diff options
Diffstat (limited to 'docs/dev/reference/loftest.html')
| -rw-r--r-- | docs/dev/reference/loftest.html | 494 | 
1 files changed, 227 insertions, 267 deletions
| diff --git a/docs/dev/reference/loftest.html b/docs/dev/reference/loftest.html index 9dbd547d..57bd3ee5 100644 --- a/docs/dev/reference/loftest.html +++ b/docs/dev/reference/loftest.html @@ -1,70 +1,15 @@ -<!-- Generated by pkgdown: do not edit by hand -->  <!DOCTYPE html> -<html lang="en"> -  <head> -  <meta charset="utf-8"> -<meta http-equiv="X-UA-Compatible" content="IE=edge"> -<meta name="viewport" content="width=device-width, initial-scale=1.0"> - -<title>Lack-of-fit test for models fitted to data with replicates — loftest • mkin</title> - - -<!-- jquery --> -<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script> -<!-- Bootstrap --> - -<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" /> - -<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script> - -<!-- bootstrap-toc --> -<link rel="stylesheet" href="../bootstrap-toc.css"> -<script src="../bootstrap-toc.js"></script> - -<!-- Font Awesome icons --> -<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" /> -<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" /> - -<!-- clipboard.js --> -<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script> - -<!-- headroom.js --> -<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script> -<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> - -<!-- pkgdown --> -<link href="../pkgdown.css" rel="stylesheet"> -<script src="../pkgdown.js"></script> - - - - -<meta property="og:title" content="Lack-of-fit test for models fitted to data with replicates — loftest" /> -<meta property="og:description" content="This is a generic function with a method currently only defined for mkinfit +<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Lack-of-fit test for models fitted to data with replicates — loftest • mkin</title><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><meta property="og:title" content="Lack-of-fit test for models fitted to data with replicates — loftest"><meta property="og:description" content="This is a generic function with a method currently only defined for mkinfit  objects. It fits an anova model to the data contained in the object and  compares the likelihoods using the likelihood ratio test -lrtest.default from the lmtest package." /> - - -<meta name="robots" content="noindex"> - -<!-- mathjax --> -<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> -<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> - -<!--[if lt IE 9]> +lrtest.default from the lmtest package."><meta name="robots" content="noindex"><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>  <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>  <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> -<![endif]--> - - +<![endif]--></head><body data-spy="scroll" data-target="#toc"> +     -  </head> - -  <body data-spy="scroll" data-target="#toc">      <div class="container template-reference-topic"> -      <header> -      <div class="navbar navbar-default navbar-fixed-top" role="navigation"> +      <header><div class="navbar navbar-default navbar-fixed-top" role="navigation">    <div class="container">      <div class="navbar-header">        <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> @@ -75,23 +20,21 @@ lrtest.default from the lmtest package." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.2.2</span>        </span>      </div>      <div id="navbar" class="navbar-collapse collapse"> -      <ul class="nav navbar-nav"> -        <li> +      <ul class="nav navbar-nav"><li>    <a href="../reference/index.html">Functions and data</a>  </li>  <li class="dropdown"> -  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">      Articles      <span class="caret"></span>    </a> -  <ul class="dropdown-menu" role="menu"> -    <li> +  <ul class="dropdown-menu" role="menu"><li>        <a href="../articles/mkin.html">Introduction to mkin</a>      </li>      <li> @@ -101,48 +44,50 @@ lrtest.default from the lmtest package." />        <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>      </li>      <li> -      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +      <a href="../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> +    </li> +    <li> +      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a>      </li>      <li>        <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>      </li>      <li> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li>        <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>      </li>      <li>        <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>      </li>      <li> -      <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a> +      <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a>      </li> -  </ul> -</li> +    <li> +      <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> +    </li> +  </ul></li>  <li>    <a href="../news/index.html">News</a>  </li> -      </ul> -      <ul class="nav navbar-nav navbar-right"> -        <li> -  <a href="https://github.com/jranke/mkin/"> +      </ul><ul class="nav navbar-nav navbar-right"><li> +  <a href="https://github.com/jranke/mkin/" class="external-link">      <span class="fab fa-github fa-lg"></span>    </a>  </li> -      </ul> -       -    </div><!