diff options
Diffstat (limited to 'docs/dev/reference/dimethenamid_2018.html')
| -rw-r--r-- | docs/dev/reference/dimethenamid_2018.html | 320 | 
1 files changed, 157 insertions, 163 deletions
| diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html index a77cf0f4..919e9363 100644 --- a/docs/dev/reference/dimethenamid_2018.html +++ b/docs/dev/reference/dimethenamid_2018.html @@ -77,7 +77,7 @@ constrained by data protection regulations." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>        </span>      </div> @@ -162,7 +162,7 @@ constrained by data protection regulations.</p>      <h2 class="hasAnchor" id="format"><a class="anchor" href="#format"></a>Format</h2> -    <p>An <a href='mkindsg.html'>mkindsg</a> object grouping eight datasets with some meta information</p> +    <p>An <a href='mkindsg.html'>mkindsg</a> object grouping seven datasets with some meta information</p>      <h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2>      <p>Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018) @@ -177,42 +177,36 @@ specific pieces of information in the comments.</p>      <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>      <pre class="examples"><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>dimethenamid_2018</span><span class='op'>)</span> -</div><div class='output co'>#> <mkindsg> holding 8 mkinds objects +</div><div class='output co'>#> <mkindsg> holding 7 mkinds objects  #> Title $title:  Aerobic soil degradation data on dimethenamid-P from the EU assessment in 2018   #> Occurrence of observed compounds $observed_n:  #> DMTAP   M23   M27   M31  DMTA  -#>     4     7     7     7     4  +#>     3     7     7     7     4   #> Time normalisation factors $f_time_norm: -#> [1] 1.0000000 0.9706477 0.9706477 1.2284784 1.2284784 0.6233856 0.7678922 -#> [8] 0.6733938 +#> [1] 1.0000000 0.9706477 1.2284784 1.2284784 0.6233856 0.7678922 0.6733938  #> Meta information $meta: -#>                       study  usda_soil_type study_moisture_ref_type -#> Calke         Unsworth 2014      Sandy loam                     pF2 -#> Borstel 1 Staudenmaier 2013            Sand                     pF1 -#> Borstel 2 Staudenmaier 2009            Sand                     pF1 -#> Elliot 1         Wendt 1997       Clay loam                   pF2.5 -#> Elliot 2         Wendt 1997       Clay loam                   pF2.5 -#> Flaach           König 1996 Sandy clay loam                     pF1 -#> BBA 2.2          König 1995      Loamy sand                     pF1 -#> BBA 2.3          König 1995      Sandy loam                     pF1 -#>           rel_moisture study_ref_moisture temperature -#> Calke             1.00                 NA          20 -#> Borstel 1         0.50              23.00          20 -#> Borstel 2         0.50              23.00          20 -#> Elliot 1          0.75              33.37          23 -#> Elliot 2          0.75              33.37          23 -#> Flaach            0.40                 NA          20 -#> BBA 2.2           0.40                 NA          20 -#> BBA 2.3           0.40                 NA          20</div><div class='input'><span class='va'>dmta_ds</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>:</span><span class='fl'>8</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>{</span> +#>                      study  usda_soil_type study_moisture_ref_type rel_moisture +#> Calke        Unsworth 2014      Sandy loam                     pF2         1.00 +#> Borstel  Staudenmaier 2009            Sand                     pF1         0.50 +#> Elliot 1        Wendt 1997       Clay loam                   pF2.5         0.75 +#> Elliot 2        Wendt 1997       Clay loam                   pF2.5         0.75 +#> Flaach          König 1996 Sandy clay loam                     pF1         0.40 +#> BBA 2.2         König 1995      Loamy sand                     pF1         0.40 +#> BBA 2.3         König 1995      Sandy loam                     