diff options
Diffstat (limited to 'docs/dev/reference/mkinfit.html')
| -rw-r--r-- | docs/dev/reference/mkinfit.html | 1054 | 
1 files changed, 1054 insertions, 0 deletions
| diff --git a/docs/dev/reference/mkinfit.html b/docs/dev/reference/mkinfit.html new file mode 100644 index 00000000..49e896fc --- /dev/null +++ b/docs/dev/reference/mkinfit.html @@ -0,0 +1,1054 @@ +<!-- Generated by pkgdown: do not edit by hand --> +<!DOCTYPE html> +<html lang="en"> +  <head> +  <meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> + +<title>Fit a kinetic model to data with one or more state variables — mkinfit • mkin</title> + + +<!-- jquery --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script> +<!-- Bootstrap --> + +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" /> + +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script> + +<!-- bootstrap-toc --> +<link rel="stylesheet" href="../bootstrap-toc.css"> +<script src="../bootstrap-toc.js"></script> + +<!-- Font Awesome icons --> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" /> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" /> + +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script> + +<!-- headroom.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> + +<!-- pkgdown --> +<link href="../pkgdown.css" rel="stylesheet"> +<script src="../pkgdown.js"></script> + + + + +<meta property="og:title" content="Fit a kinetic model to data with one or more state variables — mkinfit" /> +<meta property="og:description" content="This function maximises the likelihood of the observed data using the Port +algorithm stats::nlminb(), and the specified initial or fixed +parameters and starting values.  In each step of the optimisation, the +kinetic model is solved using the function mkinpredict(), except +if an analytical solution is implemented, in which case the model is solved +using the degradation function in the mkinmod object. The +parameters of the selected error model are fitted simultaneously with the +degradation model parameters, as both of them are arguments of the +likelihood function." /> + + +<meta name="robots" content="noindex"> + +<!-- mathjax --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> + +<!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> + + + +  </head> + +  <body data-spy="scroll" data-target="#toc"> +    <div class="container template-reference-topic"> +      <header> +      <div class="navbar navbar-default navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> +        <span class="sr-only">Toggle navigation</span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <span class="navbar-brand"> +        <a class="navbar-link" href="../index.html">mkin</a> +        <span class="version label label-danger" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.3</span> +      </span> +    </div> + +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +        <li> +  <a href="../reference/index.html">Functions and data</a> +</li> +<li class="dropdown"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> +    Articles +      +    <span class="caret"></span> +  </a> +  <ul class="dropdown-menu" role="menu"> +    <li> +      <a href="../articles/mkin.html">Introduction to mkin</a> +    </li> +    <li> +      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> +    </li> +    <li> +      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> +    </li> +    <li> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +    </li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li> +    <li> +      <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a> +    </li> +  </ul> +</li> +<li> +  <a href="../news/index.html">News</a> +</li> +      </ul> +      <ul class="nav navbar-nav navbar-right"> +        <li> +  <a href="http://github.com/jranke/mkin/"> +    <span class="fab fa fab fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +       +    </div><!--/.nav-collapse --> +  </div><!--/.container --> +</div><!--/.navbar --> + +       + +      </header> + +<div class="row"> +  <div class="col-md-9 contents"> +    <div class="page-header"> +    <h1>Fit a kinetic model to data with one or more state variables</h1> +    <small class="dont-index">Source: <a href='http://github.com/jranke/mkin/blob/master/R/mkinfit.R'><code>R/mkinfit.R</code></a></small> +    <div class="hidden name"><code>mkinfit.Rd</code></div> +    </div> + +    <div class="ref-description"> +    <p>This function maximises the likelihood of the observed data using the Port +algorithm <code><a href='https://rdrr.io/r/stats/nlminb.html'>stats::nlminb()</a></code>, and the specified initial or fixed +parameters and starting values.  