: +                          est. lower upper +cyan_free_0          1.028e+02    NA    NA +k_cyan_free          6.040e-02    NA    NA +k_cyan_free_bound    7.643e-02    NA    NA +k_cyan_bound_free    3.198e-02    NA    NA +k_JCZ38              3.022e-02    NA    NA +k_J9Z38              6.007e-03    NA    NA +k_JSE76              3.576e-03    NA    NA +f_cyan_free_to_JCZ38 5.787e-01    NA    NA +f_cyan_free_to_J9Z38 2.277e-01    NA    NA +f_JCZ38_to_JSE76     1.000e+00    NA    NA + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2  cyan_g  +0.15646 0.01235 0.33341  + +Resulting formation fractions: +                    ff +cyan_free_JCZ38 0.5787 +cyan_free_J9Z38 0.2277 +cyan_free_sink  0.1936 +cyan_free       1.0000 +JCZ38_JSE76     1.0000 +JCZ38_sink      0.0000 + +Estimated disappearance times: +        DT50  DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan   24.48 153.7    46.26         4.43        56.15 +JCZ38  22.94  76.2       NA           NA           NA +J9Z38 115.39 383.3       NA           NA           NA +JSE76 193.84 643.9       NA           NA           NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:49:08 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * +           cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * +           cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 +           * JCZ38 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 +           * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 675.659 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound  +             101.3964               -2.9881               -2.7949  +log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38  +              -3.4376               -3.3626               -4.9792  +          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2  +              -5.8727                0.6814                6.8139  +       f_JCZ38_qlogis  +              13.7419  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0                 5.317          0.0000                 0.000 +log_k_cyan_free             0.000          0.7301                 0.000 +log_k_cyan_free_bound       0.000          0.0000                 1.384 +log_k_cyan_bound_free       0.000          0.0000                 0.000 +log_k_JCZ38                 0.000          0.0000                 0.000 +log_k_J9Z38                 0.000          0.0000                 0.000 +log_k_JSE76                 0.000          0.0000                 0.000 +f_cyan_ilr_1                0.000          0.0000                 0.000 +f_cyan_ilr_2                0.000          0.0000                 0.000 +f_JCZ38_qlogis              0.000          0.0000                 0.000 +                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0                           0.000       0.000       0.000       0.000 +log_k_cyan_free                       0.000       0.000       0.000       0.000 +log_k_cyan_free_bound                 0.000       0.000       0.000       0.000 +log_k_cyan_bound_free                 1.109       0.000       0.000       0.000 +log_k_JCZ38                           0.000       2.272       0.000       0.000 +log_k_J9Z38                           0.000       0.000       1.633       0.000 +log_k_JSE76                           0.000       0.000       0.000       1.271 +f_cyan_ilr_1                          0.000       0.000       0.000       0.000 +f_cyan_ilr_2                          0.000       0.000       0.000       0.000 +f_JCZ38_qlogis                        0.000       0.000       0.000       0.000 +                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis +cyan_free_0                 0.0000         0.00           0.00 +log_k_cyan_free             0.0000         0.00           0.00 +log_k_cyan_free_bound       0.0000         0.00           0.00 +log_k_cyan_bound_free       0.0000         0.00           0.00 +log_k_JCZ38                 0.0000         0.00           0.00 +log_k_J9Z38                 0.0000         0.00           0.00 +log_k_JSE76                 0.0000         0.00           0.00 +f_cyan_ilr_1                0.6838         0.00           0.00 +f_cyan_ilr_2                0.0000        11.84           0.00 +f_JCZ38_qlogis              0.0000         0.00          16.14 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2400 2392  -1180 + +Optimised parameters: +                              est. lower upper +cyan_free_0              100.69983    NA    NA +log_k_cyan_free           -3.11584    NA    NA +log_k_cyan_free_bound     -3.15216    NA    NA +log_k_cyan_bound_free     -3.65986    NA    NA +log_k_JCZ38               -3.47811    NA    NA +log_k_J9Z38               -5.08835    NA    NA +log_k_JSE76               -5.55514    NA    NA +f_cyan_ilr_1               0.66764    NA    NA +f_cyan_ilr_2               0.78329    NA    NA +f_JCZ38_qlogis            25.35245    NA    NA +a.1                        2.99088    NA    NA +b.1                        0.04346    NA    NA +SD.log_k_cyan_free         0.48797    NA    NA +SD.log_k_cyan_bound_free   0.27243    NA    NA +SD.log_k_JCZ38             1.42450    NA    NA +SD.log_k_J9Z38             0.63496    NA    NA +SD.log_k_JSE76             0.55951    NA    NA +SD.f_cyan_ilr_1            0.32687    NA    NA +SD.f_cyan_ilr_2            0.48056    NA    NA +SD.f_JCZ38_qlogis          0.43818    NA    NA + +Correlation is not available + +Random effects: +                           est. lower upper +SD.log_k_cyan_free       0.4880    NA    NA +SD.log_k_cyan_bound_free 0.2724    NA    NA +SD.log_k_JCZ38           1.4245    NA    NA +SD.log_k_J9Z38           0.6350    NA    NA +SD.log_k_JSE76           0.5595    NA    NA +SD.f_cyan_ilr_1          0.3269    NA    NA +SD.f_cyan_ilr_2          0.4806    NA    NA +SD.f_JCZ38_qlogis        0.4382    NA    NA + +Variance model: +       est. lower upper +a.1 2.99088    NA    NA +b.1 0.04346    NA    NA + +Backtransformed parameters: +                          est. lower upper +cyan_free_0          1.007e+02    NA    NA +k_cyan_free          4.434e-02    NA    NA +k_cyan_free_bound    4.276e-02    NA    NA +k_cyan_bound_free    2.574e-02    NA    NA +k_JCZ38              3.087e-02    NA    NA +k_J9Z38              6.168e-03    NA    NA +k_JSE76              3.868e-03    NA    NA +f_cyan_free_to_JCZ38 6.143e-01    NA    NA +f_cyan_free_to_J9Z38 2.389e-01    NA    NA +f_JCZ38_to_JSE76     1.000e+00    NA    NA + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2  cyan_g  +0.10161 0.01123 0.36636  + +Resulting formation fractions: +                       ff +cyan_free_JCZ38 6.143e-01 +cyan_free_J9Z38 2.389e-01 +cyan_free_sink  1.468e-01 +cyan_free       1.000e+00 +JCZ38_JSE76     1.000e+00 +JCZ38_sink      9.763e-12 + +Estimated disappearance times: +        DT50  DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan   25.91 164.4    49.49        6.822        61.72 +JCZ38  22.46  74.6       NA           NA           NA +J9Z38 112.37 373.3       NA           NA           NA +JSE76 179.22 595.4       NA           NA           NA + +</code></pre> +<p></p> +<caption> +Hierarchical HS path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:46:30 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - ifelse(time <= tb, k1, k2) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time <= tb, k1, k2) * cyan - +           k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time <= tb, k1, k2) * cyan - +           k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 525.846 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      102.8738        -3.4490        -4.9348        -5.5989         0.6469  +  f_cyan_ilr_2 f_JCZ38_qlogis         log_k1         log_k2         log_tb  +        1.2854         9.7193        -2.9084        -4.1810         1.7813  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          5.409        0.00        0.00       0.000       0.0000 +log_k_JCZ38     0.000        2.33        0.00       0.000       0.0000 +log_k_J9Z38     0.000        0.00        1.59       0.000       0.0000 +log_k_JSE76     0.000        0.00        0.00       1.006       0.0000 +f_cyan_ilr_1    0.000        0.00        0.00       0.000       0.6371 +f_cyan_ilr_2    0.000        0.00        0.00       0.000       0.0000 +f_JCZ38_qlogis  0.000        0.00        0.00       0.000       0.0000 +log_k1          0.000        0.00        0.00       0.000       0.0000 +log_k2          0.000        0.00        0.00       0.000       0.0000 +log_tb          0.000        0.00        0.00       0.000       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb +cyan_0                0.000           0.00 0.0000 0.0000 0.0000 +log_k_JCZ38           0.000           0.00 0.0000 0.0000 0.0000 +log_k_J9Z38           0.000           0.00 0.0000 0.0000 0.0000 +log_k_JSE76           0.000           0.00 0.0000 0.0000 0.0000 +f_cyan_ilr_1          0.000           0.00 0.0000 0.0000 0.0000 +f_cyan_ilr_2          2.167           0.00 0.0000 0.0000 0.0000 +f_JCZ38_qlogis        0.000          10.22 0.0000 0.0000 0.0000 +log_k1                0.000           0.00 0.7003 0.0000 0.0000 +log_k2                0.000           0.00 0.0000 0.8928 0.0000 +log_tb                0.000           0.00 0.0000 0.0000 0.6774 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2427 2420  -1194 + +Optimised parameters: +                       est. lower upper +cyan_0            101.84849    NA    NA +log_k_JCZ38        -3.47365    NA    NA +log_k_J9Z38        -5.10562    NA    NA +log_k_JSE76        -5.60318    NA    NA +f_cyan_ilr_1        0.66127    NA    NA +f_cyan_ilr_2        0.60283    NA    NA +f_JCZ38_qlogis     45.06408    NA    NA +log_k1             -3.10124    NA    NA +log_k2             -4.39028    NA    NA +log_tb              2.32256    NA    NA +a.1                 3.32683    NA    NA +SD.log_k_JCZ38      1.41427    NA    NA +SD.log_k_J9Z38      0.54767    NA    NA +SD.log_k_JSE76      0.62147    NA    NA +SD.f_cyan_ilr_1     0.30189    NA    NA +SD.f_cyan_ilr_2     0.34960    NA    NA +SD.f_JCZ38_qlogis   0.04644    NA    NA +SD.log_k1           0.39534    NA    NA +SD.log_k2           0.43468    NA    NA +SD.log_tb           0.60781    NA    NA + +Correlation is not available + +Random effects: +                     est. lower upper +SD.log_k_JCZ38    1.41427    NA    NA +SD.log_k_J9Z38    0.54767    NA    NA +SD.log_k_JSE76    0.62147    NA    NA +SD.f_cyan_ilr_1   0.30189    NA    NA +SD.f_cyan_ilr_2   0.34960    NA    NA +SD.f_JCZ38_qlogis 0.04644    NA    NA +SD.log_k1         0.39534    NA    NA +SD.log_k2         0.43468    NA    NA +SD.log_tb         0.60781    NA    NA + +Variance model: +     est. lower upper +a.1 3.327    NA    NA + +Backtransformed parameters: +                      est. lower upper +cyan_0           1.018e+02    NA    NA +k_JCZ38          3.100e-02    NA    NA +k_J9Z38          6.063e-03    NA    NA +k_JSE76          3.686e-03    NA    NA +f_cyan_to_JCZ38  5.910e-01    NA    NA +f_cyan_to_J9Z38  2.320e-01    NA    NA +f_JCZ38_to_JSE76 1.000e+00    NA    NA +k1               4.499e-02    NA    NA +k2               1.240e-02    NA    NA +tb               1.020e+01    NA    NA + +Resulting formation fractions: +               ff +cyan_JCZ38  0.591 +cyan_J9Z38  0.232 +cyan_sink   0.177 +JCZ38_JSE76 1.000 +JCZ38_sink  0.000 + +Estimated disappearance times: +        DT50   DT90 DT50back DT50_k1 DT50_k2 +cyan   29.09 158.91    47.84   15.41   55.91 +JCZ38  22.36  74.27       NA      NA      NA +J9Z38 114.33 379.80       NA      NA      NA +JSE76 188.04 624.66       NA      NA      NA + +</code></pre> +<p></p> +<caption> +Hierarchical HS path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:46:19 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - ifelse(time <= tb, k1, k2) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time <= tb, k1, k2) * cyan - +           k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time <= tb, k1, k2) * cyan - +           k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 514.968 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +       101.168         -3.358         -4.941         -5.794          0.676  +  f_cyan_ilr_2 f_JCZ38_qlogis         log_k1         log_k2         log_tb  +         5.740         13.863         -3.147         -4.262          2.173  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0           5.79       0.000       0.000       0.000       0.0000 +log_k_JCZ38      0.00       2.271       0.000       0.000       0.0000 +log_k_J9Z38      0.00       0.000       1.614       0.000       0.0000 +log_k_JSE76      0.00       0.000       0.000       1.264       0.0000 +f_cyan_ilr_1     0.00       0.000       0.000       0.000       0.6761 +f_cyan_ilr_2     0.00       0.000       0.000       0.000       0.0000 +f_JCZ38_qlogis   0.00       0.000       0.000       0.000       0.0000 +log_k1           0.00       0.000       0.000       0.000       0.0000 +log_k2           0.00       0.000       0.000       0.000       0.0000 +log_tb           0.00       0.000       0.000       0.000       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb +cyan_0                0.000           0.00 0.0000 0.0000  0.000 +log_k_JCZ38           0.000           0.00 0.0000 0.0000  0.000 +log_k_J9Z38           0.000           0.00 0.0000 0.0000  0.000 +log_k_JSE76           0.000           0.00 0.0000 0.0000  0.000 +f_cyan_ilr_1          0.000           0.00 0.0000 0.0000  0.000 +f_cyan_ilr_2          9.572           0.00 0.0000 0.0000  0.000 +f_JCZ38_qlogis        0.000          19.19 0.0000 0.0000  0.000 +log_k1                0.000           0.00 0.8705 0.0000  0.000 +log_k2                0.000           0.00 0.0000 0.9288  0.000 +log_tb                0.000           0.00 0.0000 0.0000  1.065 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2422 2414  -1190 + +Optimised parameters: +                      est. lower upper +cyan_0            100.9521    NA    NA +log_k_JCZ38        -3.4629    NA    NA +log_k_J9Z38        -5.0346    NA    NA +log_k_JSE76        -5.5722    NA    NA +f_cyan_ilr_1        0.6560    NA    NA +f_cyan_ilr_2        0.7983    NA    NA +f_JCZ38_qlogis     42.7949    NA    NA +log_k1             -3.1721    NA    NA +log_k2             -4.4039    NA    NA +log_tb              2.3994    NA    NA +a.1                 3.0586    NA    NA +b.1                 0.0380    NA    NA +SD.log_k_JCZ38      1.3754    NA    NA +SD.log_k_J9Z38      0.6703    NA    NA +SD.log_k_JSE76      0.5876    NA    NA +SD.f_cyan_ilr_1     0.3272    NA    NA +SD.f_cyan_ilr_2     0.5300    NA    NA +SD.f_JCZ38_qlogis   6.4465    NA    NA +SD.log_k1           0.4135    NA    NA +SD.log_k2           0.4182    NA    NA +SD.log_tb           0.6035    NA    NA + +Correlation is not available + +Random effects: +                    est. lower upper +SD.log_k_JCZ38    1.3754    NA    NA +SD.log_k_J9Z38    0.6703    NA    NA +SD.log_k_JSE76    0.5876    NA    NA +SD.f_cyan_ilr_1   0.3272    NA    NA +SD.f_cyan_ilr_2   0.5300    NA    NA +SD.f_JCZ38_qlogis 6.4465    NA    NA +SD.log_k1         0.4135    NA    NA +SD.log_k2         0.4182    NA    NA +SD.log_tb         0.6035    NA    NA + +Variance model: +     est. lower upper +a.1 3.059    NA    NA +b.1 0.038    NA    NA + +Backtransformed parameters: +                      est. lower upper +cyan_0           1.010e+02    NA    NA +k_JCZ38          3.134e-02    NA    NA +k_J9Z38          6.509e-03    NA    NA +k_JSE76          3.802e-03    NA    NA +f_cyan_to_JCZ38  6.127e-01    NA    NA +f_cyan_to_J9Z38  2.423e-01    NA    NA +f_JCZ38_to_JSE76 1.000e+00    NA    NA +k1               4.191e-02    NA    NA +k2               1.223e-02    NA    NA +tb               1.102e+01    NA    NA + +Resulting formation fractions: +                ff +cyan_JCZ38  0.6127 +cyan_J9Z38  0.2423 +cyan_sink   0.1449 +JCZ38_JSE76 1.0000 +JCZ38_sink  0.0000 + +Estimated disappearance times: +        DT50   DT90 DT50back DT50_k1 DT50_k2 +cyan   29.94 161.54    48.63   16.54   56.68 +JCZ38  22.12  73.47       NA      NA      NA +J9Z38 106.50 353.77       NA      NA      NA +JSE76 182.30 605.60       NA      NA      NA + +</code></pre> +<p></p> +</div> +<div class="section level4"> +<h4 id="pathway-2">Pathway 2<a class="anchor" aria-label="anchor" href="#pathway-2"></a> +</h4> +<caption> +Hierarchical FOMC path 2 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:58:00 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 522.351 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      101.8173        -1.8998        -5.1449        -2.5415         0.6705  +  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis      log_alpha       log_beta  +        4.4669        16.1281        13.3327        -0.2314         2.8738  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          5.742       0.000       0.000        0.00       0.0000 +log_k_JCZ38     0.000       1.402       0.000        0.00       0.0000 +log_k_J9Z38     0.000       0.000       1.718        0.00       0.0000 +log_k_JSE76     0.000       0.000       0.000        3.57       0.0000 +f_cyan_ilr_1    0.000       0.000       0.000        0.00       0.5926 +f_cyan_ilr_2    0.000       0.000       0.000        0.00       0.0000 +f_JCZ38_qlogis  0.000       0.000       0.000        0.00       0.0000 +f_JSE76_qlogis  0.000       0.000       0.000        0.00       0.0000 +log_alpha       0.000       0.000       0.000        0.00       0.0000 +log_beta        0.000       0.000       0.000        0.00       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta +cyan_0                 0.00           0.00           0.00    0.0000   0.0000 +log_k_JCZ38            0.00           0.00           0.00    0.0000   0.0000 +log_k_J9Z38            0.00           0.00           0.00    0.0000   0.0000 +log_k_JSE76            0.00           0.00           0.00    0.0000   0.0000 +f_cyan_ilr_1           0.00           0.00           0.00    0.0000   0.0000 +f_cyan_ilr_2          10.56           0.00           0.00    0.0000   0.0000 +f_JCZ38_qlogis         0.00          12.04           0.00    0.0000   0.0000 +f_JSE76_qlogis         0.00           0.00          15.26    0.0000   0.0000 +log_alpha              0.00           0.00           0.00    0.4708   0.0000 +log_beta               0.00           0.00           0.00    0.0000   0.4432 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2308 2301  -1134 + +Optimised parameters: +                      est.    lower     upper +cyan_0            101.9586 99.22024 104.69700 +log_k_JCZ38        -2.4861 -3.17661  -1.79560 +log_k_J9Z38        -5.3926 -6.08842  -4.69684 +log_k_JSE76        -3.1193 -4.12904  -2.10962 +f_cyan_ilr_1        0.7368  0.42085   1.05276 +f_cyan_ilr_2        0.6196  0.06052   1.17861 +f_JCZ38_qlogis      4.8970 -4.68003  14.47398 +f_JSE76_qlogis      4.4066 -1.02087   9.83398 +log_alpha          -0.3021 -0.68264   0.07838 +log_beta            2.7438  2.57970   2.90786 +a.1                 2.9008  2.69920   3.10245 +SD.cyan_0           2.7081  0.64216   4.77401 +SD.log_k_JCZ38      0.7043  0.19951   1.20907 +SD.log_k_J9Z38      0.6248  0.05790   1.19180 +SD.log_k_JSE76      1.0750  0.33157   1.81839 +SD.f_cyan_ilr_1     0.3429  0.11688   0.56892 +SD.f_cyan_ilr_2     0.4774  0.09381   0.86097 +SD.f_JCZ38_qlogis   1.5565 -7.83970  10.95279 +SD.f_JSE76_qlogis   1.6871 -1.25577   4.63000 +SD.log_alpha        0.4216  0.15913   0.68405 + +Correlation:  +               cyan_0  l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76 +log_k_JCZ38    -0.0167                                                         +log_k_J9Z38    -0.0307  0.0057                                                 +log_k_JSE76    -0.0032  0.1358  0.0009                                         +f_cyan_ilr_1   -0.0087  0.0206 -0.1158 -0.0009                                 +f_cyan_ilr_2   -0.1598  0.0690  0.1770  0.0002 -0.0007                         +f_JCZ38_qlogis  0.0966 -0.1132 -0.0440  0.0182 -0.1385 -0.4583                 +f_JSE76_qlogis -0.0647  0.1157  0.0333 -0.0026  0.1110  0.3620 -0.8586         +log_alpha      -0.0389  0.0113  0.0209  0.0021  0.0041  0.0451 -0.0605  0.0412 +log_beta       -0.2508  0.0533  0.0977  0.0098  0.0220  0.2741 -0.2934  0.1999 +               log_lph +log_k_JCZ38            +log_k_J9Z38            +log_k_JSE76            +f_cyan_ilr_1           +f_cyan_ilr_2           +f_JCZ38_qlogis         +f_JSE76_qlogis         +log_alpha              +log_beta        0.2281 + +Random effects: +                    est.    lower   upper +SD.cyan_0         2.7081  0.64216  4.7740 +SD.log_k_JCZ38    0.7043  0.19951  1.2091 +SD.log_k_J9Z38    0.6248  0.05790  1.1918 +SD.log_k_JSE76    1.0750  0.33157  1.8184 +SD.f_cyan_ilr_1   0.3429  0.11688  0.5689 +SD.f_cyan_ilr_2   0.4774  0.09381  0.8610 +SD.f_JCZ38_qlogis 1.5565 -7.83970 10.9528 +SD.f_JSE76_qlogis 1.6871 -1.25577  4.6300 +SD.log_alpha      0.4216  0.15913  0.6840 + +Variance model: +     est. lower upper +a.1 2.901 2.699 3.102 + +Backtransformed parameters: +                      est.     lower     upper +cyan_0           101.95862 99.220240 1.047e+02 +k_JCZ38            0.08323  0.041727 1.660e-01 +k_J9Z38            0.00455  0.002269 9.124e-03 +k_JSE76            0.04419  0.016098 1.213e-01 +f_cyan_to_JCZ38    0.61318        NA        NA +f_cyan_to_J9Z38    0.21630        NA        NA +f_JCZ38_to_JSE76   0.99259  0.009193 1.000e+00 +f_JSE76_to_JCZ38   0.98795  0.264857 9.999e-01 +alpha              0.73924  0.505281 1.082e+00 +beta              15.54568 13.193194 1.832e+01 + +Resulting formation fractions: +                  ff +cyan_JCZ38  0.613182 +cyan_J9Z38  0.216298 +cyan_sink   0.170519 +JCZ38_JSE76 0.992586 +JCZ38_sink  0.007414 +JSE76_JCZ38 0.987950 +JSE76_sink  0.012050 + +Estimated disappearance times: +         DT50   DT90 DT50back +cyan   24.157 334.68    100.7 +JCZ38   8.328  27.66       NA +J9Z38 152.341 506.06       NA +JSE76  15.687  52.11       NA + +</code></pre> +<p></p> +<caption> +Hierarchical FOMC path 2 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:57:52 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 514.301 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      101.9028        -1.9055        -5.0249        -2.5646         0.6807  +  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis      log_alpha       log_beta  +        4.8883        16.0676         9.3923        -0.1346         3.0364  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          6.321       0.000       0.000       0.000       0.0000 +log_k_JCZ38     0.000       1.392       0.000       0.000       0.0000 +log_k_J9Z38     0.000       0.000       1.561       0.000       0.0000 +log_k_JSE76     0.000       0.000       0.000       3.614       0.0000 +f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6339 +f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000 +f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000 +f_JSE76_qlogis  0.000       0.000       0.000       0.000       0.0000 +log_alpha       0.000       0.000       0.000       0.000       0.0000 +log_beta        0.000       0.000       0.000       0.000       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta +cyan_0                 0.00           0.00           0.00    0.0000   0.0000 +log_k_JCZ38            0.00           0.00           0.00    0.0000   0.0000 +log_k_J9Z38            0.00           0.00           0.00    0.0000   0.0000 +log_k_JSE76            0.00           0.00           0.00    0.0000   0.0000 +f_cyan_ilr_1           0.00           0.00           0.00    0.0000   0.0000 +f_cyan_ilr_2          10.41           0.00           0.00    0.0000   0.0000 +f_JCZ38_qlogis         0.00          12.24           0.00    0.0000   0.0000 +f_JSE76_qlogis         0.00           0.00          15.13    0.0000   0.0000 +log_alpha              0.00           0.00           0.00    0.3701   0.0000 +log_beta               0.00           0.00           0.00    0.0000   0.5662 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2248 2240  -1103 + +Optimised parameters: +                       est.      lower      upper +cyan_0            101.55545  9.920e+01  1.039e+02 +log_k_JCZ38        -2.37354 -2.928e+00 -1.819e+00 +log_k_J9Z38        -5.14736 -5.960e+00 -4.335e+00 +log_k_JSE76        -3.07802 -4.243e+00 -1.913e+00 +f_cyan_ilr_1        0.71263  3.655e-01  1.060e+00 +f_cyan_ilr_2        0.95202  2.701e-01  1.634e+00 +f_JCZ38_qlogis      3.58473  1.251e+00  5.919e+00 +f_JSE76_qlogis     19.03623 -1.037e+07  1.037e+07 +log_alpha          -0.15297 -4.490e-01  1.431e-01 +log_beta            2.99230  2.706e+00  3.278e+00 +a.1                 2.04816         NA         NA +b.1                 0.06886         NA         NA +SD.log_k_JCZ38      0.56174         NA         NA +SD.log_k_J9Z38      0.86509         NA         NA +SD.log_k_JSE76      1.28450         NA         NA +SD.f_cyan_ilr_1     0.38705         NA         NA +SD.f_cyan_ilr_2     0.54153         NA         NA +SD.f_JCZ38_qlogis   1.65311         NA         NA +SD.f_JSE76_qlogis   7.51468         NA         NA +SD.log_alpha        0.31586         NA         NA +SD.log_beta         0.24696         NA         NA + +Correlation is not available + +Random effects: +                    est. lower upper +SD.log_k_JCZ38    0.5617    NA    NA +SD.log_k_J9Z38    0.8651    NA    NA +SD.log_k_JSE76    1.2845    NA    NA +SD.f_cyan_ilr_1   0.3870    NA    NA +SD.f_cyan_ilr_2   0.5415    NA    NA +SD.f_JCZ38_qlogis 1.6531    NA    NA +SD.f_JSE76_qlogis 7.5147    NA    NA +SD.log_alpha      0.3159    NA    NA +SD.log_beta       0.2470    NA    NA + +Variance model: +       est. lower upper +a.1 2.04816    NA    NA +b.1 0.06886    NA    NA + +Backtransformed parameters: +                      est.    lower    upper +cyan_0           1.016e+02 99.20301 103.9079 +k_JCZ38          9.315e-02  0.05349   0.1622 +k_J9Z38          5.815e-03  0.00258   0.0131 +k_JSE76          4.605e-02  0.01436   0.1477 +f_cyan_to_JCZ38  6.438e-01       NA       NA +f_cyan_to_J9Z38  2.350e-01       NA       NA +f_JCZ38_to_JSE76 9.730e-01  0.77745   0.9973 +f_JSE76_to_JCZ38 1.000e+00  0.00000   1.0000 +alpha            8.582e-01  0.63824   1.1538 +beta             1.993e+01 14.97621  26.5262 + +Resulting formation fractions: +                   ff +cyan_JCZ38  6.438e-01 +cyan_J9Z38  2.350e-01 +cyan_sink   1.212e-01 +JCZ38_JSE76 9.730e-01 +JCZ38_sink  2.700e-02 +JSE76_JCZ38 1.000e+00 +JSE76_sink  5.403e-09 + +Estimated disappearance times: +         DT50   DT90 DT50back +cyan   24.771 271.70    81.79 +JCZ38   7.441  24.72       NA +J9Z38 119.205 395.99       NA +JSE76  15.052  50.00       NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 2 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:58:43 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +           * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 + +           f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 565.562 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      102.4358        -2.3107        -5.3123        -3.7120         0.6753  +  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis         log_k1         log_k2  +        1.1462        12.4095        12.3630        -1.9317        -4.4557  +      g_qlogis  +       -0.5648  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          4.594      0.0000       0.000         0.0       0.0000 +log_k_JCZ38     0.000      0.7966       0.000         0.0       0.0000 +log_k_J9Z38     0.000      0.0000       1.561         0.0       0.0000 +log_k_JSE76     0.000      0.0000       0.000         0.8       0.0000 +f_cyan_ilr_1    0.000      0.0000       0.000         0.0       0.6349 +f_cyan_ilr_2    0.000      0.0000       0.000         0.0       0.0000 +f_JCZ38_qlogis  0.000      0.0000       0.000         0.0       0.0000 +f_JSE76_qlogis  0.000      0.0000       0.000         0.0       0.0000 +log_k1          0.000      0.0000       0.000         0.0       0.0000 +log_k2          0.000      0.0000       0.000         0.0       0.0000 +g_qlogis        0.000      0.0000       0.000         0.0       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 +cyan_0                0.000           0.00            0.0  0.000 0.0000 +log_k_JCZ38           0.000           0.00            0.0  0.000 0.0000 +log_k_J9Z38           0.000           0.00            0.0  0.000 0.0000 +log_k_JSE76           0.000           0.00            0.0  0.000 0.0000 +f_cyan_ilr_1          0.000           0.00            0.0  0.000 0.0000 +f_cyan_ilr_2          1.797           0.00            0.0  0.000 0.0000 +f_JCZ38_qlogis        0.000          13.85            0.0  0.000 0.0000 +f_JSE76_qlogis        0.000           0.00           14.1  0.000 0.0000 +log_k1                0.000           0.00            0.0  1.106 0.0000 +log_k2                0.000           0.00            0.0  0.000 0.6141 +g_qlogis              0.000           0.00            0.0  0.000 0.0000 +               g_qlogis +cyan_0            0.000 +log_k_JCZ38       0.000 +log_k_J9Z38       0.000 +log_k_JSE76       0.000 +f_cyan_ilr_1      0.000 +f_cyan_ilr_2      0.000 +f_JCZ38_qlogis    0.000 +f_JSE76_qlogis    0.000 +log_k1            0.000 +log_k2            0.000 +g_qlogis          1.595 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2290 2281  -1123 + +Optimised parameters: +                      est.     lower    upper +cyan_0            102.6903 101.44420 103.9365 +log_k_JCZ38        -2.4018  -2.98058  -1.8230 +log_k_J9Z38        -5.1865  -5.92931  -4.4437 +log_k_JSE76        -3.0784  -4.25226  -1.9045 +f_cyan_ilr_1        0.7157   0.37625   1.0551 +f_cyan_ilr_2        0.7073   0.20136   1.2132 +f_JCZ38_qlogis      4.6797   0.43240   8.9269 +f_JSE76_qlogis      5.0080  -1.01380  11.0299 +log_k1             -1.9620  -2.62909  -1.2949 +log_k2             -4.4894  -4.94958  -4.0292 +g_qlogis           -0.4658  -1.34443   0.4129 +a.1                 2.7158   2.52576   2.9059 +SD.log_k_JCZ38      0.5818   0.15679   1.0067 +SD.log_k_J9Z38      0.7421   0.16751   1.3167 +SD.log_k_JSE76      1.2841   0.43247   2.1356 +SD.f_cyan_ilr_1     0.3748   0.13040   0.6192 +SD.f_cyan_ilr_2     0.4550   0.08396   0.8261 +SD.f_JCZ38_qlogis   2.0862  -0.73390   4.9062 +SD.f_JSE76_qlogis   1.9585  -3.14773   7.0647 +SD.log_k1           0.7389   0.25761   1.2201 +SD.log_k2           0.5132   0.18143   0.8450 +SD.g_qlogis         0.9870   0.35773   1.6164 + +Correlation:  +               cyan_0  l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76 +log_k_JCZ38    -0.0170                                                         +log_k_J9Z38    -0.0457  0.0016                                                 +log_k_JSE76    -0.0046  0.1183  0.0005                                         +f_cyan_ilr_1    0.0079  0.0072 -0.0909  0.0003                                 +f_cyan_ilr_2   -0.3114  0.0343  0.1542  0.0023 -0.0519                         +f_JCZ38_qlogis  0.0777 -0.0601 -0.0152  0.0080 -0.0520 -0.2524                 +f_JSE76_qlogis -0.0356  0.0817  0.0073  0.0051  0.0388  0.1959 -0.6236         +log_k1          0.0848 -0.0028  0.0010 -0.0010 -0.0014 -0.0245  0.0121 -0.0177 +log_k2          0.0274 -0.0001  0.0075  0.0000 -0.0023 -0.0060  0.0000 -0.0130 +g_qlogis        0.0159  0.0002 -0.0095  0.0002  0.0029 -0.0140 -0.0001  0.0149 +               log_k1  log_k2  +log_k_JCZ38                    +log_k_J9Z38                    +log_k_JSE76                    +f_cyan_ilr_1                   +f_cyan_ilr_2                   +f_JCZ38_qlogis                 +f_JSE76_qlogis                 +log_k1                         +log_k2          0.0280         +g_qlogis       -0.0278 -0.0310 + +Random effects: +                    est.    lower  upper +SD.log_k_JCZ38    0.5818  0.15679 1.0067 +SD.log_k_J9Z38    0.7421  0.16751 1.3167 +SD.log_k_JSE76    1.2841  0.43247 2.1356 +SD.f_cyan_ilr_1   0.3748  0.13040 0.6192 +SD.f_cyan_ilr_2   0.4550  0.08396 0.8261 +SD.f_JCZ38_qlogis 2.0862 -0.73390 4.9062 +SD.f_JSE76_qlogis 1.9585 -3.14773 7.0647 +SD.log_k1         0.7389  0.25761 1.2201 +SD.log_k2         0.5132  0.18143 0.8450 +SD.g_qlogis       0.9870  0.35773 1.6164 + +Variance model: +     est. lower upper +a.1 2.716 2.526 2.906 + +Backtransformed parameters: +                      est.     lower     upper +cyan_0           1.027e+02 1.014e+02 103.93649 +k_JCZ38          9.056e-02 5.076e-02   0.16154 +k_J9Z38          5.591e-03 2.660e-03   0.01175 +k_JSE76          4.603e-02 1.423e-02   0.14890 +f_cyan_to_JCZ38  6.184e-01        NA        NA +f_cyan_to_J9Z38  2.248e-01        NA        NA +f_JCZ38_to_JSE76 9.908e-01 6.064e-01   0.99987 +f_JSE76_to_JCZ38 9.934e-01 2.662e-01   0.99998 +k1               1.406e-01 7.214e-02   0.27393 +k2               1.123e-02 7.086e-03   0.01779 +g                3.856e-01 2.068e-01   0.60177 + +Resulting formation fractions: +                  ff +cyan_JCZ38  0.618443 +cyan_J9Z38  0.224770 +cyan_sink   0.156787 +JCZ38_JSE76 0.990803 +JCZ38_sink  0.009197 +JSE76_JCZ38 0.993360 +JSE76_sink  0.006640 + +Estimated disappearance times: +         DT50   DT90 DT50back DT50_k1 DT50_k2 +cyan   21.674 161.70    48.68   4.931   61.74 +JCZ38   7.654  25.43       NA      NA      NA +J9Z38 123.966 411.81       NA      NA      NA +JSE76  15.057  50.02       NA      NA      NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 2 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 08:01:24 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +           * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 + +           f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 726.501 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      101.7523        -1.5948        -5.0119        -2.2723         0.6719  +  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis         log_k1         log_k2  +        5.1681        12.8238        12.4130        -2.0057        -4.5526  +      g_qlogis  +       -0.5805  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          5.627       0.000       0.000       0.000       0.0000 +log_k_JCZ38     0.000       2.327       0.000       0.000       0.0000 +log_k_J9Z38     0.000       0.000       1.664       0.000       0.0000 +log_k_JSE76     0.000       0.000       0.000       4.566       0.0000 +f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6519 +f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000 +f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000 +f_JSE76_qlogis  0.000       0.000       0.000       0.000       0.0000 +log_k1          0.000       0.000       0.000       0.000       0.0000 +log_k2          0.000       0.000       0.000       0.000       0.0000 +g_qlogis        0.000       0.000       0.000       0.000       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 +cyan_0                  0.0           0.00           0.00 0.0000 0.0000 +log_k_JCZ38             0.0           0.00           0.00 0.0000 0.0000 +log_k_J9Z38             0.0           0.00           0.00 0.0000 0.0000 +log_k_JSE76             0.0           0.00           0.00 0.0000 0.0000 +f_cyan_ilr_1            0.0           0.00           0.00 0.0000 0.0000 +f_cyan_ilr_2           10.1           0.00           0.00 0.0000 0.0000 +f_JCZ38_qlogis          0.0          13.99           0.00 0.0000 0.0000 +f_JSE76_qlogis          0.0           0.00          14.15 0.0000 0.0000 +log_k1                  0.0           0.00           0.00 0.8452 0.0000 +log_k2                  0.0           0.00           0.00 0.0000 0.5968 +g_qlogis                0.0           0.00           0.00 0.0000 0.0000 +               g_qlogis +cyan_0            0.000 +log_k_JCZ38       0.000 +log_k_J9Z38       0.000 +log_k_JSE76       0.000 +f_cyan_ilr_1      0.000 +f_cyan_ilr_2      0.000 +f_JCZ38_qlogis    0.000 +f_JSE76_qlogis    0.000 +log_k1            0.000 +log_k2            0.000 +g_qlogis          1.691 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2234 2226  -1095 + +Optimised parameters: +                       est.      lower      upper +cyan_0            101.10667  9.903e+01  103.18265 +log_k_JCZ38        -2.49437 -3.297e+00   -1.69221 +log_k_J9Z38        -5.08171 -5.875e+00   -4.28846 +log_k_JSE76        -3.20072 -4.180e+00   -2.22163 +f_cyan_ilr_1        0.71059  3.639e-01    1.05727 +f_cyan_ilr_2        1.15398  2.981e-01    2.00984 +f_JCZ38_qlogis      3.18027  1.056e+00    5.30452 +f_JSE76_qlogis      5.61578 -2.505e+01   36.28077 +log_k1             -2.38875 -2.517e+00   -2.26045 +log_k2             -4.67246 -4.928e+00   -4.41715 +g_qlogis           -0.28231 -1.135e+00    0.57058 +a.1                 2.08190  1.856e+00    2.30785 +b.1                 0.06114  5.015e-02    0.07214 +SD.log_k_JCZ38      0.84622  2.637e-01    1.42873 +SD.log_k_J9Z38      0.84564  2.566e-01    1.43464 +SD.log_k_JSE76      1.04385  3.242e-01    1.76351 +SD.f_cyan_ilr_1     0.38568  1.362e-01    0.63514 +SD.f_cyan_ilr_2     0.68046  7.166e-02    1.28925 +SD.f_JCZ38_qlogis   1.25244 -4.213e-02    2.54700 +SD.f_JSE76_qlogis   0.28202 -1.515e+03 1515.87968 +SD.log_k2           0.25749  7.655e-02    0.43843 +SD.g_qlogis         0.94535  3.490e-01    1.54174 + +Correlation:  +               cyan_0  l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76 +log_k_JCZ38    -0.0086                                                         +log_k_J9Z38    -0.0363 -0.0007                                                 +log_k_JSE76     0.0015  0.1210 -0.0017                                         +f_cyan_ilr_1   -0.0048  0.0095 -0.0572  0.0030                                 +f_cyan_ilr_2   -0.4788  0.0328  0.1143  0.0027 -0.0316                         +f_JCZ38_qlogis  0.0736 -0.0664 -0.0137  0.0145 -0.0444 -0.2175                 +f_JSE76_qlogis -0.0137  0.0971  0.0035  0.0009  0.0293  0.1333 -0.6767         +log_k1          0.2345 -0.0350 -0.0099 -0.0113 -0.0126 -0.1652  0.1756 -0.2161 +log_k2          0.0440 -0.0133  0.0199 -0.0040 -0.0097 -0.0119  0.0604 -0.1306 +g_qlogis        0.0438  0.0078 -0.0123  0.0029  0.0046 -0.0363 -0.0318  0.0736 +               log_k1  log_k2  +log_k_JCZ38                    +log_k_J9Z38                    +log_k_JSE76                    +f_cyan_ilr_1                   +f_cyan_ilr_2                   +f_JCZ38_qlogis                 +f_JSE76_qlogis                 +log_k1                         +log_k2          0.3198         +g_qlogis       -0.1666 -0.0954 + +Random effects: +                    est.      lower     upper +SD.log_k_JCZ38    0.8462  2.637e-01    1.4287 +SD.log_k_J9Z38    0.8456  2.566e-01    1.4346 +SD.log_k_JSE76    1.0439  3.242e-01    1.7635 +SD.f_cyan_ilr_1   0.3857  1.362e-01    0.6351 +SD.f_cyan_ilr_2   0.6805  7.166e-02    1.2893 +SD.f_JCZ38_qlogis 1.2524 -4.213e-02    2.5470 +SD.f_JSE76_qlogis 0.2820 -1.515e+03 1515.8797 +SD.log_k2         0.2575  7.655e-02    0.4384 +SD.g_qlogis       0.9453  3.490e-01    1.5417 + +Variance model: +       est.   lower   upper +a.1 2.08190 1.85595 2.30785 +b.1 0.06114 0.05015 0.07214 + +Backtransformed parameters: +                      est.     lower     upper +cyan_0           1.011e+02 9.903e+01 103.18265 +k_JCZ38          8.255e-02 3.701e-02   0.18411 +k_J9Z38          6.209e-03 2.809e-03   0.01373 +k_JSE76          4.073e-02 1.530e-02   0.10843 +f_cyan_to_JCZ38  6.608e-01        NA        NA +f_cyan_to_J9Z38  2.419e-01        NA        NA +f_JCZ38_to_JSE76 9.601e-01 7.419e-01   0.99506 +f_JSE76_to_JCZ38 9.964e-01 1.322e-11   1.00000 +k1               9.174e-02 8.070e-02   0.10430 +k2               9.349e-03 7.243e-03   0.01207 +g                4.299e-01 2.432e-01   0.63890 + +Resulting formation fractions: +                  ff +cyan_JCZ38  0.660808 +cyan_J9Z38  0.241904 +cyan_sink   0.097288 +JCZ38_JSE76 0.960085 +JCZ38_sink  0.039915 +JSE76_JCZ38 0.996373 +JSE76_sink  0.003627 + +Estimated disappearance times: +         DT50   DT90 DT50back DT50_k1 DT50_k2 +cyan   24.359 186.18    56.05   7.555   74.14 +JCZ38   8.397  27.89       NA      NA      NA +J9Z38 111.631 370.83       NA      NA      NA +JSE76  17.017  56.53       NA      NA      NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 2 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 07:58:46 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * +           cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * +           cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 +           * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 +           * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 568.562 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound  +             102.4394               -2.7673               -2.8942  +log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38  +              -3.6201               -2.3107               -5.3123  +          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2  +              -3.7120                0.6754                1.1448  +       f_JCZ38_qlogis        f_JSE76_qlogis  +              13.2672               13.3538  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0                 4.589          0.0000                  0.00 +log_k_cyan_free             0.000          0.4849                  0.00 +log_k_cyan_free_bound       0.000          0.0000                  1.62 +log_k_cyan_bound_free       0.000          0.0000                  0.00 +log_k_JCZ38                 0.000          0.0000                  0.00 +log_k_J9Z38                 0.000          0.0000                  0.00 +log_k_JSE76                 0.000          0.0000                  0.00 +f_cyan_ilr_1                0.000          0.0000                  0.00 +f_cyan_ilr_2                0.000          0.0000                  0.00 +f_JCZ38_qlogis              0.000          0.0000                  0.00 +f_JSE76_qlogis              0.000          0.0000                  0.00 +                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0                           0.000      0.0000       0.000         0.0 +log_k_cyan_free                       0.000      0.0000       0.000         0.0 +log_k_cyan_free_bound                 0.000      0.0000       0.000         0.0 +log_k_cyan_bound_free                 1.197      0.0000       0.000         0.0 +log_k_JCZ38                           0.000      0.7966       0.000         0.0 +log_k_J9Z38                           0.000      0.0000       1.561         0.0 +log_k_JSE76                           0.000      0.0000       0.000         0.8 +f_cyan_ilr_1                          0.000      0.0000       0.000         0.0 +f_cyan_ilr_2                          0.000      0.0000       0.000         0.0 +f_JCZ38_qlogis                        0.000      0.0000       0.000         0.0 +f_JSE76_qlogis                        0.000      0.0000       0.000         0.0 +                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis +cyan_free_0                 0.0000        0.000           0.00           0.00 +log_k_cyan_free             0.0000        0.000           0.00           0.00 +log_k_cyan_free_bound       0.0000        0.000           0.00           0.00 +log_k_cyan_bound_free       0.0000        0.000           0.00           0.00 +log_k_JCZ38                 0.0000        0.000           0.00           0.00 +log_k_J9Z38                 0.0000        0.000           0.00           0.00 +log_k_JSE76                 0.0000        0.000           0.00           0.00 +f_cyan_ilr_1                0.6349        0.000           0.00           0.00 +f_cyan_ilr_2                0.0000        1.797           0.00           0.00 +f_JCZ38_qlogis              0.0000        0.000          13.84           0.00 +f_JSE76_qlogis              0.0000        0.000           0.00          14.66 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2284 2275  -1120 + +Optimised parameters: +                             est.      lower      upper +cyan_free_0              102.7730  1.015e+02  1.041e+02 +log_k_cyan_free           -2.8530 -3.167e+00 -2.539e+00 +log_k_cyan_free_bound     -2.7326 -3.543e+00 -1.922e+00 +log_k_cyan_bound_free     -3.5582 -4.126e+00 -2.990e+00 +log_k_JCZ38               -2.3810 -2.921e+00 -1.841e+00 +log_k_J9Z38               -5.2301 -5.963e+00 -4.497e+00 +log_k_JSE76               -3.0286 -4.286e+00 -1.771e+00 +f_cyan_ilr_1               0.7081  3.733e-01  1.043e+00 +f_cyan_ilr_2               0.5847  7.846e-03  1.162e+00 +f_JCZ38_qlogis             9.5676 -1.323e+03  1.342e+03 +f_JSE76_qlogis             3.7042  7.254e-02  7.336e+00 +a.1                        2.7222  2.532e+00  2.913e+00 +SD.log_k_cyan_free         0.3338  1.086e-01  5.589e-01 +SD.log_k_cyan_free_bound   0.8888  3.023e-01  1.475e+00 +SD.log_k_cyan_bound_free   0.6220  2.063e-01  1.038e+00 +SD.log_k_JCZ38             0.5221  1.334e-01  9.108e-01 +SD.log_k_J9Z38             0.7104  1.371e-01  1.284e+00 +SD.log_k_JSE76             1.3837  4.753e-01  2.292e+00 +SD.f_cyan_ilr_1            0.3620  1.248e-01  5.992e-01 +SD.f_cyan_ilr_2            0.4259  8.145e-02  7.704e-01 +SD.f_JCZ38_qlogis          3.5332 -1.037e+05  1.037e+05 +SD.f_JSE76_qlogis          1.6990 -2.771e-01  3.675e+00 + +Correlation:  +                      cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3 +log_k_cyan_free        0.2126                                                 +log_k_cyan_free_bound  0.0894  0.0871                                         +log_k_cyan_bound_free  0.0033  0.0410  0.0583                                 +log_k_JCZ38           -0.0708 -0.0280 -0.0147      0.0019                     +log_k_J9Z38           -0.0535 -0.0138  0.0012      0.0148      0.0085         +log_k_JSE76           -0.0066 -0.0030 -0.0021     -0.0005      0.1090  0.0010 +f_cyan_ilr_1          -0.0364 -0.0157 -0.0095     -0.0015      0.0458 -0.0960 +f_cyan_ilr_2          -0.3814 -0.1104 -0.0423      0.0146      0.1540  0.1526 +f_JCZ38_qlogis         0.2507  0.0969  0.0482     -0.0097     -0.2282 -0.0363 +f_JSE76_qlogis        -0.1648 -0.0710 -0.0443     -0.0087      0.2002  0.0226 +                      l__JSE7 f_cy__1 f_cy__2 f_JCZ38 +log_k_cyan_free                                       +log_k_cyan_free_bound                                 +log_k_cyan_bound_free                                 +log_k_JCZ38                                           +log_k_J9Z38                                           +log_k_JSE76                                           +f_cyan_ilr_1           0.0001                         +f_cyan_ilr_2           0.0031  0.0586                 +f_JCZ38_qlogis         0.0023 -0.1867 -0.6255         +f_JSE76_qlogis         0.0082  0.1356  0.4519 -0.7951 + +Random effects: +                           est.      lower     upper +SD.log_k_cyan_free       0.3338  1.086e-01 5.589e-01 +SD.log_k_cyan_free_bound 0.8888  3.023e-01 1.475e+00 +SD.log_k_cyan_bound_free 0.6220  2.063e-01 1.038e+00 +SD.log_k_JCZ38           0.5221  1.334e-01 9.108e-01 +SD.log_k_J9Z38           0.7104  1.371e-01 1.284e+00 +SD.log_k_JSE76           1.3837  4.753e-01 2.292e+00 +SD.f_cyan_ilr_1          0.3620  1.248e-01 5.992e-01 +SD.f_cyan_ilr_2          0.4259  8.145e-02 7.704e-01 +SD.f_JCZ38_qlogis        3.5332 -1.037e+05 1.037e+05 +SD.f_JSE76_qlogis        1.6990 -2.771e-01 3.675e+00 + +Variance model: +     est. lower upper +a.1 2.722 2.532 2.913 + +Backtransformed parameters: +                          est.     lower     upper +cyan_free_0          1.028e+02 1.015e+02 104.06475 +k_cyan_free          5.767e-02 4.213e-02   0.07894 +k_cyan_free_bound    6.505e-02 2.892e-02   0.14633 +k_cyan_bound_free    2.849e-02 1.614e-02   0.05028 +k_JCZ38              9.246e-02 5.390e-02   0.15859 +k_J9Z38              5.353e-03 2.572e-03   0.01114 +k_JSE76              4.838e-02 1.376e-02   0.17009 +f_cyan_free_to_JCZ38 6.011e-01 5.028e-01   0.83792 +f_cyan_free_to_J9Z38 2.208e-01 5.028e-01   0.83792 +f_JCZ38_to_JSE76     9.999e-01 0.000e+00   1.00000 +f_JSE76_to_JCZ38     9.760e-01 5.181e-01   0.99935 + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2  cyan_g  +0.13942 0.01178 0.35948  + +Resulting formation fractions: +                       ff +cyan_free_JCZ38 6.011e-01 +cyan_free_J9Z38 2.208e-01 +cyan_free_sink  1.780e-01 +cyan_free       1.000e+00 +JCZ38_JSE76     9.999e-01 +JCZ38_sink      6.996e-05 +JSE76_JCZ38     9.760e-01 +JSE76_sink      2.403e-02 + +Estimated disappearance times: +         DT50   DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan   23.390 157.60    47.44        4.971        58.82 +JCZ38   7.497  24.90       NA           NA           NA +J9Z38 129.482 430.13       NA           NA           NA +JSE76  14.326  47.59       NA           NA           NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 2 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 08:01:30 2023  +Date of summary: Thu Apr 20 20:01:30 2023  + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * +           cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * +           cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 +           * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 +           * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 732.212 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound  +              101.751                -2.837                -3.016  +log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38  +               -3.660                -2.299                -5.313  +          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2  +               -3.699                 0.672                 5.873  +       f_JCZ38_qlogis        f_JSE76_qlogis  +               13.216                13.338  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0                 5.629           0.000                 0.000 +log_k_cyan_free             0.000           0.446                 0.000 +log_k_cyan_free_bound       0.000           0.000                 1.449 +log_k_cyan_bound_free       0.000           0.000                 0.000 +log_k_JCZ38                 0.000           0.000                 0.000 +log_k_J9Z38                 0.000           0.000                 0.000 +log_k_JSE76                 0.000           0.000                 0.000 +f_cyan_ilr_1                0.000           0.000                 0.000 +f_cyan_ilr_2                0.000           0.000                 0.000 +f_JCZ38_qlogis              0.000           0.000                 0.000 +f_JSE76_qlogis              0.000           0.000                 0.000 +                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0                           0.000      0.0000       0.000      0.0000 +log_k_cyan_free                       0.000      0.0000       0.000      0.0000 +log_k_cyan_free_bound                 0.000      0.0000       0.000      0.0000 +log_k_cyan_bound_free                 1.213      0.0000       0.000      0.0000 +log_k_JCZ38                           0.000      0.7801       0.000      0.0000 +log_k_J9Z38                           0.000      0.0000       1.575      0.0000 +log_k_JSE76                           0.000      0.0000       0.000      0.8078 +f_cyan_ilr_1                          0.000      0.0000       0.000      0.0000 +f_cyan_ilr_2                          0.000      0.0000       0.000      0.0000 +f_JCZ38_qlogis                        0.000      0.0000       0.000      0.0000 +f_JSE76_qlogis                        0.000      0.0000       0.000      0.0000 +                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis +cyan_free_0                 0.0000         0.00           0.00           0.00 +log_k_cyan_free             0.0000         0.00           0.00           0.00 +log_k_cyan_free_bound       0.0000         0.00           0.00           0.00 +log_k_cyan_bound_free       0.0000         0.00           0.00           0.00 +log_k_JCZ38                 0.0000         0.00           0.00           0.00 +log_k_J9Z38                 0.0000         0.00           0.00           0.00 +log_k_JSE76                 0.0000         0.00           0.00           0.00 +f_cyan_ilr_1                0.6519         0.00           0.00           0.00 +f_cyan_ilr_2                0.0000        10.78           0.00           0.00 +f_JCZ38_qlogis              0.0000         0.00          13.96           0.00 +f_JSE76_qlogis              0.0000         0.00           0.00          14.69 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2240 2232  -1098 + +Optimised parameters: +                              est.     lower    upper +cyan_free_0              101.10205  98.99221 103.2119 +log_k_cyan_free           -3.16929  -3.61395  -2.7246 +log_k_cyan_free_bound     -3.38259  -3.63022  -3.1350 +log_k_cyan_bound_free     -3.81075  -4.13888  -3.4826 +log_k_JCZ38               -2.42057  -3.00756  -1.8336 +log_k_J9Z38               -5.07501  -5.85138  -4.2986 +log_k_JSE76               -3.12442  -4.21277  -2.0361 +f_cyan_ilr_1               0.70577   0.35788   1.0537 +f_cyan_ilr_2               1.14824   0.15810   2.1384 +f_JCZ38_qlogis             3.52245   0.43257   6.6123 +f_JSE76_qlogis             5.65140 -21.22295  32.5257 +a.1                        2.07062   1.84329   2.2980 +b.1                        0.06227   0.05124   0.0733 +SD.log_k_cyan_free         0.49468   0.18566   0.8037 +SD.log_k_cyan_bound_free   0.28972   0.07188   0.5076 +SD.log_k_JCZ38             0.58852   0.16800   1.0090 +SD.log_k_J9Z38             0.82500   0.24730   1.4027 +SD.log_k_JSE76             1.19201   0.40313   1.9809 +SD.f_cyan_ilr_1            0.38534   0.13640   0.6343 +SD.f_cyan_ilr_2            0.72463   0.10076   1.3485 +SD.f_JCZ38_qlogis          1.38223  -0.20997   2.9744 +SD.f_JSE76_qlogis          2.07989 -72.53027  76.6901 + +Correlation:  +                      cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3 +log_k_cyan_free        0.1117                                                 +log_k_cyan_free_bound  0.1763  0.1828                                         +log_k_cyan_bound_free  0.0120  0.0593  0.5030                                 +log_k_JCZ38           -0.0459 -0.0230 -0.0931     -0.0337                     +log_k_J9Z38           -0.0381 -0.0123 -0.0139      0.0237      0.0063         +log_k_JSE76           -0.0044 -0.0038 -0.0175     -0.0072      0.1120  0.0003 +f_cyan_ilr_1          -0.0199 -0.0087 -0.0407     -0.0233      0.0268 -0.0552 +f_cyan_ilr_2          -0.4806 -0.1015 -0.2291     -0.0269      0.1156  0.1113 +f_JCZ38_qlogis         0.1805  0.0825  0.3085      0.0963     -0.1674 -0.0314 +f_JSE76_qlogis        -0.1586 -0.0810 -0.3560     -0.1563      0.2025  0.0278 +                      l__JSE7 f_cy__1 f_cy__2 f_JCZ38 +log_k_cyan_free                                       +log_k_cyan_free_bound                                 +log_k_cyan_bound_free                                 +log_k_JCZ38                                           +log_k_J9Z38                                           +log_k_JSE76                                           +f_cyan_ilr_1           0.0024                         +f_cyan_ilr_2           0.0087  0.0172                 +f_JCZ38_qlogis        -0.0016 -0.1047 -0.4656         +f_JSE76_qlogis         0.0119  0.1034  0.4584 -0.8137 + +Random effects: +                           est.     lower   upper +SD.log_k_cyan_free       0.4947   0.18566  0.8037 +SD.log_k_cyan_bound_free 0.2897   0.07188  0.5076 +SD.log_k_JCZ38           0.5885   0.16800  1.0090 +SD.log_k_J9Z38           0.8250   0.24730  1.4027 +SD.log_k_JSE76           1.1920   0.40313  1.9809 +SD.f_cyan_ilr_1          0.3853   0.13640  0.6343 +SD.f_cyan_ilr_2          0.7246   0.10076  1.3485 +SD.f_JCZ38_qlogis        1.3822  -0.20997  2.9744 +SD.f_JSE76_qlogis        2.0799 -72.53027 76.6901 + +Variance model: +       est.   lower  upper +a.1 2.07062 1.84329 2.2980 +b.1 0.06227 0.05124 0.0733 + +Backtransformed parameters: +                          est.     lower     upper +cyan_free_0          1.011e+02 9.899e+01 103.21190 +k_cyan_free          4.203e-02 2.695e-02   0.06557 +k_cyan_free_bound    3.396e-02 2.651e-02   0.04350 +k_cyan_bound_free    2.213e-02 1.594e-02   0.03073 +k_JCZ38              8.887e-02 4.941e-02   0.15984 +k_J9Z38              6.251e-03 2.876e-03   0.01359 +k_JSE76              4.396e-02 1.481e-02   0.13054 +f_cyan_free_to_JCZ38 6.590e-01 5.557e-01   0.95365 +f_cyan_free_to_J9Z38 2.429e-01 5.557e-01   0.95365 +f_JCZ38_to_JSE76     9.713e-01 6.065e-01   0.99866 +f_JSE76_to_JCZ38     9.965e-01 6.067e-10   1.00000 + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2  cyan_g  +0.08749 0.01063 0.40855  + +Resulting formation fractions: +                     ff +cyan_free_JCZ38 0.65905 +cyan_free_J9Z38 0.24291 +cyan_free_sink  0.09805 +cyan_free       1.00000 +JCZ38_JSE76     0.97132 +JCZ38_sink      0.02868 +JSE76_JCZ38     0.99650 +JSE76_sink      0.00350 + +Estimated disappearance times: +        DT50   DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan   24.91 167.16    50.32        7.922        65.19 +JCZ38   7.80  25.91       NA           NA           NA +J9Z38 110.89 368.36       NA           NA           NA +JSE76  15.77  52.38       NA           NA           NA + +</code></pre> +<p></p> +</div> +<div class="section level4"> +<h4 id="pathway-2-refined-fits">Pathway 2, refined fits<a class="anchor" aria-label="anchor" href="#pathway-2-refined-fits"></a> +</h4> +<caption> +Hierarchical FOMC path 2 fit with reduced random effects, two-component +error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 08:15:01 2023  +Date of summary: Thu Apr 20 20:01:31 2023  + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * +           cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 808.728 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      101.9028        -1.9055        -5.0249        -2.5646         0.6807  +  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis      log_alpha       log_beta  +        4.8883        16.0676         9.3923        -0.1346         3.0364  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          6.321       0.000       0.000       0.000       0.0000 +log_k_JCZ38     0.000       1.392       0.000       0.000       0.0000 +log_k_J9Z38     0.000       0.000       1.561       0.000       0.0000 +log_k_JSE76     0.000       0.000       0.000       3.614       0.0000 +f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6339 +f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000 +f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000 +f_JSE76_qlogis  0.000       0.000       0.000       0.000       0.0000 +log_alpha       0.000       0.000       0.000       0.000       0.0000 +log_beta        0.000       0.000       0.000       0.000       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta +cyan_0                 0.00           0.00           0.00    0.0000   0.0000 +log_k_JCZ38            0.00           0.00           0.00    0.0000   0.0000 +log_k_J9Z38            0.00           0.00           0.00    0.0000   0.0000 +log_k_JSE76            0.00           0.00           0.00    0.0000   0.0000 +f_cyan_ilr_1           0.00           0.00           0.00    0.0000   0.0000 +f_cyan_ilr_2          10.41           0.00           0.00    0.0000   0.0000 +f_JCZ38_qlogis         0.00          12.24           0.00    0.0000   0.0000 +f_JSE76_qlogis         0.00           0.00          15.13    0.0000   0.0000 +log_alpha              0.00           0.00           0.00    0.3701   0.0000 +log_beta               0.00           0.00           0.00    0.0000   0.5662 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2251 2244  -1106 + +Optimised parameters: +                      est.   lower   upper +cyan_0           101.05768      NA      NA +log_k_JCZ38       -2.73252      NA      NA +log_k_J9Z38       -5.07399      NA      NA +log_k_JSE76       -3.52863      NA      NA +f_cyan_ilr_1       0.72176      NA      NA +f_cyan_ilr_2       1.34610      NA      NA +f_JCZ38_qlogis     2.08337      NA      NA +f_JSE76_qlogis  1590.31880      NA      NA +log_alpha         -0.09336      NA      NA +log_beta           3.10191      NA      NA +a.1                2.08557 1.85439 2.31675 +b.1                0.06998 0.05800 0.08197 +SD.log_k_JCZ38     1.20053 0.43329 1.96777 +SD.log_k_J9Z38     0.85854 0.26708 1.45000 +SD.log_k_JSE76     0.62528 0.16061 1.08995 +SD.f_cyan_ilr_1    0.35190 0.12340 0.58039 +SD.f_cyan_ilr_2    0.85385 0.15391 1.55378 +SD.log_alpha       0.28971 0.08718 0.49225 +SD.log_beta        0.31614 0.05938 0.57290 + +Correlation is not available + +Random effects: +                  est.   lower  upper +SD.log_k_JCZ38  1.2005 0.43329 1.9678 +SD.log_k_J9Z38  0.8585 0.26708 1.4500 +SD.log_k_JSE76  0.6253 0.16061 1.0900 +SD.f_cyan_ilr_1 0.3519 0.12340 0.5804 +SD.f_cyan_ilr_2 0.8538 0.15391 1.5538 +SD.log_alpha    0.2897 0.08718 0.4923 +SD.log_beta     0.3161 0.05938 0.5729 + +Variance model: +       est. lower   upper +a.1 2.08557 1.854 2.31675 +b.1 0.06998 0.058 0.08197 + +Backtransformed parameters: +                      est. lower upper +cyan_0           1.011e+02    NA    NA +k_JCZ38          6.506e-02    NA    NA +k_J9Z38          6.257e-03    NA    NA +k_JSE76          2.935e-02    NA    NA +f_cyan_to_JCZ38  6.776e-01    NA    NA +f_cyan_to_J9Z38  2.442e-01    NA    NA +f_JCZ38_to_JSE76 8.893e-01    NA    NA +f_JSE76_to_JCZ38 1.000e+00    NA    NA +alpha            9.109e-01    NA    NA +beta             2.224e+01    NA    NA + +Resulting formation fractions: +                 ff +cyan_JCZ38  0.67761 +cyan_J9Z38  0.24417 +cyan_sink   0.07822 +JCZ38_JSE76 0.88928 +JCZ38_sink  0.11072 +JSE76_JCZ38 1.00000 +JSE76_sink  0.00000 + +Estimated disappearance times: +        DT50   DT90 DT50back +cyan   25.36 256.37    77.18 +JCZ38  10.65  35.39       NA +J9Z38 110.77 367.98       NA +JSE76  23.62  78.47       NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 2 fit with reduced random effects, constant +variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 08:16:32 2023  +Date of summary: Thu Apr 20 20:01:31 2023  + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +           * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 + +           f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 900.061 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      102.4358        -2.3107        -5.3123        -3.7120         0.6753  +  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis         log_k1         log_k2  +        1.1462        12.4095        12.3630        -1.9317        -4.4557  +      g_qlogis  +       -0.5648  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          4.594      0.0000       0.000         0.0       0.0000 +log_k_JCZ38     0.000      0.7966       0.000         0.0       0.0000 +log_k_J9Z38     0.000      0.0000       1.561         0.0       0.0000 +log_k_JSE76     0.000      0.0000       0.000         0.8       0.0000 +f_cyan_ilr_1    0.000      0.0000       0.000         0.0       0.6349 +f_cyan_ilr_2    0.000      0.0000       0.000         0.0       0.0000 +f_JCZ38_qlogis  0.000      0.0000       0.000         0.0       0.0000 +f_JSE76_qlogis  0.000      0.0000       0.000         0.0       0.0000 +log_k1          0.000      0.0000       0.000         0.0       0.0000 +log_k2          0.000      0.0000       0.000         0.0       0.0000 +g_qlogis        0.000      0.0000       0.000         0.0       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 +cyan_0                0.000           0.00            0.0  0.000 0.0000 +log_k_JCZ38           0.000           0.00            0.0  0.000 0.0000 +log_k_J9Z38           0.000           0.00            0.0  0.000 0.0000 +log_k_JSE76           0.000           0.00            0.0  0.000 0.0000 +f_cyan_ilr_1          0.000           0.00            0.0  0.000 0.0000 +f_cyan_ilr_2          1.797           0.00            0.0  0.000 0.0000 +f_JCZ38_qlogis        0.000          13.85            0.0  0.000 0.0000 +f_JSE76_qlogis        0.000           0.00           14.1  0.000 0.0000 +log_k1                0.000           0.00            0.0  1.106 0.0000 +log_k2                0.000           0.00            0.0  0.000 0.6141 +g_qlogis              0.000           0.00            0.0  0.000 0.0000 +               g_qlogis +cyan_0            0.000 +log_k_JCZ38       0.000 +log_k_J9Z38       0.000 +log_k_JSE76       0.000 +f_cyan_ilr_1      0.000 +f_cyan_ilr_2      0.000 +f_JCZ38_qlogis    0.000 +f_JSE76_qlogis    0.000 +log_k1            0.000 +log_k2            0.000 +g_qlogis          1.595 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2282 2274  -1121 + +Optimised parameters: +                     est.   lower  upper +cyan_0           102.5254      NA     NA +log_k_JCZ38       -2.9358      NA     NA +log_k_J9Z38       -5.1424      NA     NA +log_k_JSE76       -3.6458      NA     NA +f_cyan_ilr_1       0.6957      NA     NA +f_cyan_ilr_2       0.6635      NA     NA +f_JCZ38_qlogis  4984.8163      NA     NA +f_JSE76_qlogis     1.9415      NA     NA +log_k1            -1.9456      NA     NA +log_k2            -4.4705      NA     NA +g_qlogis          -0.5117      NA     NA +a.1                2.7455 2.55392 2.9370 +SD.log_k_JCZ38     1.3163 0.47635 2.1563 +SD.log_k_J9Z38     0.7162 0.16133 1.2711 +SD.log_k_JSE76     0.6457 0.15249 1.1390 +SD.f_cyan_ilr_1    0.3424 0.11714 0.5677 +SD.f_cyan_ilr_2    0.4524 0.09709 0.8077 +SD.log_k1          0.7353 0.25445 1.2161 +SD.log_k2          0.5137 0.18206 0.8453 +SD.g_qlogis        0.9857 0.35651 1.6148 + +Correlation is not available + +Random effects: +                  est.   lower  upper +SD.log_k_JCZ38  1.3163 0.47635 2.1563 +SD.log_k_J9Z38  0.7162 0.16133 1.2711 +SD.log_k_JSE76  0.6457 0.15249 1.1390 +SD.f_cyan_ilr_1 0.3424 0.11714 0.5677 +SD.f_cyan_ilr_2 0.4524 0.09709 0.8077 +SD.log_k1       0.7353 0.25445 1.2161 +SD.log_k2       0.5137 0.18206 0.8453 +SD.g_qlogis     0.9857 0.35651 1.6148 + +Variance model: +     est. lower upper +a.1 2.745 2.554 2.937 + +Backtransformed parameters: +                      est. lower upper +cyan_0           1.025e+02    NA    NA +k_JCZ38          5.309e-02    NA    NA +k_J9Z38          5.844e-03    NA    NA +k_JSE76          2.610e-02    NA    NA +f_cyan_to_JCZ38  6.079e-01    NA    NA +f_cyan_to_J9Z38  2.272e-01    NA    NA +f_JCZ38_to_JSE76 1.000e+00    NA    NA +f_JSE76_to_JCZ38 8.745e-01    NA    NA +k1               1.429e-01    NA    NA +k2               1.144e-02    NA    NA +g                3.748e-01    NA    NA + +Resulting formation fractions: +                ff +cyan_JCZ38  0.6079 +cyan_J9Z38  0.2272 +cyan_sink   0.1649 +JCZ38_JSE76 1.0000 +JCZ38_sink  0.0000 +JSE76_JCZ38 0.8745 +JSE76_sink  0.1255 + +Estimated disappearance times: +        DT50   DT90 DT50back DT50_k1 DT50_k2 +cyan   22.29 160.20    48.22    4.85   60.58 +JCZ38  13.06  43.37       NA      NA      NA +J9Z38 118.61 394.02       NA      NA      NA +JSE76  26.56  88.22       NA      NA      NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 2 fit with reduced random effects, two-component +error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 08:16:47 2023  +Date of summary: Thu Apr 20 20:01:31 2023  + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +           * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 + +           f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - +           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 914.763 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1  +      101.7523        -1.5948        -5.0119        -2.2723         0.6719  +  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis         log_k1         log_k2  +        5.1681        12.8238        12.4130        -2.0057        -4.5526  +      g_qlogis  +       -0.5805  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0          5.627       0.000       0.000       0.000       0.0000 +log_k_JCZ38     0.000       2.327       0.000       0.000       0.0000 +log_k_J9Z38     0.000       0.000       1.664       0.000       0.0000 +log_k_JSE76     0.000       0.000       0.000       4.566       0.0000 +f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6519 +f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000 +f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000 +f_JSE76_qlogis  0.000       0.000       0.000       0.000       0.0000 +log_k1          0.000       0.000       0.000       0.000       0.0000 +log_k2          0.000       0.000       0.000       0.000       0.0000 +g_qlogis        0.000       0.000       0.000       0.000       0.0000 +               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 +cyan_0                  0.0           0.00           0.00 0.0000 0.0000 +log_k_JCZ38             0.0           0.00           0.00 0.0000 0.0000 +log_k_J9Z38             0.0           0.00           0.00 0.0000 0.0000 +log_k_JSE76             0.0           0.00           0.00 0.0000 0.0000 +f_cyan_ilr_1            0.0           0.00           0.00 0.0000 0.0000 +f_cyan_ilr_2           10.1           0.00           0.00 0.0000 0.0000 +f_JCZ38_qlogis          0.0          13.99           0.00 0.0000 0.0000 +f_JSE76_qlogis          0.0           0.00          14.15 0.0000 0.0000 +log_k1                  0.0           0.00           0.00 0.8452 0.0000 +log_k2                  0.0           0.00           0.00 0.0000 0.5968 +g_qlogis                0.0           0.00           0.00 0.0000 0.0000 +               g_qlogis +cyan_0            0.000 +log_k_JCZ38       0.000 +log_k_J9Z38       0.000 +log_k_JSE76       0.000 +f_cyan_ilr_1      0.000 +f_cyan_ilr_2      0.000 +f_JCZ38_qlogis    0.000 +f_JSE76_qlogis    0.000 +log_k1            0.000 +log_k2            0.000 +g_qlogis          1.691 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2232 2224  -1096 + +Optimised parameters: +                     est.   lower   upper +cyan_0          101.20051      NA      NA +log_k_JCZ38      -2.93542      NA      NA +log_k_J9Z38      -5.03151      NA      NA +log_k_JSE76      -3.67679      NA      NA +f_cyan_ilr_1      0.67290      NA      NA +f_cyan_ilr_2      0.99787      NA      NA +f_JCZ38_qlogis  348.32484      NA      NA +f_JSE76_qlogis    1.87846      NA      NA +log_k1           -2.32738      NA      NA +log_k2           -4.61295      NA      NA +g_qlogis         -0.38342      NA      NA +a.1               2.06184 1.83746 2.28622 +b.1               0.06329 0.05211 0.07447 +SD.log_k_JCZ38    1.29042 0.47468 2.10617 +SD.log_k_J9Z38    0.84235 0.25903 1.42566 +SD.log_k_JSE76    0.56930 0.13934 0.99926 +SD.f_cyan_ilr_1   0.35183 0.12298 0.58068 +SD.f_cyan_ilr_2   0.77269 0.17908 1.36631 +SD.log_k2         0.28549 0.09210 0.47888 +SD.g_qlogis       0.93830 0.34568 1.53093 + +Correlation is not available + +Random effects: +                  est.  lower  upper +SD.log_k_JCZ38  1.2904 0.4747 2.1062 +SD.log_k_J9Z38  0.8423 0.2590 1.4257 +SD.log_k_JSE76  0.5693 0.1393 0.9993 +SD.f_cyan_ilr_1 0.3518 0.1230 0.5807 +SD.f_cyan_ilr_2 0.7727 0.1791 1.3663 +SD.log_k2       0.2855 0.0921 0.4789 +SD.g_qlogis     0.9383 0.3457 1.5309 + +Variance model: +       est.   lower   upper +a.1 2.06184 1.83746 2.28622 +b.1 0.06329 0.05211 0.07447 + +Backtransformed parameters: +                      est. lower upper +cyan_0           1.012e+02    NA    NA +k_JCZ38          5.311e-02    NA    NA +k_J9Z38          6.529e-03    NA    NA +k_JSE76          2.530e-02    NA    NA +f_cyan_to_JCZ38  6.373e-01    NA    NA +f_cyan_to_J9Z38  2.461e-01    NA    NA +f_JCZ38_to_JSE76 1.000e+00    NA    NA +f_JSE76_to_JCZ38 8.674e-01    NA    NA +k1               9.755e-02    NA    NA +k2               9.922e-03    NA    NA +g                4.053e-01    NA    NA + +Resulting formation fractions: +                ff +cyan_JCZ38  0.6373 +cyan_J9Z38  0.2461 +cyan_sink   0.1167 +JCZ38_JSE76 1.0000 +JCZ38_sink  0.0000 +JSE76_JCZ38 0.8674 +JSE76_sink  0.1326 + +Estimated disappearance times: +        DT50   DT90 DT50back DT50_k1 DT50_k2 +cyan   24.93 179.68    54.09   7.105   69.86 +JCZ38  13.05  43.36       NA      NA      NA +J9Z38 106.16 352.67       NA      NA      NA +JSE76  27.39  91.00       NA      NA      NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 2 fit with reduced random effects, constant +variance +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 08:16:33 2023  +Date of summary: Thu Apr 20 20:01:31 2023  + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * +           cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * +           cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 +           * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 +           * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 901.179 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound  +             102.4394               -2.7673               -2.8942  +log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38  +              -3.6201               -2.3107               -5.3123  +          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2  +              -3.7120                0.6754                1.1448  +       f_JCZ38_qlogis        f_JSE76_qlogis  +              13.2672               13.3538  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0                 4.589          0.0000                  0.00 +log_k_cyan_free             0.000          0.4849                  0.00 +log_k_cyan_free_bound       0.000          0.0000                  1.62 +log_k_cyan_bound_free       0.000          0.0000                  0.00 +log_k_JCZ38                 0.000          0.0000                  0.00 +log_k_J9Z38                 0.000          0.0000                  0.00 +log_k_JSE76                 0.000          0.0000                  0.00 +f_cyan_ilr_1                0.000          0.0000                  0.00 +f_cyan_ilr_2                0.000          0.0000                  0.00 +f_JCZ38_qlogis              0.000          0.0000                  0.00 +f_JSE76_qlogis              0.000          0.0000                  0.00 +                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0                           0.000      0.0000       0.000         0.0 +log_k_cyan_free                       0.000      0.0000       0.000         0.0 +log_k_cyan_free_bound                 0.000      0.0000       0.000         0.0 +log_k_cyan_bound_free                 1.197      0.0000       0.000         0.0 +log_k_JCZ38                           0.000      0.7966       0.000         0.0 +log_k_J9Z38                           0.000      0.0000       1.561         0.0 +log_k_JSE76                           0.000      0.0000       0.000         0.8 +f_cyan_ilr_1                          0.000      0.0000       0.000         0.0 +f_cyan_ilr_2                          0.000      0.0000       0.000         0.0 +f_JCZ38_qlogis                        0.000      0.0000       0.000         0.0 +f_JSE76_qlogis                        0.000      0.0000       0.000         0.0 +                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis +cyan_free_0                 0.0000        0.000           0.00           0.00 +log_k_cyan_free             0.0000        0.000           0.00           0.00 +log_k_cyan_free_bound       0.0000        0.000           0.00           0.00 +log_k_cyan_bound_free       0.0000        0.000           0.00           0.00 +log_k_JCZ38                 0.0000        0.000           0.00           0.00 +log_k_J9Z38                 0.0000        0.000           0.00           0.00 +log_k_JSE76                 0.0000        0.000           0.00           0.00 +f_cyan_ilr_1                0.6349        0.000           0.00           0.00 +f_cyan_ilr_2                0.0000        1.797           0.00           0.00 +f_JCZ38_qlogis              0.0000        0.000          13.84           0.00 +f_JSE76_qlogis              0.0000        0.000           0.00          14.66 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2279 2272  -1120 + +Optimised parameters: +                              est.   lower  upper +cyan_free_0               102.5621      NA     NA +log_k_cyan_free            -2.8531      NA     NA +log_k_cyan_free_bound      -2.6916      NA     NA +log_k_cyan_bound_free      -3.5032      NA     NA +log_k_JCZ38                -2.9436      NA     NA +log_k_J9Z38                -5.1140      NA     NA +log_k_JSE76                -3.6472      NA     NA +f_cyan_ilr_1                0.6887      NA     NA +f_cyan_ilr_2                0.6874      NA     NA +f_JCZ38_qlogis           4063.6389      NA     NA +f_JSE76_qlogis              1.9556      NA     NA +a.1                         2.7460 2.55451 2.9376 +SD.log_k_cyan_free          0.3131 0.09841 0.5277 +SD.log_k_cyan_free_bound    0.8850 0.29909 1.4710 +SD.log_k_cyan_bound_free    0.6167 0.20391 1.0295 +SD.log_k_JCZ38              1.3555 0.49101 2.2200 +SD.log_k_J9Z38              0.7200 0.16166 1.2783 +SD.log_k_JSE76              0.6252 0.14619 1.1042 +SD.f_cyan_ilr_1             0.3386 0.11447 0.5627 +SD.f_cyan_ilr_2             0.4699 0.09810 0.8417 + +Correlation is not available + +Random effects: +                           est.   lower  upper +SD.log_k_cyan_free       0.3131 0.09841 0.5277 +SD.log_k_cyan_free_bound 0.8850 0.29909 1.4710 +SD.log_k_cyan_bound_free 0.6167 0.20391 1.0295 +SD.log_k_JCZ38           1.3555 0.49101 2.2200 +SD.log_k_J9Z38           0.7200 0.16166 1.2783 +SD.log_k_JSE76           0.6252 0.14619 1.1042 +SD.f_cyan_ilr_1          0.3386 0.11447 0.5627 +SD.f_cyan_ilr_2          0.4699 0.09810 0.8417 + +Variance model: +     est. lower upper +a.1 2.746 2.555 2.938 + +Backtransformed parameters: +                          est. lower upper +cyan_free_0          1.026e+02    NA    NA +k_cyan_free          5.767e-02    NA    NA +k_cyan_free_bound    6.777e-02    NA    NA +k_cyan_bound_free    3.010e-02    NA    NA +k_JCZ38              5.267e-02    NA    NA +k_J9Z38              6.012e-03    NA    NA +k_JSE76              2.606e-02    NA    NA +f_cyan_free_to_JCZ38 6.089e-01    NA    NA +f_cyan_free_to_J9Z38 2.299e-01    NA    NA +f_JCZ38_to_JSE76     1.000e+00    NA    NA +f_JSE76_to_JCZ38     8.761e-01    NA    NA + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2  cyan_g  + 0.1434  0.0121  0.3469  + +Resulting formation fractions: +                    ff +cyan_free_JCZ38 0.6089 +cyan_free_J9Z38 0.2299 +cyan_free_sink  0.1612 +cyan_free       1.0000 +JCZ38_JSE76     1.0000 +JCZ38_sink      0.0000 +JSE76_JCZ38     0.8761 +JSE76_sink      0.1239 + +Estimated disappearance times: +        DT50   DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan   23.94 155.06    46.68        4.832        57.28 +JCZ38  13.16  43.71       NA           NA           NA +J9Z38 115.30 383.02       NA           NA           NA +JSE76  26.59  88.35       NA           NA           NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 2 fit with reduced random effects, two-component +error +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 08:16:19 2023  +Date of summary: Thu Apr 20 20:01:31 2023  + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * +           cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * +           cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 +           * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 +           * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve  + +Fitted in 887.343 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound  +              101.751                -2.837                -3.016  +log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38  +               -3.660                -2.299                -5.313  +          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2  +               -3.699                 0.672                 5.873  +       f_JCZ38_qlogis        f_JSE76_qlogis  +               13.216                13.338  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0                 5.629           0.000                 0.000 +log_k_cyan_free             0.000           0.446                 0.000 +log_k_cyan_free_bound       0.000           0.000                 1.449 +log_k_cyan_bound_free       0.000           0.000                 0.000 +log_k_JCZ38                 0.000           0.000                 0.000 +log_k_J9Z38                 0.000           0.000                 0.000 +log_k_JSE76                 0.000           0.000                 0.000 +f_cyan_ilr_1                0.000           0.000                 0.000 +f_cyan_ilr_2                0.000           0.000                 0.000 +f_JCZ38_qlogis              0.000           0.000                 0.000 +f_JSE76_qlogis              0.000           0.000                 0.000 +                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0                           0.000      0.0000       0.000      0.0000 +log_k_cyan_free                       0.000      0.0000       0.000      0.0000 +log_k_cyan_free_bound                 0.000      0.0000       0.000      0.0000 +log_k_cyan_bound_free                 1.213      0.0000       0.000      0.0000 +log_k_JCZ38                           0.000      0.7801       0.000      0.0000 +log_k_J9Z38                           0.000      0.0000       1.575      0.0000 +log_k_JSE76                           0.000      0.0000       0.000      0.8078 +f_cyan_ilr_1                          0.000      0.0000       0.000      0.0000 +f_cyan_ilr_2                          0.000      0.0000       0.000      0.0000 +f_JCZ38_qlogis                        0.000      0.0000       0.000      0.0000 +f_JSE76_qlogis                        0.000      0.0000       0.000      0.0000 +                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis +cyan_free_0                 0.0000         0.00           0.00           0.00 +log_k_cyan_free             0.0000         0.00           0.00           0.00 +log_k_cyan_free_bound       0.0000         0.00           0.00           0.00 +log_k_cyan_bound_free       0.0000         0.00           0.00           0.00 +log_k_JCZ38                 0.0000         0.00           0.00           0.00 +log_k_J9Z38                 0.0000         0.00           0.00           0.00 +log_k_JSE76                 0.0000         0.00           0.00           0.00 +f_cyan_ilr_1                0.6519         0.00           0.00           0.00 +f_cyan_ilr_2                0.0000        10.78           0.00           0.00 +f_JCZ38_qlogis              0.0000         0.00          13.96           0.00 +f_JSE76_qlogis              0.0000         0.00           0.00          14.69 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +   AIC  BIC logLik +  2236 2228  -1098 + +Optimised parameters: +                              est.   lower   upper +cyan_free_0              100.72760      NA      NA +log_k_cyan_free           -3.18281      NA      NA +log_k_cyan_free_bound     -3.37924      NA      NA +log_k_cyan_bound_free     -3.77107      NA      NA +log_k_JCZ38               -2.92811      NA      NA +log_k_J9Z38               -5.02759      NA      NA +log_k_JSE76               -3.65835      NA      NA +f_cyan_ilr_1               0.67390      NA      NA +f_cyan_ilr_2               1.15106      NA      NA +f_JCZ38_qlogis           827.82299      NA      NA +f_JSE76_qlogis             1.83064      NA      NA +a.1                        2.06921 1.84443 2.29399 +b.1                        0.06391 0.05267 0.07515 +SD.log_k_cyan_free         0.50518 0.18962 0.82075 +SD.log_k_cyan_bound_free   0.30991 0.08170 0.53813 +SD.log_k_JCZ38             1.26661 0.46578 2.06744 +SD.log_k_J9Z38             0.88272 0.27813 1.48730 +SD.log_k_JSE76             0.53050 0.12561 0.93538 +SD.f_cyan_ilr_1            0.35547 0.12461 0.58633 +SD.f_cyan_ilr_2            0.91446 0.20131 1.62761 + +Correlation is not available + +Random effects: +                           est.  lower  upper +SD.log_k_cyan_free       0.5052 0.1896 0.8207 +SD.log_k_cyan_bound_free 0.3099 0.0817 0.5381 +SD.log_k_JCZ38           1.2666 0.4658 2.0674 +SD.log_k_J9Z38           0.8827 0.2781 1.4873 +SD.log_k_JSE76           0.5305 0.1256 0.9354 +SD.f_cyan_ilr_1          0.3555 0.1246 0.5863 +SD.f_cyan_ilr_2          0.9145 0.2013 1.6276 + +Variance model: +       est.   lower   upper +a.1 2.06921 1.84443 2.29399 +b.1 0.06391 0.05267 0.07515 + +Backtransformed parameters: +                          est. lower upper +cyan_free_0          1.007e+02    NA    NA +k_cyan_free          4.147e-02    NA    NA +k_cyan_free_bound    3.407e-02    NA    NA +k_cyan_bound_free    2.303e-02    NA    NA +k_JCZ38              5.350e-02    NA    NA +k_J9Z38              6.555e-03    NA    NA +k_JSE76              2.578e-02    NA    NA +f_cyan_free_to_JCZ38 6.505e-01    NA    NA +f_cyan_free_to_J9Z38 2.508e-01    NA    NA +f_JCZ38_to_JSE76     1.000e+00    NA    NA +f_JSE76_to_JCZ38     8.618e-01    NA    NA + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2  cyan_g  +0.08768 0.01089 0.39821  + +Resulting formation fractions: +                     ff +cyan_free_JCZ38 0.65053 +cyan_free_J9Z38 0.25082 +cyan_free_sink  0.09864 +cyan_free       1.00000 +JCZ38_JSE76     1.00000 +JCZ38_sink      0.00000 +JSE76_JCZ38     0.86184 +JSE76_sink      0.13816 + +Estimated disappearance times: +        DT50   DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan   25.32 164.79    49.61        7.906        63.64 +JCZ38  12.96  43.04       NA           NA           NA +J9Z38 105.75 351.29       NA           NA           NA +JSE76  26.89  89.33       NA           NA           NA + +</code></pre> +<p></p> +</div> +</div> +<div class="section level3"> +<h3 id="session-info">Session info<a class="anchor" aria-label="anchor" href="#session-info"></a> +</h3> +<pre><code>R version 4.2.3 (2023-03-15) +Platform: x86_64-pc-linux-gnu (64-bit) +Running under: Debian GNU/Linux 12 (bookworm) + +Matrix products: default +BLAS:   /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3 +LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so + +locale: + [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C               + [3] LC_TIME=de_DE.UTF-8        LC_COLLATE=de_DE.UTF-8     + [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=de_DE.UTF-8    + [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                  + [9] LC_ADDRESS=C               LC_TELEPHONE=C             +[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C        + +attached base packages: +[1] parallel  stats     graphics  grDevices utils     datasets  methods   +[8] base      + +other attached packages: +[1] saemix_3.2 npde_3.3   knitr_1.42 mkin_1.2.3 + +loaded via a namespace (and not attached): + [1] pillar_1.9.0      bslib_0.4.2       compiler_4.2.3    jquerylib_0.1.4   + [5] tools_4.2.3       mclust_6.0.0      digest_0.6.31     tibble_3.2.1      + [9] jsonlite_1.8.4    evaluate_0.20     memoise_2.0.1     lifecycle_1.0.3   +[13] nlme_3.1-162      gtable_0.3.3      lattice_0.21-8    pkgconfig_2.0.3   +[17] rlang_1.1.0       DBI_1.1.3         cli_3.6.1         yaml_2.3.7        +[21] pkgdown_2.0.7     xfun_0.38         fastmap_1.1.1     gridExtra_2.3     +[25] dplyr_1.1.1       stringr_1.5.0     generics_0.1.3    desc_1.4.2        +[29] fs_1.6.1          vctrs_0.6.1       sass_0.4.5        systemfonts_1.0.4 +[33] tidyselect_1.2.0  rprojroot_2.0.3   lmtest_0.9-40     grid_4.2.3        +[37] inline_0.3.19     glue_1.6.2        R6_2.5.1          textshaping_0.3.6 +[41] fansi_1.0.4       rmarkdown_2.21    purrr_1.0.1       ggplot2_3.4.2     +[45] magrittr_2.0.3    scales_1.2.1      htmltools_0.5.5   colorspace_2.1-0  +[49] ragg_1.2.5        utf8_1.2.3        stringi_1.7.12    munsell_0.5.0     +[53] cachem_1.0.7      zoo_1.8-12       </code></pre> +</div> +<div class="section level3"> +<h3 id="hardware-info">Hardware info<a class="anchor" aria-label="anchor" href="#hardware-info"></a> +</h3> +<pre><code>CPU model: AMD Ryzen 9 7950X 16-Core Processor</code></pre> +<pre><code>MemTotal:       64936316 kB</code></pre> +</div> +</div> +  </div> + +  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> + +        <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> +    </nav> +</div> + +</div> + + + +      <footer><div class="copyright"> +  <p></p> +<p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> +  <p></p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p> +</div> + +      </footer> +</div> + +   + + +   + +  </body> +</html> diff --git a/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-13-1.png b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-13-1.pngBinary files differ new file mode 100644 index 00000000..b969f2ff --- /dev/null +++ b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-13-1.png diff --git a/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-14-1.png b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-14-1.pngBinary files differ new file mode 100644 index 00000000..60393da3 --- /dev/null +++ b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-14-1.png diff --git a/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-15-1.png b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-15-1.pngBinary files differ new file mode 100644 index 00000000..b9a410f7 --- /dev/null +++ b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-15-1.png diff --git a/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-20-1.png b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-20-1.pngBinary files differ new file mode 100644 index 00000000..cf921dab --- /dev/null +++ b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-20-1.png diff --git a/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-21-1.png b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-21-1.pngBinary files differ new file mode 100644 index 00000000..ff732730 --- /dev/null +++ b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-21-1.png diff --git a/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-22-1.png b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-22-1.pngBinary files differ new file mode 100644 index 00000000..e30011bc --- /dev/null +++ b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-22-1.png diff --git a/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-7-1.png b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-7-1.pngBinary files differ new file mode 100644 index 00000000..4aad76df --- /dev/null +++ b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-7-1.png diff --git a/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-8-1.png b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-8-1.pngBinary files differ new file mode 100644 index 00000000..e30011bc --- /dev/null +++ b/docs/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-8-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent.html b/docs/articles/prebuilt/2022_dmta_parent.html new file mode 100644 index 00000000..378a7e8e --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent.html @@ -0,0 +1,2223 @@ +<!DOCTYPE html> +<!