pF1         0.40 +#>          study_ref_moisture temperature +#> Calke                    NA          20 +#> Borstel               23.00          20 +#> Elliot 1              33.37          23 +#> Elliot 2              33.37          23 +#> Flaach                   NA          20 +#> BBA 2.2                  NA          20 +#> BBA 2.3                  NA          20</div><div class='input'><span class='va'>dmta_ds</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>:</span><span class='fl'>7</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>{</span>    <span class='va'>ds_i</span> <span class='op'><-</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span><span class='op'>[[</span><span class='va'>i</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>data</span>    <span class='va'>ds_i</span><span class='op'>[</span><span class='va'>ds_i</span><span class='op'>$</span><span class='va'>name</span> <span class='op'>==</span> <span class='st'>"DMTAP"</span>, <span class='st'>"name"</span><span class='op'>]</span> <span class='op'><-</span>  <span class='st'>"DMTA"</span>    <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'><-</span> <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'>*</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>f_time_norm</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>    <span class='va'>ds_i</span>  <span class='op'>}</span><span class='op'>)</span>  <span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>)</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>sapply</a></span><span class='op'>(</span><span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='va'>ds</span><span class='op'>$</span><span class='va'>title</span><span class='op'>)</span> -<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span> -<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> -<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span>  <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span>  <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span>  <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> @@ -231,33 +225,33 @@ specific pieces of information in the comments.</p>  </div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> function ()   #> {  #>     ini({ -#>         DMTA_0 = 98.7697627680706 -#>         eta.DMTA_0 ~ 2.35171765917765 +#>         DMTA_0 = 98.7132391714013 +#>         eta.DMTA_0 ~ 2.32692496033921  #>         log_k_M23 = -3.92162409637283  #>         eta.log_k_M23 ~ 0.549278519419884 -#>         log_k_M27 = -4.33774620773911 -#>         eta.log_k_M27 ~ 0.864474956685295 -#>         log_k_M31 = -4.24767627688461 -#>         eta.log_k_M31 ~ 0.750297149164171 -#>         log_k1 = -2.2341008812259 -#>         eta.log_k1 ~ 0.902976221565793 -#>         log_k2 = -3.7762779983269 -#>         eta.log_k2 ~ 1.57684519529298 -#>         g_qlogis = 0.450175725479389 -#>         eta.g_qlogis ~ 3.0851335687675 -#>         f_DMTA_tffm0_1_qlogis = -2.09240906629456 +#>         log_k_M27 = -4.33057580082049 +#>         eta.log_k_M27 ~ 0.855184233768426 +#>         log_k_M31 = -4.24415516780733 +#>         eta.log_k_M31 ~ 0.745746058085877 +#>         log_k1 = -2.23515804885306 +#>         eta.log_k1 ~ 0.901033446532357 +#>         log_k2 = -3.77581484944379 +#>         eta.log_k2 ~ 1.57682329638124 +#>         g_qlogis = 0.436302910942805 +#>         eta.g_qlogis ~ 3.10190528862808 +#>         f_DMTA_tffm0_1_qlogis = -2.0914852208395  #>         eta.f_DMTA_tffm0_1_qlogis ~ 0.3 -#>         f_DMTA_tffm0_2_qlogis = -2.18057573598794 +#>         f_DMTA_tffm0_2_qlogis = -2.17879574608926  #>         eta.f_DMTA_tffm0_2_qlogis ~ 0.3 -#>         f_DMTA_tffm0_3_qlogis = -2.14267187609763 +#>         f_DMTA_tffm0_3_qlogis = -2.14036526460782  #>         eta.f_DMTA_tffm0_3_qlogis ~ 0.3 -#>         sigma_low_DMTA = 0.697933852349996 +#>         sigma_low_DMTA = 0.700117227383809  #>         rsd_high_DMTA = 0.0257724286053519 -#>         sigma_low_M23 = 0.697933852349996 +#>         sigma_low_M23 = 0.700117227383809  #>         rsd_high_M23 = 0.0257724286053519 -#>         sigma_low_M27 = 0.697933852349996 +#>         sigma_low_M27 = 0.700117227383809  #>         rsd_high_M27 = 0.0257724286053519 -#>         sigma_low_M31 = 0.697933852349996 +#>         sigma_low_M31 = 0.700117227383809  #>         rsd_high_M31 = 0.0257724286053519  #>     })  #>     model({ @@ -295,7 +289,7 @@ specific pieces of information in the comments.