--/.nav-collapse --> +      </ul></div><!--/.nav-collapse -->    </div><!--/.container -->  </div><!--/.navbar --> -      </header> - -<div class="row"> +      </header><div class="row">    <div class="col-md-9 contents">      <div class="page-header">      <h1>Lack-of-fit test for models fitted to data with replicates</h1> -    <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/loftest.R'><code>R/loftest.R</code></a></small> +    <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/loftest.R" class="external-link"><code>R/loftest.R</code></a></small>      <div class="hidden name"><code>loftest.Rd</code></div>      </div> @@ -150,216 +95,231 @@ lrtest.default from the lmtest package." />      <p>This is a generic function with a method currently only defined for mkinfit  objects. It fits an anova model to the data contained in the object and  compares the likelihoods using the likelihood ratio test -<code><a href='https://rdrr.io/pkg/lmtest/man/lrtest.html'>lrtest.default</a></code> from the lmtest package.</p> +<code><a href="https://rdrr.io/pkg/lmtest/man/lrtest.html" class="external-link">lrtest.default</a></code> from the lmtest package.</p>      </div> -    <pre class="usage"><span class='fu'>loftest</span><span class='op'>(</span><span class='va'>object</span>, <span class='va'>...</span><span class='op'>)</span> +    <div id="ref-usage"> +    <div class="sourceCode"><pre class="sourceCode r"><code><span><span class="fu">loftest</span><span class="op">(</span><span class="va">object</span>, <span class="va">...</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># S3 method for mkinfit</span></span> +<span><span class="fu">loftest</span><span class="op">(</span><span class="va">object</span>, <span class="va">...</span><span class="op">)</span></span></code></pre></div> +    </div> -<span class='co'># S3 method for mkinfit</span> -<span class='fu'>loftest</span><span class='op'>(</span><span class='va'>object</span>, <span class='va'>...</span><span class='op'>)</span></pre> +    <div id="arguments"> +    <h2>Arguments</h2> +    <dl><dt>object</dt> +<dd><p>A model object with a defined loftest method</p></dd> -    <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> -    <table class="ref-arguments"> -    <colgroup><col class="name" /><col class="desc" /></colgroup> -    <tr> -      <th>object</th> -      <td><p>A model object with a defined loftest method</p></td> -    </tr> -    <tr> -      <th>...</th> -      <td><p>Not used</p></td> -    </tr> -    </table> -    <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2> +<dt>...</dt> +<dd><p>Not used</p></dd> +</dl></div> +    <div id="details"> +    <h2>Details</h2>      <p>The anova model is interpreted as the simplest form of an mkinfit model,  assuming only a constant variance about the means, but not enforcing any  structure of the means, so we have one model parameter for every mean  of replicate samples.</p> -    <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2> - -    <div class='dont-index'><p>lrtest</p></div> +    </div> +    <div id="see-also"> +    <h2>See also</h2> +    <div class="dont-index"><p>lrtest</p></div> +    </div> -    <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> -    <pre class="examples"><div class='input'><span class='co'># \dontrun{</span> -<span class='va'>test_data</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>synthetic_data_for_UBA_2014</span><span class='op'>[[</span><span class='fl'>12</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>data</span>, <span class='va'>name</span> <span class='op'>==</span> <span class='st'>"parent"</span><span class='op'>)</span> -<span class='va'>sfo_fit</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='va'>test_data</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -<span class='fu'><a href='plot.mkinfit.html'>plot_res</a></span><span class='op'>(</span><span class='va'>sfo_fit</span><span class='op'>)</span> <span class='co'># We see a clear pattern in the residuals</span> -</div><div class='img'><img src='loftest-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'>loftest</span><span class='op'>(</span><span class='va'>sfo_fit</span><span class='op'>)</span>  <span class='co'># We have a clear lack of fit</span> -</div><div class='output co'>#> Likelihood ratio test -#>  -#> Model 1: ANOVA with error model const -#> Model 2: SFO with error model const -#>   #Df  LogLik Df  Chisq Pr(>Chisq)     -#> 1  10 -40.710                          -#> 2   3 -63.954 -7 46.487  7.027e-08 *** -#> --- -#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</div><div class='input'><span class='co'>#</span> -<span class='co'># We try a different model (the one that was used to generate the data)</span> -<span class='va'>dfop_fit</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='va'>test_data</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -<span