In each step of the optimisation, the +kinetic model is solved using the function <code><a href='mkinpredict.html'>mkinpredict()</a></code>, except +if an analytical solution is implemented, in which case the model is solved +using the degradation function in the <a href='mkinmod.html'>mkinmod</a> object. The +parameters of the selected error model are fitted simultaneously with the +degradation model parameters, as both of them are arguments of the +likelihood function.</p> +    </div> + +    <pre class="usage"><span class='fu'>mkinfit</span>( +  <span class='no'>mkinmod</span>, +  <span class='no'>observed</span>, +  <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, +  <span class='kw'>state.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, +  <span class='kw'>err.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, +  <span class='kw'>fixed_parms</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, +  <span class='kw'>fixed_initials</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span>(<span class='no'>mkinmod</span>$<span class='no'>diffs</span>)[-<span class='fl'>1</span>], +  <span class='kw'>from_max_mean</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, +  <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"auto"</span>, <span class='st'>"analytical"</span>, <span class='st'>"eigen"</span>, <span class='st'>"deSolve"</span>), +  <span class='kw'>method.ode</span> <span class='kw'>=</span> <span class='st'>"lsoda"</span>, +  <span class='kw'>use_compiled</span> <span class='kw'>=</span> <span class='st'>"auto"</span>, +  <span class='kw'>control</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>eval.max</span> <span class='kw'>=</span> <span class='fl'>300</span>, <span class='kw'>iter.max</span> <span class='kw'>=</span> <span class='fl'>200</span>), +  <span class='kw'>transform_rates</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, +  <span class='kw'>transform_fractions</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, +  <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, +  <span class='kw'>atol</span> <span class='kw'>=</span> <span class='fl'>1e-08</span>, +  <span class='kw'>rtol</span> <span class='kw'>=</span> <span class='fl'>1e-10</span>, +  <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"const"</span>, <span class='st'>"obs"</span>, <span class='st'>"tc"</span>), +  <span class='kw'>error_model_algorithm</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"auto"</span>, <span class='st'>"d_3"</span>, <span class='st'>"direct"</span>, <span class='st'>"twostep"</span>, <span class='st'>"threestep"</span>, +    <span class='st'>"fourstep"</span>, <span class='st'>"IRLS"</span>, <span class='st'>"OLS"</span>), +  <span class='kw'>reweight.tol</span> <span class='kw'>=</span> <span class='fl'>1e-08</span>, +  <span class='kw'>reweight.max.iter</span> <span class='kw'>=</span> <span class='fl'>10</span>, +  <span class='kw'>trace_parms</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, +  <span class='no'>...</span> +)</pre> + +    <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> +    <table class="ref-arguments"> +    <colgroup><col class="name" /><col class="desc" /></colgroup> +    <tr> +      <th>mkinmod</th> +      <td><p>A list of class <a href='mkinmod.html'>mkinmod</a>, containing the kinetic +model to be fitted to the data, or one of the shorthand names ("SFO", +"FOMC", "DFOP", "HS", "SFORB", "IORE"). If a shorthand name is given, a +parent only degradation model is generated for the variable with the +highest value in <code>observed</code>.</p></td> +    </tr> +    <tr> +      <th>observed</th> +      <td><p>A dataframe with the observed data.  The first column called +"name" must contain the name of the observed variable for each data point. +The second column must contain the times of observation, named "time". +The third column must be named "value" and contain the observed values. +Zero values in the "value" column will be removed, with a warning, in +order to avoid problems with fitting the two-component error model. This +is not expected to be a problem, because in general, values of zero are +not observed in degradation data, because there is a lower limit of +detection.</p></td> +    </tr> +    <tr> +      <th>parms.ini</th> +      <td><p>A named vector of initial values for the parameters, +including parameters to be optimised and potentially also fixed parameters +as indicated by <code>fixed_parms</code>.  If set to "auto", initial values for +rate constants are set to default values.  Using parameter names that are +not in the model gives an error.</p> +<p>It is possible to only specify a subset of the parameters that the model +needs. You can use the parameter lists "bparms.ode" from a previously +fitted model, which contains the differential equation parameters from +this model.  