diff options
Diffstat (limited to 'docs/dev/reference/dimethenamid_2018.html')
| -rw-r--r-- | docs/dev/reference/dimethenamid_2018.html | 475 | 
1 files changed, 472 insertions, 3 deletions
| diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html index 21dea623..a77cf0f4 100644 --- a/docs/dev/reference/dimethenamid_2018.html +++ b/docs/dev/reference/dimethenamid_2018.html @@ -77,7 +77,7 @@ constrained by data protection regulations." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -168,7 +168,7 @@ constrained by data protection regulations.</p>      <p>Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)  Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour  Rev. 2 - November 2017 -<a href='http://registerofquestions.efsa.europa.eu/roqFrontend/outputLoader?output=ON-5211'>http://registerofquestions.efsa.europa.eu/roqFrontend/outputLoader?output=ON-5211</a></p> +<a href='https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716'>https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a></p>      <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>      <p>The R code used to create this data object is installed with this package @@ -203,7 +203,476 @@ specific pieces of information in the comments.</p>  #> Elliot 2          0.75              33.37          23  #> Flaach            0.40                 NA          20  #> BBA 2.2           0.40                 NA          20 -#> BBA 2.3           0.40                 NA          20</div></pre> +#> BBA 2.3           0.40                 NA          20</div><div class='input'><span class='va'>dmta_ds</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>:</span><span class='fl'>8</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>{</span> +  <span class='va'>ds_i</span> <span class='op'><-</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span><span class='op'>[[</span><span class='va'>i</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>data</span> +  <span class='va'>ds_i</span><span class='op'>[</span><span class='va'>ds_i</span><span class='op'>$</span><span class='va'>name</span> <span class='op'>==</span> <span class='st'>"DMTAP"</span>, <span class='st'>"name"</span><span class='op'>]</span> <span class='op'><-</span>  <span class='st'>"DMTA"</span> +  <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'><-</span> <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'>*</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>f_time_norm</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span> +  <span class='va'>ds_i</span> +<span class='op'>}</span><span class='op'>)</span> +<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>)</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>sapply</a></span><span class='op'>(</span><span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='va'>ds</span><span class='op'>$</span><span class='va'>title</span><span class='op'>)</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> +<span class='co'># \dontrun{</span> +<span class='va'>dfop_sfo3_plus</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span> +  DMTA <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"M23"</span>, <span class='st'>"M27"</span>, <span class='st'>"M31"</span><span class='op'>)</span><span class='op'>)</span>, +  M23 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, +  M27 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, +  M31 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"M27"</span>, sink <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>, +  quiet <span class='op'>=</span> <span class='cn'>TRUE</span> +<span class='op'>)</span> +<span class='va'>f_dmta_mkin_tc</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span> +  <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"DFOP-SFO3+"</span> <span class='op'>=</span> <span class='va'>dfop_sfo3_plus</span><span class='op'>)</span>, +  <span class='va'>dmta_ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> +<span class='fu'><a href='nlmixr.mmkin.html'>nlmixr_model</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> function ()  +#> { +#>     ini({ +#>         DMTA_0 = 98.7697627680706 +#>         eta.DMTA_0 ~ 2.35171765917765 +#>         log_k_M23 = -3.92162409637283 +#>         eta.log_k_M23 ~ 0.549278519419884 +#>         log_k_M27 = -4.33774620773911 +#>         eta.log_k_M27 ~ 0.864474956685295 +#>         log_k_M31 = -4.24767627688461 +#>         eta.log_k_M31 ~ 0.750297149164171 +#>         log_k1 = -2.2341008812259 +#>         eta.log_k1 ~ 0.902976221565793 +#>         log_k2 = -3.7762779983269 +#>         eta.log_k2 ~ 1.57684519529298 +#>         g_qlogis = 0.450175725479389 +#>         eta.g_qlogis ~ 3.0851335687675 +#>         f_DMTA_tffm0_1_qlogis = -2.09240906629456 +#>         eta.f_DMTA_tffm0_1_qlogis ~ 0.3 +#>         f_DMTA_tffm0_2_qlogis = -2.18057573598794 +#>         eta.f_DMTA_tffm0_2_qlogis ~ 0.3 +#>         f_DMTA_tffm0_3_qlogis = -2.14267187609763 +#>         eta.f_DMTA_tffm0_3_qlogis ~ 0.3 +#>         sigma_low_DMTA = 0.697933852349996 +#>         rsd_high_DMTA = 0.0257724286053519 +#>         sigma_low_M23 = 0.697933852349996 +#>         rsd_high_M23 = 0.0257724286053519 +#>         sigma_low_M27 = 0.697933852349996 +#>         rsd_high_M27 = 0.0257724286053519 +#>         sigma_low_M31 = 0.697933852349996 +#>         rsd_high_M31 = 0.0257724286053519 +#>     }) +#>     model({ +#>         DMTA_0_model = DMTA_0 + eta.DMTA_0 +#>         DMTA(0) = DMTA_0_model +#>         k_M23 = exp(log_k_M23 + eta.log_k_M23) +#>         k_M27 = exp(log_k_M27 + eta.log_k_M27) +#>         k_M31 = exp(log_k_M31 + eta.log_k_M31) +#>         k1 = exp(log_k1 + eta.log_k1) +#>         k2 = exp(log_k2 + eta.log_k2) +#>         g = expit(g_qlogis + eta.g_qlogis) +#>         f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis) +#>         f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis) +#>         f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis) +#>         f_DMTA_to_M23 = f_DMTA_tffm0_1 +#>         f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1) +#>         f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) *  +#>             (1 - f_DMTA_tffm0_1) +#>         d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 -  +#>             g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 -  +#>             g) * exp(-k2 * time))) * DMTA +#>         d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) +  +#>             k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +  +#>             (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23 +#>         d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) +  +#>             k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +  +#>             (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 +  +#>             k_M31 * M31 +#>         d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) +  +#>             k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +  +#>             (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31 +#>         DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA) +#>         M23 ~ add(sigma_low_M23) + prop(rsd_high_M23) +#>         M27 ~ add(sigma_low_M27) + prop(rsd_high_M27) +#>         M31 ~ add(sigma_low_M31) + prop(rsd_high_M31) +#>     }) +#> } +#> <environment: 0x555559ac3820></div><div class='input'><span class='co'># The focei fit takes about four minutes on my system</span> +<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span> +  <span class='va'>f_dmta_nlmixr_focei</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>, +    control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span><span class='op'>)</span><span class='op'>)</span> +<span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:02  +#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:04  +#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:01  +#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:08  +#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:07  +#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:07  +#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:00  +#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:00  +#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>RxODE 1.1.0 using 8 threads (see ?getRxThreads)</span> +#> <span class='message'>  no cache: create with `rxCreateCache()`</span></div><div class='output co'>#> <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation +#> F: Forward difference gradient approximation +#> C: Central difference gradient approximation +#> M: Mixed forward and central difference gradient approximation +#> Unscaled parameters for Omegas=chol(solve(omega)); +#> Diagonals are transformed, as specified by foceiControl(diagXform=) +#> |-----+---------------+-----------+-----------+-----------+-----------| +#> |    #| Objective Fun |    DMTA_0 | log_k_M23 | log_k_M27 | log_k_M31 | +#> |.....................|    log_k1 |    log_k2 |  g_qlogis |f_DMTA_tffm0_1_qlogis | +#> |.....................|f_DMTA_tffm0_2_qlogis |f_DMTA_tffm0_3_qlogis | sigma_low |  rsd_high | +#> |.....................|        o1 |        o2 |        o3 |        o4 | +#> |.....................|        o5 |        o6 |        o7 |        o8 | +#> <span style='text-decoration: underline;'>|.....................|        o9 |       o10 |...........|...........