-- Generated by pkgdown: do not edit by hand --><html lang="en"> +<head> +<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> +<meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> +<title>Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P • mkin</title> +<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"> +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../../bootstrap-toc.css"> +<script src="../../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../../pkgdown.css" rel="stylesheet"> +<script src="../../pkgdown.js"></script><meta property="og:title" content="Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P"> +<meta property="og:description" content="mkin"> +<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> +</head> +<body data-spy="scroll" data-target="#toc"> +     + +    <div class="container template-article"> +      <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> +        <span class="sr-only">Toggle navigation</span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <span class="navbar-brand"> +        <a class="navbar-link" href="../../index.html">mkin</a> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span> +      </span> +    </div> + +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +<li> +  <a href="../../reference/index.html">Reference</a> +</li> +<li class="dropdown"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> +    Articles +      +    <span class="caret"></span> +  </a> +  <ul class="dropdown-menu" role="menu"> +<li> +      <a href="../../articles/mkin.html">Introduction to mkin</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li> +    <li> +      <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> +    </li> +    <li> +      <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> +    </li> +    <li> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li> +    <li> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a> +    </li> +    <li> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a> +    </li> +    <li> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a> +    </li> +    <li> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a> +    </li> +    <li> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li> +  </ul> +</li> +<li> +  <a href="../../news/index.html">News</a> +</li> +      </ul> +<ul class="nav navbar-nav navbar-right"> +<li> +  <a href="https://github.com/jranke/mkin/" class="external-link"> +    <span class="fab fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +</div> +<!--/.nav-collapse --> +  </div> +<!--/.container --> +</div> +<!--/.navbar --> + +       + +      </header><div class="row"> +  <div class="col-md-9 contents"> +    <div class="page-header toc-ignore"> +      <h1 data-toc-skip>Testing hierarchical parent degradation kinetics +with residue data on dimethenamid and dimethenamid-P</h1> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> +             +            <h4 data-toc-skip class="date">Last change on 5 January +2023, last compiled on 20 April 2023</h4> +       +      <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/prebuilt/2022_dmta_parent.rmd" class="external-link"><code>vignettes/prebuilt/2022_dmta_parent.rmd</code></a></small> +      <div class="hidden name"><code>2022_dmta_parent.rmd</code></div> + +    </div> + +     +     +<div class="section level2"> +<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a> +</h2> +<p>The purpose of this document is to demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS can be fitted with the mkin package.</p> +<p>It was assembled in the course of work package 1.1 of Project Number +173340 (Application of nonlinear hierarchical models to the kinetic +evaluation of chemical degradation data) of the German Environment +Agency carried out in 2022 and 2023.</p> +<p>The mkin package is used in version 1.2.3. It contains the test data +and the functions used in the evaluations. The <code>saemix</code> +package is used as a backend for fitting the NLHM, but is also loaded to +make the convergence plot function available.</p> +<p>This document is processed with the <code>knitr</code> package, which +also provides the <code>kable</code> function that is used to improve +the display of tabular data in R markdown documents. For parallel +processing, the <code>parallel</code> package is used.</p> +<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://yihui.org/knitr/" class="external-link">knitr</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">parallel</span><span class="op">)</span></span> +<span><span class="va">n_cores</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/detectCores.html" class="external-link">detectCores</a></span><span class="op">(</span><span class="op">)</span></span> +<span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/Sys.info.html" class="external-link">Sys.info</a></span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="st">"sysname"</span><span class="op">]</span> <span class="op">==</span> <span class="st">"Windows"</span><span class="op">)</span> <span class="op">{</span></span> +<span>  <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makePSOCKcluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span> +<span>  <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makeForkCluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +</div> +<div class="section level2"> +<h2 id="data">Data<a class="anchor" aria-label="anchor" href="#data"></a> +</h2> +<p>The test data are available in the mkin package as an object of class +<code>mkindsg</code> (mkin dataset group) under the identifier +<code>dimethenamid_2018</code>. The following preprocessing steps are +still necessary:</p> +<ul> +<li>The data available for the enantiomer dimethenamid-P (DMTAP) are +renamed to have the same substance name as the data for the racemic +mixture dimethenamid (DMTA). The reason for this is that no difference +between their degradation behaviour was identified in the EU risk +assessment.</li> +<li>The data for transformation products and unnecessary columns are +discarded</li> +<li>The observation times of each dataset are multiplied with the +corresponding normalisation factor also available in the dataset, in +order to make it possible to describe all datasets with a single set of +parameters that are independent of temperature</li> +<li>Finally, datasets observed in the same soil (<code>Elliot 1</code> +and <code>Elliot 2</code>) are combined, resulting in dimethenamid +(DMTA) data from six soils.</li> +</ul> +<p>The following commented R code performs this preprocessing.</p> +<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="co"># Apply a function to each of the seven datasets in the mkindsg object to create a list</span></span> +<span><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span> +<span>  <span class="va">ds_i</span> <span class="op"><-</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span>                     <span class="co"># Get a dataset</span></span> +<span>  <span class="va">ds_i</span><span class="op">[</span><span class="va">ds_i</span><span class="op">$</span><span class="va">name</span> <span class="op">==</span> <span class="st">"DMTAP"</span>, <span class="st">"name"</span><span class="op">]</span> <span class="op"><-</span>  <span class="st">"DMTA"</span>              <span class="co"># Rename DMTAP to DMTA</span></span> +<span>  <span class="va">ds_i</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">ds_i</span>, <span class="va">name</span> <span class="op">==</span> <span class="st">"DMTA"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"name"</span>, <span class="st">"time"</span>, <span class="st">"value"</span><span class="op">)</span><span class="op">)</span> <span class="co"># Select data</span></span> +<span>  <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op">*</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">f_time_norm</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>  <span class="co"># Normalise time</span></span> +<span>  <span class="va">ds_i</span>                                                       <span class="co"># Return the dataset</span></span> +<span><span class="op">}</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># Use dataset titles as names for the list elements</span></span> +<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">sapply</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span>, <span class="kw">function</span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="va">ds</span><span class="op">$</span><span class="va">title</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># Combine data for Elliot soil to obtain a named list with six elements</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">rbind</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span>, <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span> <span class="co">#</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span></code></pre></div> +<p>The following tables show the 6 datasets.</p> +<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">for</span> <span class="op">(</span><span class="va">ds_name</span> <span class="kw">in</span> <span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span> +<span>    <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mkin_long_to_wide.html">mkin_long_to_wide</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="va">ds_name</span><span class="op">]</span><span class="op">]</span><span class="op">)</span>,</span> +<span>      caption <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"Dataset"</span>, <span class="va">ds_name</span><span class="op">)</span>,</span> +<span>      label <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="st">"tab:"</span>, <span class="va">ds_name</span><span class="op">)</span>, booktabs <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span><span class="op">)</span></span> +<span>    <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"\n\\clearpage\n"</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +<table class="table"> +<caption>Dataset Calke</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0</td> +<td align="right">95.8</td> +</tr> +<tr class="even"> +<td align="right">0</td> +<td align="right">98.7</td> +</tr> +<tr class="odd"> +<td align="right">14</td> +<td align="right">60.5</td> +</tr> +<tr class="even"> +<td align="right">30</td> +<td align="right">39.1</td> +</tr> +<tr class="odd"> +<td align="right">59</td> +<td align="right">15.2</td> +</tr> +<tr class="even"> +<td align="right">120</td> +<td align="right">4.8</td> +</tr> +<tr class="odd"> +<td align="right">120</td> +<td align="right">4.6</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Borstel</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">100.5</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">99.6</td> +</tr> +<tr class="odd"> +<td align="right">1.941295</td> +<td align="right">91.9</td> +</tr> +<tr class="even"> +<td align="right">1.941295</td> +<td align="right">91.3</td> +</tr> +<tr class="odd"> +<td align="right">6.794534</td> +<td align="right">81.8</td> +</tr> +<tr class="even"> +<td align="right">6.794534</td> +<td align="right">82.1</td> +</tr> +<tr class="odd"> +<td align="right">13.589067</td> +<td align="right">69.1</td> +</tr> +<tr class="even"> +<td align="right">13.589067</td> +<td align="right">68.0</td> +</tr> +<tr class="odd"> +<td align="right">27.178135</td> +<td align="right">51.4</td> +</tr> +<tr class="even"> +<td align="right">27.178135</td> +<td align="right">51.4</td> +</tr> +<tr class="odd"> +<td align="right">56.297565</td> +<td align="right">27.6</td> +</tr> +<tr class="even"> +<td align="right">56.297565</td> +<td align="right">26.8</td> +</tr> +<tr class="odd"> +<td align="right">86.387643</td> +<td align="right">15.7</td> +</tr> +<tr class="even"> +<td align="right">86.387643</td> +<td align="right">15.3</td> +</tr> +<tr class="odd"> +<td align="right">115.507073</td> +<td align="right">7.9</td> +</tr> +<tr class="even"> +<td align="right">115.507073</td> +<td align="right">8.1</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Flaach</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">96.5</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">96.8</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">97.0</td> +</tr> +<tr class="even"> +<td align="right">0.6233856</td> +<td align="right">82.9</td> +</tr> +<tr class="odd"> +<td align="right">0.6233856</td> +<td align="right">86.7</td> +</tr> +<tr class="even"> +<td align="right">0.6233856</td> +<td align="right">87.4</td> +</tr> +<tr class="odd"> +<td align="right">1.8701567</td> +<td align="right">72.8</td> +</tr> +<tr class="even"> +<td align="right">1.8701567</td> +<td align="right">69.9</td> +</tr> +<tr class="odd"> +<td align="right">1.8701567</td> +<td align="right">71.9</td> +</tr> +<tr class="even"> +<td align="right">4.3636989</td> +<td align="right">51.4</td> +</tr> +<tr class="odd"> +<td align="right">4.3636989</td> +<td align="right">52.9</td> +</tr> +<tr class="even"> +<td align="right">4.3636989</td> +<td align="right">48.6</td> +</tr> +<tr class="odd"> +<td align="right">8.7273979</td> +<td align="right">28.5</td> +</tr> +<tr class="even"> +<td align="right">8.7273979</td> +<td align="right">27.3</td> +</tr> +<tr class="odd"> +<td align="right">8.7273979</td> +<td align="right">27.5</td> +</tr> +<tr class="even"> +<td align="right">13.0910968</td> +<td align="right">14.8</td> +</tr> +<tr class="odd"> +<td align="right">13.0910968</td> +<td align="right">13.4</td> +</tr> +<tr class="even"> +<td align="right">13.0910968</td> +<td align="right">14.4</td> +</tr> +<tr class="odd"> +<td align="right">17.4547957</td> +<td align="right">7.7</td> +</tr> +<tr class="even"> +<td align="right">17.4547957</td> +<td align="right">7.3</td> +</tr> +<tr class="odd"> +<td align="right">17.4547957</td> +<td align="right">8.1</td> +</tr> +<tr class="even"> +<td align="right">26.1821936</td> +<td align="right">2.0</td> +</tr> +<tr class="odd"> +<td align="right">26.1821936</td> +<td align="right">1.5</td> +</tr> +<tr class="even"> +<td align="right">26.1821936</td> +<td align="right">1.9</td> +</tr> +<tr class="odd"> +<td align="right">34.9095915</td> +<td align="right">1.3</td> +</tr> +<tr class="even"> +<td align="right">34.9095915</td> +<td align="right">1.0</td> +</tr> +<tr class="odd"> +<td align="right">34.9095915</td> +<td align="right">1.1</td> +</tr> +<tr class="even"> +<td align="right">43.6369893</td> +<td align="right">0.9</td> +</tr> +<tr class="odd"> +<td align="right">43.6369893</td> +<td align="right">0.7</td> +</tr> +<tr class="even"> +<td align="right">43.6369893</td> +<td align="right">0.7</td> +</tr> +<tr class="odd"> +<td align="right">52.3643872</td> +<td align="right">0.6</td> +</tr> +<tr class="even"> +<td align="right">52.3643872</td> +<td align="right">0.4</td> +</tr> +<tr class="odd"> +<td align="right">52.3643872</td> +<td align="right">0.5</td> +</tr> +<tr class="even"> +<td align="right">74.8062674</td> +<td align="right">0.4</td> +</tr> +<tr class="odd"> +<td align="right">74.8062674</td> +<td align="right">0.3</td> +</tr> +<tr class="even"> +<td align="right">74.8062674</td> +<td align="right">0.3</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset BBA 2.2</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">98.09</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">98.77</td> +</tr> +<tr class="odd"> +<td align="right">0.7678922</td> +<td align="right">93.52</td> +</tr> +<tr class="even"> +<td align="right">0.7678922</td> +<td align="right">92.03</td> +</tr> +<tr class="odd"> +<td align="right">2.3036765</td> +<td align="right">88.39</td> +</tr> +<tr class="even"> +<td align="right">2.3036765</td> +<td align="right">87.18</td> +</tr> +<tr class="odd"> +<td align="right">5.3752452</td> +<td align="right">69.38</td> +</tr> +<tr class="even"> +<td align="right">5.3752452</td> +<td align="right">71.06</td> +</tr> +<tr class="odd"> +<td align="right">10.7504904</td> +<td align="right">45.21</td> +</tr> +<tr class="even"> +<td align="right">10.7504904</td> +<td align="right">46.81</td> +</tr> +<tr class="odd"> +<td align="right">16.1257355</td> +<td align="right">30.54</td> +</tr> +<tr class="even"> +<td align="right">16.1257355</td> +<td align="right">30.07</td> +</tr> +<tr class="odd"> +<td align="right">21.5009807</td> +<td align="right">21.60</td> +</tr> +<tr class="even"> +<td align="right">21.5009807</td> +<td align="right">20.41</td> +</tr> +<tr class="odd"> +<td align="right">32.2514711</td> +<td align="right">9.10</td> +</tr> +<tr class="even"> +<td align="right">32.2514711</td> +<td align="right">9.70</td> +</tr> +<tr class="odd"> +<td align="right">43.0019614</td> +<td align="right">6.58</td> +</tr> +<tr class="even"> +<td align="right">43.0019614</td> +<td align="right">6.31</td> +</tr> +<tr class="odd"> +<td align="right">53.7524518</td> +<td align="right">3.47</td> +</tr> +<tr class="even"> +<td align="right">53.7524518</td> +<td align="right">3.52</td> +</tr> +<tr class="odd"> +<td align="right">64.5029421</td> +<td align="right">3.40</td> +</tr> +<tr class="even"> +<td align="right">64.5029421</td> +<td align="right">3.67</td> +</tr> +<tr class="odd"> +<td align="right">91.3791680</td> +<td align="right">1.62</td> +</tr> +<tr class="even"> +<td align="right">91.3791680</td> +<td align="right">1.62</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset BBA 2.3</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">99.33</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">97.44</td> +</tr> +<tr class="odd"> +<td align="right">0.6733938</td> +<td align="right">93.73</td> +</tr> +<tr class="even"> +<td align="right">0.6733938</td> +<td align="right">93.77</td> +</tr> +<tr class="odd"> +<td align="right">2.0201814</td> +<td align="right">87.84</td> +</tr> +<tr class="even"> +<td align="right">2.0201814</td> +<td align="right">89.82</td> +</tr> +<tr class="odd"> +<td align="right">4.7137565</td> +<td align="right">71.61</td> +</tr> +<tr class="even"> +<td align="right">4.7137565</td> +<td align="right">71.42</td> +</tr> +<tr class="odd"> +<td align="right">9.4275131</td> +<td align="right">45.60</td> +</tr> +<tr class="even"> +<td align="right">9.4275131</td> +<td align="right">45.42</td> +</tr> +<tr class="odd"> +<td align="right">14.1412696</td> +<td align="right">31.12</td> +</tr> +<tr class="even"> +<td align="right">14.1412696</td> +<td align="right">31.68</td> +</tr> +<tr class="odd"> +<td align="right">18.8550262</td> +<td align="right">23.20</td> +</tr> +<tr class="even"> +<td align="right">18.8550262</td> +<td align="right">24.13</td> +</tr> +<tr class="odd"> +<td align="right">28.2825393</td> +<td align="right">9.43</td> +</tr> +<tr class="even"> +<td align="right">28.2825393</td> +<td align="right">9.82</td> +</tr> +<tr class="odd"> +<td align="right">37.7100523</td> +<td align="right">7.08</td> +</tr> +<tr class="even"> +<td align="right">37.7100523</td> +<td align="right">8.64</td> +</tr> +<tr class="odd"> +<td align="right">47.1375654</td> +<td align="right">4.41</td> +</tr> +<tr class="even"> +<td align="right">47.1375654</td> +<td align="right">4.78</td> +</tr> +<tr class="odd"> +<td align="right">56.5650785</td> +<td align="right">4.92</td> +</tr> +<tr class="even"> +<td align="right">56.5650785</td> +<td align="right">5.08</td> +</tr> +<tr class="odd"> +<td align="right">80.1338612</td> +<td align="right">2.13</td> +</tr> +<tr class="even"> +<td align="right">80.1338612</td> +<td align="right">2.23</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Elliot</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">97.5</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">100.7</td> +</tr> +<tr class="odd"> +<td align="right">1.228478</td> +<td align="right">86.4</td> +</tr> +<tr class="even"> +<td align="right">1.228478</td> +<td align="right">88.5</td> +</tr> +<tr class="odd"> +<td align="right">3.685435</td> +<td align="right">69.8</td> +</tr> +<tr class="even"> +<td align="right">3.685435</td> +<td align="right">77.1</td> +</tr> +<tr class="odd"> +<td align="right">8.599349</td> +<td align="right">59.0</td> +</tr> +<tr class="even"> +<td align="right">8.599349</td> +<td align="right">54.2</td> +</tr> +<tr class="odd"> +<td align="right">17.198697</td> +<td align="right">31.3</td> +</tr> +<tr class="even"> +<td align="right">17.198697</td> +<td align="right">33.5</td> +</tr> +<tr class="odd"> +<td align="right">25.798046</td> +<td align="right">19.6</td> +</tr> +<tr class="even"> +<td align="right">25.798046</td> +<td align="right">20.9</td> +</tr> +<tr class="odd"> +<td align="right">34.397395</td> +<td align="right">13.3</td> +</tr> +<tr class="even"> +<td align="right">34.397395</td> +<td align="right">15.8</td> +</tr> +<tr class="odd"> +<td align="right">51.596092</td> +<td align="right">6.7</td> +</tr> +<tr class="even"> +<td align="right">51.596092</td> +<td align="right">8.7</td> +</tr> +<tr class="odd"> +<td align="right">68.794789</td> +<td align="right">8.8</td> +</tr> +<tr class="even"> +<td align="right">68.794789</td> +<td align="right">8.7</td> +</tr> +<tr class="odd"> +<td align="right">103.192184</td> +<td align="right">6.0</td> +</tr> +<tr class="even"> +<td align="right">103.192184</td> +<td align="right">4.4</td> +</tr> +<tr class="odd"> +<td align="right">146.188928</td> +<td align="right">3.3</td> +</tr> +<tr class="even"> +<td align="right">146.188928</td> +<td align="right">2.8</td> +</tr> +<tr class="odd"> +<td align="right">223.583066</td> +<td align="right">1.4</td> +</tr> +<tr class="even"> +<td align="right">223.583066</td> +<td align="right">1.8</td> +</tr> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">93.4</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">103.2</td> +</tr> +<tr class="odd"> +<td align="right">1.228478</td> +<td align="right">89.2</td> +</tr> +<tr class="even"> +<td align="right">1.228478</td> +<td align="right">86.6</td> +</tr> +<tr class="odd"> +<td align="right">3.685435</td> +<td align="right">78.2</td> +</tr> +<tr class="even"> +<td align="right">3.685435</td> +<td align="right">78.1</td> +</tr> +<tr class="odd"> +<td align="right">8.599349</td> +<td align="right">55.6</td> +</tr> +<tr class="even"> +<td align="right">8.599349</td> +<td align="right">53.0</td> +</tr> +<tr class="odd"> +<td align="right">17.198697</td> +<td align="right">33.7</td> +</tr> +<tr class="even"> +<td align="right">17.198697</td> +<td align="right">33.2</td> +</tr> +<tr class="odd"> +<td align="right">25.798046</td> +<td align="right">20.9</td> +</tr> +<tr class="even"> +<td align="right">25.798046</td> +<td align="right">19.9</td> +</tr> +<tr class="odd"> +<td align="right">34.397395</td> +<td align="right">18.2</td> +</tr> +<tr class="even"> +<td align="right">34.397395</td> +<td align="right">12.7</td> +</tr> +<tr class="odd"> +<td align="right">51.596092</td> +<td align="right">7.8</td> +</tr> +<tr class="even"> +<td align="right">51.596092</td> +<td align="right">9.0</td> +</tr> +<tr class="odd"> +<td align="right">68.794789</td> +<td align="right">11.4</td> +</tr> +<tr class="even"> +<td align="right">68.794789</td> +<td align="right">9.0</td> +</tr> +<tr class="odd"> +<td align="right">103.192184</td> +<td align="right">3.9</td> +</tr> +<tr class="even"> +<td align="right">103.192184</td> +<td align="right">4.4</td> +</tr> +<tr class="odd"> +<td align="right">146.188928</td> +<td align="right">2.6</td> +</tr> +<tr class="even"> +<td align="right">146.188928</td> +<td align="right">3.4</td> +</tr> +<tr class="odd"> +<td align="right">223.583066</td> +<td align="right">2.0</td> +</tr> +<tr class="even"> +<td align="right">223.583066</td> +<td align="right">1.7</td> +</tr> +</tbody> +</table> +</div> +<div class="section level2"> +<h2 id="separate-evaluations">Separate evaluations<a class="anchor" aria-label="anchor" href="#separate-evaluations"></a> +</h2> +<p>In order to obtain suitable starting parameters for the NLHM fits, +separate fits of the four models to the data for each soil are generated +using the <code>mmkin</code> function from the <code>mkin</code> +package. In a first step, constant variance is assumed. Convergence is +checked with the <code>status</code> function.</p> +<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">deg_mods</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span>, <span class="st">"HS"</span><span class="op">)</span></span> +<span><span class="va">f_sep_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span> +<span>  <span class="va">deg_mods</span>,</span> +<span>  <span class="va">dmta_ds</span>,</span> +<span>  error_model <span class="op">=</span> <span class="st">"const"</span>,</span> +<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_const</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Calke</th> +<th align="left">Borstel</th> +<th align="left">Flaach</th> +<th align="left">BBA 2.2</th> +<th align="left">BBA 2.3</th> +<th align="left">Elliot</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">HS</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>In the table above, OK indicates convergence, and C indicates failure +to converge. All separate fits with constant variance converged, with +the sole exception of the HS fit to the BBA 2.2 data. To prepare for +fitting NLHM using the two-component error model, the separate fits are +updated assuming two-component error.</p> +<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_sep_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Calke</th> +<th align="left">Borstel</th> +<th align="left">Flaach</th> +<th align="left">BBA 2.2</th> +<th align="left">BBA 2.3</th> +<th align="left">Elliot</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">HS</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>Using the two-component error model, the one fit that did not +converge with constant variance did converge, but other non-SFO fits +failed to converge.</p> +</div> +<div class="section level2"> +<h2 id="hierarchichal-model-fits">Hierarchichal model fits<a class="anchor" aria-label="anchor" href="#hierarchichal-model-fits"></a> +</h2> +<p>The following code fits eight versions of hierarchical models to the +data, using SFO, FOMC, DFOP and HS for the parent compound, and using +either constant variance or two-component error for the error model. The +default parameter distribution model in mkin allows for variation of all +degradation parameters across the assumed population of soils. In other +words, each degradation parameter is associated with a random effect as +a first step. The <code>mhmkin</code> function makes it possible to fit +all eight versions in parallel (given a sufficient number of computing +cores being available) to save execution time.</p> +<p>Convergence plots and summaries for these fits are shown in the +appendix.</p> +<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_const</span>, <span class="va">f_sep_tc</span><span class="op">)</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span></code></pre></div> +<p>The output of the <code>status</code> function shows that all fits +terminated successfully.</p> +<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">HS</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>The AIC and BIC values show that the biphasic models DFOP and HS give +the best fits.</p> +<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO const</td> +<td align="right">5</td> +<td align="right">796.3</td> +<td align="right">795.3</td> +<td align="right">-393.2</td> +</tr> +<tr class="even"> +<td align="left">SFO tc</td> +<td align="right">6</td> +<td align="right">798.3</td> +<td align="right">797.1</td> +<td align="right">-393.2</td> +</tr> +<tr class="odd"> +<td align="left">FOMC const</td> +<td align="right">7</td> +<td align="right">734.2</td> +<td align="right">732.7</td> +<td align="right">-360.1</td> +</tr> +<tr class="even"> +<td align="left">FOMC tc</td> +<td align="right">8</td> +<td align="right">720.4</td> +<td align="right">718.8</td> +<td align="right">-352.2</td> +</tr> +<tr class="odd"> +<td align="left">DFOP const</td> +<td align="right">9</td> +<td align="right">711.8</td> +<td align="right">710.0</td> +<td align="right">-346.9</td> +</tr> +<tr class="even"> +<td align="left">HS const</td> +<td align="right">9</td> +<td align="right">714.0</td> +<td align="right">712.1</td> +<td align="right">-348.0</td> +</tr> +<tr class="odd"> +<td align="left">DFOP tc</td> +<td align="right">10</td> +<td align="right">665.5</td> +<td align="right">663.4</td> +<td align="right">-322.8</td> +</tr> +<tr class="even"> +<td align="left">HS tc</td> +<td align="right">10</td> +<td align="right">667.1</td> +<td align="right">665.0</td> +<td align="right">-323.6</td> +</tr> +</tbody> +</table> +<p>The DFOP model is preferred here, as it has a better mechanistic +basis for batch experiments with constant incubation conditions. Also, +it shows the lowest AIC and BIC values in the first set of fits when +combined with the two-component error model. Therefore, the DFOP model +was selected for further refinements of the fits with the aim to make +the model fully identifiable.</p> +<div class="section level3"> +<h3 id="parameter-identifiability-based-on-the-fisher-information-matrix">Parameter identifiability based on the Fisher Information +Matrix<a class="anchor" aria-label="anchor" href="#parameter-identifiability-based-on-the-fisher-information-matrix"></a> +</h3> +<p>Using the <code>illparms</code> function, ill-defined statistical +model parameters such as standard deviations of the degradation +parameters in the population and error model parameters can be +found.</p> +<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left"></td> +<td align="left">b.1</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left"></td> +<td align="left">sd(DMTA_0)</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">sd(k2)</td> +<td align="left">sd(k2)</td> +</tr> +<tr class="even"> +<td align="left">HS</td> +<td align="left"></td> +<td align="left">sd(tb)</td> +</tr> +</tbody> +</table> +<p>According to the <code>illparms</code> function, the fitted standard +deviation of the second kinetic rate constant <code>k2</code> is +ill-defined in both DFOP fits. This suggests that different values would +be obtained for this standard deviation when using different starting +values.</p> +<p>The thus identified overparameterisation is addressed by removing the +random effect for <code>k2</code> from the parameter model.</p> +<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_dfop_tc_no_ranef_k2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>,</span> +<span>  no_random_effect <span class="op">=</span> <span class="st">"k2"</span><span class="op">)</span></span></code></pre></div> +<p>For the resulting fit, it is checked whether there are still +ill-defined parameters,</p> +<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span><span class="op">)</span></span></code></pre></div> +<p>which is not the case. Below, the refined model is compared with the +previous best model. The model without random effect for <code>k2</code> +is a reduced version of the previous model. Therefore, the models are +nested and can be compared using the likelihood ratio test. This is +achieved with the argument <code>test = TRUE</code> to the +<code>anova</code> function.</p> +<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>, <span class="va">f_saem_dfop_tc_no_ranef_k2</span>, test <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span> <span class="op">|></span></span> +<span>  <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>format.args <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">4</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<colgroup> +<col width="37%"> +<col width="6%"> +<col width="8%"> +<col width="8%"> +<col width="9%"> +<col width="9%"> +<col width="4%"> +<col width="15%"> +</colgroup> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +<th align="right">Chisq</th> +<th align="right">Df</th> +<th align="right">Pr(>Chisq)</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">f_saem_dfop_tc_no_ranef_k2</td> +<td align="right">9</td> +<td align="right">663.8</td> +<td align="right">661.9</td> +<td align="right">-322.9</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="left">f_saem[[“DFOP”, “tc”]]</td> +<td align="right">10</td> +<td align="right">665.5</td> +<td align="right">663.4</td> +<td align="right">-322.8</td> +<td align="right">0.2809</td> +<td align="right">1</td> +<td align="right">0.5961</td> +</tr> +</tbody> +</table> +<p>The AIC and BIC criteria are lower after removal of the ill-defined +random effect for <code>k2</code>. The p value of the likelihood ratio +test is much greater than 0.05, indicating that the model with the +higher likelihood (here the model with random effects for all +degradation parameters <code>f_saem[["DFOP", "tc"]]</code>) does not fit +significantly better than the model with the lower likelihood (the +reduced model <code>f_saem_dfop_tc_no_ranef_k2</code>).</p> +<p>Therefore, AIC, BIC and likelihood ratio test suggest the use of the +reduced model.</p> +<p>The convergence of the fit is checked visually.</p> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-no-ranef-k2-1.png" alt="Convergence plot for the NLHM DFOP fit with two-component error and without a random effect on 'k2'" width="864"><p class="caption"> +Convergence plot for the NLHM DFOP fit with two-component error and +without a random effect on ‘k2’ +</p> +</div> +<p>All parameters appear to have converged to a satisfactory degree. The +final fit is plotted using the plot method from the mkin package.</p> +<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/plot-saem-dfop-tc-no-ranef-k2-1.png" alt="Plot of the final NLHM DFOP fit" width="864"><p class="caption"> +Plot of the final NLHM DFOP fit +</p> +</div> +<p>Finally, a summary report of the fit is produced.</p> +<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span><span class="op">)</span></span></code></pre></div> +<pre><code>saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 14:07:09 2023  +Date of summary: Thu Apr 20 14:07:10 2023  + +Equations: +d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +           * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical  + +Fitted in 4.175 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +   DMTA_0        k1        k2         g  +98.759266  0.087034  0.009933  0.930827  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +       DMTA_0 k1 k2 g +DMTA_0  98.76  0  0 0 +k1       0.00  1  0 0 +k2       0.00  0  1 0 +g        0.00  0  0 1 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +    AIC   BIC logLik +  663.8 661.9 -322.9 + +Optimised parameters: +               est.     lower     upper +DMTA_0    98.228939 96.285869 100.17201 +k1         0.064063  0.033477   0.09465 +k2         0.008297  0.005824   0.01077 +g          0.953821  0.914328   0.99331 +a.1        1.068479  0.869538   1.26742 +b.1        0.029424  0.022406   0.03644 +SD.DMTA_0  2.030437  0.404824   3.65605 +SD.k1      0.594692  0.256660   0.93272 +SD.g       1.006754  0.361327   1.65218 + +Correlation:  +   DMTA_0  k1      k2      +k1  0.0218                 +k2  0.0556  0.0355         +g  -0.0516 -0.0284 -0.2800 + +Random effects: +            est.  lower  upper +SD.DMTA_0 2.0304 0.4048 3.6560 +SD.k1     0.5947 0.2567 0.9327 +SD.g      1.0068 0.3613 1.6522 + +Variance model: +       est.   lower   upper +a.1 1.06848 0.86954 1.26742 +b.1 0.02942 0.02241 0.03644 + +Estimated disappearance times: +      DT50 DT90 DT50back DT50_k1 DT50_k2 +DMTA 11.45 41.4    12.46   10.82   83.54</code></pre> +</div> +<div class="section level3"> +<h3 id="alternative-check-of-parameter-identifiability">Alternative check of parameter identifiability<a class="anchor" aria-label="anchor" href="#alternative-check-of-parameter-identifiability"></a> +</h3> +<p>The parameter check used in the <code>illparms</code> function is +based on a quadratic approximation of the likelihood surface near its +optimum, which is calculated using the Fisher Information Matrix (FIM). +An alternative way to check parameter identifiability <span class="citation">(Duchesne et al. 2021)</span> based on a multistart +approach has recently been implemented in mkin.</p> +<p>The graph below shows boxplots of the parameters obtained in 50 runs +of the saem algorithm with different parameter combinations, sampled +from the range of the parameters obtained for the individual datasets +fitted separately using nonlinear regression.</p> +<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_dfop_tc_multi</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>, n <span class="op">=</span> <span class="fl">50</span>, cores <span class="op">=</span> <span class="fl">15</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">6.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_multi</span>, lpos <span class="op">=</span> <span class="st">"bottomright"</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.3</span>, <span class="fl">10</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/multistart-full-par-1.png" alt="Scaled parameters from the multistart runs, full model" width="960"><p class="caption"> +Scaled parameters from the multistart runs, full model +</p> +</div> +<p>The graph clearly confirms the lack of identifiability of the +variance of <code>k2</code> in the full model. The overparameterisation +of the model also indicates a lack of identifiability of the variance of +parameter <code>g</code>.</p> +<p>The parameter boxplots of the multistart runs with the reduced model +shown below indicate that all runs give similar results, regardless of +the starting parameters.</p> +<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_dfop_tc_no_ranef_k2_multi</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span>,</span> +<span>  n <span class="op">=</span> <span class="fl">50</span>, cores <span class="op">=</span> <span class="fl">15</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">6.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2_multi</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span>,</span> +<span>  lpos <span class="op">=</span> <span class="st">"bottomright"</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/multistart-reduced-par-1.png" alt="Scaled parameters from the multistart runs, reduced model" width="960"><p class="caption"> +Scaled parameters from the multistart runs, reduced model +</p> +</div> +<p>When only the parameters of the top 25% of the fits are shown (based +on a feature introduced in mkin 1.2.2 currently under development), the +scatter is even less as shown below.</p> +<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">6.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2_multi</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span>, llquant <span class="op">=</span> <span class="fl">0.25</span>,</span> +<span>  lpos <span class="op">=</span> <span class="st">"bottomright"</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/multistart-reduced-par-llquant-1.png" alt="Scaled parameters from the multistart runs, reduced model, fits with the top 25\% likelihood values" width="960"><p class="caption"> +Scaled parameters from the multistart runs, reduced model, fits with the +top 25% likelihood values +</p> +</div> +</div> +</div> +<div class="section level2"> +<h2 id="conclusions">Conclusions<a class="anchor" aria-label="anchor" href="#conclusions"></a> +</h2> +<p>Fitting the four parent degradation models SFO, FOMC, DFOP and HS as +part of hierarchical model fits with two different error models and +normal distributions of the transformed degradation parameters works +without technical problems. The biphasic models DFOP and HS gave the +best fit to the data, but the default parameter distribution model was +not fully identifiable. Removing the random effect for the second +kinetic rate constant of the DFOP model resulted in a reduced model that +was fully identifiable and showed the lowest values for the model +selection criteria AIC and BIC. The reliability of the identification of +all model parameters was confirmed using multiple starting values.</p> +</div> +<div class="section level2"> +<h2 id="acknowledgements">Acknowledgements<a class="anchor" aria-label="anchor" href="#acknowledgements"></a> +</h2> +<p>The helpful comments by Janina Wöltjen of the German Environment +Agency are gratefully acknowledged.</p> +</div> +<div class="section level2"> +<h2 id="references">References<a class="anchor" aria-label="anchor" href="#references"></a> +</h2> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-duchesne_2021" class="csl-entry"> +Duchesne, Ronan, Anissa Guillemin, Olivier Gandrillon, and Fabien +Crauste. 2021. <span>“Practical Identifiability in the Frame of +Nonlinear Mixed Effects Models: The Example of the in Vitro +Erythropoiesis.”