This works nicely if the models are nested. An example is +given below.</p></td> +    </tr> +    <tr> +      <th>state.ini</th> +      <td><p>A named vector of initial values for the state variables of +the model. In case the observed variables are represented by more than one +model variable, the names will differ from the names of the observed +variables (see <code>map</code> component of <a href='mkinmod.html'>mkinmod</a>). The default +is to set the initial value of the first model variable to the mean of the +time zero values for the variable with the maximum observed value, and all +others to 0.  If this variable has no time zero observations, its initial +value is set to 100.</p></td> +    </tr> +    <tr> +      <th>err.ini</th> +      <td><p>A named vector of initial values for the error model +parameters to be optimised.  If set to "auto", initial values are set to +default values.  Otherwise, inital values for all error model parameters +must be given.</p></td> +    </tr> +    <tr> +      <th>fixed_parms</th> +      <td><p>The names of parameters that should not be optimised but +rather kept at the values specified in <code>parms.ini</code>. Alternatively, +a named numeric vector of parameters to be fixed, regardless of the values +in parms.ini.</p></td> +    </tr> +    <tr> +      <th>fixed_initials</th> +      <td><p>The names of model variables for which the initial +state at time 0 should be excluded from the optimisation. Defaults to all +state variables except for the first one.</p></td> +    </tr> +    <tr> +      <th>from_max_mean</th> +      <td><p>If this is set to TRUE, and the model has only one +observed variable, then data before the time of the maximum observed value +(after averaging for each sampling time) are discarded, and this time is +subtracted from all remaining time values, so the time of the maximum +observed mean value is the new time zero.</p></td> +    </tr> +    <tr> +      <th>solution_type</th> +      <td><p>If set to "eigen", the solution of the system of +differential equations is based on the spectral decomposition of the +coefficient matrix in cases that this is possible. If set to "deSolve", a +numerical <a href='https://rdrr.io/pkg/deSolve/man/ode.html'>ode solver from package deSolve</a> is used. If +set to "analytical", an analytical solution of the model is used. This is +only implemented for relatively simple degradation models.  The default is +"auto", which uses "analytical" if possible, otherwise "deSolve" if a +compiler is present, and "eigen" if no compiler is present and the model +can be expressed using eigenvalues and eigenvectors.</p></td> +    </tr> +    <tr> +      <th>method.ode</th> +      <td><p>The solution method passed via <code><a href='mkinpredict.html'>mkinpredict()</a></code> +to <code><a href='https://rdrr.io/pkg/deSolve/man/ode.html'>deSolve::ode()</a></code> in case the solution type is "deSolve". The default +"lsoda" is performant, but sometimes fails to converge.</p></td> +    </tr> +    <tr> +      <th>use_compiled</th> +      <td><p>If set to <code>FALSE</code>, no compiled version of the +<a href='mkinmod.html'>mkinmod</a> model is used in the calls to <code><a href='mkinpredict.html'>mkinpredict()</a></code> even if a compiled +version is present.</p></td> +    </tr> +    <tr> +      <th>control</th> +      <td><p>A list of control arguments passed to <code><a href='https://rdrr.io/r/stats/nlminb.html'>stats::nlminb()</a></code>.</p></td> +    </tr> +    <tr> +      <th>transform_rates</th> +      <td><p>Boolean specifying if kinetic rate constants should +be transformed in the model specification used in the fitting for better +compliance with the assumption of normal distribution of the estimator. If +TRUE, also alpha and beta parameters of the FOMC model are +log-transformed, as well as k1 and k2 rate constants for the DFOP and HS +models and the break point tb of the HS model.  If FALSE, zero is used as +a lower bound for the rates in the optimisation.</p></td> +    </tr> +    <tr> +      <th>transform_fractions</th> +      <td><p>Boolean specifying if formation fractions +constants should be transformed in the model specification used in the +fitting for better compliance with the assumption of normal distribution +of the estimator. The default (TRUE) is to do transformations. If TRUE, +the g parameter of the DFOP and HS models are also transformed, as they +can also be seen as compositional data. The transformation used for these +transformations is the <code><a href='ilr.html'>ilr()</a></code> transformation.</p></td> +    </tr> +    <tr> +      <th>quiet</th> +      <td><p>Suppress printing out the current value of the negative +log-likelihood after each improvement?