|</span> +#> calculating covariance matrix +#> done</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#> <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#> <span class='warning'>Warning: S matrix non-positive definite</span></div><div class='output co'>#> <span class='warning'>Warning: using R matrix to calculate covariance</span></div><div class='output co'>#> <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='output co'>#>    user  system elapsed  +#> 232.621  14.126 246.850 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span> +</div><div class='output co'>#> nlmixr version used for fitting:    2.0.4  +#> mkin version used for pre-fitting:  1.0.5  +#> R version used for fitting:         4.1.0  +#> Date of fit:     Wed Aug  4 15:53:54 2021  +#> Date of summary: Wed Aug  4 15:53:54 2021  +#>  +#> Equations: +#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +#>            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +#>            * DMTA +#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M23 * M23 +#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31 +#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M31 * M31 +#>  +#> Data: +#> 568 observations of 4 variable(s) grouped in 6 datasets +#>  +#> Degradation model predictions using RxODE +#>  +#> Fitted in 246.669 s +#>  +#> Variance model: Two-component variance function  +#>  +#> Mean of starting values for individual parameters: +#>       DMTA_0    log_k_M23    log_k_M27    log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2  +#>      98.7698      -3.9216      -4.3377      -4.2477       0.1380       0.1393  +#> f_DMTA_ilr_3       log_k1       log_k2     g_qlogis  +#>      -1.7571      -2.2341      -3.7763       0.4502  +#>  +#> Mean of starting values for error model parameters: +#> sigma_low  rsd_high  +#>   0.69793   0.02577  +#>  +#> Fixed degradation parameter values: +#> None +#>  +#> Results: +#>  +#> Likelihood calculated by focei   +#>    AIC  BIC logLik +#>   1936 2031 -945.9 +#>  +#> Optimised parameters: +#>                          est.   lower   upper +#> DMTA_0                98.7698 98.7356 98.8039 +#> log_k_M23             -3.9216 -3.9235 -3.9197 +#> log_k_M27             -4.3377 -4.3398 -4.3357 +#> log_k_M31             -4.2477 -4.2497 -4.2457 +#> log_k1                -2.2341 -2.2353 -2.2329 +#> log_k2                -3.7763 -3.7781 -3.7744 +#> g_qlogis               0.4502  0.4496  0.4507 +#> f_DMTA_tffm0_1_qlogis -2.0924 -2.0936 -2.0912 +#> f_DMTA_tffm0_2_qlogis -2.1806 -2.1818 -2.1794 +#> f_DMTA_tffm0_3_qlogis -2.1427 -2.1439 -2.1415 +#>  +#> Correlation:  +#>                       DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs +#> log_k_M23             0                                                +#> log_k_M27             0      0                                         +#> log_k_M31             0      0      0                                  +#> log_k1                0      0      0      0                           +#> log_k2                0      0      0      0      0                    +#> g_qlogis              0      0      0      0      0      0             +#> f_DMTA_tffm0_1_qlogis 0      0      0      0      0      0      0      +#> f_DMTA_tffm0_2_qlogis 0      0      0      0      0      0      0      +#> f_DMTA_tffm0_3_qlogis 0      0      0      0      0      0      0      +#>                       f_DMTA_0_1 f_DMTA_0_2 +#> log_k_M23                                   +#> log_k_M27                                   +#> log_k_M31                                   +#> log_k1                                      +#> log_k2                                      +#> g_qlogis                                    +#> f_DMTA_tffm0_1_qlogis                       +#> f_DMTA_tffm0_2_qlogis 0                     +#> f_DMTA_tffm0_3_qlogis 0          0          +#>  +#> Random effects (omega): +#>                           eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31 +#> eta.DMTA_0                     2.352        0.0000        0.0000        0.0000 +#> eta.log_k_M23                  0.000        0.5493        0.0000        0.0000 +#> eta.log_k_M27                  0.000        0.0000        0.8645        0.0000 +#> eta.log_k_M31                  0.000        0.0000        0.0000        0.7503 +#> eta.log_k1                     0.000        0.0000        0.0000        0.0000 +#> eta.log_k2                     0.000        0.0000        0.0000        0.0000 +#> eta.g_qlogis                   0.000        0.0000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_1_qlogis      0.000        0.0000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_2_qlogis      0.000        0.0000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_3_qlogis      0.000        0.0000        0.0000        0.0000 +#>                           eta.log_k1 eta.log_k2 eta.g_qlogis +#> eta.DMTA_0                     0.000      0.000        0.000 +#> eta.log_k_M23                  0.000      0.000        0.000 +#> eta.log_k_M27                  0.000      0.000        0.000 +#> eta.log_k_M31                  0.000      0.000        0.000 +#> eta.log_k1                     0.903      0.000        0.000 +#> eta.log_k2                     0.000      1.577        0.000 +#> eta.g_qlogis                   0.000      0.000        3.085 +#> eta.f_DMTA_tffm0_1_qlogis      0.000      0.000        0.000 +#> eta.f_DMTA_tffm0_2_qlogis      0.000      0.000        0.000 +#> eta.f_DMTA_tffm0_3_qlogis      0.000      0.000        0.000 +#>                           eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis +#> eta.DMTA_0                                      0.0                       0.0 +#> eta.log_k_M23                                   0.0                       0.0 +#> eta.log_k_M27                                   0.0                       0.0 +#> eta.log_k_M31                                   0.0                       0.0 +#> eta.log_k1                                      0.0                       0.0 +#> eta.log_k2                                      0.0                       0.0 +#> eta.g_qlogis                                    0.0                       0.0 +#> eta.f_DMTA_tffm0_1_qlogis                       0.3                       0.0 +#> eta.f_DMTA_tffm0_2_qlogis                       0.0                       0.3 +#> eta.f_DMTA_tffm0_3_qlogis                       0.0                       0.0 +#>                           eta.f_DMTA_tffm0_3_qlogis +#> eta.DMTA_0                                      0.0 +#> eta.log_k_M23                                   0.0 +#> eta.log_k_M27                                   0.0 +#> eta.log_k_M31                                   0.0 +#> eta.log_k1                                      0.0 +#> eta.log_k2                                      0.0 +#> eta.g_qlogis                                    0.0 +#> eta.f_DMTA_tffm0_1_qlogis                       0.0 +#> eta.f_DMTA_tffm0_2_qlogis                       0.0 +#> eta.f_DMTA_tffm0_3_qlogis                       0.3 +#>  +#> Variance model: +#> sigma_low  rsd_high  +#>   0.69793   0.02577  +#>  +#> Backtransformed parameters: +#>                   est.    lower    upper +#> DMTA_0        98.76976 98.73563 98.80390 +#> k_M23          0.01981  0.01977  0.01985 +#> k_M27          0.01307  0.01304  0.01309 +#> k_M31          0.01430  0.01427  0.01433 +#> f_DMTA_to_M23  0.10984       NA       NA +#> f_DMTA_to_M27  0.09036       NA       NA +#> f_DMTA_to_M31  0.08399       NA       NA +#> k1             0.10709  0.10696  0.10722 +#> k2             0.02291  0.02287  0.02295 +#> g              0.61068  0.61055  0.61081 +#>  +#> Resulting formation fractions: +#>                ff +#> DMTA_M23  0.10984 +#> DMTA_M27  0.09036 +#> DMTA_M31  0.08399 +#> DMTA_sink 0.71581 +#>  +#> Estimated disappearance times: +#>       DT50   DT90 DT50back DT50_k1 DT50_k2 +#> DMTA 10.66  59.78       18   6.473   30.26 +#> M23  34.99 116.24       NA      NA      NA +#> M27  53.05 176.23       NA      NA      NA +#> M31  48.48 161.05       NA      NA      NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span> +</div><div class='img'><img src='dimethenamid_2018-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># Using saemix takes about 18 minutes</span> +<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span> +  <span class='va'>f_dmta_saemix</span> <span class='op'><-</span> <span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +<span class='op'>)</span> +</div><div class='output co'>#> Running main SAEM algorithm +#> [1] "Wed Aug  4 15:53:55 2021" +#> .... +#>     Minimisation finished +#> [1] "Wed Aug  4 16:12:40 2021"</div><div class='output co'>#>     user   system  elapsed  +#> 1192.021    0.064 1192.182 </div><div class='input'> +<span class='co'># nlmixr with est = "saem" is pretty fast with default iteration numbers, most</span> +<span class='co'># of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end</span> +<span class='co'># The likelihood calculated for the nlmixr fit is much lower than that found by saemix</span> +<span class='co'># Also, the trace plot and the plot of the individual predictions is not</span> +<span class='co'># convincing for the parent. It seems we are fitting an overparameterised</span> +<span class='co'># model, so the result we get strongly depends on starting parameters and control settings.