class='fu'><a href='plot.mkinfit.html'>plot_res</a></span><span class='op'>(</span><span class='va'>dfop_fit</span><span class='op'>)</span> <span class='co'># We don't see systematic deviations, but heteroscedastic residuals</span> -</div><div class='img'><img src='loftest-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># therefore we should consider adapting the error model, although we have</span> -<span class='fu'>loftest</span><span class='op'>(</span><span class='va'>dfop_fit</span><span class='op'>)</span> <span class='co'># no lack of fit</span> -</div><div class='output co'>#> Likelihood ratio test -#>  -#> Model 1: ANOVA with error model const -#> Model 2: DFOP with error model const -#>   #Df  LogLik Df Chisq Pr(>Chisq) -#> 1  10 -40.710                     -#> 2   5 -42.453 -5 3.485     0.6257</div><div class='input'><span class='co'>#</span> -<span class='co'># This is the anova model used internally for the comparison</span> -<span class='va'>test_data_anova</span> <span class='op'><-</span> <span class='va'>test_data</span> -<span class='va'>test_data_anova</span><span class='op'>$</span><span class='va'>time</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/factor.html'>as.factor</a></span><span class='op'>(</span><span class='va'>test_data_anova</span><span class='op'>$</span><span class='va'>time</span><span class='op'>)</span> -<span class='va'>anova_fit</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/lm.html'>lm</a></span><span class='op'>(</span><span class='va'>value</span> <span class='op'>~</span> <span class='va'>time</span>, data <span class='op'>=</span> <span class='va'>test_data_anova</span><span class='op'>)</span> -<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>anova_fit</span><span class='op'>)</span> -</div><div class='output co'>#>  -#> Call: -#> lm(formula = value ~ time, data = test_data_anova) -#>  -#> Residuals: -#>     Min      1Q  Median      3Q     Max  -#> -6.1000 -0.5625  0.0000  0.5625  6.1000  -#>  -#> Coefficients: -#>             Estimate Std. Error t value Pr(>|t|)     -#> (Intercept)  103.150      2.323  44.409 7.44e-12 *** -#> time1        -19.950      3.285  -6.073 0.000185 *** -#> time3        -50.800      3.285 -15.465 8.65e-08 *** -#> time7        -68.500      3.285 -20.854 6.28e-09 *** -#> time14       -79.750      3.285 -24.278 1.63e-09 *** -#> time28       -86.000      3.285 -26.181 8.35e-10 *** -#> time60       -94.900      3.285 -28.891 3.48e-10 *** -#> time90       -98.500      3.285 -29.986 2.49e-10 *** -#> time120     -100.450      3.285 -30.580 2.09e-10 *** -#> --- -#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -#>  -#> Residual standard error: 3.285 on 9 degrees of freedom -#> Multiple R-squared:  0.9953,	Adjusted R-squared:  0.9912  -#> F-statistic: 240.5 on 8 and 9 DF,  p-value: 1.417e-09 -#> </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/logLik.html'>logLik</a></span><span class='op'>(</span><span class='va'>anova_fit</span><span class='op'>)</span> <span class='co'># We get the same likelihood and degrees of freedom</span> -</div><div class='output co'>#> 'log Lik.' -40.71015 (df=10)</div><div class='input'><span class='co'>#</span> -<span class='va'>test_data_2</span> <span class='op'><-</span> <span class='va'>synthetic_data_for_UBA_2014</span><span class='op'>[[</span><span class='fl'>12</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>data</span> -<span class='va'>m_synth_SFO_lin</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='st'>"M1"</span><span class='op'>)</span>, -  M1 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='st'>"M2"</span><span class='op'>)</span>, -  M2 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"max"</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>sfo_lin_fit</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>m_synth_SFO_lin</span>, <span class='va'>test_data_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -<span class='fu'><a href='plot.mkinfit.html'>plot_res</a></span><span class='op'>(</span><span class='va'>sfo_lin_fit</span><span class='op'>)</span> <span class='co'># not a good model, we try parallel formation</span> -</div><div class='img'><img src='loftest-3.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'>loftest</span><span class='op'>(</span><span class='va'>sfo_lin_fit</span><span class='op'>)</span> -</div><div class='output co'>#> Likelihood ratio test -#>  -#> Model 1: ANOVA with error model const -#> Model 2: m_synth_SFO_lin with error model const and fixed parameter(s) M1_0, M2_0 -#>   #Df   LogLik  Df  Chisq Pr(>Chisq)     -#> 1  28  -93.606                           -#> 2   7 -171.927 -21 156.64  < 2.2e-16 *** -#> --- -#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</div><div class='input'><span class='co'>#</span> -<span class='va'>m_synth_SFO_par</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"M1"</span>, <span class='st'>"M2"</span><span class='op'>)</span><span class='op'>)</span>, -  M1 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span>, -  M2 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"max"</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>sfo_par_fit</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>m_synth_SFO_par</span>, <span class='va'>test_data_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -<span class='fu'><a href='plot.mkinfit.html'>plot_res</a></span><span class='op'>(</span><span class='va'>sfo_par_fit</span><span class='op'>)</span> <span class='co'># much better for metabolites</span> -</div><div class='img'><img src='loftest-4.