</span> <em>BMC Bioinformatics</em> 22 (478). <a href="https://doi.org/10.1186/s12859-021-04373-4" class="external-link">https://doi.org/10.1186/s12859-021-04373-4</a>. +</div> +</div> +</div> +<div class="section level2"> +<h2 id="appendix">Appendix<a class="anchor" aria-label="anchor" href="#appendix"></a> +</h2> +<div class="section level3"> +<h3 id="hierarchical-model-fit-listings">Hierarchical model fit listings<a class="anchor" aria-label="anchor" href="#hierarchical-model-fit-listings"></a> +</h3> +<caption> +Hierarchical mkin fit of the SFO model with error model const +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 14:07:02 2023  +Date of summary: Thu Apr 20 14:08:16 2023  + +Equations: +d_DMTA/dt = - k_DMTA * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical  + +Fitted in 0.982 s +Using 300, 100 iterations and 9 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: + DMTA_0  k_DMTA  +97.2953  0.0566  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +       DMTA_0 k_DMTA +DMTA_0   97.3      0 +k_DMTA    0.0      1 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +    AIC   BIC logLik +  796.3 795.3 -393.2 + +Optimised parameters: +              est.    lower   upper +DMTA_0    97.28130 95.71113 98.8515 +k_DMTA     0.05665  0.02909  0.0842 +a.1        2.66442  2.35579  2.9731 +SD.DMTA_0  1.54776  0.15447  2.9411 +SD.k_DMTA  0.60690  0.26248  0.9513 + +Correlation:  +       DMTA_0 +k_DMTA 0.0168 + +Random effects: +            est.  lower  upper +SD.DMTA_0 1.5478 0.1545 2.9411 +SD.k_DMTA 0.6069 0.2625 0.9513 + +Variance model: +     est. lower upper +a.1 2.664 2.356 2.973 + +Estimated disappearance times: +      DT50  DT90 +DMTA 12.24 40.65 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the SFO model with error model tc +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 14:07:03 2023  +Date of summary: Thu Apr 20 14:08:16 2023  + +Equations: +d_DMTA/dt = - k_DMTA * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical  + +Fitted in 2.398 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +  DMTA_0   k_DMTA  +96.99175  0.05603  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +       DMTA_0 k_DMTA +DMTA_0  96.99      0 +k_DMTA   0.00      1 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +    AIC   BIC logLik +  798.3 797.1 -393.2 + +Optimised parameters: +               est.     lower    upper +DMTA_0    97.271822 95.703157 98.84049 +k_DMTA     0.056638  0.029110  0.08417 +a.1        2.660081  2.230398  3.08976 +b.1        0.001665 -0.006911  0.01024 +SD.DMTA_0  1.545520  0.145035  2.94601 +SD.k_DMTA  0.606422  0.262274  0.95057 + +Correlation:  +       DMTA_0 +k_DMTA 0.0169 + +Random effects: +            est.  lower  upper +SD.DMTA_0 1.5455 0.1450 2.9460 +SD.k_DMTA 0.6064 0.2623 0.9506 + +Variance model: +        est.     lower   upper +a.1 2.660081  2.230398 3.08976 +b.1 0.001665 -0.006911 0.01024 + +Estimated disappearance times: +      DT50  DT90 +DMTA 12.24 40.65 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the FOMC model with error model const +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 14:07:02 2023  +Date of summary: Thu Apr 20 14:08:16 2023  + +Equations: +d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical  + +Fitted in 1.398 s +Using 300, 100 iterations and 9 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: + DMTA_0   alpha    beta  + 98.292   9.909 156.341  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +       DMTA_0 alpha beta +DMTA_0  98.29     0    0 +alpha    0.00     1    0 +beta     0.00     0    1 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +    AIC   BIC logLik +  734.2 732.7 -360.1 + +Optimised parameters: +              est.   lower   upper +DMTA_0     98.3435 96.9033  99.784 +alpha       7.2007  2.5889  11.812 +beta      112.8746 34.8816 190.868 +a.1         2.0459  1.8054   2.286 +SD.DMTA_0   1.4795  0.2717   2.687 +SD.alpha    0.6396  0.1509   1.128 +SD.beta     0.6874  0.1587   1.216 + +Correlation:  +      DMTA_0  alpha   +alpha -0.1125         +beta  -0.1227  0.3632 + +Random effects: +            est.  lower upper +SD.DMTA_0 1.4795 0.2717 2.687 +SD.alpha  0.6396 0.1509 1.128 +SD.beta   0.6874 0.1587 1.216 + +Variance model: +     est. lower upper +a.1 2.046 1.805 2.286 + +Estimated disappearance times: +      DT50  DT90 DT50back +DMTA 11.41 42.53     12.8 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the FOMC model with error model tc +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 14:07:04 2023  +Date of summary: Thu Apr 20 14:08:16 2023  + +Equations: +d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical  + +Fitted in 3.044 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +DMTA_0  alpha   beta  +98.772  4.663 92.597  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +       DMTA_0 alpha beta +DMTA_0  98.77     0    0 +alpha    0.00     1    0 +beta     0.00     0    1 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +    AIC   BIC logLik +  720.4 718.8 -352.2 + +Optimised parameters: +              est.    lower     upper +DMTA_0    98.99136 97.26011 100.72261 +alpha      5.86312  2.57485   9.15138 +beta      88.55571 29.20889 147.90254 +a.1        1.51063  1.24384   1.77741 +b.1        0.02824  0.02040   0.03609 +SD.DMTA_0  1.57436 -0.04867   3.19739 +SD.alpha   0.59871  0.17132   1.02611 +SD.beta    0.72994  0.22849   1.23139 + +Correlation:  +      DMTA_0  alpha   +alpha -0.1363         +beta  -0.1414  0.2542 + +Random effects: +            est.    lower upper +SD.DMTA_0 1.5744 -0.04867 3.197 +SD.alpha  0.5987  0.17132 1.026 +SD.beta   0.7299  0.22849 1.231 + +Variance model: +       est.  lower   upper +a.1 1.51063 1.2438 1.77741 +b.1 0.02824 0.0204 0.03609 + +Estimated disappearance times: +      DT50 DT90 DT50back +DMTA 11.11 42.6    12.82 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the DFOP model with error model const +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 14:07:02 2023  +Date of summary: Thu Apr 20 14:08:16 2023  + +Equations: +d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +           * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical  + +Fitted in 1.838 s +Using 300, 100 iterations and 9 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +  DMTA_0       k1       k2        g  +98.64383  0.09211  0.02999  0.76814  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +       DMTA_0 k1 k2 g +DMTA_0  98.64  0  0 0 +k1       0.00  1  0 0 +k2       0.00  0  1 0 +g        0.00  0  0 1 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +    AIC BIC logLik +  711.8 710 -346.9 + +Optimised parameters: +               est.     lower    upper +DMTA_0    98.092481 96.573898 99.61106 +k1         0.062499  0.030336  0.09466 +k2         0.009065 -0.005133  0.02326 +g          0.948967  0.862079  1.03586 +a.1        1.821671  1.604774  2.03857 +SD.DMTA_0  1.677785  0.472066  2.88350 +SD.k1      0.634962  0.270788  0.99914 +SD.k2      1.033498 -0.205994  2.27299 +SD.g       1.710046  0.428642  2.99145 + +Correlation:  +   DMTA_0  k1      k2      +k1  0.0246                 +k2  0.0491  0.0953         +g  -0.0552 -0.0889 -0.4795 + +Random effects: +           est.   lower  upper +SD.DMTA_0 1.678  0.4721 2.8835 +SD.k1     0.635  0.2708 0.9991 +SD.k2     1.033 -0.2060 2.2730 +SD.g      1.710  0.4286 2.9914 + +Variance model: +     est. lower upper +a.1 1.822 1.605 2.039 + +Estimated disappearance times: +      DT50 DT90 DT50back DT50_k1 DT50_k2 +DMTA 11.79 42.8    12.88   11.09   76.46 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the DFOP model with error model tc +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 14:07:04 2023  +Date of summary: Thu Apr 20 14:08:16 2023  + +Equations: +d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +           * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical  + +Fitted in 3.297 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +   DMTA_0        k1        k2         g  +98.759266  0.087034  0.009933  0.930827  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +       DMTA_0 k1 k2 g +DMTA_0  98.76  0  0 0 +k1       0.00  1  0 0 +k2       0.00  0  1 0 +g        0.00  0  0 1 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +    AIC   BIC logLik +  665.5 663.4 -322.8 + +Optimised parameters: +               est.     lower     upper +DMTA_0    98.377019 96.447952 100.30609 +k1         0.064843  0.034607   0.09508 +k2         0.008895  0.006368   0.01142 +g          0.949696  0.903815   0.99558 +a.1        1.065241  0.865754   1.26473 +b.1        0.029340  0.022336   0.03634 +SD.DMTA_0  2.007754  0.387982   3.62753 +SD.k1      0.580473  0.250286   0.91066 +SD.k2      0.006105 -4.920337   4.93255 +SD.g       1.097149  0.412779   1.78152 + +Correlation:  +   DMTA_0  k1      k2      +k1  0.0235                 +k2  0.0595  0.0424         +g  -0.0470 -0.0278 -0.2731 + +Random effects: +              est.   lower  upper +SD.DMTA_0 2.007754  0.3880 3.6275 +SD.k1     0.580473  0.2503 0.9107 +SD.k2     0.006105 -4.9203 4.9325 +SD.g      1.097149  0.4128 1.7815 + +Variance model: +       est.   lower   upper +a.1 1.06524 0.86575 1.26473 +b.1 0.02934 0.02234 0.03634 + +Estimated disappearance times: +      DT50  DT90 DT50back DT50_k1 DT50_k2 +DMTA 11.36 41.32    12.44   10.69   77.92 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the HS model with error model const +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 14:07:03 2023  +Date of summary: Thu Apr 20 14:08:16 2023  + +Equations: +d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical  + +Fitted in 1.972 s +Using 300, 100 iterations and 9 chains + +Variance model: Constant variance  + +Starting values for degradation parameters: +  DMTA_0       k1       k2       tb  +97.82176  0.06931  0.02997 11.13945  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +       DMTA_0 k1 k2 tb +DMTA_0  97.82  0  0  0 +k1       0.00  1  0  0 +k2       0.00  0  1  0 +tb       0.00  0  0  1 + +Starting values for error model parameters: +a.1  +  1  + +Results: + +Likelihood computed by importance sampling +  AIC   BIC logLik +  714 712.1   -348 + +Optimised parameters: +              est.    lower    upper +DMTA_0    98.16102 96.47747 99.84456 +k1         0.07876  0.05261  0.10491 +k2         0.02227  0.01706  0.02747 +tb        13.99089 -7.40049 35.38228 +a.1        1.82305  1.60700  2.03910 +SD.DMTA_0  1.88413  0.56204  3.20622 +SD.k1      0.34292  0.10482  0.58102 +SD.k2      0.19851  0.01718  0.37985 +SD.tb      1.68168  0.58064  2.78272 + +Correlation:  +   DMTA_0  k1      k2      +k1  0.0142                 +k2  0.0001 -0.0025         +tb  0.0165 -0.1256 -0.0301 + +Random effects: +            est.   lower  upper +SD.DMTA_0 1.8841 0.56204 3.2062 +SD.k1     0.3429 0.10482 0.5810 +SD.k2     0.1985 0.01718 0.3798 +SD.tb     1.6817 0.58064 2.7827 + +Variance model: +     est. lower upper +a.1 1.823 1.607 2.039 + +Estimated disappearance times: +      DT50  DT90 DT50back DT50_k1 DT50_k2 +DMTA 8.801 67.91    20.44   8.801   31.13 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the HS model with error model tc +</caption> +<pre><code> +saemix version used for fitting:      3.2  +mkin version used for pre-fitting:  1.2.3  +R version used for fitting:         4.2.3  +Date of fit:     Thu Apr 20 14:07:04 2023  +Date of summary: Thu Apr 20 14:08:16 2023  + +Equations: +d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical  + +Fitted in 3.378 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function  + +Starting values for degradation parameters: +  DMTA_0       k1       k2       tb  +98.45190  0.07525  0.02576 19.19375  + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): +       DMTA_0 k1 k2 tb +DMTA_0  98.45  0  0  0 +k1       0.00  1  0  0 +k2       0.00  0  1  0 +tb       0.00  0  0  1 + +Starting values for error model parameters: +a.1 b.1  +  1   1  + +Results: + +Likelihood computed by importance sampling +    AIC BIC logLik +  667.1 665 -323.6 + +Optimised parameters: +              est.    lower    upper +DMTA_0    97.76570 95.81350 99.71791 +k1         0.05855  0.03080  0.08630 +k2         0.02337  0.01664  0.03010 +tb        31.09638 29.38289 32.80987 +a.1        1.08835  0.88590  1.29080 +b.1        0.02964  0.02257  0.03671 +SD.DMTA_0  2.04877  0.42607  3.67147 +SD.k1      0.59166  0.25621  0.92711 +SD.k2      0.30698  0.09561  0.51835 +SD.tb      0.01274 -0.10914  0.13462 + +Correlation:  +   DMTA_0  k1      k2      +k1  0.0160                 +k2 -0.0070 -0.0024         +tb -0.0668 -0.0103 -0.2013 + +Random effects: +             est.    lower  upper +SD.DMTA_0 2.04877  0.42607 3.6715 +SD.k1     0.59166  0.25621 0.9271 +SD.k2     0.30698  0.09561 0.5183 +SD.tb     0.01274 -0.10914 0.1346 + +Variance model: +       est.   lower   upper +a.1 1.08835 0.88590 1.29080 +b.1 0.02964 0.02257 0.03671 + +Estimated disappearance times: +      DT50  DT90 DT50back DT50_k1 DT50_k2 +DMTA 11.84 51.71    15.57   11.84   29.66 + +</code></pre> +<p></p> +</div> +<div class="section level3"> +<h3 id="hierarchical-model-convergence-plots">Hierarchical model convergence plots<a class="anchor" aria-label="anchor" href="#hierarchical-model-convergence-plots"></a> +</h3> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-sfo-const-1.png" alt="Convergence plot for the NLHM SFO fit with constant variance" width="864"><p class="caption"> +Convergence plot for the NLHM SFO fit with constant variance +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-sfo-tc-1.png" alt="Convergence plot for the NLHM SFO fit with two-component error" width="864"><p class="caption"> +Convergence plot for the NLHM SFO fit with two-component error +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-fomc-const-1.png" alt="Convergence plot for the NLHM FOMC fit with constant variance" width="864"><p class="caption"> +Convergence plot for the NLHM FOMC fit with constant variance +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-fomc-tc-1.png" alt="Convergence plot for the NLHM FOMC fit with two-component error" width="864"><p class="caption"> +Convergence plot for the NLHM FOMC fit with two-component error +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-dfop-const-1.png" alt="Convergence plot for the NLHM DFOP fit with constant variance" width="864"><p class="caption"> +Convergence plot for the NLHM DFOP fit with constant variance +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-1.png" alt="Convergence plot for the NLHM DFOP fit with two-component error" width="864"><p class="caption"> +Convergence plot for the NLHM DFOP fit with two-component error +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-hs-const-1.png" alt="Convergence plot for the NLHM HS fit with constant variance" width="864"><p class="caption"> +Convergence plot for the NLHM HS fit with constant variance +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-hs-tc-1.png" alt="Convergence plot for the NLHM HS fit with two-component error" width="864"><p class="caption"> +Convergence plot for the NLHM HS fit with two-component error +</p> +</div> +</div> +<div class="section level3"> +<h3 id="session-info">Session info<a class="anchor" aria-label="anchor" href="#session-info"></a> +</h3> +<pre><code>R version 4.2.3 (2023-03-15) +Platform: x86_64-pc-linux-gnu (64-bit) +Running under: Debian GNU/Linux 12 (bookworm) + +Matrix products: default +BLAS:   /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3 +LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so + +locale: + [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C               + [3] LC_TIME=de_DE.UTF-8        LC_COLLATE=de_DE.UTF-8     + [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=de_DE.UTF-8    + [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                  + [9] LC_ADDRESS=C               LC_TELEPHONE=C             +[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C        + +attached base packages: +[1] parallel  stats     graphics  grDevices utils     datasets  methods   +[8] base      + +other attached packages: +[1] saemix_3.2 npde_3.3   knitr_1.42 mkin_1.2.3 + +loaded via a namespace (and not attached): + [1] highr_0.10        pillar_1.9.0      bslib_0.4.2       compiler_4.2.3    + [5] jquerylib_0.1.4   tools_4.2.3       mclust_6.0.0      digest_0.6.31     + [9] tibble_3.2.1      jsonlite_1.8.4    evaluate_0.20     memoise_2.0.1     +[13] lifecycle_1.0.3   nlme_3.1-162      gtable_0.3.3      lattice_0.21-8    +[17] pkgconfig_2.0.3   rlang_1.1.0       DBI_1.1.3         cli_3.6.1         +[21] yaml_2.3.7        pkgdown_2.0.7     xfun_0.38         fastmap_1.1.1     +[25] gridExtra_2.3     dplyr_1.1.1       stringr_1.5.0     generics_0.1.3    +[29] desc_1.4.2        fs_1.6.1          vctrs_0.6.1       sass_0.4.5        +[33] systemfonts_1.0.4 tidyselect_1.2.0  rprojroot_2.0.3   lmtest_0.9-40     +[37] grid_4.2.3        glue_1.6.2        R6_2.5.1          textshaping_0.3.6 +[41] fansi_1.0.4       rmarkdown_2.21    purrr_1.0.1       ggplot2_3.4.2     +[45] magrittr_2.0.3    codetools_0.2-19  scales_1.2.1      htmltools_0.5.5   +[49] colorspace_2.1-0  ragg_1.2.5        utf8_1.2.3        stringi_1.7.12    +[53] munsell_0.5.0     cachem_1.0.7      zoo_1.8-12       </code></pre> +</div> +<div class="section level3"> +<h3 id="hardware-info">Hardware info<a class="anchor" aria-label="anchor" href="#hardware-info"></a> +</h3> +<pre><code>CPU model: AMD Ryzen 9 7950X 16-Core Processor</code></pre> +<pre><code>MemTotal:       64936316 kB</code></pre> +</div> +</div> +  </div> + +  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> + +        <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> +    </nav> +</div> + +</div> + + + +      <footer><div class="copyright"> +  <p></p> +<p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> +  <p></p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p> +</div> + +      </footer> +</div> + +   + + +   + +  </body> +</html> diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-const-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-const-1.pngBinary files differ new file mode 100644 index 00000000..3f145074 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-const-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-1.pngBinary files differ new file mode 100644 index 00000000..e5457fc9 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-no-ranef-k2-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-no-ranef-k2-1.pngBinary files differ new file mode 100644 index 00000000..14707641 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-no-ranef-k2-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-const-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-const-1.pngBinary files differ new file mode 100644 index 00000000..c7ed69a3 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-const-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-tc-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-tc-1.pngBinary files differ new file mode 100644 index 00000000..1a48524c --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-tc-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-const-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-const-1.pngBinary files differ new file mode 100644 index 00000000..0f3b1184 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-const-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-tc-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-tc-1.pngBinary files differ new file mode 100644 index 00000000..901a1579 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-tc-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-const-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-const-1.pngBinary files differ new file mode 100644 index 00000000..a3e3a51f --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-const-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-tc-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-tc-1.pngBinary files differ new file mode 100644 index 00000000..b85691eb --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-tc-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-full-par-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-full-par-1.pngBinary files differ new file mode 100644 index 00000000..a42950f0 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-full-par-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-1.pngBinary files differ new file mode 100644 index 00000000..caebc768 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-llquant-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-llquant-1.pngBinary files differ new file mode 100644 index 00000000..45ae57f1 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-llquant-1.png diff --git a/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/plot-saem-dfop-tc-no-ranef-k2-1.png b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/plot-saem-dfop-tc-no-ranef-k2-1.pngBinary files differ new file mode 100644 index 00000000..1f8eb9f0 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_parent_files/figure-html/plot-saem-dfop-tc-no-ranef-k2-1.png diff --git a/docs/articles/prebuilt/2022_dmta_pathway.html b/docs/articles/prebuilt/2022_dmta_pathway.html new file mode 100644 index 00000000..c8323add --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_pathway.html @@ -0,0 +1,2053 @@ +<!DOCTYPE html> +<!-- Generated by pkgdown: do not edit by hand --><html lang="en"> +<head> +<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> +<meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> +<title>Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P • mkin</title> +<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"> +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../../bootstrap-toc.css"> +<script src="../../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../../pkgdown.css" rel="stylesheet"> +<script src="../../pkgdown.js"></script><meta property="og:title" content="Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P"> +<meta property="og:description" content="mkin"> +<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> +</head> +<body data-spy="scroll" data-target="#toc"> +     + +    <div class="container template-article"> +      <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> +        <span class="sr-only">Toggle navigation</span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <span class="navbar-brand"> +        <a class="navbar-link" href="../../index.html">mkin</a> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3.1</span> +      </span> +    </div> + +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +<li> +  <a href="../../reference/index.html">Reference</a> +</li> +<li class="dropdown"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> +    Articles +      +    <span class="caret"></span> +  </a> +  <ul class="dropdown-menu" role="menu"> +<li> +      <a href="../../articles/mkin.html">Introduction to mkin</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li> +    <li> +      <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> +    </li> +    <li> +      <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> +    </li> +    <li> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li> +    <li> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a> +    </li> +    <li> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a> +    </li> +    <li> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a> +    </li> +    <li> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a> +    </li> +    <li> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li> +  </ul> +</li> +<li> +  <a href="../../news/index.html">News</a> +</li> +      </ul> +<ul class="nav navbar-nav navbar-right"> +<li> +  <a href="https://github.com/jranke/mkin/" class="external-link"> +    <span class="fab fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +</div> +<!--/.nav-collapse --> +  </div> +<!--/.container --> +</div> +<!--/.navbar --> + +       + +      </header><div class="row"> +  <div class="col-md-9 contents"> +    <div class="page-header toc-ignore"> +      <h1 data-toc-skip>Testing hierarchical pathway kinetics with +residue data on dimethenamid and dimethenamid-P</h1> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> +             +            <h4 data-toc-skip class="date">Last change on 20 April 2023, +last compiled on 20 April 2023</h4> +       +      <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/prebuilt/2022_dmta_pathway.rmd" class="external-link"><code>vignettes/prebuilt/2022_dmta_pathway.rmd</code></a></small> +      <div class="hidden name"><code>2022_dmta_pathway.rmd</code></div> + +    </div> + +     +     +<div class="section level2"> +<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a> +</h2> +<p>The purpose of this document is to test demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS, with parallel formation of two or more metabolites +can be fitted with the mkin package.</p> +<p>It was assembled in the course of work package 1.2 of Project Number +173340 (Application of nonlinear hierarchical models to the kinetic +evaluation of chemical degradation data) of the German Environment +Agency carried out in 2022 and 2023.</p> +<p>The mkin package is used in version 1.2.3, which is currently under +development. It contains the test data, and the functions used in the +evaluations. The <code>saemix</code> package is used as a backend for +fitting the NLHM, but is also loaded to make the convergence plot +function available.</p> +<p>This document is processed with the <code>knitr</code> package, which +also provides the <code>kable</code> function that is used to improve +the display of tabular data in R markdown documents. For parallel +processing, the <code>parallel</code> package is used.</p> +<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://yihui.org/knitr/" class="external-link">knitr</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">parallel</span><span class="op">)</span></span> +<span><span class="va">n_cores</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/detectCores.html" class="external-link">detectCores</a></span><span class="op">(</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># We need to start a new cluster after defining a compiled model that is</span></span> +<span><span class="co"># saved as a DLL to the user directory, therefore we define a function</span></span> +<span><span class="co"># This is used again after defining the pathway model</span></span> +<span><span class="va">start_cluster</span> <span class="op"><-</span> <span class="kw">function</span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span> <span class="op">{</span></span> +<span>  <span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/Sys.info.html" class="external-link">Sys.info</a></span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="st">"sysname"</span><span class="op">]</span> <span class="op">==</span> <span class="st">"Windows"</span><span class="op">)</span> <span class="op">{</span></span> +<span>    <span class="va">ret</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makePSOCKcluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span>  <span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span> +<span>    <span class="va">ret</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makeForkCluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span>  <span class="op">}</span></span> +<span>  <span class="kw"><a href="https://rdrr.io/r/base/function.html" class="external-link">return</a></span><span class="op">(</span><span class="va">ret</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +</div> +<div class="section level2"> +<h2 id="data">Data<a class="anchor" aria-label="anchor" href="#data"></a> +</h2> +<p>The test data are available in the mkin package as an object of class +<code>mkindsg</code> (mkin dataset group) under the identifier +<code>dimethenamid_2018</code>. The following preprocessing steps are +done in this document.</p> +<ul> +<li>The data available for the enantiomer dimethenamid-P (DMTAP) are +renamed to have the same substance name as the data for the racemic +mixture dimethenamid (DMTA). The reason for this is that no difference +between their degradation behaviour was identified in the EU risk +assessment.</li> +<li>Unnecessary columns are discarded</li> +<li>The observation times of each dataset are multiplied with the +corresponding normalisation factor also available in the dataset, in +order to make it possible to describe all datasets with a single set of +parameters that are independent of temperature</li> +<li>Finally, datasets observed in the same soil (<code>Elliot 1</code> +and <code>Elliot 2</code>) are combined, resulting in dimethenamid +(DMTA) data from six soils.</li> +</ul> +<p>The following commented R code performs this preprocessing.</p> +<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="co"># Apply a function to each of the seven datasets in the mkindsg object to create a list</span></span> +<span><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span> +<span>  <span class="va">ds_i</span> <span class="op"><-</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span>                     <span class="co"># Get a dataset</span></span> +<span>  <span class="va">ds_i</span><span class="op">[</span><span class="va">ds_i</span><span class="op">$</span><span class="va">name</span> <span class="op">==</span> <span class="st">"DMTAP"</span>, <span class="st">"name"</span><span class="op">]</span> <span class="op"><-</span>  <span class="st">"DMTA"</span>              <span class="co"># Rename DMTAP to DMTA</span></span> +<span>  <span class="va">ds_i</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">ds_i</span>, select <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"name"</span>, <span class="st">"time"</span>, <span class="st">"value"</span><span class="op">)</span><span class="op">)</span> <span class="co"># Select data</span></span> +<span>  <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op">*</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">f_time_norm</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>  <span class="co"># Normalise time</span></span> +<span>  <span class="va">ds_i</span>                                                       <span class="co"># Return the dataset</span></span> +<span><span class="op">}</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># Use dataset titles as names for the list elements</span></span> +<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">sapply</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span>, <span class="kw">function</span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="va">ds</span><span class="op">$</span><span class="va">title</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># Combine data for Elliot soil to obtain a named list with six elements</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">rbind</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span>, <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span> <span class="co">#</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span></code></pre></div> +<p>The following tables show the 6 datasets.</p> +<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">for</span> <span class="op">(</span><span class="va">ds_name</span> <span class="kw">in</span> <span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span> +<span>  <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span></span> +<span>    <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mkin_long_to_wide.html">mkin_long_to_wide</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="va">ds_name</span><span class="op">]</span><span class="op">]</span><span class="op">)</span>,</span> +<span>      caption <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"Dataset"</span>, <span class="va">ds_name</span><span class="op">)</span>,</span> +<span>      booktabs <span class="op">=</span> <span class="cn">TRUE</span>, row.names <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">)</span></span> +<span>    <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"\n\\clearpage\n"</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +<table class="table"> +<caption>Dataset Calke</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0</td> +<td align="right">95.8</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0</td> +<td align="right">98.7</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">14</td> +<td align="right">60.5</td> +<td align="right">4.1</td> +<td align="right">1.5</td> +<td align="right">2.0</td> +</tr> +<tr class="even"> +<td align="right">30</td> +<td align="right">39.1</td> +<td align="right">5.3</td> +<td align="right">2.4</td> +<td align="right">2.1</td> +</tr> +<tr class="odd"> +<td align="right">59</td> +<td align="right">15.2</td> +<td align="right">6.0</td> +<td align="right">3.2</td> +<td align="right">2.2</td> +</tr> +<tr class="even"> +<td align="right">120</td> +<td align="right">4.8</td> +<td align="right">4.3</td> +<td align="right">3.8</td> +<td align="right">1.8</td> +</tr> +<tr class="odd"> +<td align="right">120</td> +<td align="right">4.6</td> +<td align="right">4.1</td> +<td align="right">3.7</td> +<td align="right">2.1</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Borstel</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">100.5</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">99.6</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">1.941295</td> +<td align="right">91.9</td> +<td align="right">0.4</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">1.941295</td> +<td align="right">91.3</td> +<td align="right">0.5</td> +<td align="right">0.3</td> +<td align="right">0.1</td> +</tr> +<tr class="odd"> +<td align="right">6.794534</td> +<td align="right">81.8</td> +<td align="right">1.2</td> +<td align="right">0.8</td> +<td align="right">1.0</td> +</tr> +<tr class="even"> +<td align="right">6.794534</td> +<td align="right">82.1</td> +<td align="right">1.3</td> +<td align="right">0.9</td> +<td align="right">0.9</td> +</tr> +<tr class="odd"> +<td align="right">13.589067</td> +<td align="right">69.1</td> +<td align="right">2.8</td> +<td align="right">1.4</td> +<td align="right">2.0</td> +</tr> +<tr class="even"> +<td align="right">13.589067</td> +<td align="right">68.0</td> +<td align="right">2.0</td> +<td align="right">1.4</td> +<td align="right">2.5</td> +</tr> +<tr class="odd"> +<td align="right">27.178135</td> +<td align="right">51.4</td> +<td align="right">2.9</td> +<td align="right">2.7</td> +<td align="right">4.3</td> +</tr> +<tr class="even"> +<td align="right">27.178135</td> +<td align="right">51.4</td> +<td align="right">4.9</td> +<td align="right">2.6</td> +<td align="right">3.2</td> +</tr> +<tr class="odd"> +<td align="right">56.297565</td> +<td align="right">27.6</td> +<td align="right">12.2</td> +<td align="right">4.4</td> +<td align="right">4.3</td> +</tr> +<tr class="even"> +<td align="right">56.297565</td> +<td align="right">26.8</td> +<td align="right">12.2</td> +<td align="right">4.7</td> +<td align="right">4.8</td> +</tr> +<tr class="odd"> +<td align="right">86.387643</td> +<td align="right">15.7</td> +<td align="right">12.2</td> +<td align="right">5.4</td> +<td align="right">5.0</td> +</tr> +<tr class="even"> +<td align="right">86.387643</td> +<td align="right">15.3</td> +<td align="right">12.0</td> +<td align="right">5.2</td> +<td align="right">5.1</td> +</tr> +<tr class="odd"> +<td align="right">115.507073</td> +<td align="right">7.9</td> +<td align="right">10.4</td> +<td align="right">5.4</td> +<td align="right">4.3</td> +</tr> +<tr class="even"> +<td align="right">115.507073</td> +<td align="right">8.1</td> +<td align="right">11.6</td> +<td align="right">5.4</td> +<td align="right">4.4</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Flaach</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">96.5</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">96.8</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">97.0</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.6233856</td> +<td align="right">82.9</td> +<td align="right">0.7</td> +<td align="right">1.1</td> +<td align="right">0.3</td> +</tr> +<tr class="odd"> +<td align="right">0.6233856</td> +<td align="right">86.7</td> +<td align="right">0.7</td> +<td align="right">1.1</td> +<td align="right">0.3</td> +</tr> +<tr class="even"> +<td align="right">0.6233856</td> +<td align="right">87.4</td> +<td align="right">0.2</td> +<td align="right">0.3</td> +<td align="right">0.1</td> +</tr> +<tr class="odd"> +<td align="right">1.8701567</td> +<td align="right">72.8</td> +<td align="right">2.2</td> +<td align="right">2.6</td> +<td align="right">0.7</td> +</tr> +<tr class="even"> +<td align="right">1.8701567</td> +<td align="right">69.9</td> +<td align="right">1.8</td> +<td align="right">2.4</td> +<td align="right">0.6</td> +</tr> +<tr class="odd"> +<td align="right">1.8701567</td> +<td align="right">71.9</td> +<td align="right">1.6</td> +<td align="right">2.3</td> +<td align="right">0.7</td> +</tr> +<tr class="even"> +<td align="right">4.3636989</td> +<td align="right">51.4</td> +<td align="right">4.1</td> +<td align="right">5.0</td> +<td align="right">1.3</td> +</tr> +<tr class="odd"> +<td align="right">4.3636989</td> +<td align="right">52.9</td> +<td align="right">4.2</td> +<td align="right">5.9</td> +<td align="right">1.2</td> +</tr> +<tr class="even"> +<td align="right">4.3636989</td> +<td align="right">48.6</td> +<td align="right">4.2</td> +<td align="right">4.8</td> +<td align="right">1.4</td> +</tr> +<tr class="odd"> +<td align="right">8.7273979</td> +<td align="right">28.5</td> +<td align="right">7.5</td> +<td align="right">8.5</td> +<td align="right">2.4</td> +</tr> +<tr class="even"> +<td align="right">8.7273979</td> +<td align="right">27.3</td> +<td align="right">7.1</td> +<td align="right">8.5</td> +<td align="right">2.1</td> +</tr> +<tr class="odd"> +<td align="right">8.7273979</td> +<td align="right">27.5</td> +<td align="right">7.5</td> +<td align="right">8.3</td> +<td align="right">2.3</td> +</tr> +<tr class="even"> +<td align="right">13.0910968</td> +<td align="right">14.8</td> +<td align="right">8.4</td> +<td align="right">9.3</td> +<td align="right">3.3</td> +</tr> +<tr class="odd"> +<td align="right">13.0910968</td> +<td align="right">13.4</td> +<td align="right">6.8</td> +<td align="right">8.7</td> +<td align="right">2.4</td> +</tr> +<tr class="even"> +<td align="right">13.0910968</td> +<td align="right">14.4</td> +<td align="right">8.0</td> +<td align="right">9.1</td> +<td align="right">2.6</td> +</tr> +<tr class="odd"> +<td align="right">17.4547957</td> +<td align="right">7.7</td> +<td align="right">7.2</td> +<td align="right">8.6</td> +<td align="right">4.0</td> +</tr> +<tr class="even"> +<td align="right">17.4547957</td> +<td align="right">7.3</td> +<td align="right">7.2</td> +<td align="right">8.5</td> +<td align="right">3.6</td> +</tr> +<tr class="odd"> +<td align="right">17.4547957</td> +<td align="right">8.1</td> +<td align="right">6.9</td> +<td align="right">8.9</td> +<td align="right">3.3</td> +</tr> +<tr class="even"> +<td align="right">26.1821936</td> +<td align="right">2.0</td> +<td align="right">4.9</td> +<td align="right">8.1</td> +<td align="right">2.1</td> +</tr> +<tr class="odd"> +<td align="right">26.1821936</td> +<td align="right">1.5</td> +<td align="right">4.3</td> +<td align="right">7.7</td> +<td align="right">1.7</td> +</tr> +<tr class="even"> +<td align="right">26.1821936</td> +<td align="right">1.9</td> +<td align="right">4.5</td> +<td align="right">7.4</td> +<td align="right">1.8</td> +</tr> +<tr class="odd"> +<td align="right">34.9095915</td> +<td align="right">1.3</td> +<td align="right">3.8</td> +<td align="right">5.9</td> +<td align="right">1.6</td> +</tr> +<tr class="even"> +<td align="right">34.9095915</td> +<td align="right">1.0</td> +<td align="right">3.1</td> +<td align="right">6.0</td> +<td align="right">1.6</td> +</tr> +<tr class="odd"> +<td align="right">34.9095915</td> +<td align="right">1.1</td> +<td align="right">3.1</td> +<td align="right">5.9</td> +<td align="right">1.4</td> +</tr> +<tr class="even"> +<td align="right">43.6369893</td> +<td align="right">0.9</td> +<td align="right">2.7</td> +<td align="right">5.6</td> +<td align="right">1.8</td> +</tr> +<tr class="odd"> +<td align="right">43.6369893</td> +<td align="right">0.7</td> +<td align="right">2.3</td> +<td align="right">5.2</td> +<td align="right">1.5</td> +</tr> +<tr class="even"> +<td align="right">43.6369893</td> +<td align="right">0.7</td> +<td align="right">2.1</td> +<td align="right">5.6</td> +<td align="right">1.3</td> +</tr> +<tr class="odd"> +<td align="right">52.3643872</td> +<td align="right">0.6</td> +<td align="right">1.6</td> +<td align="right">4.3</td> +<td align="right">1.2</td> +</tr> +<tr class="even"> +<td align="right">52.3643872</td> +<td align="right">0.4</td> +<td align="right">1.1</td> +<td align="right">3.7</td> +<td align="right">0.9</td> +</tr> +<tr class="odd"> +<td align="right">52.3643872</td> +<td align="right">0.5</td> +<td align="right">1.3</td> +<td align="right">3.9</td> +<td align="right">1.1</td> +</tr> +<tr class="even"> +<td align="right">74.8062674</td> +<td align="right">0.4</td> +<td align="right">0.4</td> +<td align="right">2.5</td> +<td align="right">0.5</td> +</tr> +<tr class="odd"> +<td align="right">74.8062674</td> +<td align="right">0.3</td> +<td align="right">0.4</td> +<td align="right">2.4</td> +<td align="right">0.5</td> +</tr> +<tr class="even"> +<td align="right">74.8062674</td> +<td align="right">0.3</td> +<td align="right">0.3</td> +<td align="right">2.2</td> +<td align="right">0.3</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset BBA 2.2</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">98.09</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">98.77</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">0.7678922</td> +<td align="right">93.52</td> +<td align="right">0.36</td> +<td align="right">0.42</td> +<td align="right">0.36</td> +</tr> +<tr class="even"> +<td align="right">0.7678922</td> +<td align="right">92.03</td> +<td align="right">0.40</td> +<td align="right">0.47</td> +<td align="right">0.33</td> +</tr> +<tr class="odd"> +<td align="right">2.3036765</td> +<td align="right">88.39</td> +<td align="right">1.03</td> +<td align="right">0.71</td> +<td align="right">0.55</td> +</tr> +<tr class="even"> +<td align="right">2.3036765</td> +<td align="right">87.18</td> +<td align="right">1.07</td> +<td align="right">0.82</td> +<td align="right">0.64</td> +</tr> +<tr class="odd"> +<td align="right">5.3752452</td> +<td align="right">69.38</td> +<td align="right">3.60</td> +<td align="right">2.19</td> +<td align="right">1.94</td> +</tr> +<tr class="even"> +<td align="right">5.3752452</td> +<td align="right">71.06</td> +<td align="right">3.66</td> +<td align="right">2.28</td> +<td align="right">1.62</td> +</tr> +<tr class="odd"> +<td align="right">10.7504904</td> +<td align="right">45.21</td> +<td align="right">6.97</td> +<td align="right">5.45</td> +<td align="right">4.22</td> +</tr> +<tr class="even"> +<td align="right">10.7504904</td> +<td align="right">46.81</td> +<td align="right">7.22</td> +<td align="right">5.19</td> +<td align="right">4.37</td> +</tr> +<tr class="odd"> +<td align="right">16.1257355</td> +<td align="right">30.54</td> +<td align="right">8.65</td> +<td align="right">8.81</td> +<td align="right">6.31</td> +</tr> +<tr class="even"> +<td align="right">16.1257355</td> +<td align="right">30.07</td> +<td align="right">8.38</td> +<td align="right">7.93</td> +<td align="right">6.85</td> +</tr> +<tr class="odd"> +<td align="right">21.5009807</td> +<td align="right">21.60</td> +<td align="right">9.10</td> +<td align="right">10.25</td> +<td align="right">7.05</td> +</tr> +<tr class="even"> +<td align="right">21.5009807</td> +<td align="right">20.41</td> +<td align="right">8.63</td> +<td align="right">10.77</td> +<td align="right">6.84</td> +</tr> +<tr class="odd"> +<td align="right">32.2514711</td> +<td align="right">9.10</td> +<td align="right">7.63</td> +<td align="right">10.89</td> +<td align="right">6.53</td> +</tr> +<tr class="even"> +<td align="right">32.2514711</td> +<td align="right">9.70</td> +<td align="right">8.01</td> +<td align="right">10.85</td> +<td align="right">7.11</td> +</tr> +<tr class="odd"> +<td align="right">43.0019614</td> +<td align="right">6.58</td> +<td align="right">6.40</td> +<td align="right">10.41</td> +<td align="right">6.06</td> +</tr> +<tr class="even"> +<td align="right">43.0019614</td> +<td align="right">6.31</td> +<td align="right">6.35</td> +<td align="right">10.35</td> +<td align="right">6.05</td> +</tr> +<tr class="odd"> +<td align="right">53.7524518</td> +<td align="right">3.47</td> +<td align="right">5.35</td> +<td align="right">9.92</td> +<td align="right">5.50</td> +</tr> +<tr class="even"> +<td align="right">53.7524518</td> +<td align="right">3.52</td> +<td align="right">5.06</td> +<td align="right">9.42</td> +<td align="right">5.07</td> +</tr> +<tr class="odd"> +<td align="right">64.5029421</td> +<td align="right">3.40</td> +<td align="right">5.14</td> +<td align="right">9.15</td> +<td align="right">4.94</td> +</tr> +<tr class="even"> +<td align="right">64.5029421</td> +<td align="right">3.67</td> +<td align="right">5.91</td> +<td align="right">9.25</td> +<td align="right">4.39</td> +</tr> +<tr class="odd"> +<td align="right">91.3791680</td> +<td align="right">1.62</td> +<td align="right">3.35</td> +<td align="right">7.14</td> +<td align="right">3.64</td> +</tr> +<tr class="even"> +<td align="right">91.3791680</td> +<td align="right">1.62</td> +<td align="right">2.87</td> +<td align="right">7.13</td> +<td align="right">3.55</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset BBA 2.3</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">99.33</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">97.44</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">0.6733938</td> +<td align="right">93.73</td> +<td align="right">0.18</td> +<td align="right">0.50</td> +<td align="right">0.47</td> +</tr> +<tr class="even"> +<td align="right">0.6733938</td> +<td align="right">93.77</td> +<td align="right">0.18</td> +<td align="right">0.83</td> +<td align="right">0.34</td> +</tr> +<tr class="odd"> +<td align="right">2.0201814</td> +<td align="right">87.84</td> +<td align="right">0.52</td> +<td align="right">1.25</td> +<td align="right">1.00</td> +</tr> +<tr class="even"> +<td align="right">2.0201814</td> +<td align="right">89.82</td> +<td align="right">0.43</td> +<td align="right">1.09</td> +<td align="right">0.89</td> +</tr> +<tr class="odd"> +<td align="right">4.7137565</td> +<td align="right">71.61</td> +<td align="right">1.19</td> +<td align="right">3.28</td> +<td align="right">3.58</td> +</tr> +<tr class="even"> +<td align="right">4.7137565</td> +<td align="right">71.42</td> +<td align="right">1.11</td> +<td align="right">3.24</td> +<td align="right">3.41</td> +</tr> +<tr class="odd"> +<td align="right">9.4275131</td> +<td align="right">45.60</td> +<td align="right">2.26</td> +<td align="right">7.17</td> +<td align="right">8.74</td> +</tr> +<tr class="even"> +<td align="right">9.4275131</td> +<td align="right">45.42</td> +<td align="right">1.99</td> +<td align="right">7.91</td> +<td align="right">8.28</td> +</tr> +<tr class="odd"> +<td align="right">14.1412696</td> +<td align="right">31.12</td> +<td align="right">2.81</td> +<td align="right">10.15</td> +<td align="right">9.67</td> +</tr> +<tr class="even"> +<td align="right">14.1412696</td> +<td align="right">31.68</td> +<td align="right">2.83</td> +<td align="right">9.55</td> +<td align="right">8.95</td> +</tr> +<tr class="odd"> +<td align="right">18.8550262</td> +<td align="right">23.20</td> +<td align="right">3.39</td> +<td align="right">12.09</td> +<td align="right">10.34</td> +</tr> +<tr class="even"> +<td align="right">18.8550262</td> +<td align="right">24.13</td> +<td align="right">3.56</td> +<td align="right">11.89</td> +<td align="right">10.00</td> +</tr> +<tr class="odd"> +<td align="right">28.2825393</td> +<td align="right">9.43</td> +<td align="right">3.49</td> +<td align="right">13.32</td> +<td align="right">7.89</td> +</tr> +<tr class="even"> +<td align="right">28.2825393</td> +<td align="right">9.82</td> +<td align="right">3.28</td> +<td align="right">12.05</td> +<td align="right">8.13</td> +</tr> +<tr class="odd"> +<td align="right">37.7100523</td> +<td align="right">7.08</td> +<td align="right">2.80</td> +<td align="right">10.04</td> +<td align="right">5.06</td> +</tr> +<tr class="even"> +<td align="right">37.7100523</td> +<td align="right">8.64</td> +<td align="right">2.97</td> +<td align="right">10.78</td> +<td align="right">5.54</td> +</tr> +<tr class="odd"> +<td align="right">47.1375654</td> +<td align="right">4.41</td> +<td align="right">2.42</td> +<td align="right">9.32</td> +<td align="right">3.79</td> +</tr> +<tr class="even"> +<td align="right">47.1375654</td> +<td align="right">4.78</td> +<td align="right">2.51</td> +<td align="right">9.62</td> +<td align="right">4.11</td> +</tr> +<tr class="odd"> +<td align="right">56.5650785</td> +<td align="right">4.92</td> +<td align="right">2.22</td> +<td align="right">8.00</td> +<td align="right">3.11</td> +</tr> +<tr class="even"> +<td align="right">56.5650785</td> +<td align="right">5.08</td> +<td align="right">1.95</td> +<td align="right">8.45</td> +<td align="right">2.98</td> +</tr> +<tr class="odd"> +<td align="right">80.1338612</td> +<td align="right">2.13</td> +<td align="right">1.28</td> +<td align="right">5.71</td> +<td align="right">1.78</td> +</tr> +<tr class="even"> +<td align="right">80.1338612</td> +<td align="right">2.23</td> +<td align="right">0.99</td> +<td align="right">3.33</td> +<td align="right">1.55</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Elliot</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">97.5</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">100.7</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">1.228478</td> +<td align="right">86.4</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">1.228478</td> +<td align="right">88.5</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">1.5</td> +</tr> +<tr class="odd"> +<td align="right">3.685435</td> +<td align="right">69.8</td> +<td align="right">2.8</td> +<td align="right">2.3</td> +<td align="right">5.0</td> +</tr> +<tr class="even"> +<td align="right">3.685435</td> +<td align="right">77.1</td> +<td align="right">1.7</td> +<td align="right">2.1</td> +<td align="right">2.4</td> +</tr> +<tr class="odd"> +<td