</p>  #>         M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)  #>     })  #> } -#> <environment: 0x555559ac3820></div><div class='input'><span class='co'># The focei fit takes about four minutes on my system</span> +#> <environment: 0x555559e97ac0></div><div class='input'><span class='co'># The focei fit takes about four minutes on my system</span>  <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span>    <span class='va'>f_dmta_nlmixr_focei</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,      control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span><span class='op'>)</span><span class='op'>)</span> @@ -308,7 +302,7 @@ specific pieces of information in the comments.</p>  #> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:07   #> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:00   #> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:00  -#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>RxODE 1.1.0 using 8 threads (see ?getRxThreads)</span> +#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>RxODE 1.1.1 using 8 threads (see ?getRxThreads)</span>  #> <span class='message'>  no cache: create with `rxCreateCache()`</span></div><div class='output co'>#> <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation  #> F: Forward difference gradient approximation  #> C: Central difference gradient approximation @@ -324,12 +318,12 @@ specific pieces of information in the comments.</p>  #> <span style='text-decoration: underline;'>|.....................|        o9 |       o10 |...........|...........|</span>  #> calculating covariance matrix  #> done</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#> <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#> <span class='warning'>Warning: S matrix non-positive definite</span></div><div class='output co'>#> <span class='warning'>Warning: using R matrix to calculate covariance</span></div><div class='output co'>#> <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='output co'>#>    user  system elapsed  -#> 232.621  14.126 246.850 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span> -</div><div class='output co'>#> nlmixr version used for fitting:    2.0.4  -#> mkin version used for pre-fitting:  1.0.5  -#> R version used for fitting:         4.1.0  -#> Date of fit:     Wed Aug  4 15:53:54 2021  -#> Date of summary: Wed Aug  4 15:53:54 2021  +#> 230.015   8.962 238.957 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span> +</div><div class='output co'>#> nlmixr version used for fitting:    2.0.5  +#> mkin version used for pre-fitting:  1.1.0  +#> R version used for fitting:         4.1.1  +#> Date of fit:     Thu Sep 16 14:06:55 2021  +#> Date of summary: Thu Sep 16 14:06:55 2021   #>   #> Equations:  #> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -346,23 +340,23 @@ specific pieces of information in the comments.