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'>loftest</span><span class='op'>(</span><span class='va'>sfo_par_fit</span><span class='op'>)</span> -</div><div class='output co'>#> Likelihood ratio test -#>  -#> Model 1: ANOVA with error model const -#> Model 2: m_synth_SFO_par with error model const and fixed parameter(s) M1_0, M2_0 -#>   #Df   LogLik  Df  Chisq Pr(>Chisq)     -#> 1  28  -93.606                           -#> 2   7 -156.331 -21 125.45  < 2.2e-16 *** -#> --- -#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</div><div class='input'><span class='co'>#</span> -<span class='va'>m_synth_DFOP_par</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"DFOP"</span>, to <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"M1"</span>, <span class='st'>"M2"</span><span class='op'>)</span><span class='op'>)</span>, -  M1 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span>, -  M2 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"max"</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>dfop_par_fit</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>m_synth_DFOP_par</span>, <span class='va'>test_data_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -<span class='fu'><a href='plot.mkinfit.html'>plot_res</a></span><span class='op'>(</span><span class='va'>dfop_par_fit</span><span class='op'>)</span> <span class='co'># No visual lack of fit</span> -</div><div class='img'><img src='loftest-5.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'>loftest</span><span class='op'>(</span><span class='va'>dfop_par_fit</span><span class='op'>)</span>  <span class='co'># no lack of fit found by the test</span> -</div><div class='output co'>#> Likelihood ratio test -#>  -#> Model 1: ANOVA with error model const -#> Model 2: m_synth_DFOP_par with error model const and fixed parameter(s) M1_0, M2_0 -#>   #Df   LogLik  Df  Chisq Pr(>Chisq) -#> 1  28  -93.606                       -#> 2   9 -102.763 -19 18.313     0.5016</div><div class='input'><span class='co'>#</span> -<span class='co'># The anova model used for comparison in the case of transformation products</span> -<span class='va'>test_data_anova_2</span> <span class='op'><-</span> <span class='va'>dfop_par_fit</span><span class='op'>$</span><span class='va'>data</span> -<span class='va'>test_data_anova_2</span><span class='op'>$</span><span class='va'>variable</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/factor.html'>as.factor</a></span><span class='op'>(</span><span class='va'>test_data_anova_2</span><span class='op'>$</span><span class='va'>variable</span><span class='op'>)</span> -<span class='va'>test_data_anova_2</span><span class='op'>$</span><span class='va'>time</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/factor.html'>as.factor</a></span><span class='op'>(</span><span class='va'>test_data_anova_2</span><span class='op'>$</span><span class='va'>time</span><span class='op'>)</span> -<span class='va'>anova_fit_2</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/lm.html'>lm</a></span><span class='op'>(</span><span class='va'>observed</span> <span class='op'>~</span> <span class='va'>time</span><span class='op'>:</span><span class='va'>variable</span> <span class='op'>-</span> <span class='fl'>1</span>, data <span class='op'>=</span> <span class='va'>test_data_anova_2</span><span class='op'>)</span> -<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>anova_fit_2</span><span class='op'>)</span> -</div><div class='output co'>#>  -#> Call: -#> lm(formula = observed ~ time:variable - 1, data = test_data_anova_2) -#>  -#> Residuals: -#>     Min      1Q  Median      3Q     Max  -#> -6.1000 -0.5875  0.0000  0.5875  6.1000  -#>  -#> Coefficients: (2 not defined because of singularities) -#>                        Estimate Std. Error t value Pr(>|t|)     -#> time0:variableparent    103.150      1.573  65.562  < 2e-16 *** -#> time1:variableparent     83.200      1.573  52.882  < 2e-16 *** -#> time3:variableparent     52.350      1.573  33.274  < 2e-16 *** -#> time7:variableparent     34.650      1.573  22.024  < 2e-16 *** -#> time14:variableparent    23.400      1.573  14.873 6.35e-14 *** -#> time28:variableparent    17.150      1.573  10.901 5.47e-11 *** -#> time60:variableparent     8.250      1.573   5.244 1.99e-05 *** -#> time90:variableparent     4.650      1.573   2.956 0.006717 **  -#> time120:variableparent    2.700      1.573   1.716 0.098507 .   -#> time0:variableM1             NA         NA      NA       NA     -#> time1:variableM1         11.850      1.573   7.532 6.93e-08 *** -#> time3:variableM1         22.700      1.573  14.428 1.26e-13 *** -#> time7:variableM1         33.050      1.573  21.007  < 2e-16 *** -#> time14:variableM1        31.250      1.573  19.863  < 2e-16 *** -#> time28:variableM1        18.900      1.573  12.013 7.02e-12 *** -#> time60:variableM1         7.550      1.573   4.799 6.28e-05 *** -#> time90:variableM1         3.850      1.573   2.447 0.021772 *   -#> time120:variableM1        2.050      1.573   1.303 0.204454     -#> time0:variableM2             NA         NA      NA       NA     -#> time1:variableM2          6.700      1.573   4.259 0.000254 *** -#> time3:variableM2         16.750      1.573  10.646 8.93e-11 *** -#> time7:variableM2         25.800      1.573  16.399 6.89e-15 *** -#> time14:variableM2        28.600      1.573  18.178 6.35e-16 *** -#> time28:variableM2        25.400      1.573  16.144 9.85e-15 *** -#> time60:variableM2        21.600      1.573  13.729 3.81e-13 *** -#> time90:variableM2        17.800      1.573  11.314 2.51e-11 *** -#> time120:variableM2       14.100      1.573   8.962 2.79e-09 *** -#> --- -#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 -#>  -#> Residual standard error: 2.225 on 25 degrees of freedom -#> Multiple R-squared:  0.9979,	Adjusted R-squared:  0.9957  -#> F-statistic: 469.2 on 25 and 25 DF,  p-value: < 2.2e-16 -#> </div><div class='input'><span class='co'># }</span> -</div></pre> +    <div id="ref-examples"> +    <h2>Examples</h2> +    <div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="co"># \dontrun{</span></span></span> +<span class="r-in"><span><span class="va">test_data</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">synthetic_data_for_UBA_2014</span><span class="op">[[</span><span class="fl">12</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span>, <span class="va">name</span> <span class="op">==</span> <span class="st">"parent"</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="va">sfo_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">test_data</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">sfo_fit</span><span class="op">)</span> <span class="co"># We see a clear pattern in the residuals</span></span></span> +<span class="r-plt img"><img src="loftest-1.png" alt="" width="700" height="433"></span> +<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">sfo_fit</span><span class="op">)</span>  <span class="co"># We have a clear lack of fit</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span> +<span class="r-out co"><span class="r-pr">#></span> Model 2: SFO with error model const</span> +<span class="r-out co"><span class="r-pr">#></span>   #Df  LogLik Df  Chisq Pr(>Chisq)    </span> +<span class="r-out co"><span class="r-pr">#></span> 1  10 -40.710                         </span> +<span class="r-out co"><span class="r-pr">#></span> 2   3 -63.954 -7 46.487  7.027e-08 ***</span> +<span class="r-out co"><span class="r-pr">#></span> ---</span> +<span class="r-out co"><span class="r-pr">#></span> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span> +<span class="r-in"><span><span class="co">#</span></span></span> +<span class="r-in"><span><span class="co"># We try a different model (the one that was used to generate the data)</span></span></span> +<span class="r-in"><span><span class="va">dfop_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="va">test_data</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">dfop_fit</span><span class="op">)</span> <span class="co"># We don't see systematic deviations, but heteroscedastic residuals</span></span></span> +<span class="r-plt img"><img src="loftest-2.png" alt="" width="700" height="433"></span> +<span class="r-in"><span><span class="co"># therefore we should consider adapting the error model, although we have</span></span></span> +<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">dfop_fit</span><span class="op">)</span> <span class="co"># no lack of fit</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span> +<span class="r-out co"><span class="r-pr">#></span> Model 2: DFOP with error model const</span> +<span class="r-out co"><span class="r-pr">#></span>   #Df  LogLik Df Chisq Pr(>Chisq)</span> +<span class="r-out co"><span class="r-pr">#></span> 1  10 -40.710                    </span> +<span class="r-out co"><span class="r-pr">#></span> 2   5 -42.453 -5 3.485     0.6257</span> +<span class="r-in"><span><span class="co">#</span></span></span> +<span class="r-in"><span><span class="co"># This is the anova model used internally for the comparison</span></span></span> +<span class="r-in"><span><span class="va">test_data_anova</span> <span class="op"><-</span> <span class="va">test_data</span></span></span> +<span class="r-in"><span><span class="va">test_data_anova</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/factor.html" class="external-link">as.factor</a></span><span class="op">(</span><span class="va">test_data_anova</span><span class="op">$</span><span class="va">time</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="va">anova_fit</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm</a></span><span