align="right">8.599349</td> +<td align="right">59.0</td> +<td align="right">4.3</td> +<td align="right">4.0</td> +<td align="right">4.3</td> +</tr> +<tr class="even"> +<td align="right">8.599349</td> +<td align="right">54.2</td> +<td align="right">5.8</td> +<td align="right">3.4</td> +<td align="right">5.0</td> +</tr> +<tr class="odd"> +<td align="right">17.198697</td> +<td align="right">31.3</td> +<td align="right">8.2</td> +<td align="right">6.6</td> +<td align="right">8.0</td> +</tr> +<tr class="even"> +<td align="right">17.198697</td> +<td align="right">33.5</td> +<td align="right">5.2</td> +<td align="right">6.9</td> +<td align="right">7.7</td> +</tr> +<tr class="odd"> +<td align="right">25.798046</td> +<td align="right">19.6</td> +<td align="right">5.1</td> +<td align="right">8.2</td> +<td align="right">7.8</td> +</tr> +<tr class="even"> +<td align="right">25.798046</td> +<td align="right">20.9</td> +<td align="right">6.1</td> +<td align="right">8.8</td> +<td align="right">6.5</td> +</tr> +<tr class="odd"> +<td align="right">34.397395</td> +<td align="right">13.3</td> +<td align="right">6.0</td> +<td align="right">9.7</td> +<td align="right">8.0</td> +</tr> +<tr class="even"> +<td align="right">34.397395</td> +<td align="right">15.8</td> +<td align="right">6.0</td> +<td align="right">8.8</td> +<td align="right">7.4</td> +</tr> +<tr class="odd"> +<td align="right">51.596092</td> +<td align="right">6.7</td> +<td align="right">5.0</td> +<td align="right">8.3</td> +<td align="right">6.9</td> +</tr> +<tr class="even"> +<td align="right">51.596092</td> +<td align="right">8.7</td> +<td align="right">4.2</td> +<td align="right">9.2</td> +<td align="right">9.0</td> +</tr> +<tr class="odd"> +<td align="right">68.794789</td> +<td align="right">8.8</td> +<td align="right">3.9</td> +<td align="right">9.3</td> +<td align="right">5.5</td> +</tr> +<tr class="even"> +<td align="right">68.794789</td> +<td align="right">8.7</td> +<td align="right">2.9</td> +<td align="right">8.5</td> +<td align="right">6.1</td> +</tr> +<tr class="odd"> +<td align="right">103.192184</td> +<td align="right">6.0</td> +<td align="right">1.9</td> +<td align="right">8.6</td> +<td align="right">6.1</td> +</tr> +<tr class="even"> +<td align="right">103.192184</td> +<td align="right">4.4</td> +<td align="right">1.5</td> +<td align="right">6.0</td> +<td align="right">4.0</td> +</tr> +<tr class="odd"> +<td align="right">146.188928</td> +<td align="right">3.3</td> +<td align="right">2.0</td> +<td align="right">5.6</td> +<td align="right">3.1</td> +</tr> +<tr class="even"> +<td align="right">146.188928</td> +<td align="right">2.8</td> +<td align="right">2.3</td> +<td align="right">4.5</td> +<td align="right">2.9</td> +</tr> +<tr class="odd"> +<td align="right">223.583066</td> +<td align="right">1.4</td> +<td align="right">1.2</td> +<td align="right">4.1</td> +<td align="right">1.8</td> +</tr> +<tr class="even"> +<td align="right">223.583066</td> +<td align="right">1.8</td> +<td align="right">1.9</td> +<td align="right">3.9</td> +<td align="right">2.6</td> +</tr> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">93.4</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">103.2</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">1.228478</td> +<td align="right">89.2</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">1.3</td> +</tr> +<tr class="even"> +<td align="right">1.228478</td> +<td align="right">86.6</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">3.685435</td> +<td align="right">78.2</td> +<td align="right">2.6</td> +<td align="right">1.0</td> +<td align="right">3.1</td> +</tr> +<tr class="even"> +<td align="right">3.685435</td> +<td align="right">78.1</td> +<td align="right">2.4</td> +<td align="right">2.6</td> +<td align="right">2.3</td> +</tr> +<tr class="odd"> +<td align="right">8.599349</td> +<td align="right">55.6</td> +<td align="right">5.5</td> +<td align="right">4.5</td> +<td align="right">3.4</td> +</tr> +<tr class="even"> +<td align="right">8.599349</td> +<td align="right">53.0</td> +<td align="right">5.6</td> +<td align="right">4.6</td> +<td align="right">4.3</td> +</tr> +<tr class="odd"> +<td align="right">17.198697</td> +<td align="right">33.7</td> +<td align="right">7.3</td> +<td align="right">7.6</td> +<td align="right">7.8</td> +</tr> +<tr class="even"> +<td align="right">17.198697</td> +<td align="right">33.2</td> +<td align="right">6.5</td> +<td align="right">6.7</td> +<td align="right">8.7</td> +</tr> +<tr class="odd"> +<td align="right">25.798046</td> +<td align="right">20.9</td> +<td align="right">5.8</td> +<td align="right">8.7</td> +<td align="right">7.7</td> +</tr> +<tr class="even"> +<td align="right">25.798046</td> +<td align="right">19.9</td> +<td align="right">7.7</td> +<td align="right">7.6</td> +<td align="right">6.5</td> +</tr> +<tr class="odd"> +<td align="right">34.397395</td> +<td align="right">18.2</td> +<td align="right">7.8</td> +<td align="right">8.0</td> +<td align="right">6.3</td> +</tr> +<tr class="even"> +<td align="right">34.397395</td> +<td align="right">12.7</td> +<td align="right">7.3</td> +<td align="right">8.6</td> +<td align="right">8.7</td> +</tr> +<tr class="odd"> +<td align="right">51.596092</td> +<td align="right">7.8</td> +<td align="right">7.0</td> +<td align="right">7.4</td> +<td align="right">5.7</td> +</tr> +<tr class="even"> +<td align="right">51.596092</td> +<td align="right">9.0</td> +<td align="right">6.3</td> +<td align="right">7.2</td> +<td align="right">4.2</td> +</tr> +<tr class="odd"> +<td align="right">68.794789</td> +<td align="right">11.4</td> +<td align="right">4.3</td> +<td align="right">10.3</td> +<td align="right">3.2</td> +</tr> +<tr class="even"> +<td align="right">68.794789</td> +<td align="right">9.0</td> +<td align="right">3.8</td> +<td align="right">9.4</td> +<td align="right">4.2</td> +</tr> +<tr class="odd"> +<td align="right">103.192184</td> +<td align="right">3.9</td> +<td align="right">2.6</td> +<td align="right">6.5</td> +<td align="right">3.8</td> +</tr> +<tr class="even"> +<td align="right">103.192184</td> +<td align="right">4.4</td> +<td align="right">2.8</td> +<td align="right">6.9</td> +<td align="right">4.0</td> +</tr> +<tr class="odd"> +<td align="right">146.188928</td> +<td align="right">2.6</td> +<td align="right">1.6</td> +<td align="right">4.6</td> +<td align="right">4.5</td> +</tr> +<tr class="even"> +<td align="right">146.188928</td> +<td align="right">3.4</td> +<td align="right">1.1</td> +<td align="right">4.5</td> +<td align="right">4.5</td> +</tr> +<tr class="odd"> +<td align="right">223.583066</td> +<td align="right">2.0</td> +<td align="right">1.4</td> +<td align="right">4.3</td> +<td align="right">3.8</td> +</tr> +<tr class="even"> +<td align="right">223.583066</td> +<td align="right">1.7</td> +<td align="right">1.3</td> +<td align="right">4.2</td> +<td align="right">2.3</td> +</tr> +</tbody> +</table> +</div> +<div class="section level2"> +<h2 id="separate-evaluations">Separate evaluations<a class="anchor" aria-label="anchor" href="#separate-evaluations"></a> +</h2> +<p>As a first step to obtain suitable starting parameters for the NLHM +fits, we do separate fits of several variants of the pathway model used +previously <span class="citation">(Ranke et al. 2021)</span>, varying +the kinetic model for the parent compound. Because the SFORB model often +provides faster convergence than the DFOP model, and can sometimes be +fitted where the DFOP model results in errors, it is included in the set +of parent models tested here.</p> +<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="op">!</span><span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.exists</a></span><span class="op">(</span><span class="st">"dmta_dlls"</span><span class="op">)</span><span class="op">)</span> <span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="st">"dmta_dlls"</span><span class="op">)</span></span> +<span><span class="va">m_sfo_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>  DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>  M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span>  name <span class="op">=</span> <span class="st">"m_sfo_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span>  unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">m_fomc_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>  DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>  M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span>  name <span class="op">=</span> <span class="st">"m_fomc_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span>  unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">m_dfop_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>  DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>  M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span>  name <span class="op">=</span> <span class="st">"m_dfop_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span>  unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">m_sforb_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>  DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>  M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span>  name <span class="op">=</span> <span class="st">"m_sforb_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span>  unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">m_hs_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span>  DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"HS"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span>  M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span>  M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span>  name <span class="op">=</span> <span class="st">"m_hs_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span>  unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">cl</span> <span class="op"><-</span> <span class="fu">start_cluster</span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span></span> +<span><span class="va">deg_mods_1</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span> +<span>  sfo_path_1 <span class="op">=</span> <span class="va">m_sfo_path_1</span>,</span> +<span>  fomc_path_1 <span class="op">=</span> <span class="va">m_fomc_path_1</span>,</span> +<span>  dfop_path_1 <span class="op">=</span> <span class="va">m_dfop_path_1</span>,</span> +<span>  sforb_path_1 <span class="op">=</span> <span class="va">m_sforb_path_1</span>,</span> +<span>  hs_path_1 <span class="op">=</span> <span class="va">m_hs_path_1</span><span class="op">)</span></span> +<span></span> +<span><span class="va">sep_1_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span> +<span>  <span class="va">deg_mods_1</span>,</span> +<span>  <span class="va">dmta_ds</span>,</span> +<span>  error_model <span class="op">=</span> <span class="st">"const"</span>,</span> +<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">sep_1_const</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Calke</th> +<th align="left">Borstel</th> +<th align="left">Flaach</th> +<th align="left">BBA 2.2</th> +<th align="left">BBA 2.3</th> +<th align="left">Elliot</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +</tr> +</tbody> +</table> +<p>All separate pathway fits with SFO or FOMC for the parent and +constant variance converged (status OK). Most fits with DFOP or SFORB +for the parent converged as well. The fits with HS for the parent did +not converge with default settings.</p> +<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">sep_1_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">sep_1_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">sep_1_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Calke</th> +<th align="left">Borstel</th> +<th align="left">Flaach</th> +<th align="left">BBA 2.2</th> +<th align="left">BBA 2.3</th> +<th align="left">Elliot</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>With the two-component error model, the set of fits with convergence +problems is slightly different, with convergence problems appearing for +different data sets when applying the DFOP and SFORB model and some +additional convergence problems when using the FOMC model for the +parent.</p> +</div> +<div class="section level2"> +<h2 id="hierarchichal-model-fits">Hierarchichal model fits<a class="anchor" aria-label="anchor" href="#hierarchichal-model-fits"></a> +</h2> +<p>The following code fits two sets of the corresponding hierarchical +models to the data, one assuming constant variance, and one assuming +two-component error.</p> +<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">saem_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">sep_1_const</span>, <span class="va">sep_1_tc</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> +<p>The run time for these fits was around two hours on five year old +hardware. After a recent hardware upgrade these fits complete in less +than twenty minutes.</p> +<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>According to the <code>status</code> function, all fits terminated +successfully.</p> +<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<pre><code>Warning in FUN(X[[i]], ...): Could not obtain log likelihood with 'is' method +for sforb_path_1 const</code></pre> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1 const</td> +<td align="right">17</td> +<td align="right">2291.8</td> +<td align="right">2288.3</td> +<td align="right">-1128.9</td> +</tr> +<tr class="even"> +<td align="left">sfo_path_1 tc</td> +<td align="right">18</td> +<td align="right">2276.3</td> +<td align="right">2272.5</td> +<td align="right">-1120.1</td> +</tr> +<tr class="odd"> +<td align="left">fomc_path_1 const</td> +<td align="right">19</td> +<td align="right">2099.0</td> +<td align="right">2095.0</td> +<td align="right">-1030.5</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1 tc</td> +<td align="right">20</td> +<td align="right">1939.6</td> +<td align="right">1935.5</td> +<td align="right">-949.8</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1 const</td> +<td align="right">21</td> +<td align="right">2038.8</td> +<td align="right">2034.4</td> +<td align="right">-998.4</td> +</tr> +<tr class="even"> +<td align="left">hs_path_1 const</td> +<td align="right">21</td> +<td align="right">2024.2</td> +<td align="right">2019.8</td> +<td align="right">-991.1</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1 tc</td> +<td align="right">22</td> +<td align="right">1879.8</td> +<td align="right">1875.2</td> +<td align="right">-917.9</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1 tc</td> +<td align="right">22</td> +<td align="right">1832.9</td> +<td align="right">1828.3</td> +<td align="right">-894.4</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1 tc</td> +<td align="right">22</td> +<td align="right">1831.4</td> +<td align="right">1826.8</td> +<td align="right">-893.7</td> +</tr> +</tbody> +</table> +<p>When the goodness-of-fit of the models is compared, a warning is +obtained, indicating that the likelihood of the pathway fit with SFORB +for the parent compound and constant variance could not be calculated +with importance sampling (method ‘is’). As this is the default method on +which all AIC and BIC comparisons are based, this variant is not +included in the model comparison table. Comparing the goodness-of-fit of +the remaining models, HS model model with two-component error provides +the best fit. However, for batch experiments performed with constant +conditions such as the experiments evaluated here, there is no reason to +assume a discontinuity, so the SFORB model is preferable from a +mechanistic viewpoint. In addition, the information criteria AIC and BIC +are very similar for HS and SFORB. Therefore, the SFORB model is +selected here for further refinements.</p> +<div class="section level3"> +<h3 id="parameter-identifiability-based-on-the-fisher-information-matrix">Parameter identifiability based on the Fisher Information +Matrix<a class="anchor" aria-label="anchor" href="#parameter-identifiability-based-on-the-fisher-information-matrix"></a> +</h3> +<p>Using the <code>illparms</code> function, ill-defined statistical +model parameters such as standard deviations of the degradation +parameters in the population and error model parameters can be +found.</p> +<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left"></td> +<td align="left">sd(DMTA_0)</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left"></td> +<td align="left">sd(DMTA_0)</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left"></td> +<td align="left"></td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left"></td> +<td align="left">sd(log_k_DMTA_bound_free)</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left"></td> +<td align="left">sd(log_tb)</td> +</tr> +</tbody> +</table> +<p>When using constant variance, no ill-defined variance parameters are +identified with the <code>illparms</code> function in any of the +degradation models. When using the two-component error model, there is +one ill-defined variance parameter in all variants except for the +variant using DFOP for the parent compound.</p> +<p>For the selected combination of the SFORB pathway model with +two-component error, the random effect for the rate constant from +reversibly bound DMTA to the free DMTA (<code>k_DMTA_bound_free</code>) +is not well-defined. Therefore, the fit is updated without assuming a +random effect for this parameter.</p> +<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">saem_sforb_path_1_tc_reduced</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>,</span> +<span>  no_random_effect <span class="op">=</span> <span class="st">"log_k_DMTA_bound_free"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced</span><span class="op">)</span></span></code></pre></div> +<p>As expected, no ill-defined parameters remain. The model comparison +below shows that the reduced model is preferable.</p> +<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>, <span class="va">saem_sforb_path_1_tc_reduced</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">saem_sforb_path_1_tc_reduced</td> +<td align="right">21</td> +<td align="right">1830.3</td> +<td align="right">1825.9</td> +<td align="right">-894.2</td> +</tr> +<tr class="even"> +<td align="left">saem_1[[“sforb_path_1”, “tc”]]</td> +<td align="right">22</td> +<td align="right">1832.9</td> +<td align="right">1828.3</td> +<td align="right">-894.4</td> +</tr> +</tbody> +</table> +<p>The convergence plot of the refined fit is shown below.</p> +<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"convergence"</span><span class="op">)</span></span></code></pre></div> +<p><img src="2022_dmta_pathway_files/figure-html/saem-sforb-path-1-tc-reduced-convergence-1.png" width="700" style="display: block; margin: auto;"></p> +<p>For some parameters, for example for <code>f_DMTA_ilr_1</code> and +<code>f_DMTA_ilr_2</code>, i.e. for two of the parameters determining +the formation fractions of the parallel formation of the three +metabolites, some movement of the parameters is still visible in the +second phase of the algorithm. However, the amplitude of this movement +is in the range of the amplitude towards the end of the first phase. +Therefore, it is likely that an increase in iterations would not improve +the parameter estimates very much, and it is proposed that the fit is +acceptable. No numeric convergence criterion is implemented in +saemix.</p> +</div> +<div class="section level3"> +<h3 id="alternative-check-of-parameter-identifiability">Alternative check of parameter identifiability<a class="anchor" aria-label="anchor" href="#alternative-check-of-parameter-identifiability"></a> +</h3> +<p>As an alternative check of parameter identifiability <span class="citation">(Duchesne et al. 2021)</span>, multistart runs were +performed on the basis of the refined fit shown above.</p> +<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">saem_sforb_path_1_tc_reduced_multi</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced</span>,</span> +<span>  n <span class="op">=</span> <span class="fl">32</span>, cores <span class="op">=</span> <span class="fl">10</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced_multi</span><span class="op">)</span></span></code></pre></div> +<pre><code><multistart> object with 32 fits: + E OK  +15 17  +OK: Fit terminated successfully +E: Error</code></pre> +<p>Out of the 32 fits that were initiated, only 17 terminated without an +error. The reason for this is that the wide variation of starting +parameters in combination with the parameter variation that is used in +the SAEM algorithm leads to parameter combinations for the degradation +model that the numerical integration routine cannot cope with. Because +of this variation of initial parameters, some of the model fits take up +to two times more time than the original fit.</p> +<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">12.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced_multi</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-2-1.png" alt="Parameter boxplots for the multistart runs that succeeded" width="960"><p class="caption"> +Parameter boxplots for the multistart runs that succeeded +</p> +</div> +<p>However, visual analysis of the boxplot of the parameters obtained in +the successful fits confirms that the results are sufficiently +independent of the starting parameters, and there are no remaining +ill-defined parameters.</p> +</div> +</div> +<div class="section level2"> +<h2 id="plots-of-selected-fits">Plots of selected fits<a class="anchor" aria-label="anchor" href="#plots-of-selected-fits"></a> +</h2> +<p>The SFORB pathway fits with full and reduced parameter distribution +model are shown below.</p> +<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-3-1.png" alt="SFORB pathway fit with two-component error" width="700"><p class="caption"> +SFORB pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-4-1.png" alt="SFORB pathway fit with two-component error, reduced parameter model" width="700"><p class="caption"> +SFORB pathway fit with two-component error, reduced parameter model +</p> +</div> +<p>Plots of the remaining fits and listings for all successful fits are +shown in the Appendix.</p> +<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">stopCluster</a></span><span class="op">(</span><span class="va">cl</span><span class="op">)</span></span></code></pre></div> +</div> +<div class="section level2"> +<h2 id="conclusions">Conclusions<a class="anchor" aria-label="anchor" href="#conclusions"></a> +</h2> +<p>Pathway fits with SFO, FOMC, DFOP, SFORB and HS models for the parent +compound could be successfully performed.</p> +</div> +<div class="section level2"> +<h2 id="acknowledgements">Acknowledgements<a class="anchor" aria-label="anchor" href="#acknowledgements"></a> +</h2> +<p>The helpful comments by Janina Wöltjen of the German Environment +Agency on earlier versions of this document are gratefully +acknowledged.</p> +</div> +<div class="section level2"> +<h2 id="references">References<a class="anchor" aria-label="anchor" href="#references"></a> +</h2> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-duchesne_2021" class="csl-entry"> +Duchesne, Ronan, Anissa Guillemin, Olivier Gandrillon, and Fabien +Crauste. 2021. <span>“Practical Identifiability in the Frame of +Nonlinear Mixed Effects Models: The Example of the in Vitro +Erythropoiesis.”</span> <em>BMC Bioinformatics</em> 22 (478). <a href="https://doi.org/10.1186/s12859-021-04373-4" class="external-link">https://doi.org/10.1186/s12859-021-04373-4</a>. +</div> +<div id="ref-ranke2021" class="csl-entry"> +Ranke, Johannes, Janina Wöltjen, Jana Schmidt, and Emmanuelle Comets. +2021. <span>“Taking Kinetic Evaluations of Degradation Data to the Next +Level with Nonlinear Mixed-Effects Models.”</span> <em>Environments</em> +8 (8). <a href="https://doi.org/10.3390/environments8080071" class="external-link">https://doi.org/10.3390/environments8080071</a>. +</div> +</div> +</div> +<div class="section level2"> +<h2 id="appendix">Appendix<a class="anchor" aria-label="anchor" href="#appendix"></a> +</h2> +<div class="section level3"> +<h3 id="plots-of-hierarchical-fits-not-selected-for-refinement">Plots of hierarchical fits not selected for refinement<a class="anchor" aria-label="anchor" href="#plots-of-hierarchical-fits-not-selected-for-refinement"></a> +</h3> +<div class="sourceCode" id="cb21"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sfo_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-6-1.png" alt="SFO pathway fit with two-component error" width="700"><p class="caption"> +SFO pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"fomc_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-7-1.png" alt="FOMC pathway fit with two-component error" width="700"><p class="caption"> +FOMC pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb23"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-8-1.png" alt="HS pathway fit with two-component error" width="700"><p class="caption"> +HS pathway fit with two-component error +</p> +</div> +</div> +<div class="section level3"> +<h3 id="hierarchical-model-fit-listings">Hierarchical model fit listings<a class="anchor" aria-label="anchor" href="#hierarchical-model-fit-listings"></a> +</h3> +<div class="section level4"> +<h4 id="fits-with-random-effects-for-all-degradation-parameters">Fits with random effects for all degradation parameters<a class="anchor" aria-label="anchor" href="#fits-with-random-effects-for-all-degradation-parameters"></a> +</h4> + +</div> +<div class="section level4"> +<h4 id="improved-fit-of-the-sforb-pathway-model-with-two-component-error">Improved fit of the SFORB pathway model with two-component +error<a class="anchor" aria-label="anchor" href="#improved-fit-of-the-sforb-pathway-model-with-two-component-error"></a> +</h4> + +</div> +</div> +<div class="section level3"> +<h3 id="session-info">Session info<a class="anchor" aria-label="anchor" href="#session-info"></a> +</h3> +<pre><code>R version 4.2.3 (2023-03-15) +Platform: x86_64-pc-linux-gnu (64-bit) +Running under: Debian GNU/Linux 12 (bookworm) + +Matrix products: default +BLAS:   /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3 +LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so + +locale: + [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C               + [3] LC_TIME=de_DE.UTF-8        LC_COLLATE=de_DE.UTF-8     + [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=de_DE.UTF-8    + [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                  + [9] LC_ADDRESS=C               LC_TELEPHONE=C             +[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C        + +attached base packages: +[1] parallel  stats     graphics  grDevices utils     datasets  methods   +[8] base      + +other attached packages: +[1] saemix_3.2 npde_3.3   knitr_1.42 mkin_1.2.3 + +loaded via a namespace (and not attached): + [1] deSolve_1.35      zoo_1.8-12        tidyselect_1.2.0  xfun_0.38         + [5] bslib_0.4.2       purrr_1.0.1       lattice_0.21-8    colorspace_2.1-0  + [9] vctrs_0.6.1       generics_0.1.3    htmltools_0.5.5   yaml_2.3.7        +[13] utf8_1.2.3        rlang_1.1.0       pkgbuild_1.4.0    pkgdown_2.0.7     +[17] jquerylib_0.1.4   pillar_1.9.0      glue_1.6.2        DBI_1.1.3         +[21] lifecycle_1.0.3   stringr_1.5.0     munsell_0.5.0     gtable_0.3.3      +[25] ragg_1.2.5        codetools_0.2-19  memoise_2.0.1     evaluate_0.20     +[29] inline_0.3.19     callr_3.7.3       fastmap_1.1.1     ps_1.7.4          +[33] lmtest_0.9-40     fansi_1.0.4       highr_0.10        scales_1.2.1      +[37] cachem_1.0.7      desc_1.4.2        jsonlite_1.8.4    systemfonts_1.0.4 +[41] fs_1.6.1          textshaping_0.3.6 gridExtra_2.3     ggplot2_3.4.2     +[45] digest_0.6.31     stringi_1.7.12    processx_3.8.0    dplyr_1.1.1       +[49] grid_4.2.3        rprojroot_2.0.3   cli_3.6.1         tools_4.2.3       +[53] magrittr_2.0.3    sass_0.4.5        tibble_3.2.1      crayon_1.5.2      +[57] pkgconfig_2.0.3   prettyunits_1.1.1 rmarkdown_2.21    R6_2.5.1          +[61] mclust_6.0.0      nlme_3.1-162      compiler_4.2.3   </code></pre> +</div> +<div class="section level3"> +<h3 id="hardware-info">Hardware info<a class="anchor" aria-label="anchor" href="#hardware-info"></a> +</h3> +<pre><code>CPU model: AMD Ryzen 9 7950X 16-Core Processor</code></pre> +<pre><code>MemTotal:       64936316 kB</code></pre> +</div> +</div> +  </div> + +  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> + +        <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> +    </nav> +</div> + +</div> + + + +      <footer><div class="copyright"> +  <p></p> +<p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> +  <p></p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p> +</div> + +      </footer> +</div> + +   + + +   + +  </body> +</html> diff --git a/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/saem-sforb-path-1-tc-reduced-convergence-1.png b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/saem-sforb-path-1-tc-reduced-convergence-1.pngBinary files differ new file mode 100644 index 00000000..206c424d --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/saem-sforb-path-1-tc-reduced-convergence-1.png diff --git a/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-2-1.png b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-2-1.pngBinary files differ new file mode 100644 index 00000000..0fe084d3 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-2-1.png diff --git a/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-3-1.png b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-3-1.pngBinary files differ new file mode 100644 index 00000000..1c81601e --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-3-1.png diff --git a/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-4-1.png b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-4-1.pngBinary files differ new file mode 100644 index 00000000..e0961dce --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-4-1.png diff --git a/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-6-1.png b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-6-1.pngBinary files differ new file mode 100644 index 00000000..00db0c76 --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-6-1.png diff --git a/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-7-1.png b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-7-1.pngBinary files differ new file mode 100644 index 00000000..ac5271ec --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-7-1.png diff --git a/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-8-1.png b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-8-1.pngBinary files differ new file mode 100644 index 00000000..1c81601e --- /dev/null +++ b/docs/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-8-1.png diff --git a/docs/articles/twa.html b/docs/articles/twa.html index 41340e88..c8c91bcb 100644 --- a/docs/articles/twa.html +++ b/docs/articles/twa.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../reference/index.html">Functions and data</a> +  <a href="../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,16 @@ -      </header><script src="twa_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore"> -      <h1 data-toc-skip>Calculation of time weighted average concentrations with mkin</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +      <h1 data-toc-skip>Calculation of time weighted average +concentrations with mkin</h1> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">Last change 18 September 2019 (rebuilt 2022-11-17)</h4> +            <h4 data-toc-skip class="date">Last change 18 September 2019 +(rebuilt 2023-04-20)</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/twa.rmd" class="external-link"><code>vignettes/twa.rmd</code></a></small>        <div class="hidden name"><code>twa.rmd</code></div> @@ -120,13 +144,25 @@ -<p>Since version 0.9.45.1 of the ‘mkin’ package, a function for calculating time weighted average concentrations for decline kinetics (<em>i.e.</em> only for the compound applied in the experiment) is included. Strictly speaking, they are maximum moving window time weighted average concentrations, <em>i.e.</em> the maximum time weighted average concentration that can be found when moving a time window of a specified width over the decline curve.</p> -<p>Time weighted average concentrations for the SFO, FOMC and the DFOP model are calculated using the formulas given in the FOCUS kinetics guidance <span class="citation">(FOCUS Work Group on Degradation Kinetics 2014, 251)</span>:</p> +<p>Since version 0.9.45.1 of the ‘mkin’ package, a function for +calculating time weighted average concentrations for decline kinetics +(<em>i.e.</em> only for the compound applied in the experiment) is +included. Strictly speaking, they are maximum moving window time +weighted average concentrations, <em>i.e.</em> the maximum time weighted +average concentration that can be found when moving a time window of a +specified width over the decline curve.</p> +<p>Time weighted average concentrations for the SFO, FOMC and the DFOP +model are calculated using the formulas given in the FOCUS kinetics +guidance <span class="citation">(FOCUS Work Group on Degradation +Kinetics 2014, 251)</span>:</p>  <p>SFO:</p> -<p><span class="math display">\[c_\textrm{twa} = c_0 \frac{\left( 1 - e^{- k t} \right)}{ k t} \]</span></p> +<p><span class="math display">\[c_\textrm{twa} = c_0 \frac{\left( 1 - +e^{- k t} \right)}{ k t} \]</span></p>  <p>FOMC:</p> -<p><span class="math display">\[c_\textrm{twa} = c_0 \frac{\beta}{t (1 - \alpha)} -                   \left( \left(\frac{t}{\beta} + 1 \right)^{1 - \alpha} - 1 \right) \]</span></p> +<p><span class="math display">\[c_\textrm{twa} = c_0 \frac{\beta}{t (1 - +\alpha)} +                   \left( \left(\frac{t}{\beta} + 1 \right)^{1 - \alpha} +- 1 \right) \]</span></p>  <p>DFOP:</p>  <p><span class="math display">\[c_\textrm{twa} = \frac{c_0}{t} \left(    \frac{g}{k_1} \left( 1 - e^{- k_1 t} \right) + @@ -134,15 +170,25 @@  <p>HS for <span class="math inline">\(t > t_b\)</span>:</p>  <p><span class="math display">\[c_\textrm{twa} = \frac{c_0}{t} \left(    \frac{1}{k_1} \left( 1 - e^{- k_1 t_b} \right) + -  \frac{e^{- k_1 t_b}}{k_2} \left( 1 - e^{- k_2 (t - t_b)} \right)  \right) \]</span></p> -<p>Often, the ratio between the time weighted average concentration <span class="math inline">\(c_\textrm{twa}\)</span> and the initial concentration <span class="math inline">\(c_0\)</span></p> -<p><span class="math display">\[f_\textrm{twa} = \frac{c_\textrm{twa}}{c_0}\]</span></p> -<p>is needed. This can be calculated from the fitted initial concentration <span class="math inline">\(c_0\)</span> and the time weighted average concentration <span class="math inline">\(c_\textrm{twa}\)</span>, or directly from the model parameters using the following formulas:</p> +  \frac{e^{- k_1 t_b}}{k_2} \left( 1 - e^{- k_2 (t - t_b)} +\right)  \right) \]</span></p> +<p>Often, the ratio between the time weighted average concentration +<span class="math inline">\(c_\textrm{twa}\)</span> and the initial +concentration <span class="math inline">\(c_0\)</span></p> +<p><span class="math display">\[f_\textrm{twa} = +\frac{c_\textrm{twa}}{c_0}\]</span></p> +<p>is needed. This can be calculated from the fitted initial +concentration <span class="math inline">\(c_0\)</span> and the time +weighted average concentration <span class="math inline">\(c_\textrm{twa}\)</span>, or directly from the +model parameters using the following formulas:</p>  <p>SFO:</p> -<p><span class="math display">\[f_\textrm{twa} = \frac{\left( 1 - e^{- k t} \right)}{k t} \]</span></p> +<p><span class="math display">\[f_\textrm{twa} = \frac{\left( 1 - e^{- k +t} \right)}{k t} \]</span></p>  <p>FOMC:</p> -<p><span class="math display">\[f_\textrm{twa} = \frac{\beta}{t (1 - \alpha)} -                   \left( \left(\frac{t}{\beta} + 1 \right)^{1 - \alpha} - 1 \right) \]</span></p> +<p><span class="math display">\[f_\textrm{twa} = \frac{\beta}{t (1 - +\alpha)} +                   \left( \left(\frac{t}{\beta} + 1 \right)^{1 - \alpha} +- 1 \right) \]</span></p>  <p>DFOP:</p>  <p><span class="math display">\[f_\textrm{twa} = \frac{1}{t} \left(    \frac{g}{k_1} \left( 1 - e^{- k_1 t} \right) + @@ -150,11 +196,19 @@  <p>HS for <span class="math inline">\(t > t_b\)</span>:</p>  <p><span class="math display">\[f_\textrm{twa} = \frac{1}{t} \left(    \frac{1}{k_1} \left( 1 - e^{- k_1 t_b} \right) + -  \frac{e^{- k_1 t_b}}{k_2} \left( 1 - e^{- k_2 (t - t_b)} \right)  \right) \]</span></p> -<p>Note that a method for calculating maximum moving window time weighted average concentrations for a model fitted by ‘mkinfit’ or from parent decline model parameters is included in the <code><a href="../reference/max_twa_parent.html">max_twa_parent()</a></code> function. If the same is needed for metabolites, the function <code><a href="https://pkgdown.jrwb.de/pfm/reference/max_twa.html" class="external-link">pfm::max_twa()</a></code> from the ‘pfm’ package can be used.</p> -<div id="refs" class="references hanging-indent"> -<div id="ref-FOCUSkinetics2014"> -<p>FOCUS Work Group on Degradation Kinetics. 2014. <em>Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration</em>. 1.1 ed. <a href="http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics" class="external-link">http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a>.</p> +  \frac{e^{- k_1 t_b}}{k_2} \left( 1 - e^{- k_2 (t - t_b)} +\right)  \right) \]</span></p> +<p>Note that a method for calculating maximum moving window time +weighted average concentrations for a model fitted by ‘mkinfit’ or from +parent decline model parameters is included in the +<code><a href="../reference/max_twa_parent.html">max_twa_parent()</a></code> function. If the same is needed for +metabolites, the function <code><a href="https://pkgdown.jrwb.de/pfm/reference/max_twa.html" class="external-link">pfm::max_twa()</a></code> from the ‘pfm’ +package can be used.</p> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-FOCUSkinetics2014" class="csl-entry"> +FOCUS Work Group on Degradation Kinetics. 2014. <em>Generic Guidance for +Estimating Persistence and Degradation Kinetics from Environmental Fate +Studies on Pesticides in EU Registration</em>. 1.1 ed. <a href="http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics" class="external-link">http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a>.  </div>  </div>    </div> @@ -174,7 +228,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/web_only/FOCUS_Z.html b/docs/articles/web_only/FOCUS_Z.html index ea20ecd9..9602adb5 100644 --- a/docs/articles/web_only/FOCUS_Z.html +++ b/docs/articles/web_only/FOCUS_Z.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../../reference/index.html">Functions and data</a> +  <a href="../../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,15 @@ -      </header><script src="FOCUS_Z_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore">        <h1 data-toc-skip>Example evaluation of FOCUS dataset Z</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">Last change 16 January 2018 (rebuilt 2022-11-17)</h4> +            <h4 data-toc-skip class="date">Last change 16 January 2018 +(rebuilt 2023-04-20)</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/web_only/FOCUS_Z.rmd" class="external-link"><code>vignettes/web_only/FOCUS_Z.rmd</code></a></small>        <div class="hidden name"><code>FOCUS_Z.rmd</code></div> @@ -120,11 +143,15 @@ -<p><a href="http://www.jrwb.de" class="external-link">Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany</a><br><a href="http://chem.uft.uni-bremen.de/ranke" class="external-link">Privatdozent at the University of Bremen</a></p> +<p><a href="http://www.jrwb.de" class="external-link">Wissenschaftlicher Berater, Kronacher +Str. 12, 79639 Grenzach-Wyhlen, Germany</a><br><a href="http://chem.uft.uni-bremen.de/ranke" class="external-link">Privatdozent at the +University of Bremen</a></p>  <div class="section level2">  <h2 id="the-data">The data<a class="anchor" aria-label="anchor" href="#the-data"></a>  </h2> -<p>The following code defines the example dataset from Appendix 7 to the FOCUS kinetics report <span class="citation">(FOCUS Work Group on Degradation Kinetics 2014, 354)</span>.</p> +<p>The following code defines the example dataset from Appendix 7 to the +FOCUS kinetics report <span class="citation">(FOCUS Work Group on +Degradation Kinetics 2014, 354)</span>.</p>  <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="va">LOD</span> <span class="op">=</span> <span class="fl">0.5</span></span> @@ -145,7 +172,11 @@  <div class="section level2">  <h2 id="parent-and-one-metabolite">Parent and one metabolite<a class="anchor" aria-label="anchor" href="#parent-and-one-metabolite"></a>  </h2> -<p>The next step is to set up the models used for the kinetic analysis. As the simultaneous fit of parent and the first metabolite is usually straightforward, Step 1 (SFO for parent only) is skipped here. We start with the model 2a, with formation and decline of metabolite Z1 and the pathway from parent directly to sink included (default in mkin).</p> +<p>The next step is to set up the models used for the kinetic analysis. +As the simultaneous fit of parent and the first metabolite is usually +straightforward, Step 1 (SFO for parent only) is skipped here. We start +with the model 2a, with formation and decline of metabolite Z1 and the +pathway from parent directly to sink included (default in mkin).</p>  <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">Z.2a</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>Z0 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z1"</span><span class="op">)</span>,</span>  <span>                Z1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> @@ -158,15 +189,21 @@  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.2a</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png" width="700"></p>  <div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.2a</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">bpar</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.2a</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">bpar</span></span></code></pre></div>  <pre><code><span><span class="co">##            Estimate se_notrans t value     Pr(>t)    Lower    Upper</span></span>  <span><span class="co">## Z0_0       97.01488   3.301084 29.3888 3.2971e-21 91.66556 102.3642</span></span>  <span><span class="co">## k_Z0        2.23601   0.207078 10.7979 3.3309e-11  1.95303   2.5600</span></span>  <span><span class="co">## k_Z1        0.48212   0.063265  7.6207 2.8154e-08  0.40341   0.5762</span></span>  <span><span class="co">## f_Z0_to_Z1  1.00000   0.094764 10.5525 5.3560e-11  0.00000   1.0000</span></span>  <span><span class="co">## sigma       4.80411   0.635638  7.5579 3.2592e-08  3.52677   6.0815</span></span></code></pre> -<p>As obvious from the parameter summary (the  component of the summary), the kinetic rate constant from parent compound Z to sink is very small and the t-test for this parameter suggests that it is not significantly different from zero. This suggests, in agreement with the analysis in the FOCUS kinetics report, to simplify the model by removing the pathway to sink.</p> -<p>A similar result can be obtained when formation fractions are used in the model formulation:</p> +<p>As obvious from the parameter summary (the component of the summary), +the kinetic rate constant from parent compound Z to sink is very small +and the t-test for this parameter suggests that it is not significantly +different from zero. This suggests, in agreement with the analysis in +the FOCUS kinetics report, to simplify the model by removing the pathway +to sink.</p> +<p>A similar result can be obtained when formation fractions are used in +the model formulation:</p>  <div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">Z.2a.ff</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>Z0 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z1"</span><span class="op">)</span>,</span>  <span>                   Z1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> @@ -180,16 +217,24 @@  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.2a.ff</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png" width="700"></p>  <div class="sourceCode" id="cb14"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.2a.ff</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">bpar</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.2a.ff</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">bpar</span></span></code></pre></div>  <pre><code><span><span class="co">##            Estimate se_notrans t value     Pr(>t)    Lower    Upper</span></span>  <span><span class="co">## Z0_0       97.01488   3.301084 29.3888 3.2971e-21 91.66556 102.3642</span></span>  <span><span class="co">## k_Z0        2.23601   0.207078 10.7979 3.3309e-11  1.95303   2.5600</span></span>  <span><span class="co">## k_Z1        0.48212   0.063265  7.6207 2.8154e-08  0.40341   0.5762</span></span>  <span><span class="co">## f_Z0_to_Z1  1.00000   0.094764 10.5525 5.3560e-11  0.00000   1.0000</span></span>  <span><span class="co">## sigma       4.80411   0.635638  7.5579 3.2592e-08  3.52677   6.0815</span></span></code></pre> -<p>Here, the ilr transformed formation fraction fitted in the model takes a very large value, and the backtransformed formation fraction from parent Z to Z1 is practically unity. Here, the covariance matrix used for the calculation of confidence intervals is not returned as the model is overparameterised.