</p>  #>            exp(-k2 * time))) * DMTA - k_M31 * M31  #>   #> Data: -#> 568 observations of 4 variable(s) grouped in 6 datasets +#> 563 observations of 4 variable(s) grouped in 6 datasets  #>   #> Degradation model predictions using RxODE  #>  -#> Fitted in 246.669 s +#> Fitted in 238.792 s  #>   #> Variance model: Two-component variance function   #>   #> Mean of starting values for individual parameters:  #>       DMTA_0    log_k_M23    log_k_M27    log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2  -#>      98.7698      -3.9216      -4.3377      -4.2477       0.1380       0.1393  +#>      98.7132      -3.9216      -4.3306      -4.2442       0.1376       0.1388   #> f_DMTA_ilr_3       log_k1       log_k2     g_qlogis  -#>      -1.7571      -2.2341      -3.7763       0.4502  +#>      -1.7554      -2.2352      -3.7758       0.4363   #>   #> Mean of starting values for error model parameters:  #> sigma_low  rsd_high  -#>   0.69793   0.02577  +#>   0.70012   0.02577   #>   #> Fixed degradation parameter values:  #> None @@ -371,20 +365,20 @@ specific pieces of information in the comments.</p>  #>   #> Likelihood calculated by focei    #>    AIC  BIC logLik -#>   1936 2031 -945.9 +#>   1918 2014 -937.2  #>   #> Optimised parameters:  #>                          est.   lower   upper -#> DMTA_0                98.7698 98.7356 98.8039 -#> log_k_M23             -3.9216 -3.9235 -3.9197 -#> log_k_M27             -4.3377 -4.3398 -4.3357 -#> log_k_M31             -4.2477 -4.2497 -4.2457 -#> log_k1                -2.2341 -2.2353 -2.2329 -#> log_k2                -3.7763 -3.7781 -3.7744 -#> g_qlogis               0.4502  0.4496  0.4507 -#> f_DMTA_tffm0_1_qlogis -2.0924 -2.0936 -2.0912 -#> f_DMTA_tffm0_2_qlogis -2.1806 -2.1818 -2.1794 -#> f_DMTA_tffm0_3_qlogis -2.1427 -2.1439 -2.1415 +#> DMTA_0                98.7132 98.6801 98.7464 +#> log_k_M23             -3.9216 -3.9235 -3.9198 +#> log_k_M27             -4.3306 -4.3326 -4.3286 +#> log_k_M31             -4.2442 -4.2461 -4.2422 +#> log_k1                -2.2352 -2.2364 -2.2340 +#> log_k2                -3.7758 -3.7776 -3.7740 +#> g_qlogis               0.4363  0.4358  0.4368 +#> f_DMTA_tffm0_1_qlogis -2.0915 -2.0926 -2.0903 +#> f_DMTA_tffm0_2_qlogis -2.1788 -2.1800 -2.1776 +#> f_DMTA_tffm0_3_qlogis -2.1404 -2.1415 -2.1392  #>   #> Correlation:   #>                       DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs @@ -410,10 +404,10 @@ specific pieces of information in the comments.</p>  #>   #> Random effects (omega):  #>                           eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31 -#> eta.DMTA_0                     2.352        0.0000        0.0000        0.0000 +#> eta.DMTA_0                     2.327        0.0000        0.0000        0.0000  #> eta.log_k_M23                  0.000        0.5493        0.0000        0.0000 -#> eta.log_k_M27                  0.000        0.0000        0.8645        0.0000 -#> eta.log_k_M31                  0.000        0.0000        0.0000        0.7503 +#> eta.log_k_M27                  0.000        0.0000        0.8552        0.0000 +#> eta.log_k_M31                  0.000        0.0000        0.0000        0.7457  #> eta.log_k1                     0.000        0.0000        0.0000        0.0000  #> eta.log_k2                     0.000        0.0000        0.0000        0.0000  #> eta.g_qlogis                   0.000        0.0000        0.0000        0.0000 @@ -425,9 +419,9 @@ specific pieces of information in the comments.</p>  #> eta.log_k_M23                  0.000      0.000        0.000  #> eta.log_k_M27                  0.000      0.000        0.000  #> eta.log_k_M31                  0.000      0.000        0.000 -#> eta.log_k1                     0.903      0.000        0.000 +#> eta.log_k1                     0.901      0.000        0.000  #> eta.log_k2                     0.000      1.577        0.000 -#> eta.g_qlogis                   0.000      0.000        3.085 +#> eta.g_qlogis                   0.000      0.000        3.102  #> eta.f_DMTA_tffm0_1_qlogis      0.000      0.000        0.000  #> eta.f_DMTA_tffm0_2_qlogis      0.000      0.000        0.000  #> eta.f_DMTA_tffm0_3_qlogis      0.000      0.000        0.000 @@ -456,44 +450,44 @@ specific pieces of information in the comments.