</p></td> +    </tr> +    <tr> +      <th>atol</th> +      <td><p>Absolute error tolerance, passed to <code><a href='https://rdrr.io/pkg/deSolve/man/ode.html'>deSolve::ode()</a></code>. Default +is 1e-8, which is lower than the default in the <code><a href='https://rdrr.io/pkg/deSolve/man/lsoda.html'>deSolve::lsoda()</a></code> +function which is used per default.</p></td> +    </tr> +    <tr> +      <th>rtol</th> +      <td><p>Absolute error tolerance, passed to <code><a href='https://rdrr.io/pkg/deSolve/man/ode.html'>deSolve::ode()</a></code>. Default +is 1e-10, much lower than in <code><a href='https://rdrr.io/pkg/deSolve/man/lsoda.html'>deSolve::lsoda()</a></code>.</p></td> +    </tr> +    <tr> +      <th>error_model</th> +      <td><p>If the error model is "const", a constant standard +deviation is assumed.</p> +<p>If the error model is "obs", each observed variable is assumed to have its +own variance.</p> +<p>If the error model is "tc" (two-component error model), a two component +error model similar to the one described by Rocke and Lorenzato (1995) is +used for setting up the likelihood function.  Note that this model +deviates from the model by Rocke and Lorenzato, as their model implies +that the errors follow a lognormal distribution for large values, not a +normal distribution as assumed by this method.</p></td> +    </tr> +    <tr> +      <th>error_model_algorithm</th> +      <td><p>If "auto", the selected algorithm depends on +the error model.  If the error model is "const", unweighted nonlinear +least squares fitting ("OLS") is selected. If the error model is "obs", or +"tc", the "d_3" algorithm is selected.</p> +<p>The algorithm "d_3" will directly minimize the negative log-likelihood +and independently also use the three step algorithm described below. +The fit with the higher likelihood is returned.</p> +<p>The algorithm "direct" will directly minimize the negative log-likelihood.</p> +<p>The algorithm "twostep" will minimize the negative log-likelihood after an +initial unweighted least squares optimisation step.</p> +<p>The algorithm "threestep" starts with unweighted least squares, then +optimizes only the error model using the degradation model parameters +found, and then minimizes the negative log-likelihood with free +degradation and error model parameters.</p> +<p>The algorithm "fourstep" starts with unweighted least squares, then +optimizes only the error model using the degradation model parameters +found, then optimizes the degradation model again with fixed error model +parameters, and finally minimizes the negative log-likelihood with free +degradation and error model parameters.</p> +<p>The algorithm "IRLS" (Iteratively Reweighted Least Squares) starts with +unweighted least squares, and then iterates optimization of the error +model parameters and subsequent optimization of the degradation model +using those error model parameters, until the error model parameters +converge.</p></td> +    </tr> +    <tr> +      <th>reweight.tol</th> +      <td><p>Tolerance for the convergence criterion calculated from +the error model parameters in IRLS fits.</p></td> +    </tr> +    <tr> +      <th>reweight.max.iter</th> +      <td><p>Maximum number of iterations in IRLS fits.</p></td> +    </tr> +    <tr> +      <th>trace_parms</th> +      <td><p>Should a trace of the parameter values be listed?</p></td> +    </tr> +    <tr> +      <th>...</th> +      <td><p>Further arguments that will be passed on to +<code><a href='https://rdrr.io/pkg/deSolve/man/ode.html'>deSolve::ode()</a></code>.</p></td> +    </tr> +    </table> + +    <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> + +    <p>A list with "mkinfit" in the class attribute.</p> +    <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2> + +    <p>Per default, parameters in the kinetic models are internally transformed in +order to better satisfy the assumption of a normal distribution of their +estimators.</p> +    <h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2> + +    <p>When using the "IORE" submodel for metabolites, fitting with +"transform_rates = TRUE" (the default) often leads to failures of the +numerical ODE solver. In this situation it may help to switch off the +internal rate transformation.</p> +    <h2 class="hasAnchor" id="references"><a class="anchor" href="#references"></a>References</h2> + +    <p>Rocke DM and Lorenzato S (1995) A two-component model +for measurement error in analytical chemistry. <em>Technometrics</em> 37(2), 176-184.</p> +<p>Ranke J and Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical +Degradation Data. <em>Environments</em> 6(12) 124 +<a href='https://doi.org/10.3390/environments6120124'>doi:10.3390/environments6120124</a>.