</p> -<p>A simplified model is obtained by removing the pathway to the sink. </p> -<p>In the following, we use the parameterisation with formation fractions in order to be able to compare with the results in the FOCUS guidance, and as it makes it easier to use parameters obtained in a previous fit when adding a further metabolite.</p> +<p>Here, the ilr transformed formation fraction fitted in the model +takes a very large value, and the backtransformed formation fraction +from parent Z to Z1 is practically unity. Here, the covariance matrix +used for the calculation of confidence intervals is not returned as the +model is overparameterised.</p> +<p>A simplified model is obtained by removing the pathway to the sink. +</p> +<p>In the following, we use the parameterisation with formation +fractions in order to be able to compare with the results in the FOCUS +guidance, and as it makes it easier to use parameters obtained in a +previous fit when adding a further metabolite.</p>  <div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">Z.3</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>Z0 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z1"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span>  <span>               Z1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, use_of_ff <span class="op">=</span> <span class="st">"max"</span><span class="op">)</span></span></code></pre></div> @@ -202,18 +247,24 @@  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.3</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png" width="700"></p>  <div class="sourceCode" id="cb21"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.3</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">bpar</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.3</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">bpar</span></span></code></pre></div>  <pre><code><span><span class="co">##       Estimate se_notrans t value     Pr(>t)    Lower    Upper</span></span>  <span><span class="co">## Z0_0  97.01488   2.597342  37.352 2.0106e-24 91.67597 102.3538</span></span>  <span><span class="co">## k_Z0   2.23601   0.146904  15.221 9.1477e-15  1.95354   2.5593</span></span>  <span><span class="co">## k_Z1   0.48212   0.041727  11.554 4.8268e-12  0.40355   0.5760</span></span>  <span><span class="co">## sigma  4.80411   0.620208   7.746 1.6110e-08  3.52925   6.0790</span></span></code></pre> -<p>As there is only one transformation product for Z0 and no pathway to sink, the formation fraction is internally fixed to unity.</p> +<p>As there is only one transformation product for Z0 and no pathway to +sink, the formation fraction is internally fixed to unity.</p>  </div>  <div class="section level2">  <h2 id="metabolites-z2-and-z3">Metabolites Z2 and Z3<a class="anchor" aria-label="anchor" href="#metabolites-z2-and-z3"></a>  </h2> -<p>As suggested in the FOCUS report, the pathway to sink was removed for metabolite Z1 as well in the next step. While this step appears questionable on the basis of the above results, it is followed here for the purpose of comparison. Also, in the FOCUS report, it is assumed that there is additional empirical evidence that Z1 quickly and exclusively hydrolyses to Z2.</p> +<p>As suggested in the FOCUS report, the pathway to sink was removed for +metabolite Z1 as well in the next step. While this step appears +questionable on the basis of the above results, it is followed here for +the purpose of comparison. Also, in the FOCUS report, it is assumed that +there is additional empirical evidence that Z1 quickly and exclusively +hydrolyses to Z2.</p>  <div class="sourceCode" id="cb23"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">Z.5</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>Z0 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z1"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span>  <span>               Z1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z2"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> @@ -226,7 +277,9 @@  <div class="sourceCode" id="cb27"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.5</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png" width="700"></p> -<p>Finally, metabolite Z3 is added to the model. We use the optimised differential equation parameter values from the previous fit in order to accelerate the optimization.</p> +<p>Finally, metabolite Z3 is added to the model. We use the optimised +differential equation parameter values from the previous fit in order to +accelerate the optimization.</p>  <div class="sourceCode" id="cb28"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">Z.FOCUS</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>Z0 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z1"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span>  <span>                   Z1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z2"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> @@ -246,7 +299,7 @@  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.FOCUS</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png" width="700"></p>  <div class="sourceCode" id="cb34"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.FOCUS</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">bpar</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.FOCUS</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">bpar</span></span></code></pre></div>  <pre><code><span><span class="co">##             Estimate se_notrans t value     Pr(>t)     Lower      Upper</span></span>  <span><span class="co">## Z0_0       96.838822   1.994274 48.5584 4.0280e-42 92.826981 100.850664</span></span>  <span><span class="co">## k_Z0        2.215393   0.118458 18.7019 1.0413e-23  1.989456   2.466989</span></span> @@ -267,13 +320,22 @@  <span><span class="co">## Z1  1.44917  4.8141</span></span>  <span><span class="co">## Z2  1.53478  5.0984</span></span>  <span><span class="co">## Z3 11.80986 39.2315</span></span></code></pre> -<p>This fit corresponds to the final result chosen in Appendix 7 of the FOCUS report. Confidence intervals returned by mkin are based on internally transformed parameters, however.</p> +<p>This fit corresponds to the final result chosen in Appendix 7 of the +FOCUS report. Confidence intervals returned by mkin are based on +internally transformed parameters, however.</p>  </div>  <div class="section level2">  <h2 id="using-the-sforb-model">Using the SFORB model<a class="anchor" aria-label="anchor" href="#using-the-sforb-model"></a>  </h2> -<p>As the FOCUS report states, there is a certain tailing of the time course of metabolite Z3. Also, the time course of the parent compound is not fitted very well using the SFO model, as residues at a certain low level remain.</p> -<p>Therefore, an additional model is offered here, using the single first-order reversible binding (SFORB) model for metabolite Z3. As expected, the <span class="math inline">\(\chi^2\)</span> error level is lower for metabolite Z3 using this model and the graphical fit for Z3 is improved. However, the covariance matrix is not returned.</p> +<p>As the FOCUS report states, there is a certain tailing of the time +course of metabolite Z3. Also, the time course of the parent compound is +not fitted very well using the SFO model, as residues at a certain low +level remain.</p> +<p>Therefore, an additional model is offered here, using the single +first-order reversible binding (SFORB) model for metabolite Z3. As +expected, the <span class="math inline">\(\chi^2\)</span> error level is +lower for metabolite Z3 using this model and the graphical fit for Z3 is +improved. However, the covariance matrix is not returned.</p>  <div class="sourceCode" id="cb38"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">Z.mkin.1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>Z0 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z1"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span>  <span>                    Z1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z2"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> @@ -282,15 +344,18 @@  <pre><code><span><span class="co">## Temporary DLL for differentials generated and loaded</span></span></code></pre>  <div class="sourceCode" id="cb40"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">m.Z.mkin.1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">Z.mkin.1</span>, <span class="va">FOCUS_2006_Z_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## Warning in mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin, quiet = TRUE): Observations with</span></span> -<span><span class="co">## value of zero were removed from the data</span></span></code></pre> +<pre><code><span><span class="co">## Warning in mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin, quiet = TRUE): Observations</span></span> +<span><span class="co">## with value of zero were removed from the data</span></span></code></pre>  <div class="sourceCode" id="cb42"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.mkin.1</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png" width="700"></p>  <div class="sourceCode" id="cb43"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.mkin.1</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">cov.unscaled</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.Z.mkin.1</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">$</span><span class="va">cov.unscaled</span></span></code></pre></div>  <pre><code><span><span class="co">## NULL</span></span></code></pre> -<p>Therefore, a further stepwise model building is performed starting from the stage of parent and two metabolites, starting from the assumption that the model fit for the parent compound can be improved by using the SFORB model.</p> +<p>Therefore, a further stepwise model building is performed starting +from the stage of parent and two metabolites, starting from the +assumption that the model fit for the parent compound can be improved by +using the SFORB model.</p>  <div class="sourceCode" id="cb45"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">Z.mkin.3</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>Z0 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="st">"Z1"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span>  <span>                    Z1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z2"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> @@ -298,13 +363,16 @@  <pre><code><span><span class="co">## Temporary DLL for differentials generated and loaded</span></span></code></pre>  <div class="sourceCode" id="cb47"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">m.Z.mkin.3</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">Z.mkin.3</span>, <span class="va">FOCUS_2006_Z_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div> -<pre><code><span><span class="co">## Warning in mkinfit(Z.mkin.3, FOCUS_2006_Z_mkin, quiet = TRUE): Observations with</span></span> -<span><span class="co">## value of zero were removed from the data</span></span></code></pre> +<pre><code><span><span class="co">## Warning in mkinfit(Z.mkin.3, FOCUS_2006_Z_mkin, quiet = TRUE): Observations</span></span> +<span><span class="co">## with value of zero were removed from the data</span></span></code></pre>  <div class="sourceCode" id="cb49"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.mkin.3</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png" width="700"></p> -<p>This results in a much better representation of the behaviour of the parent compound Z0.</p> -<p>Finally, Z3 is added as well. These models appear overparameterised (no covariance matrix returned) if the sink for Z1 is left in the models.</p> +<p>This results in a much better representation of the behaviour of the +parent compound Z0.</p> +<p>Finally, Z3 is added as well. These models appear overparameterised +(no covariance matrix returned) if the sink for Z1 is left in the +models.</p>  <div class="sourceCode" id="cb50"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">Z.mkin.4</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>Z0 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="st">"Z1"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span>  <span>                    Z1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z2"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> @@ -321,7 +389,10 @@  <div class="sourceCode" id="cb54"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.mkin.4</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png" width="700"></p> -<p>The error level of the fit, but especially of metabolite Z3, can be improved if the SFORB model is chosen for this metabolite, as this model is capable of representing the tailing of the metabolite decline phase.</p> +<p>The error level of the fit, but especially of metabolite Z3, can be +improved if the SFORB model is chosen for this metabolite, as this model +is capable of representing the tailing of the metabolite decline +phase.</p>  <div class="sourceCode" id="cb55"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">Z.mkin.5</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span>Z0 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="st">"Z1"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span>  <span>                    Z1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"Z2"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> @@ -338,7 +409,9 @@  <div class="sourceCode" id="cb59"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.mkin.5</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png" width="700"></p> -<p>The summary view of the backtransformed parameters shows that we get no confidence intervals due to overparameterisation. As the optimized  is excessively small, it seems reasonable to fix it to zero.</p> +<p>The summary view of the backtransformed parameters shows that we get +no confidence intervals due to overparameterisation. As the optimized is +excessively small, it seems reasonable to fix it to zero.</p>  <div class="sourceCode" id="cb60"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">m.Z.mkin.5a</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">Z.mkin.5</span>, <span class="va">FOCUS_2006_Z_mkin</span>,</span>  <span>                       parms.ini <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="va">m.Z.mkin.5</span><span class="op">$</span><span class="va">bparms.ode</span><span class="op">[</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span><span class="op">]</span>,</span> @@ -351,8 +424,12 @@  <div class="sourceCode" id="cb62"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/plot.mkinfit.html">plot_sep</a></span><span class="op">(</span><span class="va">m.Z.mkin.5a</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png" width="700"></p> -<p>As expected, the residual plots for Z0 and Z3 are more random than in the case of the all SFO model for which they were shown above. In conclusion, the model  is proposed as the best-fit model for the dataset from Appendix 7 of the FOCUS report.</p> -<p>A graphical representation of the confidence intervals can finally be obtained.</p> +<p>As expected, the residual plots for Z0 and Z3 are more random than in +the case of the all SFO model for which they were shown above. In +conclusion, the model is proposed as the best-fit model for the dataset +from Appendix 7 of the FOCUS report.</p> +<p>A graphical representation of the confidence intervals can finally be +obtained.</p>  <div class="sourceCode" id="cb63"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/mkinparplot.html">mkinparplot</a></span><span class="op">(</span><span class="va">m.Z.mkin.5a</span><span class="op">)</span></span></code></pre></div>  <p><img src="FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png" width="700"></p> @@ -373,15 +450,22 @@  <span><span class="co">## Z1 1.5148 5.0320       NA         NA         NA         NA         NA</span></span>  <span><span class="co">## Z2 1.6414 5.4526       NA         NA         NA         NA         NA</span></span>  <span><span class="co">## Z3     NA     NA       NA         NA         NA     8.6636        Inf</span></span></code></pre> -<p>It is clear the degradation rate of Z3 towards the end of the experiment is very low as DT50_Z3_b2 (the second Eigenvalue of the system of two differential equations representing the SFORB system for Z3, corresponding to the slower rate constant of the DFOP model) is reported to be infinity. However, this appears to be a feature of the data.</p> +<p>It is clear the degradation rate of Z3 towards the end of the +experiment is very low as DT50_Z3_b2 (the second Eigenvalue of the +system of two differential equations representing the SFORB system for +Z3, corresponding to the slower rate constant of the DFOP model) is +reported to be infinity. However, this appears to be a feature of the +data.</p>  </div>  <div class="section level2">  <h2 id="references">References<a class="anchor" aria-label="anchor" href="#references"></a>  </h2>  <!-- vim: set foldmethod=syntax: --> -<div id="refs" class="references hanging-indent"> -<div id="ref-FOCUSkinetics2014"> -<p>FOCUS Work Group on Degradation Kinetics. 2014. <em>Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration</em>. 1.1 ed. <a href="http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics" class="external-link">http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a>.</p> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-FOCUSkinetics2014" class="csl-entry"> +FOCUS Work Group on Degradation Kinetics. 2014. <em>Generic Guidance for +Estimating Persistence and Degradation Kinetics from Environmental Fate +Studies on Pesticides in EU Registration</em>. 1.1 ed. <a href="http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics" class="external-link">http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics</a>.  </div>  </div>  </div> @@ -404,7 +488,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.pngBinary files differ index be652d31..98bc135b 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.pngBinary files differ index bc6efaf7..33269a34 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.pngBinary files differ index 55c1b645..6e1877f4 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.pngBinary files differ index 8e63cd04..113c1b0b 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.pngBinary files differ index 3902e059..6b0dbc34 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.pngBinary files differ index be652d31..98bc135b 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.pngBinary files differ index 59524035..0380ba43 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.pngBinary files differ index d95cac25..d080a57a 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.pngBinary files differ index cb333a1c..3119be2d 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.pngBinary files differ index d87105fb..87af8874 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.pngBinary files differ index db807f14..1938b499 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png diff --git a/docs/articles/web_only/NAFTA_examples.html b/docs/articles/web_only/NAFTA_examples.html index b8ec5059..49d1db33 100644 --- a/docs/articles/web_only/NAFTA_examples.html +++ b/docs/articles/web_only/NAFTA_examples.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../../reference/index.html">Functions and data</a> +  <a href="../../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,16 @@ -      </header><script src="NAFTA_examples_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore"> -      <h1 data-toc-skip>Evaluation of example datasets from Attachment 1 to the US EPA SOP for the NAFTA guidance</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +      <h1 data-toc-skip>Evaluation of example datasets from Attachment 1 +to the US EPA SOP for the NAFTA guidance</h1> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">26 February 2019 (rebuilt 2022-11-17)</h4> +            <h4 data-toc-skip class="date">26 February 2019 (rebuilt +2023-04-20)</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/web_only/NAFTA_examples.rmd" class="external-link"><code>vignettes/web_only/NAFTA_examples.rmd</code></a></small>        <div class="hidden name"><code>NAFTA_examples.rmd</code></div> @@ -123,13 +147,22 @@  <div class="section level2">  <h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a>  </h2> -<p>In this document, the example evaluations provided in Attachment 1 to the SOP of US EPA for using the NAFTA guidance <span class="citation">(US EPA 2015)</span> are repeated using mkin. The original evaluations reported in the attachment were performed using PestDF in version 0.8.4. Note that PestDF 0.8.13 is the version distributed at the US EPA website today (2019-02-26).</p> +<p>In this document, the example evaluations provided in Attachment 1 to +the SOP of US EPA for using the NAFTA guidance <span class="citation">(US EPA 2015)</span> are repeated using mkin. The +original evaluations reported in the attachment were performed using +PestDF in version 0.8.4. Note that PestDF 0.8.13 is the version +distributed at the US EPA website today (2019-02-26).</p>  <p>The datasets are now distributed with the mkin package.</p>  </div>  <div class="section level2">  <h2 id="examples-where-dfop-did-not-converge-with-pestdf-0-8-4">Examples where DFOP did not converge with PestDF 0.8.4<a class="anchor" aria-label="anchor" href="#examples-where-dfop-did-not-converge-with-pestdf-0-8-4"></a>  </h2> -<p>In attachment 1, it is reported that the DFOP model does not converge for these datasets when PestDF 0.8.4 was used. For all four datasets, the DFOP model can be fitted with mkin (see below). The negative half-life given by PestDF 0.8.4 for these fits appears to be the result of a bug. The results for the other two models (SFO and IORE) are the same.</p> +<p>In attachment 1, it is reported that the DFOP model does not converge +for these datasets when PestDF 0.8.4 was used. For all four datasets, +the DFOP model can be fitted with mkin (see below). The negative +half-life given by PestDF 0.8.4 for these fits appears to be the result +of a bug. The results for the other two models (SFO and IORE) are the +same.</p>  <div class="section level3">  <h3 id="example-on-page-5-upper-panel">Example on page 5, upper panel<a class="anchor" aria-label="anchor" href="#example-on-page-5-upper-panel"></a>  </h3> @@ -138,7 +171,7 @@  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p5a</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p5a</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p5a-1.png" width="700"></p>  <div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p5a</span><span class="op">)</span></span></code></pre></div> @@ -189,7 +222,7 @@  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb10"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p5b</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p5b</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p5b-1.png" width="700"></p>  <div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p5b</span><span class="op">)</span></span></code></pre></div> @@ -240,7 +273,7 @@  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb16"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p6</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p6</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p6-1.png" width="700"></p>  <div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p6</span><span class="op">)</span></span></code></pre></div> @@ -291,7 +324,7 @@  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb22"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p7</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p7</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p7-1.png" width="700"></p>  <div class="sourceCode" id="cb23"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p7</span><span class="op">)</span></span></code></pre></div> @@ -336,18 +369,21 @@  </div>  </div>  <div class="section level2"> -<h2 id="examples-where-the-representative-half-life-deviates-from-the-observed-dt50">Examples where the representative half-life deviates from the observed DT50<a class="anchor" aria-label="anchor" href="#examples-where-the-representative-half-life-deviates-from-the-observed-dt50"></a> +<h2 id="examples-where-the-representative-half-life-deviates-from-the-observed-dt50">Examples where the representative half-life deviates from the +observed DT50<a class="anchor" aria-label="anchor" href="#examples-where-the-representative-half-life-deviates-from-the-observed-dt50"></a>  </h2>  <div class="section level3">  <h3 id="example-on-page-8">Example on page 8<a class="anchor" aria-label="anchor" href="#example-on-page-8"></a>  </h3> -<p>For this dataset, the IORE fit does not converge when the default starting values used by mkin for the IORE model are used. Therefore, a lower value for the rate constant is used here.</p> +<p>For this dataset, the IORE fit does not converge when the default +starting values used by mkin for the IORE model are used. Therefore, a +lower value for the rate constant is used here.</p>  <div class="sourceCode" id="cb25"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">p8</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/nafta.html">nafta</a></span><span class="op">(</span><span class="va">NAFTA_SOP_Attachment</span><span class="op">[[</span><span class="st">"p8"</span><span class="op">]</span><span class="op">]</span>, parms.ini <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span>k__iore_parent <span class="op">=</span> <span class="fl">1e-3</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb28"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p8</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p8</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p8-1.png" width="700"></p>  <div class="sourceCode" id="cb29"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p8</span><span class="op">)</span></span></code></pre></div> @@ -402,7 +438,7 @@  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb34"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p9a</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p9a</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p9a-1.png" width="700"></p>  <div class="sourceCode" id="cb35"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p9a</span><span class="op">)</span></span></code></pre></div> @@ -444,7 +480,9 @@  <span><span class="co">## </span></span>  <span><span class="co">## Representative half-life:</span></span>  <span><span class="co">## [1] 101.43</span></span></code></pre> -<p>In this example, the residuals of the SFO indicate a lack of fit of this model, so even if it was an abiotic experiment, the data do not suggest a simple exponential decline.</p> +<p>In this example, the residuals of the SFO indicate a lack of fit of +this model, so even if it was an abiotic experiment, the data do not +suggest a simple exponential decline.</p>  </div>  <div class="section level3">  <h3 id="example-on-page-9-lower-panel">Example on page 9, lower panel<a class="anchor" aria-label="anchor" href="#example-on-page-9-lower-panel"></a> @@ -454,12 +492,12 @@  <pre><code><span><span class="co">## Warning in sqrt(diag(covar)): NaNs produced</span></span></code></pre>  <pre><code><span><span class="co">## Warning in sqrt(diag(covar_notrans)): NaNs produced</span></span></code></pre>  <pre><code><span><span class="co">## Warning in sqrt(1/diag(V)): NaNs produced</span></span></code></pre> -<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is</span></span> -<span><span class="co">## doubtful</span></span></code></pre> +<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result</span></span> +<span><span class="co">## is doubtful</span></span></code></pre>  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb44"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p9b</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p9b</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p9b-1.png" width="700"></p>  <div class="sourceCode" id="cb45"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p9b</span><span class="op">)</span></span></code></pre></div> @@ -501,7 +539,12 @@  <span><span class="co">## </span></span>  <span><span class="co">## Representative half-life:</span></span>  <span><span class="co">## [1] 14.8</span></span></code></pre> -<p>Here, mkin gives a longer slow DT50 for the DFOP model (17.8 days) than PestDF (13.5 days). Presumably, this is related to the fact that PestDF gives a negative value for the proportion of the fast degradation which should be between 0 and 1, inclusive. This parameter is called f in PestDF and g in mkin. In mkin, it is restricted to the interval from 0 to 1.</p> +<p>Here, mkin gives a longer slow DT50 for the DFOP model (17.8 days) +than PestDF (13.5 days). Presumably, this is related to the fact that +PestDF gives a negative value for the proportion of the fast degradation +which should be between 0 and 1, inclusive. This parameter is called f +in PestDF and g in mkin. In mkin, it is restricted to the interval from +0 to 1.</p>  </div>  <div class="section level3">  <h3 id="example-on-page-10">Example on page 10<a class="anchor" aria-label="anchor" href="#example-on-page-10"></a> @@ -510,12 +553,12 @@  <code class="sourceCode R"><span><span class="va">p10</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/nafta.html">nafta</a></span><span class="op">(</span><span class="va">NAFTA_SOP_Attachment</span><span class="op">[[</span><span class="st">"p10"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## Warning in sqrt(diag(covar)): NaNs produced</span></span></code></pre>  <pre><code><span><span class="co">## Warning in sqrt(1/diag(V)): NaNs produced</span></span></code></pre> -<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is</span></span> -<span><span class="co">## doubtful</span></span></code></pre> +<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result</span></span> +<span><span class="co">## is doubtful</span></span></code></pre>  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb53"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p10</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p10</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p10-1.png" width="700"></p>  <div class="sourceCode" id="cb54"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p10</span><span class="op">)</span></span></code></pre></div> @@ -557,7 +600,11 @@  <span><span class="co">## </span></span>  <span><span class="co">## Representative half-life:</span></span>  <span><span class="co">## [1] 8.86</span></span></code></pre> -<p>Here, a value below N is given for the IORE model, because the data suggests a faster decline towards the end of the experiment, which appears physically rather unlikely in the case of a photolysis study. It seems PestDF does not constrain N to values above zero, thus the slight difference in IORE model parameters between PestDF and mkin.</p> +<p>Here, a value below N is given for the IORE model, because the data +suggests a faster decline towards the end of the experiment, which +appears physically rather unlikely in the case of a photolysis study. It +seems PestDF does not constrain N to values above zero, thus the slight +difference in IORE model parameters between PestDF and mkin.</p>  </div>  </div>  <div class="section level2"> @@ -571,7 +618,7 @@  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb59"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p11</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p11</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p11-1.png" width="700"></p>  <div class="sourceCode" id="cb60"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p11</span><span class="op">)</span></span></code></pre></div> @@ -613,13 +660,19 @@  <span><span class="co">## </span></span>  <span><span class="co">## Representative half-life:</span></span>  <span><span class="co">## [1] 41148170</span></span></code></pre> -<p>In this case, the DFOP fit reported for PestDF resulted in a negative value for the slower rate constant, which is not possible in mkin. The other results are in agreement.</p> +<p>In this case, the DFOP fit reported for PestDF resulted in a negative +value for the slower rate constant, which is not possible in mkin. The +other results are in agreement.</p>  </div>  </div>  <div class="section level2"> -<h2 id="n-is-less-than-1-and-the-dfop-rate-constants-are-like-the-sfo-rate-constant">N is less than 1 and the DFOP rate constants are like the SFO rate constant<a class="anchor" aria-label="anchor" href="#n-is-less-than-1-and-the-dfop-rate-constants-are-like-the-sfo-rate-constant"></a> +<h2 id="n-is-less-than-1-and-the-dfop-rate-constants-are-like-the-sfo-rate-constant">N is less than 1 and the DFOP rate constants are like the SFO rate +constant<a class="anchor" aria-label="anchor" href="#n-is-less-than-1-and-the-dfop-rate-constants-are-like-the-sfo-rate-constant"></a>  </h2> -<p>In the following three examples, the same results are obtained with mkin as reported for PestDF. As in the case on page 10, the N values below 1 are deemed unrealistic and appear to be the result of an overparameterisation.</p> +<p>In the following three examples, the same results are obtained with +mkin as reported for PestDF. As in the case on page 10, the N values +below 1 are deemed unrealistic and appear to be the result of an +overparameterisation.</p>  <div class="section level3">  <h3 id="example-on-page-12-upper-panel">Example on page 12, upper panel<a class="anchor" aria-label="anchor" href="#example-on-page-12-upper-panel"></a>  </h3> @@ -630,12 +683,12 @@  <pre><code><span><span class="co">## Warning in sqrt(diag(covar)): NaNs produced</span></span></code></pre>  <pre><code><span><span class="co">## Warning in sqrt(diag(covar_notrans)): NaNs produced</span></span></code></pre>  <pre><code><span><span class="co">## Warning in sqrt(1/diag(V)): NaNs produced</span></span></code></pre> -<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is</span></span> -<span><span class="co">## doubtful</span></span></code></pre> +<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result</span></span> +<span><span class="co">## is doubtful</span></span></code></pre>  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb70"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p12a</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p12a</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p12a-1.png" width="700"></p>  <div class="sourceCode" id="cb71"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p12a</span><span class="op">)</span></span></code></pre></div> @@ -690,7 +743,7 @@  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb80"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p12b</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p12b</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p12b-1.png" width="700"></p>  <div class="sourceCode" id="cb81"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p12b</span><span class="op">)</span></span></code></pre></div> @@ -741,7 +794,7 @@  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb86"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p13</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p13</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p13-1.png" width="700"></p>  <div class="sourceCode" id="cb87"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p13</span><span class="op">)</span></span></code></pre></div> @@ -792,12 +845,12 @@  <code class="sourceCode R"><span><span class="va">p14</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/nafta.html">nafta</a></span><span class="op">(</span><span class="va">NAFTA_SOP_Attachment</span><span class="op">[[</span><span class="st">"p14"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## Warning in sqrt(diag(covar)): NaNs produced</span></span></code></pre>  <pre><code><span><span class="co">## Warning in sqrt(1/diag(V)): NaNs produced</span></span></code></pre> -<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is</span></span> -<span><span class="co">## doubtful</span></span></code></pre> +<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result</span></span> +<span><span class="co">## is doubtful</span></span></code></pre>  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb95"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p14</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p14</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p14-1.png" width="700"></p>  <div class="sourceCode" id="cb96"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p14</span><span class="op">)</span></span></code></pre></div> @@ -839,7 +892,9 @@  <span><span class="co">## </span></span>  <span><span class="co">## Representative half-life:</span></span>  <span><span class="co">## [1] 6697.44</span></span></code></pre> -<p>The slower rate constant reported by PestDF is negative, which is not physically realistic, and not possible in mkin. The other fits give the same results in mkin and PestDF.</p> +<p>The slower rate constant reported by PestDF is negative, which is not +physically realistic, and not possible in mkin. The other fits give the +same results in mkin and PestDF.</p>  </div>  <div class="section level2">  <h2 id="n-is-less-than-1-and-dfop-fraction-parameter-is-below-zero">N is less than 1 and DFOP fraction parameter is below zero<a class="anchor" aria-label="anchor" href="#n-is-less-than-1-and-dfop-fraction-parameter-is-below-zero"></a> @@ -849,7 +904,7 @@  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb101"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p15a</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p15a</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p15a-1.png" width="700"></p>  <div class="sourceCode" id="cb102"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p15a</span><span class="op">)</span></span></code></pre></div> @@ -895,12 +950,12 @@  <code class="sourceCode R"><span><span class="va">p15b</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/nafta.html">nafta</a></span><span class="op">(</span><span class="va">NAFTA_SOP_Attachment</span><span class="op">[[</span><span class="st">"p15b"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## Warning in sqrt(diag(covar)): NaNs produced</span></span></code></pre>  <pre><code><span><span class="co">## Warning in sqrt(1/diag(V)): NaNs produced</span></span></code></pre> -<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is</span></span> -<span><span class="co">## doubtful</span></span></code></pre> +<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result</span></span> +<span><span class="co">## is doubtful</span></span></code></pre>  <pre><code><span><span class="co">## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c</span></span></code></pre>  <pre><code><span><span class="co">## The half-life obtained from the IORE model may be used</span></span></code></pre>  <div class="sourceCode" id="cb110"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p15b</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p15b</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p15b-1.png" width="700"></p>  <div class="sourceCode" id="cb111"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p15b</span><span class="op">)</span></span></code></pre></div> @@ -942,7 +997,10 @@  <span><span class="co">## </span></span>  <span><span class="co">## Representative half-life:</span></span>  <span><span class="co">## [1] 71.18</span></span></code></pre> -<p>In mkin, only the IORE fit is affected (deemed unrealistic), as the fraction parameter of the DFOP model is restricted to the interval between 0 and 1 in mkin. The SFO fits give the same results for both mkin and PestDF.</p> +<p>In mkin, only the IORE fit is affected (deemed unrealistic), as the +fraction parameter of the DFOP model is restricted to the interval +between 0 and 1 in mkin. The SFO fits give the same results for both +mkin and PestDF.</p>  </div>  <div class="section level2">  <h2 id="the-dfop-fraction-parameter-is-greater-than-1">The DFOP fraction parameter is greater than 1<a class="anchor" aria-label="anchor" href="#the-dfop-fraction-parameter-is-greater-than-1"></a> @@ -954,7 +1012,7 @@  <pre><code><span><span class="co">## to the terminal degradation rate found with the DFOP model.</span></span></code></pre>  <pre><code><span><span class="co">## The representative half-life obtained from the DFOP model may be used</span></span></code></pre>  <div class="sourceCode" id="cb118"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p16</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">p16</span><span class="op">)</span></span></code></pre></div>  <p><img src="NAFTA_examples_files/figure-html/p16-1.png" width="700"></p>  <div class="sourceCode" id="cb119"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">p16</span><span class="op">)</span></span></code></pre></div> @@ -996,20 +1054,32 @@  <span><span class="co">## </span></span>  <span><span class="co">## Representative half-life:</span></span>  <span><span class="co">## [1] 8.93</span></span></code></pre> -<p>In PestDF, the DFOP fit seems to have stuck in a local minimum, as mkin finds a solution with a much lower <span class="math inline">\(\chi^2\)</span> error level. As the half-life from the slower rate constant of the DFOP model is larger than the IORE derived half-life, the NAFTA recommendation obtained with mkin is to use the DFOP representative half-life of 8.9 days.</p> +<p>In PestDF, the DFOP fit seems to have stuck in a local minimum, as +mkin finds a solution with a much lower <span class="math inline">\(\chi^2\)</span> error level. As the half-life from +the slower rate constant of the DFOP model is larger than the IORE +derived half-life, the NAFTA recommendation obtained with mkin is to use +the DFOP representative half-life of 8.9 days.</p>  </div>  <div class="section level2">  <h2 id="conclusions">Conclusions<a class="anchor" aria-label="anchor" href="#conclusions"></a>  </h2> -<p>The results obtained with mkin deviate from the results obtained with PestDF either in cases where one of the interpretive rules would apply, i.e. the IORE parameter N is less than one or the DFOP k values obtained with PestDF are equal to the SFO k values, or in cases where the DFOP model did not converge, which often lead to negative rate constants returned by PestDF.</p> -<p>Therefore, mkin appears to suitable for kinetic evaluations according to the NAFTA guidance.</p> +<p>The results obtained with mkin deviate from the results obtained with +PestDF either in cases where one of the interpretive rules would apply, +i.e. the IORE parameter N is less than one or the DFOP k values obtained +with PestDF are equal to the SFO k values, or in cases where the DFOP +model did not converge, which often lead to negative rate constants +returned by PestDF.</p> +<p>Therefore, mkin appears to suitable for kinetic evaluations according +to the NAFTA guidance.</p>  </div>  <div class="section level2">  <h2 class="unnumbered" id="references">References<a class="anchor" aria-label="anchor" href="#references"></a>  </h2> -<div id="refs" class="references hanging-indent"> -<div id="ref-usepa2015"> -<p>US EPA. 2015. “Standard Operating Procedure for Using the NAFTA Guidance to Calculate Representative Half-Life Values and Characterizing Pesticide Degradation.”</p> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-usepa2015" class="csl-entry"> +US EPA. 2015. <span>“Standard Operating Procedure for Using the NAFTA +Guidance to Calculate Representative Half-Life Values and Characterizing +Pesticide Degradation.”</span> <a href="https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-using-nafta-guidance" class="external-link">https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-using-nafta-guidance</a>.  </div>  </div>  </div> @@ -1032,7 +1102,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.pngBinary files differ index 75611a70..566625ea 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.pngBinary files differ index 55466e47..71fc4699 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.pngBinary files differ index d3143afa..a1d3a084 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.pngBinary files differ index 3387ca69..1a6fdd03 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.pngBinary files differ index 62a135f2..f9b9f637 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.pngBinary files differ index ae4d83a4..9f7b0cc5 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.pngBinary files differ index b6faeff9..b5fd7d91 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.pngBinary files differ index 6b9ba98c..dfbc996f 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.pngBinary files differ index 72df855b..75ac7e5b 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.pngBinary files differ index 391dfb95..12a62954 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.pngBinary files differ index db90244b..6fd175cb 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.pngBinary files differ index a33372e8..856c6778 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.pngBinary files differ index d64ea98d..b078fb88 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.pngBinary files differ index 5cd6c806..a1e3bf25 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.pngBinary files differ index 61359ea6..c247fd4e 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.pngBinary files differ index 85790b1e..99d593fc 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png diff --git a/docs/articles/web_only/benchmarks.html b/docs/articles/web_only/benchmarks.html index 64c68ea0..3e73bd12 100644 --- a/docs/articles/web_only/benchmarks.html +++ b/docs/articles/web_only/benchmarks.