</p>  #>   #> Variance model:  #> sigma_low  rsd_high  -#>   0.69793   0.02577  +#>   0.70012   0.02577   #>   #> Backtransformed parameters:  #>                   est.    lower    upper -#> DMTA_0        98.76976 98.73563 98.80390 +#> DMTA_0        98.71324 98.68012 98.74636  #> k_M23          0.01981  0.01977  0.01985 -#> k_M27          0.01307  0.01304  0.01309 -#> k_M31          0.01430  0.01427  0.01433 -#> f_DMTA_to_M23  0.10984       NA       NA -#> f_DMTA_to_M27  0.09036       NA       NA -#> f_DMTA_to_M31  0.08399       NA       NA -#> k1             0.10709  0.10696  0.10722 -#> k2             0.02291  0.02287  0.02295 -#> g              0.61068  0.61055  0.61081 +#> k_M27          0.01316  0.01313  0.01319 +#> k_M31          0.01435  0.01432  0.01438 +#> f_DMTA_to_M23  0.10993       NA       NA +#> f_DMTA_to_M27  0.09049       NA       NA +#> f_DMTA_to_M31  0.08414       NA       NA +#> k1             0.10698  0.10685  0.10710 +#> k2             0.02292  0.02288  0.02296 +#> g              0.60738  0.60725  0.60751  #>   #> Resulting formation fractions:  #>                ff -#> DMTA_M23  0.10984 -#> DMTA_M27  0.09036 -#> DMTA_M31  0.08399 -#> DMTA_sink 0.71581 +#> DMTA_M23  0.10993 +#> DMTA_M27  0.09049 +#> DMTA_M31  0.08414 +#> DMTA_sink 0.71543  #>   #> Estimated disappearance times: -#>       DT50   DT90 DT50back DT50_k1 DT50_k2 -#> DMTA 10.66  59.78       18   6.473   30.26 -#> M23  34.99 116.24       NA      NA      NA -#> M27  53.05 176.23       NA      NA      NA -#> M31  48.48 161.05       NA      NA      NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span> +#>       DT50  DT90 DT50back DT50_k1 DT50_k2 +#> DMTA 10.72  60.1    18.09    6.48   30.24 +#> M23  34.99 116.2       NA      NA      NA +#> M27  52.67 175.0       NA      NA      NA +#> M31  48.31 160.5       NA      NA      NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span>  </div><div class='img'><img src='dimethenamid_2018-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># Using saemix takes about 18 minutes</span>  <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span>    <span class='va'>f_dmta_saemix</span> <span class='op'><-</span> <span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  <span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Wed Aug  4 15:53:55 2021" +#> [1] "Thu Sep 16 14:06:56 2021"  #> ....  #>     Minimisation finished -#> [1] "Wed Aug  4 16:12:40 2021"</div><div class='output co'>#>     user   system  elapsed  -#> 1192.021    0.064 1192.182 </div><div class='input'> +#> [1] "Thu Sep 16 14:25:28 2021"</div><div class='output co'>#>     user   system  elapsed  +#> 1176.278    0.021 1176.388 </div><div class='input'>  <span class='co'># nlmixr with est = "saem" is pretty fast with default iteration numbers, most</span>  <span class='co'># of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end</span>  <span class='co'># The likelihood calculated for the nlmixr fit is much lower than that found by saemix</span> @@ -504,15 +498,15 @@ specific pieces of information in the comments.</p>    <span class='va'>f_dmta_nlmixr_saem</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,      control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span>, logLik <span class='op'>=</span> <span class='cn'>TRUE</span>, nmc <span class='op'>=</span> <span class='fl'>9</span><span class='op'>)</span><span class='op'>)</span>  <span class='op'>)</span> -</div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> 1:    98.3427   -3.5148   -3.3187   -3.7728   -2.1163   -2.8457    0.9482   -2.8064   -2.7412   -2.8745    2.7912    0.6805    0.8213    0.8055    0.8578    1.4980    2.9309    0.2850    0.2854    0.2850    4.0990    0.3821    3.5349    0.6537    5.4143    0.0002    4.5093    0.1905 -#> 500:    97.8277   -4.3506   -4.0318   -4.1520   -3.0553   -3.5843    1.1326   -2.0873   -2.0421   -2.0751    0.2960    1.2515    0.2531    0.3807    0.7928    0.8863    6.5211    0.1433    0.1082    0.3353    0.8960    0.0470    0.7501    0.0475    0.9527    0.0281    0.7321    0.0594</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#>    