</span> +<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span> +  <span class='va'>f_dmta_nlmixr_saem</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>, +    control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span>, logLik <span class='op'>=</span> <span class='cn'>TRUE</span>, nmc <span class='op'>=</span> <span class='fl'>9</span><span class='op'>)</span><span class='op'>)</span> +<span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> 1:    98.3427   -3.5148   -3.3187   -3.7728   -2.1163   -2.8457    0.9482   -2.8064   -2.7412   -2.8745    2.7912    0.6805    0.8213    0.8055    0.8578    1.4980    2.9309    0.2850    0.2854    0.2850    4.0990    0.3821    3.5349    0.6537    5.4143    0.0002    4.5093    0.1905 +#> 500:    97.8277   -4.3506   -4.0318   -4.1520   -3.0553   -3.5843    1.1326   -2.0873   -2.0421   -2.0751    0.2960    1.2515    0.2531    0.3807    0.7928    0.8863    6.5211    0.1433    0.1082    0.3353    0.8960    0.0470    0.7501    0.0475    0.9527    0.0281    0.7321    0.0594</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#>    user  system elapsed  +#> 813.299   3.736 151.935 </div><div class='input'><span class='fu'>traceplot</span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='error'>Error in traceplot(f_dmta_nlmixr_saem$nm): could not find function "traceplot"</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span> +</div><div class='output co'>#> nlmixr version used for fitting:    2.0.4  +#> mkin version used for pre-fitting:  1.0.5  +#> R version used for fitting:         4.1.0  +#> Date of fit:     Wed Aug  4 16:16:18 2021  +#> Date of summary: Wed Aug  4 16:16:18 2021  +#>  +#> Equations: +#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +#>            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +#>            * DMTA +#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M23 * M23 +#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31 +#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M31 * M31 +#>  +#> Data: +#> 568 observations of 4 variable(s) grouped in 6 datasets +#>  +#> Degradation model predictions using RxODE +#>  +#> Fitted in 151.67 s +#>  +#> Variance model: Two-component variance function  +#>  +#> Mean of starting values for individual parameters: +#>       DMTA_0    log_k_M23    log_k_M27    log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2  +#>      98.7698      -3.9216      -4.3377      -4.2477       0.1380       0.1393  +#> f_DMTA_ilr_3       log_k1       log_k2     g_qlogis  +#>      -1.7571      -2.2341      -3.7763       0.4502  +#>  +#> Mean of starting values for error model parameters: +#> sigma_low_DMTA  rsd_high_DMTA  sigma_low_M23   rsd_high_M23  sigma_low_M27  +#>        0.69793        0.02577        0.69793        0.02577        0.69793  +#>   rsd_high_M27  sigma_low_M31   rsd_high_M31  +#>        0.02577        0.69793        0.02577  +#>  +#> Fixed degradation parameter values: +#> None +#>  +#> Results: +#>  +#> Likelihood calculated by focei   +#>    AIC  BIC logLik +#>   2036 2157 -989.8 +#>  +#> Optimised parameters: +#>                         est.  lower  upper +#> DMTA_0                97.828 96.121 99.535 +#> log_k_M23             -4.351 -5.300 -3.401 +#> log_k_M27             -4.032 -4.470 -3.594 +#> log_k_M31             -4.152 -4.689 -3.615 +#> log_k1                -3.055 -3.785 -2.325 +#> log_k2                -3.584 -4.517 -2.651 +#> g_qlogis               1.133 -2.165  4.430 +#> f_DMTA_tffm0_1_qlogis -2.087 -2.407 -1.768 +#> f_DMTA_tffm0_2_qlogis -2.042 -2.336 -1.748 +#> f_DMTA_tffm0_3_qlogis -2.075 -2.557 -1.593 +#>  +#> Correlation:  +#>                       DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs +#> log_k_M23             -0.031                                           +#> log_k_M27             -0.050  0.004                                    +#> log_k_M31             -0.032  0.003  0.078                             +#> log_k1                 0.014 -0.002 -0.002 -0.001                      +#> log_k2                 0.059  0.006 -0.001  0.002 -0.037               +#> g_qlogis              -0.077  0.005  0.009  0.004  0.035 -0.201        +#> f_DMTA_tffm0_1_qlogis -0.104  0.066  0.009  0.006  0.000 -0.011  0.014 +#> f_DMTA_tffm0_2_qlogis -0.120  0.013  0.081 -0.033 -0.002 -0.013  0.017 +#> f_DMTA_tffm0_3_qlogis -0.086  0.010  0.060  0.078 -0.002 -0.005  0.010 +#>                       f_DMTA_0_1 f_DMTA_0_2 +#> log_k_M23                                   +#> log_k_M27                                   +#> log_k_M31                                   +#> log_k1                                      +#> log_k2                                      +#> g_qlogis                                    +#> f_DMTA_tffm0_1_qlogis                       +#> f_DMTA_tffm0_2_qlogis  0.026                +#> f_DMTA_tffm0_3_qlogis  0.019      0.002     +#>  +#> Random