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../../reference/index.html">Functions and data</a> +  <a href="../../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,15 @@ -      </header><script src="benchmarks_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore">        <h1 data-toc-skip>Benchmark timings for mkin</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">Last change 14 July 2022 (rebuilt 2022-11-17)</h4> +            <h4 data-toc-skip class="date">Last change 17 February 2023 +(rebuilt 2023-04-20)</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/web_only/benchmarks.rmd" class="external-link"><code>vignettes/web_only/benchmarks.rmd</code></a></small>        <div class="hidden name"><code>benchmarks.rmd</code></div> @@ -120,9 +143,15 @@ -<p>Each system is characterized by the operating system type, the CPU type, the mkin version, and, as in June 2022 the current R version lead to worse performance, the R version. A compiler was available, so if no analytical solution was available, compiled ODE models are used.</p> -<p>Every fit is only performed once, so the accuracy of the benchmarks is limited.</p> -<p>The following wrapper function for <code>mmkin</code> is used because the way the error model is specified was changed in mkin version 0.9.49.1.</p> +<p>Each system is characterized by the operating system type, the CPU +type, the mkin version, and, as in June 2022 the current R version lead +to worse performance, the R version. A compiler was available, so if no +analytical solution was available, compiled ODE models are used.</p> +<p>Every fit is only performed once, so the accuracy of the benchmarks +is limited.</p> +<p>The following wrapper function for <code>mmkin</code> is used because +the way the error model is specified was changed in mkin version +0.9.49.1.</p>  <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/utils/packageDescription.html" class="external-link">packageVersion</a></span><span class="op">(</span><span class="st">"mkin"</span><span class="op">)</span> <span class="op">></span> <span class="st">"0.9.48.1"</span><span class="op">)</span> <span class="op">{</span></span>  <span>  <span class="va">mmkin_bench</span> <span class="op"><-</span> <span class="kw">function</span><span class="op">(</span><span class="va">models</span>, <span class="va">datasets</span>, <span class="va">error_model</span> <span class="op">=</span> <span class="st">"const"</span><span class="op">)</span> <span class="op">{</span></span> @@ -194,11 +223,14 @@  <div class="section level2">  <h2 id="results">Results<a class="anchor" aria-label="anchor" href="#results"></a>  </h2> -<p>Benchmarks for all available error models are shown. They are intended for improving mkin, not for comparing CPUs or operating systems. All trademarks belong to their respective owners.</p> +<p>Benchmarks for all available error models are shown. They are +intended for improving mkin, not for comparing CPUs or operating +systems. All trademarks belong to their respective owners.</p>  <div class="section level3">  <h3 id="parent-only">Parent only<a class="anchor" aria-label="anchor" href="#parent-only"></a>  </h3> -<p>Constant variance (t1) and two-component error model (t2) for four models fitted to two datasets, i.e. eight fits for each test.</p> +<p>Constant variance (t1) and two-component error model (t2) for four +models fitted to two datasets, i.e. eight fits for each test.</p>  <table class="table">  <thead><tr class="header">  <th align="left">OS</th> @@ -353,13 +385,55 @@  <td align="right">2.140</td>  <td align="right">3.774</td>  </tr> +<tr class="odd"> +<td align="left">Linux</td> +<td align="left">Ryzen 7 1700</td> +<td align="left">4.2.2</td> +<td align="left">1.2.2</td> +<td align="right">2.187</td> +<td align="right">3.851</td> +</tr> +<tr class="even"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.0</td> +<td align="right">1.288</td> +<td align="right">1.794</td> +</tr> +<tr class="odd"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.2</td> +<td align="right">1.276</td> +<td align="right">1.804</td> +</tr> +<tr class="even"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.3</td> +<td align="right">1.370</td> +<td align="right">1.883</td> +</tr> +<tr class="odd"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.3</td> +<td align="left">1.2.3</td> +<td align="right">1.406</td> +<td align="right">1.948</td> +</tr>  </tbody>  </table>  </div>  <div class="section level3">  <h3 id="one-metabolite">One metabolite<a class="anchor" aria-label="anchor" href="#one-metabolite"></a>  </h3> -<p>Constant variance (t3), two-component error model (t4), and variance by variable (t5) for three models fitted to one dataset, i.e. three fits for each test.</p> +<p>Constant variance (t3), two-component error model (t4), and variance +by variable (t5) for three models fitted to one dataset, i.e. three fits +for each test.</p>  <table class="table">  <thead><tr class="header">  <th align="left">OS</th> @@ -533,14 +607,73 @@  <td align="right">6.193</td>  <td align="right">2.843</td>  </tr> +<tr class="odd"> +<td align="left">Linux</td> +<td align="left">Ryzen 7 1700</td> +<td align="left">4.2.2</td> +<td align="left">1.2.2</td> +<td align="right">1.585</td> +<td align="right">6.335</td> +<td align="right">3.003</td> +</tr> +<tr class="even"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.0</td> +<td align="right">0.792</td> +<td align="right">2.378</td> +<td align="right">1.245</td> +</tr> +<tr class="odd"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.2</td> +<td align="right">0.784</td> +<td align="right">2.355</td> +<td align="right">1.233</td> +</tr> +<tr class="even"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.3</td> +<td align="right">0.770</td> +<td align="right">2.011</td> +<td align="right">1.123</td> +</tr> +<tr class="odd"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.3</td> +<td align="left">1.2.3</td> +<td align="right">0.793</td> +<td align="right">2.109</td> +<td align="right">1.178</td> +</tr>  </tbody>  </table>  </div>  <div class="section level3">  <h3 id="two-metabolites">Two metabolites<a class="anchor" aria-label="anchor" href="#two-metabolites"></a>  </h3> -<p>Constant variance (t6 and t7), two-component error model (t8 and t9), and variance by variable (t10 and t11) for one model fitted to one dataset, i.e. one fit for each test.</p> +<p>Constant variance (t6 and t7), two-component error model (t8 and t9), +and variance by variable (t10 and t11) for one model fitted to one +dataset, i.e. one fit for each test.</p>  <table class="table"> +<colgroup> +<col width="8%"> +<col width="19%"> +<col width="8%"> +<col width="12%"> +<col width="8%"> +<col width="8%"> +<col width="8%"> +<col width="9%"> +<col width="8%"> +<col width="9%"> +</colgroup>  <thead><tr class="header">  <th align="left">OS</th>  <th align="left">CPU</th> @@ -770,6 +903,66 @@  <td align="right">1.987</td>  <td align="right">2.802</td>  </tr> +<tr class="odd"> +<td align="left">Linux</td> +<td align="left">Ryzen 7 1700</td> +<td align="left">4.2.2</td> +<td align="left">1.2.2</td> +<td align="right">0.935</td> +<td align="right">1.381</td> +<td align="right">1.551</td> +<td align="right">3.209</td> +<td align="right">1.976</td> +<td align="right">3.013</td> +</tr> +<tr class="even"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.0</td> +<td align="right">0.445</td> +<td align="right">0.591</td> +<td align="right">0.660</td> +<td align="right">1.190</td> +<td align="right">0.814</td> +<td align="right">1.100</td> +</tr> +<tr class="odd"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.2</td> +<td align="right">0.443</td> +<td align="right">0.586</td> +<td align="right">0.661</td> +<td align="right">1.176</td> +<td align="right">0.803</td> +<td align="right">1.097</td> +</tr> +<tr class="even"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.2</td> +<td align="left">1.2.3</td> +<td align="right">0.418</td> +<td align="right">0.530</td> +<td align="right">0.591</td> +<td align="right">1.006</td> +<td align="right">0.716</td> +<td align="right">0.949</td> +</tr> +<tr class="odd"> +<td align="left">Linux</td> +<td align="left">Ryzen 9 7950X</td> +<td align="left">4.2.3</td> +<td align="left">1.2.3</td> +<td align="right">0.432</td> +<td align="right">0.549</td> +<td align="right">0.609</td> +<td align="right">1.052</td> +<td align="right">0.743</td> +<td align="right">0.989</td> +</tr>  </tbody>  </table>  </div> @@ -793,7 +986,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/web_only/compiled_models.html b/docs/articles/web_only/compiled_models.html index d17d7aeb..a411dad1 100644 --- a/docs/articles/web_only/compiled_models.html +++ b/docs/articles/web_only/compiled_models.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../../reference/index.html">Functions and data</a> +  <a href="../../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,15 @@ -      </header><script src="compiled_models_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore"> -      <h1 data-toc-skip>Performance benefit by using compiled model definitions in mkin</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +      <h1 data-toc-skip>Performance benefit by using compiled model +definitions in mkin</h1> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">2022-11-17</h4> +            <h4 data-toc-skip class="date">2023-04-20</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/web_only/compiled_models.rmd" class="external-link"><code>vignettes/web_only/compiled_models.rmd</code></a></small>        <div class="hidden name"><code>compiled_models.rmd</code></div> @@ -123,23 +146,39 @@  <div class="section level2">  <h2 id="how-to-benefit-from-compiled-models">How to benefit from compiled models<a class="anchor" aria-label="anchor" href="#how-to-benefit-from-compiled-models"></a>  </h2> -<p>When using an mkin version equal to or greater than 0.9-36 and a C compiler is available, you will see a message that the model is being compiled from autogenerated C code when defining a model using mkinmod. Starting from version 0.9.49.9, the <code><a href="../../reference/mkinmod.html">mkinmod()</a></code> function checks for presence of a compiler using</p> +<p>When using an mkin version equal to or greater than 0.9-36 and a C +compiler is available, you will see a message that the model is being +compiled from autogenerated C code when defining a model using mkinmod. +Starting from version 0.9.49.9, the <code><a href="../../reference/mkinmod.html">mkinmod()</a></code> function +checks for presence of a compiler using</p>  <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu">pkgbuild</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/pkgbuild/man/has_compiler.html" class="external-link">has_compiler</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> -<p>In previous versions, it used <code>Sys.which("gcc")</code> for this check.</p> -<p>On Linux, you need to have the essential build tools like make and gcc or clang installed. On Debian based linux distributions, these will be pulled in by installing the build-essential package.</p> -<p>On MacOS, which I do not use personally, I have had reports that a compiler is available by default.</p> -<p>On Windows, you need to install Rtools and have the path to its bin directory in your PATH variable. You do not need to modify the PATH variable when installing Rtools. Instead, I would recommend to put the line</p> +<code class="sourceCode R"><span><span class="fu">pkgbuild</span><span class="fu">::</span><span class="fu"><a href="https://r-lib.github.io/pkgbuild/reference/has_compiler.html" class="external-link">has_compiler</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<p>In previous versions, it used <code>Sys.which("gcc")</code> for this +check.</p> +<p>On Linux, you need to have the essential build tools like make and +gcc or clang installed. On Debian based linux distributions, these will +be pulled in by installing the build-essential package.</p> +<p>On MacOS, which I do not use personally, I have had reports that a +compiler is available by default.</p> +<p>On Windows, you need to install Rtools and have the path to its bin +directory in your PATH variable. You do not need to modify the PATH +variable when installing Rtools. Instead, I would recommend to put the +line</p>  <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/Sys.setenv.html" class="external-link">Sys.setenv</a></span><span class="op">(</span>PATH <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"C:/Rtools/bin"</span>, <span class="fu"><a href="https://rdrr.io/r/base/Sys.getenv.html" class="external-link">Sys.getenv</a></span><span class="op">(</span><span class="st">"PATH"</span><span class="op">)</span>, sep<span class="op">=</span><span class="st">";"</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> -<p>into your .Rprofile startup file. This is just a text file with some R code that is executed when your R session starts. It has to be named .Rprofile and has to be located in your home directory, which will generally be your Documents folder. You can check the location of the home directory used by R by issuing</p> +<p>into your .Rprofile startup file. This is just a text file with some +R code that is executed when your R session starts. It has to be named +.Rprofile and has to be located in your home directory, which will +generally be your Documents folder. You can check the location of the +home directory used by R by issuing</p>  <div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/Sys.getenv.html" class="external-link">Sys.getenv</a></span><span class="op">(</span><span class="st">"HOME"</span><span class="op">)</span></span></code></pre></div>  </div>  <div class="section level2">  <h2 id="comparison-with-other-solution-methods">Comparison with other solution methods<a class="anchor" aria-label="anchor" href="#comparison-with-other-solution-methods"></a>  </h2> -<p>First, we build a simple degradation model for a parent compound with one metabolite, and we remove zero values from the dataset.</p> +<p>First, we build a simple degradation model for a parent compound with +one metabolite, and we remove zero values from the dataset.</p>  <div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="st"><a href="https://pkgdown.jrwb.de/mkin/">"mkin"</a></span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="va">SFO_SFO</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> @@ -148,7 +187,12 @@  <pre><code><span><span class="co">## Temporary DLL for differentials generated and loaded</span></span></code></pre>  <div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">FOCUS_D</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">FOCUS_2006_D</span>, <span class="va">value</span> <span class="op">!=</span> <span class="fl">0</span><span class="op">)</span></span></code></pre></div> -<p>We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the benchmark package. In the output of below code, the warnings about zero being removed from the FOCUS D dataset are suppressed. Since mkin version 0.9.49.11, an analytical solution is also implemented, which is included in the tests below.</p> +<p>We can compare the performance of the Eigenvalue based solution +against the compiled version and the R implementation of the +differential equations using the benchmark package. In the output of +below code, the warnings about zero being removed from the FOCUS D +dataset are suppressed. Since mkin version 0.9.49.11, an analytical +solution is also implemented, which is included in the tests below.</p>  <div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">require</a></span><span class="op">(</span><span class="va"><a href="http://rbenchmark.googlecode.com" class="external-link">rbenchmark</a></span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>  <span>  <span class="va">b.1</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/rbenchmark/man/benchmark.html" class="external-link">benchmark</a></span><span class="op">(</span></span> @@ -169,16 +213,20 @@  <span>  <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="st">"R package rbenchmark is not available"</span><span class="op">)</span></span>  <span><span class="op">}</span></span></code></pre></div>  <pre><code><span><span class="co">##                    test replications relative elapsed</span></span> -<span><span class="co">## 4            analytical            1    1.000   0.218</span></span> -<span><span class="co">## 3     deSolve, compiled            1    1.550   0.338</span></span> -<span><span class="co">## 2      Eigenvalue based            1    1.950   0.425</span></span> -<span><span class="co">## 1 deSolve, not compiled            1   33.041   7.203</span></span></code></pre> -<p>We see that using the compiled model is by more than a factor of 10 faster than using deSolve without compiled code.</p> +<span><span class="co">## 4            analytical            1    1.000   0.103</span></span> +<span><span class="co">## 3     deSolve, compiled            1    1.291   0.133</span></span> +<span><span class="co">## 2      Eigenvalue based            1    1.718   0.177</span></span> +<span><span class="co">## 1 deSolve, not compiled            1   22.136   2.280</span></span></code></pre> +<p>We see that using the compiled model is by more than a factor of 10 +faster than using deSolve without compiled code.</p>  </div>  <div class="section level2">  <h2 id="model-without-analytical-solution">Model without analytical solution<a class="anchor" aria-label="anchor" href="#model-without-analytical-solution"></a>  </h2> -<p>This evaluation is also taken from the example section of mkinfit. No analytical solution is available for this system, and now Eigenvalue based solution is possible, so only deSolve using with or without compiled code is available.</p> +<p>This evaluation is also taken from the example section of mkinfit. No +analytical solution is available for this system, and now Eigenvalue +based solution is possible, so only deSolve using with or without +compiled code is available.</p>  <div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">require</a></span><span class="op">(</span><span class="va"><a href="http://rbenchmark.googlecode.com" class="external-link">rbenchmark</a></span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>  <span>  <span class="va">FOMC_SFO</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> @@ -199,14 +247,15 @@  <span><span class="op">}</span></span></code></pre></div>  <pre><code><span><span class="co">## Temporary DLL for differentials generated and loaded</span></span></code></pre>  <pre><code><span><span class="co">##                    test replications relative elapsed</span></span> -<span><span class="co">## 2     deSolve, compiled            1    1.000   0.510</span></span> -<span><span class="co">## 1 deSolve, not compiled            1   26.247  13.386</span></span></code></pre> -<p>Here we get a performance benefit of a factor of 26 using the version of the differential equation model compiled from C code!</p> -<p>This vignette was built with mkin 1.2.0 on</p> -<pre><code><span><span class="co">## R version 4.2.2 (2022-10-31)</span></span> +<span><span class="co">## 2     deSolve, compiled            1    1.000   0.171</span></span> +<span><span class="co">## 1 deSolve, not compiled            1   24.199   4.138</span></span></code></pre> +<p>Here we get a performance benefit of a factor of 24 using the version +of the differential equation model compiled from C code!</p> +<p>This vignette was built with mkin 1.2.3 on</p> +<pre><code><span><span class="co">## R version 4.2.3 (2023-03-15)</span></span>  <span><span class="co">## Platform: x86_64-pc-linux-gnu (64-bit)</span></span> -<span><span class="co">## Running under: Debian GNU/Linux 11 (bullseye)</span></span></code></pre> -<pre><code><span><span class="co">## CPU model: AMD Ryzen 7 1700 Eight-Core Processor</span></span></code></pre> +<span><span class="co">## Running under: Debian GNU/Linux 12 (bookworm)</span></span></code></pre> +<pre><code><span><span class="co">## CPU model: AMD Ryzen 9 7950X 16-Core Processor</span></span></code></pre>  </div>    </div> @@ -227,7 +276,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/web_only/dimethenamid_2018.html b/docs/articles/web_only/dimethenamid_2018.html index 8c37edd6..4575067b 100644 --- a/docs/articles/web_only/dimethenamid_2018.html +++ b/docs/articles/web_only/dimethenamid_2018.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../../reference/index.html">Functions and data</a> +  <a href="../../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,16 @@ -      </header><script src="dimethenamid_2018_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore"> -      <h1 data-toc-skip>Example evaluations of the dimethenamid data from 2018</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +      <h1 data-toc-skip>Example evaluations of the dimethenamid data +from 2018</h1> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">Last change 1 July 2022, built on 17 Nov 2022</h4> +            <h4 data-toc-skip class="date">Last change 1 July 2022, +built on 20 Apr 2023</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/web_only/dimethenamid_2018.rmd" class="external-link"><code>vignettes/web_only/dimethenamid_2018.rmd</code></a></small>        <div class="hidden name"><code>dimethenamid_2018.rmd</code></div> @@ -120,19 +144,48 @@ -<p><a href="http://www.jrwb.de" class="external-link">Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany</a></p> +<p><a href="http://www.jrwb.de" class="external-link">Wissenschaftlicher Berater, Kronacher +Str. 12, 79639 Grenzach-Wyhlen, Germany</a></p>  <div class="section level2">  <h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a>  </h2> -<p>A first analysis of the data analysed here was presented in a recent journal article on nonlinear mixed-effects models in degradation kinetics <span class="citation">(Ranke et al. 2021)</span>. That analysis was based on the <code>nlme</code> package and a development version of the <code>saemix</code> package that was unpublished at the time. Meanwhile, version 3.0 of the <code>saemix</code> package is available from the CRAN repository. Also, it turned out that there was an error in the handling of the Borstel data in the mkin package at the time, leading to the duplication of a few data points from that soil. The dataset in the mkin package has been corrected, and the interface to <code>saemix</code> in the mkin package has been updated to use the released version.</p> -<p>This vignette is intended to present an up to date analysis of the data, using the corrected dataset and released versions of <code>mkin</code> and <code>saemix</code>.</p> +<p>A first analysis of the data analysed here was presented in a recent +journal article on nonlinear mixed-effects models in degradation +kinetics <span class="citation">(Ranke et al. 2021)</span>. That +analysis was based on the <code>nlme</code> package and a development +version of the <code>saemix</code> package that was unpublished at the +time. Meanwhile, version 3.0 of the <code>saemix</code> package is +available from the CRAN repository. Also, it turned out that there was +an error in the handling of the Borstel data in the mkin package at the +time, leading to the duplication of a few data points from that soil. +The dataset in the mkin package has been corrected, and the interface to +<code>saemix</code> in the mkin package has been updated to use the +released version.</p> +<p>This vignette is intended to present an up to date analysis of the +data, using the corrected dataset and released versions of +<code>mkin</code> and <code>saemix</code>.</p>  </div>  <div class="section level2">  <h2 id="data">Data<a class="anchor" aria-label="anchor" href="#data"></a>  </h2> -<p>Residue data forming the basis for the endpoints derived in the conclusion on the peer review of the pesticide risk assessment of dimethenamid-P published by the European Food Safety Authority (EFSA) in 2018 <span class="citation">(EFSA 2018)</span> were transcribed from the risk assessment report <span class="citation">(Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria 2018)</span> which can be downloaded from the Open EFSA repository <a href="https://open.efsa.europa.eu" class="external-link">https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a>.</p> -<p>The data are <a href="https://pkgdown.jrwb.de/mkin/reference/dimethenamid_2018.html">available in the mkin package</a>. The following code (hidden by default, please use the button to the right to show it) treats the data available for the racemic mixture dimethenamid (DMTA) and its enantiomer dimethenamid-P (DMTAP) in the same way, as no difference between their degradation behaviour was identified in the EU risk assessment. The observation times of each dataset are multiplied with the corresponding normalisation factor also available in the dataset, in order to make it possible to describe all datasets with a single set of parameters.</p> -<p>Also, datasets observed in the same soil are merged, resulting in dimethenamid (DMTA) data from six soils.</p> +<p>Residue data forming the basis for the endpoints derived in the +conclusion on the peer review of the pesticide risk assessment of +dimethenamid-P published by the European Food Safety Authority (EFSA) in +2018 <span class="citation">(EFSA 2018)</span> were transcribed from the +risk assessment report <span class="citation">(Rapporteur Member State +Germany, Co-Rapporteur Member State Bulgaria 2018)</span> which can be +downloaded from the Open EFSA repository <a href="https://open.efsa.europa.eu" class="external-link">https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a>.</p> +<p>The data are <a href="https://pkgdown.jrwb.de/mkin/reference/dimethenamid_2018.html">available +in the mkin package</a>. The following code (hidden by default, please +use the button to the right to show it) treats the data available for +the racemic mixture dimethenamid (DMTA) and its enantiomer +dimethenamid-P (DMTAP) in the same way, as no difference between their +degradation behaviour was identified in the EU risk assessment. The +observation times of each dataset are multiplied with the corresponding +normalisation factor also available in the dataset, in order to make it +possible to describe all datasets with a single set of parameters.</p> +<p>Also, datasets observed in the same soil are merged, resulting in +dimethenamid (DMTA) data from six soils.</p>  <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span> @@ -149,34 +202,60 @@  <div class="section level2">  <h2 id="parent-degradation">Parent degradation<a class="anchor" aria-label="anchor" href="#parent-degradation"></a>  </h2> -<p>We evaluate the observed degradation of the parent compound using simple exponential decline (SFO) and biexponential decline (DFOP), using constant variance (const) and a two-component variance (tc) as error models.</p> +<p>We evaluate the observed degradation of the parent compound using +simple exponential decline (SFO) and biexponential decline (DFOP), using +constant variance (const) and a two-component variance (tc) as error +models.</p>  <div class="section level3">  <h3 id="separate-evaluations">Separate evaluations<a class="anchor" aria-label="anchor" href="#separate-evaluations"></a>  </h3> -<p>As a first step, to get a visual impression of the fit of the different models, we do separate evaluations for each soil using the mmkin function from the mkin package:</p> +<p>As a first step, to get a visual impression of the fit of the +different models, we do separate evaluations for each soil using the +mmkin function from the mkin package:</p>  <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_parent_mkin_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"DFOP"</span><span class="op">)</span>, <span class="va">dmta_ds</span>,</span>  <span>  error_model <span class="op">=</span> <span class="st">"const"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="va">f_parent_mkin_tc</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"DFOP"</span><span class="op">)</span>, <span class="va">dmta_ds</span>,</span>  <span>  error_model <span class="op">=</span> <span class="st">"tc"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div> -<p>The plot of the individual SFO fits shown below suggests that at least in some datasets the degradation slows down towards later time points, and that the scatter of the residuals error is smaller for smaller values (panel to the right):</p> +<p>The plot of the individual SFO fits shown below suggests that at +least in some datasets the degradation slows down towards later time +points, and that the scatter of the residuals error is smaller for +smaller values (panel to the right):</p>  <div class="sourceCode" id="cb3"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mixed.html">mixed</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mixed.html">mixed</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>  <p><img src="dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png" width="700"></p> -<p>Using biexponential decline (DFOP) results in a slightly more random scatter of the residuals:</p> +<p>Using biexponential decline (DFOP) results in a slightly more random +scatter of the residuals:</p>  <div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mixed.html">mixed</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mixed.html">mixed</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>  <p><img src="dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png" width="700"></p> -<p>The population curve (bold line) in the above plot results from taking the mean of the individual transformed parameters, i.e. of log k1 and log k2, as well as of the logit of the g parameter of the DFOP model). Here, this procedure does not result in parameters that represent the degradation well, because in some datasets the fitted value for k2 is extremely close to zero, leading to a log k2 value that dominates the average. This is alleviated if only rate constants that pass the t-test for significant difference from zero (on the untransformed scale) are considered in the averaging:</p> +<p>The population curve (bold line) in the above plot results from +taking the mean of the individual transformed parameters, i.e. of log k1 +and log k2, as well as of the logit of the g parameter of the DFOP +model). Here, this procedure does not result in parameters that +represent the degradation well, because in some datasets the fitted +value for k2 is extremely close to zero, leading to a log k2 value that +dominates the average. This is alleviated if only rate constants that +pass the t-test for significant difference from zero (on the +untransformed scale) are considered in the averaging:</p>  <div class="sourceCode" id="cb5"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mixed.html">mixed</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span>, test_log_parms <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mixed.html">mixed</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span>, test_log_parms <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div>  <p><img src="dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png" width="700"></p> -<p>While this is visually much more satisfactory, such an average procedure could introduce a bias, as not all results from the individual fits enter the population curve with the same weight. This is where nonlinear mixed-effects models can help out by treating all datasets with equally by fitting a parameter distribution model together with the degradation model and the error model (see below).</p> -<p>The remaining trend of the residuals to be higher for higher predicted residues is reduced by using the two-component error model:</p> +<p>While this is visually much more satisfactory, such an average +procedure could introduce a bias, as not all results from the individual +fits enter the population curve with the same weight. This is where +nonlinear mixed-effects models can help out by treating all datasets +with equally by fitting a parameter distribution model together with the +degradation model and the error model (see below).</p> +<p>The remaining trend of the residuals to be higher for higher +predicted residues is reduced by using the two-component error +model:</p>  <div class="sourceCode" id="cb6"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mixed.html">mixed</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span>, test_log_parms <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mixed.html">mixed</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span>, test_log_parms <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div>  <p><img src="dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png" width="700"></p> -<p>However, note that in the case of using this error model, the fits to the Flaach and BBA 2.3 datasets appear to be ill-defined, indicated by the fact that they did not converge:</p> +<p>However, note that in the case of using this error model, the fits to +the Flaach and BBA 2.3 datasets appear to be ill-defined, indicated by +the fact that they did not converge:</p>  <div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span></span></code></pre></div>  <pre><code><mmkin> object @@ -186,26 +265,53 @@ Status of individual fits:  model  Calke Borstel Flaach BBA 2.2 BBA 2.3 Elliot    DFOP OK    OK      C      OK      C       OK     -OK: No warnings  C: Optimisation did not converge: -iteration limit reached without convergence (10)</code></pre> +iteration limit reached without convergence (10) +OK: No warnings</code></pre>  </div>  <div class="section level3">  <h3 id="nonlinear-mixed-effects-models">Nonlinear mixed-effects models<a class="anchor" aria-label="anchor" href="#nonlinear-mixed-effects-models"></a>  </h3> -<p>Instead of taking a model selection decision for each of the individual fits, we fit nonlinear mixed-effects models (using different fitting algorithms as implemented in different packages) and do model selection using all available data at the same time. In order to make sure that these decisions are not unduly influenced by the type of algorithm used, by implementation details or by the use of wrong control parameters, we compare the model selection results obtained with different R packages, with different algorithms and checking control parameters.</p> +<p>Instead of taking a model selection decision for each of the +individual fits, we fit nonlinear mixed-effects models (using different +fitting algorithms as implemented in different packages) and do model +selection using all available data at the same time. In order to make +sure that these decisions are not unduly influenced by the type of +algorithm used, by implementation details or by the use of wrong control +parameters, we compare the model selection results obtained with +different R packages, with different algorithms and checking control +parameters.</p>  <div class="section level4">  <h4 id="nlme">nlme<a class="anchor" aria-label="anchor" href="#nlme"></a>  </h4> -<p>The nlme package was the first R extension providing facilities to fit nonlinear mixed-effects models. We would like to do model selection from all four combinations of degradation models and error models based on the AIC. However, fitting the DFOP model with constant variance and using default control parameters results in an error, signalling that the maximum number of 50 iterations was reached, potentially indicating overparameterisation. Nevertheless, the algorithm converges when the two-component error model is used in combination with the DFOP model. This can be explained by the fact that the smaller residues observed at later sampling times get more weight when using the two-component error model which will counteract the tendency of the algorithm to try parameter combinations unsuitable for fitting these data.</p> +<p>The nlme package was the first R extension providing facilities to +fit nonlinear mixed-effects models. We would like to do model selection +from all four combinations of degradation models and error models based +on the AIC. However, fitting the DFOP model with constant variance and +using default control parameters results in an error, signalling that +the maximum number of 50 iterations was reached, potentially indicating +overparameterisation. Nevertheless, the algorithm converges when the +two-component error model is used in combination with the DFOP model. +This can be explained by the fact that the smaller residues observed at +later sampling times get more weight when using the two-component error +model which will counteract the tendency of the algorithm to try +parameter combinations unsuitable for fitting these data.</p>  <div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://svn.r-project.org/R-packages/trunk/nlme/" class="external-link">nlme</a></span><span class="op">)</span></span>  <span><span class="va">f_parent_nlme_sfo_const</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span><span class="op">)</span></span>  <span><span class="co"># f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ])</span></span>  <span><span class="va">f_parent_nlme_sfo_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span><span class="op">)</span></span>  <span><span class="va">f_parent_nlme_dfop_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span></span></code></pre></div> -<p>Note that a certain degree of overparameterisation is also indicated by a warning obtained when fitting DFOP with the two-component error model (‘false convergence’ in the ‘LME step’ in iteration 3). However, as this warning does not occur in later iterations, and specifically not in the last of the 6 iterations, we can ignore this warning.</p> -<p>The model comparison function of the nlme package can directly be applied to these fits showing a much lower AIC for the DFOP model fitted with the two-component error model. Also, the likelihood ratio test indicates that this difference is significant as the p-value is below 0.0001.</p> +<p>Note that a certain degree of overparameterisation is also indicated +by a warning obtained when fitting DFOP with the two-component error +model (‘false convergence’ in the ‘LME step’ in iteration 3). However, +as this warning does not occur in later iterations, and specifically not +in the last of the 5 iterations, we can ignore this warning.</p> +<p>The model comparison function of the nlme package can directly be +applied to these fits showing a much lower AIC for the DFOP model fitted +with the two-component error model. Also, the likelihood ratio test +indicates that this difference is significant as the p-value is below +0.0001.</p>  <div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span></span>  <span>  <span class="va">f_parent_nlme_sfo_const</span>, <span class="va">f_parent_nlme_sfo_tc</span>, <span class="va">f_parent_nlme_dfop_tc</span></span> @@ -214,7 +320,10 @@ iteration limit reached without convergence (10)</code></pre>  f_parent_nlme_sfo_const     1  5 796.60 811.82 -393.30                         f_parent_nlme_sfo_tc        2  6 798.60 816.86 -393.30 1 vs 2    0.00   0.998  f_parent_nlme_dfop_tc       3 10 671.91 702.34 -325.96 2 vs 3  134.69  <.0001</code></pre> -<p>In addition to these fits, attempts were also made to include correlations between random effects by using the log Cholesky parameterisation of the matrix specifying them. The code used for these attempts can be made visible below.</p> +<p>In addition to these fits, attempts were also made to include +correlations between random effects by using the log Cholesky +parameterisation of the matrix specifying them. The code used for these +attempts can be made visible below.</p>  <div class="sourceCode" id="cb12"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_parent_nlme_sfo_const_logchol</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span>,</span>  <span>  random <span class="op">=</span> <span class="fu">nlme</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/nlme/man/pdLogChol.html" class="external-link">pdLogChol</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">DMTA_0</span> <span class="op">~</span> <span class="fl">1</span>, <span class="va">log_k_DMTA</span> <span class="op">~</span> <span class="fl">1</span><span class="op">)</span><span class="op">)</span><span class="op">)</span></span> @@ -225,17 +334,29 @@ f_parent_nlme_dfop_tc       3 10 671.91 702.34 -325.96 2 vs 3  134.69  <.0001  <span><span class="va">f_parent_nlme_dfop_tc_logchol</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span>,</span>  <span>  random <span class="op">=</span> <span class="fu">nlme</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/nlme/man/pdLogChol.html" class="external-link">pdLogChol</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">DMTA_0</span> <span class="op">~</span> <span class="fl">1</span>, <span class="va">log_k1</span> <span class="op">~</span> <span class="fl">1</span>, <span class="va">log_k2</span> <span class="op">~</span> <span class="fl">1</span>, <span class="va">g_qlogis</span> <span class="op">~</span> <span class="fl">1</span><span class="op">)</span><span class="op">)</span><span class="op">)</span></span>  <span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_parent_nlme_dfop_tc</span>, <span class="va">f_parent_nlme_dfop_tc_logchol</span><span class="op">)</span></span></code></pre></div> -<p>While the SFO variants converge fast, the additional parameters introduced by this lead to convergence warnings for the DFOP model. The model comparison clearly show that adding correlations between random effects does not improve the fits.</p> -<p>The selected model (DFOP with two-component error) fitted to the data assuming no correlations between random effects is shown below.</p> +<p>While the SFO variants converge fast, the additional parameters +introduced by this lead to convergence warnings for the DFOP model. The +model comparison clearly show that adding correlations between random +effects does not improve the fits.</p> +<p>The selected model (DFOP with two-component error) fitted to the data +assuming no correlations between random effects is shown below.</p>  <div class="sourceCode" id="cb13"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_parent_nlme_dfop_tc</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_parent_nlme_dfop_tc</span><span class="op">)</span></span></code></pre></div>  <p><img src="dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png" width="700"></p>  </div>  <div class="section level4">  <h4 id="saemix">saemix<a class="anchor" aria-label="anchor" href="#saemix"></a>  </h4> -<p>The saemix package provided the first Open Source implementation of the Stochastic Approximation to the Expectation Maximisation (SAEM) algorithm. SAEM fits of degradation models can be conveniently performed using an interface to the saemix package available in current development versions of the mkin package.</p> -<p>The corresponding SAEM fits of the four combinations of degradation and error models are fitted below. As there is no convergence criterion implemented in the saemix package, the convergence plots need to be manually checked for every fit. We define control settings that work well for all the parent data fits shown in this vignette.</p> +<p>The saemix package provided the first Open Source implementation of +the Stochastic Approximation to the Expectation Maximisation (SAEM) +algorithm. SAEM fits of degradation models can be conveniently performed +using an interface to the saemix package available in current +development versions of the mkin package.</p> +<p>The corresponding SAEM fits of the four combinations of degradation +and error models are fitted below. As there is no convergence criterion +implemented in the saemix package, the convergence plots need to be +manually checked for every fit. We define control settings that work +well for all the parent data fits shown in this vignette.</p>  <div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span>  <span><span class="va">saemix_control</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/saemix/man/saemixControl.html" class="external-link">saemixControl</a></span><span class="op">(</span>nbiter.saemix <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">800</span>, <span class="fl">300</span><span class="op">)</span>, nb.chains <span class="op">=</span> <span class="fl">15</span>,</span> @@ -244,19 +365,23 @@ f_parent_nlme_dfop_tc       3 10 671.91 702.34 -325.96 2 vs 3  134.69  <.0001  <span>    print <span class="op">=</span> <span class="cn">FALSE</span>, save <span class="op">=</span> <span class="cn">FALSE</span>, save.graphs <span class="op">=</span> <span class="cn">FALSE</span>, displayProgress <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span>  <span><span class="va">saemix_control_10k</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/saemix/man/saemixControl.html" class="external-link">saemixControl</a></span><span class="op">(</span>nbiter.saemix <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">10000</span>, <span class="fl">300</span><span class="op">)</span>, nb.chains <span class="op">=</span> <span class="fl">15</span>,</span>  <span>    print <span class="op">=</span> <span class="cn">FALSE</span>, save <span class="op">=</span> <span class="cn">FALSE</span>, save.graphs <span class="op">=</span> <span class="cn">FALSE</span>, displayProgress <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div> -<p>The convergence plot for the SFO model using constant variance is shown below.