class="op">(</span><span class="va">value</span> <span class="op">~</span> <span class="va">time</span>, data <span class="op">=</span> <span class="va">test_data_anova</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">anova_fit</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Call:</span> +<span class="r-out co"><span class="r-pr">#></span> lm(formula = value ~ time, data = test_data_anova)</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Residuals:</span> +<span class="r-out co"><span class="r-pr">#></span>     Min      1Q  Median      3Q     Max </span> +<span class="r-out co"><span class="r-pr">#></span> -6.1000 -0.5625  0.0000  0.5625  6.1000 </span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Coefficients:</span> +<span class="r-out co"><span class="r-pr">#></span>             Estimate Std. Error t value Pr(>|t|)    </span> +<span class="r-out co"><span class="r-pr">#></span> (Intercept)  103.150      2.323  44.409 7.44e-12 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time1        -19.950      3.285  -6.073 0.000185 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time3        -50.800      3.285 -15.465 8.65e-08 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time7        -68.500      3.285 -20.854 6.28e-09 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time14       -79.750      3.285 -24.278 1.63e-09 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time28       -86.000      3.285 -26.181 8.35e-10 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time60       -94.900      3.285 -28.891 3.48e-10 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time90       -98.500      3.285 -29.986 2.49e-10 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time120     -100.450      3.285 -30.580 2.09e-10 ***</span> +<span class="r-out co"><span class="r-pr">#></span> ---</span> +<span class="r-out co"><span class="r-pr">#></span> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Residual standard error: 3.285 on 9 degrees of freedom</span> +<span class="r-out co"><span class="r-pr">#></span> Multiple R-squared:  0.9953,	Adjusted R-squared:  0.9912 </span> +<span class="r-out co"><span class="r-pr">#></span> F-statistic: 240.5 on 8 and 9 DF,  p-value: 1.417e-09</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/logLik.html" class="external-link">logLik</a></span><span class="op">(</span><span class="va">anova_fit</span><span class="op">)</span> <span class="co"># We get the same likelihood and degrees of freedom</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> 'log Lik.' -40.71015 (df=10)</span> +<span class="r-in"><span><span class="co">#</span></span></span> +<span class="r-in"><span><span class="va">test_data_2</span> <span class="op"><-</span> <span class="va">synthetic_data_for_UBA_2014</span><span class="op">[[</span><span class="fl">12</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span></span></span> +<span class="r-in"><span><span class="va">m_synth_SFO_lin</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span>, to <span class="op">=</span> <span class="st">"M1"</span><span class="op">)</span>,</span></span> +<span class="r-in"><span>  M1 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span>, to <span class="op">=</span> <span class="st">"M2"</span><span class="op">)</span>,</span></span> +<span class="r-in"><span>  M2 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>, use_of_ff <span class="op">=</span> <span class="st">"max"</span><span class="op">)</span></span></span> +<span class="r-msg co"><span class="r-pr">#></span> Temporary DLL for differentials generated and loaded</span> +<span class="r-in"><span><span class="va">sfo_lin_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">m_synth_SFO_lin</span>, <span class="va">test_data_2</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">sfo_lin_fit</span><span class="op">)</span> <span class="co"># not a good model, we try parallel formation</span></span></span> +<span class="r-plt img"><img src="loftest-3.png" alt="" width="700" height="433"></span> +<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">sfo_lin_fit</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span> +<span class="r-out co"><span class="r-pr">#></span> Model 2: m_synth_SFO_lin with error model const and fixed parameter(s) M1_0, M2_0</span> +<span class="r-out co"><span class="r-pr">#></span>   #Df   LogLik  Df  Chisq Pr(>Chisq)    </span> +<span class="r-out co"><span class="r-pr">#></span> 1  28  -93.606                          </span> +<span class="r-out co"><span class="r-pr">#></span> 2   7 -171.927 -21 156.64  < 2.2e-16 ***</span> +<span class="r-out co"><span class="r-pr">#></span> ---</span> +<span class="r-out co"><span class="r-pr">#></span> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span> +<span class="r-in"><span><span class="co">#</span></span></span> +<span class="r-in"><span><span class="va">m_synth_SFO_par</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span>, to <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M1"</span>, <span