effects (omega): +#>                           eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31 +#> eta.DMTA_0                     0.296         0.000        0.0000        0.0000 +#> eta.log_k_M23                  0.000         1.252        0.0000        0.0000 +#> eta.log_k_M27                  0.000         0.000        0.2531        0.0000 +#> eta.log_k_M31                  0.000         0.000        0.0000        0.3807 +#> eta.log_k1                     0.000         0.000        0.0000        0.0000 +#> eta.log_k2                     0.000         0.000        0.0000        0.0000 +#> eta.g_qlogis                   0.000         0.000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_1_qlogis      0.000         0.000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_2_qlogis      0.000         0.000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_3_qlogis      0.000         0.000        0.0000        0.0000 +#>                           eta.log_k1 eta.log_k2 eta.g_qlogis +#> eta.DMTA_0                    0.0000     0.0000        0.000 +#> eta.log_k_M23                 0.0000     0.0000        0.000 +#> eta.log_k_M27                 0.0000     0.0000        0.000 +#> eta.log_k_M31                 0.0000     0.0000        0.000 +#> eta.log_k1                    0.7928     0.0000        0.000 +#> eta.log_k2                    0.0000     0.8863        0.000 +#> eta.g_qlogis                  0.0000     0.0000        6.521 +#> eta.f_DMTA_tffm0_1_qlogis     0.0000     0.0000        0.000 +#> eta.f_DMTA_tffm0_2_qlogis     0.0000     0.0000        0.000 +#> eta.f_DMTA_tffm0_3_qlogis     0.0000     0.0000        0.000 +#>                           eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis +#> eta.DMTA_0                                   0.0000                    0.0000 +#> eta.log_k_M23                                0.0000                    0.0000 +#> eta.log_k_M27                                0.0000                    0.0000 +#> eta.log_k_M31                                0.0000                    0.0000 +#> eta.log_k1                                   0.0000                    0.0000 +#> eta.log_k2                                   0.0000                    0.0000 +#> eta.g_qlogis                                 0.0000                    0.0000 +#> eta.f_DMTA_tffm0_1_qlogis                    0.1433                    0.0000 +#> eta.f_DMTA_tffm0_2_qlogis                    0.0000                    0.1082 +#> eta.f_DMTA_tffm0_3_qlogis                    0.0000                    0.0000 +#>                           eta.f_DMTA_tffm0_3_qlogis +#> eta.DMTA_0                                   0.0000 +#> eta.log_k_M23                                0.0000 +#> eta.log_k_M27                                0.0000 +#> eta.log_k_M31                                0.0000 +#> eta.log_k1                                   0.0000 +#> eta.log_k2                                   0.0000 +#> eta.g_qlogis                                 0.0000 +#> eta.f_DMTA_tffm0_1_qlogis                    0.0000 +#> eta.f_DMTA_tffm0_2_qlogis                    0.0000 +#> eta.f_DMTA_tffm0_3_qlogis                    0.3353 +#>  +#> Variance model: +#> sigma_low_DMTA  rsd_high_DMTA  sigma_low_M23   rsd_high_M23  sigma_low_M27  +#>        0.89603        0.04704        0.75015        0.04753        0.95265  +#>   rsd_high_M27  sigma_low_M31   rsd_high_M31  +#>        0.02810        0.73212        0.05942  +#>  +#> Backtransformed parameters: +#>                   est.     lower    upper +#> DMTA_0        97.82774 96.120503 99.53498 +#> k_M23          0.01290  0.004991  0.03334 +#> k_M27          0.01774  0.011451  0.02749 +#> k_M31          0.01573  0.009195  0.02692 +#> f_DMTA_to_M23  0.11033        NA       NA +#> f_DMTA_to_M27  0.10218        NA       NA +#> f_DMTA_to_M31  0.08784        NA       NA +#> k1             0.04711  0.022707  0.09773 +#> k2             0.02775  0.010918  0.07056 +#> g              0.75632  0.102960  0.98823 +#>  +#> Resulting formation fractions: +#>                ff +#> DMTA_M23  0.11033 +#> DMTA_M27  0.10218 +#> DMTA_M31  0.08784 +#> DMTA_sink 0.69965 +#>  +#> Estimated disappearance times: +#>       DT50   DT90 DT50back DT50_k1 DT50_k2 +#> DMTA 16.59  57.44    17.29   14.71   24.97 +#> M23  53.74 178.51       NA      NA      NA +#> M27  39.07 129.78       NA      NA      NA +#> M31  44.06 146.36       NA      NA      NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span> +</div><div class='img'><img src='dimethenamid_2018-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span> +</div></pre>    </div>    <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">      <nav id="toc" data-toggle="toc" class="sticky-top"> | 