</p> +<p>The convergence plot for the SFO model using constant variance is +shown below.</p>  <div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_parent_saemix_sfo_const</span> <span class="op"><-</span> <span class="fu">mkin</span><span class="fu">::</span><span class="fu"><a href="../../reference/saem.html">saem</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>  <span>  control <span class="op">=</span> <span class="va">saemix_control</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span>  <span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_parent_saemix_sfo_const</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"convergence"</span><span class="op">)</span></span></code></pre></div>  <p><img src="dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png" width="700"></p> -<p>Obviously the selected number of iterations is sufficient to reach convergence. This can also be said for the SFO fit using the two-component error model.</p> +<p>Obviously the selected number of iterations is sufficient to reach +convergence. This can also be said for the SFO fit using the +two-component error model.</p>  <div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_parent_saemix_sfo_tc</span> <span class="op"><-</span> <span class="fu">mkin</span><span class="fu">::</span><span class="fu"><a href="../../reference/saem.html">saem</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>  <span>  control <span class="op">=</span> <span class="va">saemix_control</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span>  <span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_parent_saemix_sfo_tc</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"convergence"</span><span class="op">)</span></span></code></pre></div>  <p><img src="dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png" width="700"></p> -<p>When fitting the DFOP model with constant variance (see below), parameter convergence is not as unambiguous.</p> +<p>When fitting the DFOP model with constant variance (see below), +parameter convergence is not as unambiguous.</p>  <div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_parent_saemix_dfop_const</span> <span class="op"><-</span> <span class="fu">mkin</span><span class="fu">::</span><span class="fu"><a href="../../reference/saem.html">saem</a></span><span class="op">(</span><span class="va">f_parent_mkin_const</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>  <span>  control <span class="op">=</span> <span class="va">saemix_control</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span> @@ -283,13 +408,21 @@ DMTA_0    97.99583 96.50079 99.4909  k1         0.06377  0.03432  0.0932  k2         0.00848  0.00444  0.0125  g          0.95701  0.91313  1.0009 -a.1        1.82141  1.65974  1.9831 -SD.DMTA_0  1.64787  0.45779  2.8379 +a.1        1.82141  1.65122  1.9916 +SD.DMTA_0  1.64787  0.45772  2.8380  SD.k1      0.57439  0.24731  0.9015 -SD.k2      0.03296 -2.50143  2.5673 -SD.g       1.10266  0.32371  1.8816</code></pre> -<p>While the other parameters converge to credible values, the variance of k2 (<code>omega2.k2</code>) converges to a very small value. The printout of the <code>saem.mmkin</code> model shows that the estimated standard deviation of k2 across the population of soils (<code>SD.k2</code>) is ill-defined, indicating overparameterisation of this model.</p> -<p>When the DFOP model is fitted with the two-component error model, we also observe that the estimated variance of k2 becomes very small, while being ill-defined, as illustrated by the excessive confidence interval of <code>SD.k2</code>.</p> +SD.k2      0.03296 -2.50195  2.5679 +SD.g       1.10266  0.32369  1.8816</code></pre> +<p>While the other parameters converge to credible values, the variance +of k2 (<code>omega2.k2</code>) converges to a very small value. The +printout of the <code>saem.mmkin</code> model shows that the estimated +standard deviation of k2 across the population of soils +(<code>SD.k2</code>) is ill-defined, indicating overparameterisation of +this model.</p> +<p>When the DFOP model is fitted with the two-component error model, we +also observe that the estimated variance of k2 becomes very small, while +being ill-defined, as illustrated by the excessive confidence interval +of <code>SD.k2</code>.</p>  <div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_parent_saemix_dfop_tc</span> <span class="op"><-</span> <span class="fu">mkin</span><span class="fu">::</span><span class="fu"><a href="../../reference/saem.html">saem</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>  <span>  control <span class="op">=</span> <span class="va">saemix_control</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span> @@ -324,9 +457,21 @@ SD.DMTA_0  2.06075   0.4187   3.7028  SD.k1      0.59357   0.2561   0.9310  SD.k2      0.00292 -10.2960  10.3019  SD.g       1.05725   0.3808   1.7337</code></pre> -<p>Doubling the number of iterations in the first phase of the algorithm leads to a slightly lower likelihood, and therefore to slightly higher AIC and BIC values. With even more iterations, the algorithm stops with an error message. This is related to the variance of k2 approximating zero and has been submitted as a <a href="https://github.com/saemixdevelopment/saemixextension/issues/29" class="external-link">bug to the saemix package</a>, as the algorithm does not converge in this case.</p> -<p>An alternative way to fit DFOP in combination with the two-component error model is to use the model formulation with transformed parameters as used per default in mkin. When using this option, convergence is slower, but eventually the algorithm stops as well with the same error message.</p> -<p>The four combinations (SFO/const, SFO/tc, DFOP/const and DFOP/tc) and the version with increased iterations can be compared using the model comparison function of the saemix package:</p> +<p>Doubling the number of iterations in the first phase of the algorithm +leads to a slightly lower likelihood, and therefore to slightly higher +AIC and BIC values. With even more iterations, the algorithm stops with +an error message. This is related to the variance of k2 approximating +zero and has been submitted as a <a href="https://github.com/saemixdevelopment/saemixextension/issues/29" class="external-link">bug +to the saemix package</a>, as the algorithm does not converge in this +case.</p> +<p>An alternative way to fit DFOP in combination with the two-component +error model is to use the model formulation with transformed parameters +as used per default in mkin. When using this option, convergence is +slower, but eventually the algorithm stops as well with the same error +message.</p> +<p>The four combinations (SFO/const, SFO/tc, DFOP/const and DFOP/tc) and +the version with increased iterations can be compared using the model +comparison function of the saemix package:</p>  <div class="sourceCode" id="cb23"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">AIC_parent_saemix</span> <span class="op"><-</span> <span class="fu">saemix</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/compare.saemix.html" class="external-link">compare.saemix</a></span><span class="op">(</span></span>  <span>  <span class="va">f_parent_saemix_sfo_const</span><span class="op">$</span><span class="va">so</span>,</span> @@ -345,7 +490,10 @@ SFO tc                  798.38 797.13  DFOP const              705.75 703.88  DFOP tc                 665.65 663.57  DFOP tc more iterations 665.88 663.80</code></pre> -<p>In order to check the influence of the likelihood calculation algorithms implemented in saemix, the likelihood from Gaussian quadrature is added to the best fit, and the AIC values obtained from the three methods are compared.</p> +<p>In order to check the influence of the likelihood calculation +algorithms implemented in saemix, the likelihood from Gaussian +quadrature is added to the best fit, and the AIC values obtained from +the three methods are compared.</p>  <div class="sourceCode" id="cb27"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_parent_saemix_dfop_tc</span><span class="op">$</span><span class="va">so</span> <span class="op"><-</span></span>  <span>  <span class="fu">saemix</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/llgq.saemix.html" class="external-link">llgq.saemix</a></span><span class="op">(</span><span class="va">f_parent_saemix_dfop_tc</span><span class="op">$</span><span class="va">so</span><span class="op">)</span></span> @@ -357,9 +505,19 @@ DFOP tc more iterations 665.88 663.80</code></pre>  <span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">AIC_parent_saemix_methods</span><span class="op">)</span></span></code></pre></div>  <pre><code>    is     gq    lin   665.65 665.68 665.11 </code></pre> -<p>The AIC values based on importance sampling and Gaussian quadrature are very similar. Using linearisation is known to be less accurate, but still gives a similar value.</p> -<p>In order to illustrate that the comparison of the three method depends on the degree of convergence obtained in the fit, the same comparison is shown below for the fit using the defaults for the number of iterations and the number of MCMC chains.</p> -<p>When using OpenBlas for linear algebra, there is a large difference in the values obtained with Gaussian quadrature, so the larger number of iterations makes a lot of difference. When using the LAPACK version coming with Debian Bullseye, the AIC based on Gaussian quadrature is almost the same as the one obtained with the other methods, also when using defaults for the fit.</p> +<p>The AIC values based on importance sampling and Gaussian quadrature +are very similar. Using linearisation is known to be less accurate, but +still gives a similar value.</p> +<p>In order to illustrate that the comparison of the three method +depends on the degree of convergence obtained in the fit, the same +comparison is shown below for the fit using the defaults for the number +of iterations and the number of MCMC chains.</p> +<p>When using OpenBlas for linear algebra, there is a large difference +in the values obtained with Gaussian quadrature, so the larger number of +iterations makes a lot of difference. When using the LAPACK version +coming with Debian Bullseye, the AIC based on Gaussian quadrature is +almost the same as the one obtained with the other methods, also when +using defaults for the fit.</p>  <div class="sourceCode" id="cb29"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_parent_saemix_dfop_tc_defaults</span> <span class="op"><-</span> <span class="fu">mkin</span><span class="fu">::</span><span class="fu"><a href="../../reference/saem.html">saem</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span></span>  <span><span class="va">f_parent_saemix_dfop_tc_defaults</span><span class="op">$</span><span class="va">so</span> <span class="op"><-</span></span> @@ -377,7 +535,9 @@ DFOP tc more iterations 665.88 663.80</code></pre>  <div class="section level3">  <h3 id="comparison">Comparison<a class="anchor" aria-label="anchor" href="#comparison"></a>  </h3> -<p>The following table gives the AIC values obtained with both backend packages using the same control parameters (800 iterations burn-in, 300 iterations second phase, 15 chains).</p> +<p>The following table gives the AIC values obtained with both backend +packages using the same control parameters (800 iterations burn-in, 300 +iterations second phase, 15 chains).</p>  <div class="sourceCode" id="cb31"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">AIC_all</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>  <span>  check.names <span class="op">=</span> <span class="cn">FALSE</span>,</span> @@ -417,7 +577,7 @@ DFOP tc more iterations 665.88 663.80</code></pre>  <td align="left">DFOP</td>  <td align="left">const</td>  <td align="right">NA</td> -<td align="right">671.98</td> +<td align="right">709.26</td>  <td align="right">705.75</td>  </tr>  <tr class="even"> @@ -434,21 +594,33 @@ DFOP tc more iterations 665.88 663.80</code></pre>  <div class="section level2">  <h2 id="conclusion">Conclusion<a class="anchor" aria-label="anchor" href="#conclusion"></a>  </h2> -<p>A more detailed analysis of the dimethenamid dataset confirmed that the DFOP model provides the most appropriate description of the decline of the parent compound in these data. On the other hand, closer inspection of the results revealed that the variability of the k2 parameter across the population of soils is ill-defined. This coincides with the observation that this parameter cannot robustly be quantified for some of the soils.</p> -<p>Regarding the regulatory use of these data, it is claimed that an improved characterisation of the mean parameter values across the population is obtained using the nonlinear mixed-effects models presented here. However, attempts to quantify the variability of the slower rate constant of the biphasic decline of dimethenamid indicate that the data are not sufficient to characterise this variability to a satisfactory precision.</p> +<p>A more detailed analysis of the dimethenamid dataset confirmed that +the DFOP model provides the most appropriate description of the decline +of the parent compound in these data. On the other hand, closer +inspection of the results revealed that the variability of the k2 +parameter across the population of soils is ill-defined. This coincides +with the observation that this parameter cannot robustly be quantified +for some of the soils.</p> +<p>Regarding the regulatory use of these data, it is claimed that an +improved characterisation of the mean parameter values across the +population is obtained using the nonlinear mixed-effects models +presented here. However, attempts to quantify the variability of the +slower rate constant of the biphasic decline of dimethenamid indicate +that the data are not sufficient to characterise this variability to a +satisfactory precision.</p>  </div>  <div class="section level2">  <h2 id="session-info">Session Info<a class="anchor" aria-label="anchor" href="#session-info"></a>  </h2>  <div class="sourceCode" id="cb32"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/utils/sessionInfo.html" class="external-link">sessionInfo</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> -<pre><code>R version 4.2.2 (2022-10-31) +<pre><code>R version 4.2.3 (2023-03-15)  Platform: x86_64-pc-linux-gnu (64-bit) -Running under: Debian GNU/Linux 11 (bullseye) +Running under: Debian GNU/Linux 12 (bookworm)  Matrix products: default  BLAS:   /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3 -LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.13.so +LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so  locale:   [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C               @@ -462,38 +634,44 @@ attached base packages:  [1] stats     graphics  grDevices utils     datasets  methods   base       other attached packages: -[1] nlme_3.1-160 mkin_1.2.0   knitr_1.40   +[1] saemix_3.2   npde_3.3     nlme_3.1-162 mkin_1.2.3   knitr_1.42    loaded via a namespace (and not attached): - [1] deSolve_1.34      zoo_1.8-11        tidyselect_1.2.0  xfun_0.33         - [5] bslib_0.4.0       purrr_0.3.5       lattice_0.20-45   colorspace_2.0-3  - [9] vctrs_0.5.0       generics_0.1.3    htmltools_0.5.3   yaml_2.3.6        -[13] utf8_1.2.2        rlang_1.0.6       pkgdown_2.0.6     saemix_3.2        -[17] jquerylib_0.1.4   pillar_1.8.1      glue_1.6.2        DBI_1.1.3         -[21] lifecycle_1.0.3   stringr_1.4.1     munsell_0.5.0     gtable_0.3.1      -[25] ragg_1.2.2        memoise_2.0.1     evaluate_0.18     npde_3.2          -[29] fastmap_1.1.0     lmtest_0.9-40     parallel_4.2.2    fansi_1.0.3       -[33] highr_0.9         scales_1.2.1      cachem_1.0.6      desc_1.4.2        -[37] jsonlite_1.8.3    systemfonts_1.0.4 fs_1.5.2          textshaping_0.3.6 -[41] gridExtra_2.3     ggplot2_3.4.0     digest_0.6.30     stringi_1.7.8     -[45] dplyr_1.0.10      grid_4.2.2        rprojroot_2.0.3   cli_3.4.1         -[49] tools_4.2.2       magrittr_2.0.3    sass_0.4.2        tibble_3.1.8      -[53] pkgconfig_2.0.3   assertthat_0.2.1  rmarkdown_2.16    R6_2.5.1          -[57] mclust_6.0.0      compiler_4.2.2   </code></pre> + [1] highr_0.10        pillar_1.9.0      bslib_0.4.2       compiler_4.2.3    + [5] jquerylib_0.1.4   tools_4.2.3       mclust_6.0.0      digest_0.6.31     + [9] tibble_3.2.1      jsonlite_1.8.4    evaluate_0.20     memoise_2.0.1     +[13] lifecycle_1.0.3   gtable_0.3.3      lattice_0.21-8    pkgconfig_2.0.3   +[17] rlang_1.1.0       DBI_1.1.3         cli_3.6.1         yaml_2.3.7        +[21] parallel_4.2.3    pkgdown_2.0.7     xfun_0.38         fastmap_1.1.1     +[25] gridExtra_2.3     dplyr_1.1.1       stringr_1.5.0     generics_0.1.3    +[29] desc_1.4.2        fs_1.6.1          vctrs_0.6.1       sass_0.4.5        +[33] systemfonts_1.0.4 tidyselect_1.2.0  rprojroot_2.0.3   lmtest_0.9-40     +[37] grid_4.2.3        glue_1.6.2        R6_2.5.1          textshaping_0.3.6 +[41] fansi_1.0.4       rmarkdown_2.21    purrr_1.0.1       ggplot2_3.4.2     +[45] magrittr_2.0.3    codetools_0.2-19  scales_1.2.1      htmltools_0.5.5   +[49] colorspace_2.1-0  ragg_1.2.5        utf8_1.2.3        stringi_1.7.12    +[53] munsell_0.5.0     cachem_1.0.7      zoo_1.8-12       </code></pre>  </div>  <div class="section level2">  <h2 id="references">References<a class="anchor" aria-label="anchor" href="#references"></a>  </h2>  <!-- vim: set foldmethod=syntax: --> -<div id="refs" class="references hanging-indent"> -<div id="ref-efsa_2018_dimethenamid"> -<p>EFSA. 2018. “Peer Review of the Pesticide Risk Assessment of the Active Substance Dimethenamid-P.” <em>EFSA Journal</em> 16 (4): 5211.</p> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-efsa_2018_dimethenamid" class="csl-entry"> +EFSA. 2018. <span>“Peer Review of the Pesticide Risk Assessment of the +Active Substance Dimethenamid-p.”</span> <em>EFSA Journal</em> 16: 5211.  </div> -<div id="ref-ranke2021"> -<p>Ranke, Johannes, Janina Wöltjen, Jana Schmidt, and Emmanuelle Comets. 2021. “Taking Kinetic Evaluations of Degradation Data to the Next Level with Nonlinear Mixed-Effects Models.” <em>Environments</em> 8 (8). <a href="https://doi.org/10.3390/environments8080071" class="external-link">https://doi.org/10.3390/environments8080071</a>.</p> +<div id="ref-ranke2021" class="csl-entry"> +Ranke, Johannes, Janina Wöltjen, Jana Schmidt, and Emmanuelle Comets. +2021. <span>“Taking Kinetic Evaluations of Degradation Data to the Next +Level with Nonlinear Mixed-Effects Models.”</span> <em>Environments</em> +8 (8). <a href="https://doi.org/10.3390/environments8080071" class="external-link">https://doi.org/10.3390/environments8080071</a>.  </div> -<div id="ref-dimethenamid_rar_2018_b8"> -<p>Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria. 2018. “Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour, Rev. 2 - November 2017.” <a href="https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716" class="external-link">https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a>.</p> +<div id="ref-dimethenamid_rar_2018_b8" class="csl-entry"> +Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria. +2018. <span>“<span class="nocase">Renewal Assessment Report +Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour, Rev. 2 - +November 2017</span>.”</span> <a href="https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716" class="external-link">https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a>.  </div>  </div>  </div> @@ -516,7 +694,7 @@ loaded via a namespace (and not attached):  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.pngBinary files differ index 4999e72c..505072ce 100644 --- a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png +++ b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png diff --git a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.pngBinary files differ index b59764b1..505072ce 100644 --- a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png +++ b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png diff --git a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.pngBinary files differ index da7ceeb6..0dd4da39 100644 --- a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png +++ b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png diff --git a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.pngBinary files differ index 467c3c1a..0ed7448d 100644 --- a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png +++ b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png diff --git a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.pngBinary files differ index 800c320b..d941f3e6 100644 --- a/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png +++ b/docs/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png diff --git a/docs/articles/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png b/docs/articles/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.pngBinary files differ index 4d2dc94e..a799b14c 100644 --- a/docs/articles/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png +++ b/docs/articles/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png diff --git a/docs/articles/web_only/multistart.html b/docs/articles/web_only/multistart.html index 720c6742..04093e82 100644 --- a/docs/articles/web_only/multistart.html +++ b/docs/articles/web_only/multistart.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../../reference/index.html">Functions and data</a> +  <a href="../../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li class="divider">      </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,15 @@ -      </header><script src="multistart_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore">        <h1 data-toc-skip>Short demo of the multistart method</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">Last change 26 September 2022 (rebuilt 2022-11-17)</h4> +            <h4 data-toc-skip class="date">Last change 20 April 2023 +(rebuilt 2023-04-20)</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/web_only/multistart.rmd" class="external-link"><code>vignettes/web_only/multistart.rmd</code></a></small>        <div class="hidden name"><code>multistart.rmd</code></div> @@ -120,7 +143,8 @@ -<p>The dimethenamid data from 2018 from seven soils is used as example data in this vignette.</p> +<p>The dimethenamid data from 2018 from seven soils is used as example +data in this vignette.</p>  <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span><span class="op">)</span></span>  <span><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span> @@ -132,42 +156,52 @@  <span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">sapply</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span>, <span class="kw">function</span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="va">ds</span><span class="op">$</span><span class="va">title</span><span class="op">)</span></span>  <span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">rbind</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span>, <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span>  <span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span></code></pre></div> -<p>First, we check the DFOP model with the two-component error model and random effects for all degradation parameters.</p> +<p>First, we check the DFOP model with the two-component error model and +random effects for all degradation parameters.</p>  <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_mmkin</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="va">dmta_ds</span>, error_model <span class="op">=</span> <span class="st">"tc"</span>, cores <span class="op">=</span> <span class="fl">7</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>  <span><span class="va">f_saem_full</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/saem.html">saem</a></span><span class="op">(</span><span class="va">f_mmkin</span><span class="op">)</span></span>  <span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_full</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## [1] "sd(log_k2)"</span></span></code></pre> -<p>We see that not all variability parameters are identifiable. The <code>illparms</code> function tells us that the confidence interval for the standard deviation of ‘log_k2’ includes zero. We check this assessment using multiple runs with different starting values.</p> +<p>We see that not all variability parameters are identifiable. The +<code>illparms</code> function tells us that the confidence interval for +the standard deviation of ‘log_k2’ includes zero. We check this +assessment using multiple runs with different starting values.</p>  <div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_saem_full_multi</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">f_saem_full</span>, n <span class="op">=</span> <span class="fl">16</span>, cores <span class="op">=</span> <span class="fl">16</span><span class="op">)</span></span> -<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_full_multi</span><span class="op">)</span></span></code></pre></div> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_full_multi</span>, lpos <span class="op">=</span> <span class="st">"topleft"</span><span class="op">)</span></span></code></pre></div>  <p><img src="multistart_files/figure-html/unnamed-chunk-3-1.png" width="700"></p> -<p>This confirms that the variance of k2 is the most problematic parameter, so we reduce the parameter distribution model by removing the intersoil variability for k2.</p> +<p>This confirms that the variance of k2 is the most problematic +parameter, so we reduce the parameter distribution model by removing the +intersoil variability for k2.</p>  <div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">f_saem_reduced</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem_full</span>, no_random_effect <span class="op">=</span> <span class="st">"log_k2"</span><span class="op">)</span></span>  <span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_reduced</span><span class="op">)</span></span>  <span><span class="va">f_saem_reduced_multi</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">f_saem_reduced</span>, n <span class="op">=</span> <span class="fl">16</span>, cores <span class="op">=</span> <span class="fl">16</span><span class="op">)</span></span> -<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_reduced_multi</span>, lpos <span class="op">=</span> <span class="st">"topright"</span><span class="op">)</span></span></code></pre></div> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_reduced_multi</span>, lpos <span class="op">=</span> <span class="st">"topright"</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>  <p><img src="multistart_files/figure-html/unnamed-chunk-4-1.png" width="700"></p> -<p>The results confirm that all remaining parameters can be determined with sufficient certainty.</p> -<p>We can also analyse the log-likelihoods obtained in the multiple runs:</p> +<p>The results confirm that all remaining parameters can be determined +with sufficient certainty.</p> +<p>We can also analyse the log-likelihoods obtained in the multiple +runs:</p>  <div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/llhist.html">llhist</a></span><span class="op">(</span><span class="va">f_saem_reduced_multi</span><span class="op">)</span></span></code></pre></div>  <p><img src="multistart_files/figure-html/unnamed-chunk-5-1.png" width="700"></p> -<p>The parameter histograms can be further improved by excluding the result with the low likelihood.</p> +<p>We can use the <code>anova</code> method to compare the models.</p>  <div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_reduced_multi</span>, lpos <span class="op">=</span> <span class="st">"topright"</span>, llmin <span class="op">=</span> <span class="op">-</span><span class="fl">326</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> -<p><img src="multistart_files/figure-html/unnamed-chunk-6-1.png" width="700"></p> -<p>We can use the <code>anova</code> method to compare the models, including a likelihood ratio test if the models are nested.</p> -<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_full</span>, <span class="fu"><a href="../../reference/multistart.html">best</a></span><span class="op">(</span><span class="va">f_saem_reduced_multi</span><span class="op">)</span>, test <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_full</span>, <span class="fu"><a href="../../reference/multistart.html">best</a></span><span class="op">(</span><span class="va">f_saem_full_multi</span><span class="op">)</span>,</span> +<span>  <span class="va">f_saem_reduced</span>, <span class="fu"><a href="../../reference/multistart.html">best</a></span><span class="op">(</span><span class="va">f_saem_reduced_multi</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## Data: 155 observations of 1 variable(s) grouped in 6 datasets</span></span>  <span><span class="co">## </span></span> -<span><span class="co">##                            npar    AIC    BIC     Lik Chisq Df Pr(>Chisq)</span></span> -<span><span class="co">## best(f_saem_reduced_multi)    9 663.69 661.82 -322.85                    </span></span> -<span><span class="co">## f_saem_full                  10 669.77 667.69 -324.89     0  1          1</span></span></code></pre> -<p>While AIC and BIC are lower for the reduced model, the likelihood ratio test does not indicate a significant difference between the fits.</p> +<span><span class="co">##                            npar    AIC    BIC     Lik</span></span> +<span><span class="co">## f_saem_reduced                9 663.73 661.86 -322.86</span></span> +<span><span class="co">## best(f_saem_reduced_multi)    9 663.69 661.82 -322.85</span></span> +<span><span class="co">## f_saem_full                  10 669.77 667.69 -324.89</span></span> +<span><span class="co">## best(f_saem_full_multi)      10 665.56 663.48 -322.78</span></span></code></pre> +<p>The reduced model gives the lowest information criteria and similar +likelihoods as the best variant of the full model. The multistart method +leads to a much lower improvement of the likelihood for the reduced +model, indicating that it converges faster.</p>    </div>    <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> @@ -185,7 +219,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> diff --git a/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-3-1.png b/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-3-1.pngBinary files differ index 28991ae8..1ef2ba24 100644 --- a/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-3-1.png +++ b/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-3-1.png diff --git a/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-4-1.png b/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-4-1.pngBinary files differ index 56147ae2..b1582557 100644 --- a/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-4-1.png +++ b/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-4-1.png diff --git a/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-5-1.png b/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-5-1.pngBinary files differ index 7ce108a2..f0270537 100644 --- a/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-5-1.png +++ b/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-5-1.png diff --git a/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-6-1.png b/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-6-1.pngBinary files differ index 00ccbaa8..b1582557 100644 --- a/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-6-1.png +++ b/docs/articles/web_only/multistart_files/figure-html/unnamed-chunk-6-1.png diff --git a/docs/articles/web_only/saem_benchmarks.html b/docs/articles/web_only/saem_benchmarks.html index 523d028c..587ee4a2 100644 --- a/docs/articles/web_only/saem_benchmarks.html +++ b/docs/articles/web_only/saem_benchmarks.html @@ -33,14 +33,14 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.0</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse">        <ul class="nav navbar-nav">  <li> -  <a href="../../reference/index.html">Functions and data</a> +  <a href="../../reference/index.html">Reference</a>  </li>  <li class="dropdown">    <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -52,6 +52,9 @@  <li>        <a href="../../articles/mkin.html">Introduction to mkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>      <li>        <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>      </li> @@ -59,22 +62,31 @@        <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>      <li> -      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>      </li>      <li> -      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>      </li>      <li> -      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>      </li>      <li> -      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> +    </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Performance</li> +    <li> +      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li>        <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -82,6 +94,15 @@      <li>        <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>      </li> +    <li class="divider"> +    </li> +<li class="dropdown-header">Miscellaneous</li> +    <li> +      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li>    </ul>  </li>  <li> @@ -105,13 +126,15 @@ -      </header><script src="saem_benchmarks_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header toc-ignore">        <h1 data-toc-skip>Benchmark timings for saem.mmkin</h1> -                        <h4 data-toc-skip class="author">Johannes Ranke</h4> +                        <h4 data-toc-skip class="author">Johannes +Ranke</h4> -            <h4 data-toc-skip class="date">Last change 14 November 2022 (rebuilt 2022-11-17)</h4> +            <h4 data-toc-skip class="date">Last change 17 February 2023 +(rebuilt 2023-04-20)</h4>        <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/web_only/saem_benchmarks.rmd" class="external-link"><code>vignettes/web_only/saem_benchmarks.rmd</code></a></small>        <div class="hidden name"><code>saem_benchmarks.rmd</code></div> @@ -120,15 +143,19 @@ -<p>Each system is characterized by operating system type, CPU type, mkin version, saemix version and R version. A compiler was available, so if no analytical solution was available, compiled ODE models are used.</p> -<p>Every fit is only performed once, so the accuracy of the benchmarks is limited.</p> +<p>Each system is characterized by operating system type, CPU type, mkin +version, saemix version and R version. A compiler was available, so if +no analytical solution was available, compiled ODE models are used.</p> +<p>Every fit is only performed once, so the accuracy of the benchmarks +is limited.</p>  <p>For the initial mmkin fits, we use all available cores.</p>  <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">n_cores</span> <span class="op"><-</span> <span class="fu">parallel</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/r/parallel/detectCores.html" class="external-link">detectCores</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>  <div class="section level2">  <h2 id="test-data">Test data<a class="anchor" aria-label="anchor" href="#test-data"></a>  </h2> -<p>Please refer to the vignette <code>dimethenamid_2018</code> for an explanation of the following preprocessing.</p> +<p>Please refer to the vignette <code>dimethenamid_2018</code> for an +explanation of the following preprocessing.</p>  <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span>  <span>  <span class="va">ds_i</span> <span class="op"><-</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span></span> @@ -163,7 +190,7 @@  <div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span></span>  <span>  <span class="va">sfo_const</span>, <span class="va">dfop_const</span>, <span class="va">sforb_const</span>, <span class="va">hs_const</span>,</span> -<span>  <span class="va">sfo_tc</span>, <span class="va">dfop_tc</span>, <span class="va">sforb_tc</span>, <span class="va">hs_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu">kable</span><span class="op">(</span>, digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<span>  <span class="va">sfo_tc</span>, <span class="va">dfop_tc</span>, <span class="va">sforb_tc</span>, <span class="va">hs_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>, digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div>  <table class="table">  <thead><tr class="header">  <th align="left"></th> @@ -231,19 +258,24 @@  </tr>  </tbody>  </table> -<p>The above model comparison suggests to use the SFORB model with two-component error. For comparison, we keep the DFOP model with two-component error, as it competes with SFORB for biphasic curves.</p> +<p>The above model comparison suggests to use the SFORB model with +two-component error. For comparison, we keep the DFOP model with +two-component error, as it competes with SFORB for biphasic curves.</p>  <div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">dfop_tc</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## [1] "sd(log_k2)"</span></span></code></pre>  <div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">sforb_tc</span><span class="op">)</span></span></code></pre></div>  <pre><code><span><span class="co">## [1] "sd(log_k_DMTA_bound_free)"</span></span></code></pre> -<p>For these two models, random effects for the transformed parameters <code>k2</code> and <code>k_DMTA_bound_free</code> could not be quantified.</p> +<p>For these two models, random effects for the transformed parameters +<code>k2</code> and <code>k_DMTA_bound_free</code> could not be +quantified.</p>  </div>  <div class="section level3">  <h3 id="one-metabolite">One metabolite<a class="anchor" aria-label="anchor" href="#one-metabolite"></a>  </h3> -<p>We remove parameters that were found to be ill-defined in the parent only fits.</p> +<p>We remove parameters that were found to be ill-defined in the parent +only fits.</p>  <div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="va">one_met_mods</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span>  <span>  DFOP_SFO <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> @@ -266,7 +298,11 @@  <div class="section level3">  <h3 id="three-metabolites">Three metabolites<a class="anchor" aria-label="anchor" href="#three-metabolites"></a>  </h3> -<p>For the case of three metabolites, we only keep the SFORB model in order to limit the time for compiling this vignette, and as fitting in parallel may disturb the benchmark. Again, we do not include random effects that were ill-defined in previous fits of subsets of the degradation model.</p> +<p>For the case of three metabolites, we only keep the SFORB model in +order to limit the time for compiling this vignette, and as fitting in +parallel may disturb the benchmark. Again, we do not include random +effects that were ill-defined in previous fits of subsets of the +degradation model.</p>  <div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">  <code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">sforb_sfo_tc</span><span class="op">)</span></span></code></pre></div>  <div class="sourceCode" id="cb11"><pre class="downlit sourceCode r"> @@ -287,7 +323,9 @@  <div class="section level2">  <h2 id="results">Results<a class="anchor" aria-label="anchor" href="#results"></a>  </h2> -<p>Benchmarks for all available error models are shown. They are intended for improving mkin, not for comparing CPUs or operating systems. All trademarks belong to their respective owners.</p> +<p>Benchmarks for all available error models are shown. They are +intended for improving mkin, not for comparing CPUs or operating +systems. All trademarks belong to their respective owners.</p>  <div class="section level3">  <h3 id="parent-only-1">Parent only<a class="anchor" aria-label="anchor" href="#parent-only-1"></a>  </h3> @@ -303,16 +341,68 @@  <th align="right">t3</th>  <th align="right">t4</th>  </tr></thead> -<tbody><tr class="odd"> +<tbody> +<tr class="odd">  <td align="left">Ryzen 7 1700</td>  <td align="left">Linux</td>  <td align="left">1.2.0</td>  <td align="left">3.2</td> -<td align="right">2.14</td> +<td align="right">2.140</td>  <td align="right">4.626</td>  <td align="right">4.328</td>  <td align="right">4.998</td> -</tr></tbody> +</tr> +<tr class="even"> +<td align="left">Ryzen 7 1700</td> +<td align="left">Linux</td> +<td align="left">1.2.2</td> +<td align="left">3.2</td> +<td align="right">2.427</td> +<td align="right">4.550</td> +<td align="right">4.217</td> +<td align="right">4.851</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.1</td> +<td align="left">3.2</td> +<td align="right">1.352</td> +<td align="right">2.813</td> +<td align="right">2.401</td> +<td align="right">2.074</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.2</td> +<td align="left">3.2</td> +<td align="right">1.328</td> +<td align="right">2.738</td> +<td align="right">2.336</td> +<td align="right">2.023</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">1.118</td> +<td align="right">2.036</td> +<td align="right">2.010</td> +<td align="right">2.088</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">1.419</td> +<td align="right">2.374</td> +<td align="right">1.926</td> +<td align="right">2.398</td> +</tr> +</tbody>  </table>  <p>Two-component error fits for SFO, DFOP, SFORB and HS.</p>  <table class="table"> @@ -326,16 +416,68 @@  <th align="right">t7</th>  <th align="right">t8</th>  </tr></thead> -<tbody><tr class="odd"> +<tbody> +<tr class="odd">  <td align="left">Ryzen 7 1700</td>  <td align="left">Linux</td>  <td align="left">1.2.0</td>  <td align="left">3.2</td>  <td align="right">5.678</td>  <td align="right">7.441</td> -<td align="right">8</td> -<td align="right">7.98</td> -</tr></tbody> +<td align="right">8.000</td> +<td align="right">7.980</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 7 1700</td> +<td align="left">Linux</td> +<td align="left">1.2.2</td> +<td align="left">3.2</td> +<td align="right">5.352</td> +<td align="right">7.201</td> +<td align="right">8.174</td> +<td align="right">8.401</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.1</td> +<td align="left">3.2</td> +<td align="right">2.388</td> +<td align="right">3.033</td> +<td align="right">3.532</td> +<td align="right">3.310</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.2</td> +<td align="left">3.2</td> +<td align="right">2.341</td> +<td align="right">2.968</td> +<td align="right">3.465</td> +<td align="right">3.341</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">2.159</td> +<td align="right">3.584</td> +<td align="right">3.307</td> +<td align="right">3.460</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">2.348</td> +<td align="right">3.134</td> +<td align="right">3.253</td> +<td align="right">3.530</td> +</tr> +</tbody>  </table>  </div>  <div class="section level3"> @@ -351,14 +493,56 @@  <th align="right">t9</th>  <th align="right">t10</th>  </tr></thead> -<tbody><tr class="odd"> +<tbody> +<tr class="odd">  <td align="left">Ryzen 7 1700</td>  <td align="left">Linux</td>  <td align="left">1.2.0</td>  <td align="left">3.2</td>  <td align="right">24.465</td>  <td align="right">800.266</td> -</tr></tbody> +</tr> +<tr class="even"> +<td align="left">Ryzen 7 1700</td> +<td align="left">Linux</td> +<td align="left">1.2.2</td> +<td align="left">3.2</td> +<td align="right">25.193</td> +<td align="right">798.580</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.1</td> +<td align="left">3.2</td> +<td align="right">11.247</td> +<td align="right">285.216</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.2</td> +<td align="left">3.2</td> +<td align="right">11.242</td> +<td align="right">284.258</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">11.796</td> +<td align="right">216.012</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">12.841</td> +<td align="right">292.688</td> +</tr> +</tbody>  </table>  </div>  <div class="section level3"> @@ -373,13 +557,50 @@  <th align="left">saemix</th>  <th align="right">t11</th>  </tr></thead> -<tbody><tr class="odd"> +<tbody> +<tr class="odd">  <td align="left">Ryzen 7 1700</td>  <td align="left">Linux</td>  <td align="left">1.2.0</td>  <td align="left">3.2</td>  <td align="right">1289.198</td> -</tr></tbody> +</tr> +<tr class="even"> +<td align="left">Ryzen 7 1700</td> +<td align="left">Linux</td> +<td align="left">1.2.2</td> +<td align="left">3.2</td> +<td align="right">1312.445</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.1</td> +<td align="left">3.2</td> +<td align="right">489.939</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.2</td> +<td align="left">3.2</td> +<td align="right">482.970</td> +</tr> +<tr class="odd"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">392.364</td> +</tr> +<tr class="even"> +<td align="left">Ryzen 9 7950X</td> +<td align="left">Linux</td> +<td align="left">1.2.3</td> +<td align="left">3.2</td> +<td align="right">483.027</td> +</tr> +</tbody>  </table>  </div>  </div> @@ -402,7 +623,7 @@  <div class="pkgdown">    <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>  </div>        </footer> | 