user  system elapsed  -#> 813.299   3.736 151.935 </div><div class='input'><span class='fu'>traceplot</span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> 1:    98.3400   -3.5096   -3.3392   -3.7596   -2.2055   -2.7755    1.0281   -2.7872   -2.7223   -2.8341    2.6422    0.7027    0.8124    0.7085    0.8560    1.4980    3.2777    0.3063    0.2850    0.2850    4.1120    0.3716    4.4582    0.3994    4.4820    0.4025    3.7803    0.5780 +#> 500:    97.8212   -4.4030   -4.0872   -4.1289   -2.8278   -4.3505    2.6614   -2.1252   -2.1308   -2.0749    2.9463    1.2933    0.2802    0.3467    0.4814    0.7877    3.0743    0.1508    0.1523    0.3155    0.9557    0.0333    0.4787    0.1073    0.6826    0.0707    0.7849    0.0356</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#>    user  system elapsed  +#> 800.784   3.715 149.687 </div><div class='input'><span class='fu'>traceplot</span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='error'>Error in traceplot(f_dmta_nlmixr_saem$nm): could not find function "traceplot"</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span> -</div><div class='output co'>#> nlmixr version used for fitting:    2.0.4  -#> mkin version used for pre-fitting:  1.0.5  -#> R version used for fitting:         4.1.0  -#> Date of fit:     Wed Aug  4 16:16:18 2021  -#> Date of summary: Wed Aug  4 16:16:18 2021  +</div><div class='output co'>#> nlmixr version used for fitting:    2.0.5  +#> mkin version used for pre-fitting:  1.1.0  +#> R version used for fitting:         4.1.1  +#> Date of fit:     Thu Sep 16 14:29:02 2021  +#> Date of summary: Thu Sep 16 14:29:02 2021   #>   #> Equations:  #> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -529,25 +523,25 @@ specific pieces of information in the comments.</p>  #>            exp(-k2 * time))) * DMTA - k_M31 * M31  #>   #> Data: -#> 568 observations of 4 variable(s) grouped in 6 datasets +#> 563 observations of 4 variable(s) grouped in 6 datasets  #>   #> Degradation model predictions using RxODE  #>  -#> Fitted in 151.67 s +#> Fitted in 149.421 s  #>   #> Variance model: Two-component variance function   #>   #> Mean of starting values for individual parameters:  #>       DMTA_0    log_k_M23    log_k_M27    log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2  -#>      98.7698      -3.9216      -4.3377      -4.2477       0.1380       0.1393  +#>      98.7132      -3.9216      -4.3306      -4.2442       0.1376       0.1388   #> f_DMTA_ilr_3       log_k1       log_k2     g_qlogis  -#>      -1.7571      -2.2341      -3.7763       0.4502  +#>      -1.7554      -2.2352      -3.7758       0.4363   #>   #> Mean of starting values for error model parameters:  #> sigma_low_DMTA  rsd_high_DMTA  sigma_low_M23   rsd_high_M23  sigma_low_M27  -#>        0.69793        0.02577        0.69793        0.02577        0.69793  +#>        0.70012        0.02577        0.70012        0.02577        0.70012   #>   rsd_high_M27  sigma_low_M31   rsd_high_M31  -#>        0.02577        0.69793        0.02577  +#>        0.02577        0.70012        0.02577   #>   #> Fixed degradation parameter values:  #> None @@ -556,32 +550,32 @@ specific pieces of information in the comments.</p>  #>   #> Likelihood calculated by focei    #>    AIC  BIC logLik -#>   2036 2157 -989.8 +#>   1953 2074 -948.3  #>   #> Optimised parameters:  #>                         est.  lower  upper -#> DMTA_0                97.828 96.121 99.535 -#> log_k_M23             -4.351 -5.300 -3.401 -#> log_k_M27             -4.032 -4.470 -3.594 -#> log_k_M31             -4.152 -4.689 -3.615 -#> log_k1                -3.055 -3.785 -2.325 -#> log_k2                -3.584 -4.517 -2.651 -#> g_qlogis               1.133 -2.165  4.430 -#> f_DMTA_tffm0_1_qlogis -2.087 -2.407 -1.768 -#> f_DMTA_tffm0_2_qlogis -2.042 -2.336 -1.748 -#> f_DMTA_tffm0_3_qlogis -2.075 -2.557 -1.593 +#> DMTA_0                97.821 95.862 