class="st">"M2"</span><span class="op">)</span><span class="op">)</span>,</span></span> +<span class="r-in"><span>  M1 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>,</span></span> +<span class="r-in"><span>  M2 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>, use_of_ff <span class="op">=</span> <span class="st">"max"</span><span class="op">)</span></span></span> +<span class="r-msg co"><span class="r-pr">#></span> Temporary DLL for differentials generated and loaded</span> +<span class="r-in"><span><span class="va">sfo_par_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">m_synth_SFO_par</span>, <span class="va">test_data_2</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">sfo_par_fit</span><span class="op">)</span> <span class="co"># much better for metabolites</span></span></span> +<span class="r-plt img"><img src="loftest-4.png" alt="" width="700" height="433"></span> +<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">sfo_par_fit</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span> +<span class="r-out co"><span class="r-pr">#></span> Model 2: m_synth_SFO_par with error model const and fixed parameter(s) M1_0, M2_0</span> +<span class="r-out co"><span class="r-pr">#></span>   #Df   LogLik  Df  Chisq Pr(>Chisq)    </span> +<span class="r-out co"><span class="r-pr">#></span> 1  28  -93.606                          </span> +<span class="r-out co"><span class="r-pr">#></span> 2   7 -156.331 -21 125.45  < 2.2e-16 ***</span> +<span class="r-out co"><span class="r-pr">#></span> ---</span> +<span class="r-out co"><span class="r-pr">#></span> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span> +<span class="r-in"><span><span class="co">#</span></span></span> +<span class="r-in"><span><span class="va">m_synth_DFOP_par</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"DFOP"</span>, to <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M1"</span>, <span class="st">"M2"</span><span class="op">)</span><span class="op">)</span>,</span></span> +<span class="r-in"><span>  M1 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>,</span></span> +<span class="r-in"><span>  M2 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>, use_of_ff <span class="op">=</span> <span class="st">"max"</span><span class="op">)</span></span></span> +<span class="r-msg co"><span class="r-pr">#></span> Temporary DLL for differentials generated and loaded</span> +<span class="r-in"><span><span class="va">dfop_par_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">m_synth_DFOP_par</span>, <span class="va">test_data_2</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">dfop_par_fit</span><span class="op">)</span> <span class="co"># No visual lack of fit</span></span></span> +<span class="r-plt img"><img src="loftest-5.png" alt="" width="700" height="433"></span> +<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">dfop_par_fit</span><span class="op">)</span>  <span class="co"># no lack of fit found by the test</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span> +<span class="r-out co"><span class="r-pr">#></span> Model 2: m_synth_DFOP_par with error model const and fixed parameter(s) M1_0, M2_0</span> +<span class="r-out co"><span class="r-pr">#></span>   #Df   LogLik  Df  Chisq Pr(>Chisq)</span> +<span class="r-out co"><span class="r-pr">#></span> 1  28  -93.606                      </span> +<span class="r-out co"><span class="r-pr">#></span> 2   9 -102.763 -19 18.313     0.5016</span> +<span class="r-in"><span><span class="co">#</span></span></span> +<span class="r-in"><span><span class="co"># The anova model used for comparison in the case of transformation products</span></span></span> +<span class="r-in"><span><span class="va">test_data_anova_2</span> <span class="op"><-</span> <span class="va">dfop_par_fit</span><span class="op">$</span><span class="va">data</span></span></span> +<span class="r-in"><span><span class="va">test_data_anova_2</span><span class="op">$</span><span class="va">variable</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/factor.html" class="external-link">as.factor</a></span><span class="op">(</span><span class="va">test_data_anova_2</span><span class="op">$</span><span class="va">variable</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="va">test_data_anova_2</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/factor.html" class="external-link">as.factor</a></span><span class="op">(</span><span class="va">test_data_anova_2</span><span class="op">$</span><span class="va">time</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="va">anova_fit_2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm</a></span><span class="op">(</span><span class="va">observed</span> <span class="op">~</span> <span class="va">time</span><span class="op">:</span><span class="va">variable</span> <span class="op">-</span> <span class="fl">1</span>, data <span class="op">=</span> <span class="va">test_data_anova_2</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">anova_fit_2</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Call:</span> +<span