99.780 +#> log_k_M23             -4.403 -5.376 -3.430 +#> log_k_M27             -4.087 -4.545 -3.629 +#> log_k_M31             -4.129 -4.639 -3.618 +#> log_k1                -2.828 -3.389 -2.266 +#> log_k2                -4.351 -5.472 -3.229 +#> g_qlogis               2.661  0.824  4.499 +#> f_DMTA_tffm0_1_qlogis -2.125 -2.449 -1.801 +#> f_DMTA_tffm0_2_qlogis -2.131 -2.468 -1.794 +#> f_DMTA_tffm0_3_qlogis -2.075 -2.540 -1.610  #>   #> Correlation:   #>                       DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs -#> log_k_M23             -0.031                                           -#> log_k_M27             -0.050  0.004                                    -#> log_k_M31             -0.032  0.003  0.078                             -#> log_k1                 0.014 -0.002 -0.002 -0.001                      -#> log_k2                 0.059  0.006 -0.001  0.002 -0.037               -#> g_qlogis              -0.077  0.005  0.009  0.004  0.035 -0.201        -#> f_DMTA_tffm0_1_qlogis -0.104  0.066  0.009  0.006  0.000 -0.011  0.014 -#> f_DMTA_tffm0_2_qlogis -0.120  0.013  0.081 -0.033 -0.002 -0.013  0.017 -#> f_DMTA_tffm0_3_qlogis -0.086  0.010  0.060  0.078 -0.002 -0.005  0.010 +#> log_k_M23             -0.019                                           +#> log_k_M27             -0.028  0.004                                    +#> log_k_M31             -0.019  0.003  0.075                             +#> log_k1                 0.038 -0.004 -0.006 -0.003                      +#> log_k2                 0.046  0.011  0.008  0.009  0.068               +#> g_qlogis              -0.067  0.004  0.006  0.001 -0.076 -0.409        +#> f_DMTA_tffm0_1_qlogis -0.062  0.055  0.006  0.004 -0.008 -0.004  0.012 +#> f_DMTA_tffm0_2_qlogis -0.062  0.010  0.058 -0.034 -0.008 -0.007  0.014 +#> f_DMTA_tffm0_3_qlogis -0.052  0.009  0.056  0.071 -0.006 -0.001  0.008  #>                       f_DMTA_0_1 f_DMTA_0_2  #> log_k_M23                                    #> log_k_M27                                   @@ -590,15 +584,15 @@ specific pieces of information in the comments.</p>  #> log_k2                                       #> g_qlogis                                     #> f_DMTA_tffm0_1_qlogis                       -#> f_DMTA_tffm0_2_qlogis  0.026                -#> f_DMTA_tffm0_3_qlogis  0.019      0.002     +#> f_DMTA_tffm0_2_qlogis  0.017                +#> f_DMTA_tffm0_3_qlogis  0.014     -0.005      #>   #> Random effects (omega):  #>                           eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31 -#> eta.DMTA_0                     0.296         0.000        0.0000        0.0000 -#> eta.log_k_M23                  0.000         1.252        0.0000        0.0000 -#> eta.log_k_M27                  0.000         0.000        0.2531        0.0000 -#> eta.log_k_M31                  0.000         0.000        0.0000        0.3807 +#> eta.DMTA_0                     2.946         0.000        0.0000        0.0000 +#> eta.log_k_M23                  0.000         1.293        0.0000        0.0000 +#> eta.log_k_M27                  0.000         0.000        0.2802        0.0000 +#> eta.log_k_M31                  0.000         0.000        0.0000        0.3467  #> eta.log_k1                     0.000         0.000        0.0000        0.0000  #> eta.log_k2                     0.000         0.000        0.0000        0.0000  #> eta.g_qlogis                   0.000         0.000        0.0000        0.0000 @@ -610,9 +604,9 @@ specific pieces of information in the comments.</p>  #> eta.log_k_M23                 0.0000     0.0000        0.000  #> eta.log_k_M27                 0.0000     0.0000        0.000  #> eta.log_k_M31                 0.0000     0.0000        0.000 -#> eta.log_k1                    0.7928     0.0000        0.000 -#> eta.log_k2                    0.0000     0.8863        0.000 -#> eta.g_qlogis                  0.0000     0.0000        6.521 +#> eta.log_k1                    0.4814     0.0000        0.000 +#> eta.log_k2                    0.0000     0.7877        0.000 +#> eta.g_qlogis                  0.0000     0.0000        3.074  #> eta.f_DMTA_tffm0_1_qlogis     0.0000     0.0000        0.000  #> eta.f_DMTA_tffm0_2_qlogis     0.0000     0.0000        0.000  #> eta.f_DMTA_tffm0_3_qlogis     0.0000     0.0000        0.000 @@ -624,8 +618,8 @@ specific pieces of information in the comments.</p>  #> eta.log_k1                                   0.0000                    0.0000  #> eta.log_k2                                   0.0000                    0.0000  #> eta.g_qlogis                                 0.0000                    0.0000 -#> eta.f_DMTA_tffm0_1_qlogis                    0.1433                    0.0000 -#> eta.f_DMTA_tffm0_2_qlogis                    0.0000                    0.1082 +#> eta.f_DMTA_tffm0_1_qlogis                    0.1508                    0.0000 +#> eta.f_DMTA_tffm0_2_qlogis                    0.0000                    0.1523  #> eta.f_DMTA_tffm0_3_qlogis                    0.0000                    0.0000  #>                           eta.f_DMTA_tffm0_3_qlogis  #> eta.DMTA_0                                   0.0000 @@ -637,40 +631,40 @@ specific pieces of information in the comments.</p>  #> eta.g_qlogis                                 0.0000  #> eta.f_DMTA_tffm0_1_qlogis                    0.0000  #> eta.f_DMTA_tffm0_2_qlogis                    0.0000 -#> eta.f_DMTA_tffm0_3_qlogis                    0.3353 +#> eta.f_DMTA_tffm0_3_qlogis                    0.3155  #>   #> Variance model:  #> sigma_low_DMTA  rsd_high_DMTA  sigma_low_M23   rsd_high_M23  sigma_low_M27  -#>        0.89603        0.04704        0.75015        0.04753        0.95265  +#>        0.95572        0.03325        0.47871        0.10733        0.68264   #>   rsd_high_M27  sigma_low_M31   rsd_high_M31  -#>        0.02810        0.73212        0.05942  +#>        0.07072        0.78486        0.03557   #>   #> Backtransformed parameters:  #>                   est.     lower    upper -#> DMTA_0        97.82774 96.120503 99.53498 -#> k_M23          0.01290  0.004991  0.03334 -#> k_M27          0.01774  0.011451  0.02749 -#> k_M31          0.01573  0.009195  0.02692 -#> f_DMTA_to_M23  0.11033        NA       NA -#> f_DMTA_to_M27  0.10218        NA       NA -#> f_DMTA_to_M31  0.08784        NA       NA -#> k1             0.04711  0.022707  0.09773 -#> k2             0.02775  0.010918  0.07056 -#> g              0.75632  0.102960  0.98823 +#> DMTA_0        97.82122 95.862233 99.78020 +#> k_M23          0.01224  0.004625  0.03239 +#> k_M27          0.01679  0.010615  0.02654 +#> k_M31          0.01610  0.009664  0.02683 +#> f_DMTA_to_M23  0.10668        NA       NA +#> f_DMTA_to_M27  0.09481        NA       NA +#> f_DMTA_to_M31  0.08908        NA       NA +#> k1             0.05914  0.033731  0.10370 +#> k2             0.01290  0.004204  0.03958 +#> g              0.93471  0.695081  0.98900  #>   #> Resulting formation fractions:  #>                ff -#> DMTA_M23  0.11033 -#> DMTA_M27  0.10218 -#> DMTA_M31  0.08784 -#> DMTA_sink 0.69965 +#> DMTA_M23  0.10668 +#> DMTA_M27  0.09481 +#> DMTA_M31  0.08908 +#> DMTA_sink 0.70943  #>   #> Estimated disappearance times:  #>       DT50   DT90 DT50back DT50_k1 DT50_k2 -#> DMTA 16.59  57.44    17.29   14.71   24.97 -#> M23  53.74 178.51       NA      NA      NA -#> M27  39.07 129.78       NA      NA      NA -#> M31  44.06 146.36       NA      NA      NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span> +#> DMTA 12.57  45.43    13.67   11.72   53.73 +#> M23  56.63 188.11       NA      NA      NA +#> M27  41.29 137.18       NA      NA      NA +#> M31  43.05 143.01       NA      NA      NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span>  </div><div class='img'><img src='dimethenamid_2018-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>  </div></pre>    </div> | 