class="r-out co"><span class="r-pr">#></span> lm(formula = observed ~ time:variable - 1, data = test_data_anova_2)</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Residuals:</span> +<span class="r-out co"><span class="r-pr">#></span>     Min      1Q  Median      3Q     Max </span> +<span class="r-out co"><span class="r-pr">#></span> -6.1000 -0.5875  0.0000  0.5875  6.1000 </span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Coefficients: (2 not defined because of singularities)</span> +<span class="r-out co"><span class="r-pr">#></span>                        Estimate Std. Error t value Pr(>|t|)    </span> +<span class="r-out co"><span class="r-pr">#></span> time0:variableparent    103.150      1.573  65.562  < 2e-16 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time1:variableparent     83.200      1.573  52.882  < 2e-16 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time3:variableparent     52.350      1.573  33.274  < 2e-16 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time7:variableparent     34.650      1.573  22.024  < 2e-16 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time14:variableparent    23.400      1.573  14.873 6.35e-14 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time28:variableparent    17.150      1.573  10.901 5.47e-11 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time60:variableparent     8.250      1.573   5.244 1.99e-05 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time90:variableparent     4.650      1.573   2.956 0.006717 ** </span> +<span class="r-out co"><span class="r-pr">#></span> time120:variableparent    2.700      1.573   1.716 0.098507 .  </span> +<span class="r-out co"><span class="r-pr">#></span> time0:variableM1             NA         NA      NA       NA    </span> +<span class="r-out co"><span class="r-pr">#></span> time1:variableM1         11.850      1.573   7.532 6.93e-08 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time3:variableM1         22.700      1.573  14.428 1.26e-13 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time7:variableM1         33.050      1.573  21.007  < 2e-16 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time14:variableM1        31.250      1.573  19.863  < 2e-16 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time28:variableM1        18.900      1.573  12.013 7.02e-12 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time60:variableM1         7.550      1.573   4.799 6.28e-05 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time90:variableM1         3.850      1.573   2.447 0.021772 *  </span> +<span class="r-out co"><span class="r-pr">#></span> time120:variableM1        2.050      1.573   1.303 0.204454    </span> +<span class="r-out co"><span class="r-pr">#></span> time0:variableM2             NA         NA      NA       NA    </span> +<span class="r-out co"><span class="r-pr">#></span> time1:variableM2          6.700      1.573   4.259 0.000254 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time3:variableM2         16.750      1.573  10.646 8.93e-11 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time7:variableM2         25.800      1.573  16.399 6.89e-15 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time14:variableM2        28.600      1.573  18.178 6.35e-16 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time28:variableM2        25.400      1.573  16.144 9.85e-15 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time60:variableM2        21.600      1.573  13.729 3.81e-13 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time90:variableM2        17.800      1.573  11.314 2.51e-11 ***</span> +<span class="r-out co"><span class="r-pr">#></span> time120:variableM2       14.100      1.573   8.962 2.79e-09 ***</span> +<span class="r-out co"><span class="r-pr">#></span> ---</span> +<span class="r-out co"><span class="r-pr">#></span> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> Residual standard error: 2.225 on 25 degrees of freedom</span> +<span class="r-out co"><span class="r-pr">#></span> Multiple R-squared:  0.9979,	Adjusted R-squared:  0.9957 </span> +<span class="r-out co"><span class="r-pr">#></span> F-statistic: 469.2 on 25 and 25 DF,  p-value: < 2.2e-16</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-in"><span><span class="co"># }</span></span></span> +</code></pre></div> +    </div>    </div>    <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> -    <nav id="toc" data-toggle="toc" class="sticky-top"> -      <h2 data-toc-skip>Contents</h2> -    </nav> -  </div> +    <nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2> +    </nav></div>  </div> -      <footer> -      <div class="copyright"> -  <p>Developed by Johannes Ranke.</p> +      <footer><div class="copyright"> +  <p></p><p>Developed by Johannes Ranke.</p>  </div>  <div class="pkgdown"> -  <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p> +  <p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.6.</p>  </div> -      </footer> -   </div> +      </footer></div> -  </body> -</html> +   +  </body></html> | 