</p> +    <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2> + +    <div class='dont-index'><p><a href='summary.mkinfit.html'>summary.mkinfit</a>, <a href='plot.mkinfit.html'>plot.mkinfit</a>, <a href='parms.html'>parms</a> and <a href='https://rdrr.io/pkg/lmtest/man/lrtest.html'>lrtest</a>.</p> +<p>Comparisons of models fitted to the same data can be made using +<code><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></code> by virtue of the method <code><a href='logLik.mkinfit.html'>logLik.mkinfit</a></code>.</p> +<p>Fitting of several models to several datasets in a single call to +<code><a href='mmkin.html'>mmkin</a></code>.</p></div> + +    <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> +    <pre class="examples"><div class='input'> +<span class='co'># Use shorthand notation for parent only degradation</span> +<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50.3  +#> R version used for fitting:       4.0.0  +#> Date of fit:     Wed May 27 05:54:13 2020  +#> Date of summary: Wed May 27 05:54:13 2020  +#>  +#> Equations: +#> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent +#>  +#> Model predictions using solution type analytical  +#>  +#> Fitted using 222 model solutions performed in 0.043 s +#>  +#> Error model: Constant variance  +#>  +#> Error model algorithm: OLS  +#>  +#> Starting values for parameters to be optimised: +#>          value   type +#> parent_0  85.1  state +#> alpha      1.0 deparm +#> beta      10.0 deparm +#>  +#> Starting values for the transformed parameters actually optimised: +#>               value lower upper +#> parent_0  85.100000  -Inf   Inf +#> log_alpha  0.000000  -Inf   Inf +#> log_beta   2.302585  -Inf   Inf +#>  +#> Fixed parameter values: +#> None +#>  +#> Results: +#>  +#>        AIC      BIC    logLik +#>   44.68652 45.47542 -18.34326 +#>  +#> Optimised, transformed parameters with symmetric confidence intervals: +#>           Estimate Std. Error    Lower   Upper +#> parent_0  85.87000     1.8070 81.23000 90.5200 +#> log_alpha  0.05192     0.1353 -0.29580  0.3996 +#> log_beta   0.65100     0.2287  0.06315  1.2390 +#> sigma      1.85700     0.4378  0.73200  2.9830 +#>  +#> Parameter correlation: +#>             parent_0  log_alpha   log_beta     sigma +#> parent_0   1.000e+00 -1.565e-01 -3.142e-01 4.770e-08 +#> log_alpha -1.565e-01  1.000e+00  9.564e-01 9.974e-08 +#> log_beta  -3.142e-01  9.564e-01  1.000e+00 8.468e-08 +#> sigma      4.770e-08  9.974e-08  8.468e-08 1.000e+00 +#>  +#> Backtransformed parameters: +#> Confidence intervals for internally transformed parameters are asymmetric. +#> t-test (unrealistically) based on the assumption of normal distribution +#> for estimators of untransformed parameters. +#>          Estimate t value    Pr(>t)   Lower  Upper +#> parent_0   85.870  47.530 3.893e-08 81.2300 90.520 +#> alpha       1.053   7.393 3.562e-04  0.7439  1.491 +#> beta        1.917   4.373 3.601e-03  1.0650  3.451 +#> sigma       1.857   4.243 4.074e-03  0.7320  2.983 +#>  +#> FOCUS Chi2 error levels in percent: +#>          err.min n.optim df +#> All data   6.657       3  6 +#> parent     6.657       3  6 +#>  +#> Estimated disappearance times: +#>         DT50  DT90 DT50back +#> parent 1.785 15.15     4.56 +#>  +#> Data: +#>  time variable observed predicted residual +#>     0   parent     85.1    85.875  -0.7749 +#>     1   parent     57.9    55.191   2.7091 +#>     3   parent     29.9    31.845  -1.9452 +#>     7   parent     14.6    17.012  -2.4124 +#>    14   parent      9.7     9.241   0.4590 +#>    28   parent      6.6     4.754   1.8460 +#>    63   parent      4.0     2.102   1.8977 +#>    91   parent      3.9     1.441   2.4590 +#>   119   parent      0.6     1.092  -0.4919</div><div class='input'> +<span class='co'># One parent compound, one metabolite, both single first order.</span> +<span class='co'># Use mkinsub for convenience in model formulation. Pathway to sink included per default.</span> +<span class='no'>SFO_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>( +  <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>), +  <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> +<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>, +                           <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)))</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#>    user  system elapsed  +#>   0.414   0.000   0.418 </div><div class='input'><span class='fu'><a href='parms.html'>parms</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#>       parent_0       k_parent           k_m1 f_parent_to_m1          sigma  +#>   99.598481046    0.098697740    0.005260651    0.514475962    3.125503875 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> $ff +#>   parent_m1 parent_sink  +#>    0.514476    0.485524  +#>  +#> $distimes +#>              DT50      DT90 +#> parent   7.022929  23.32966 +#> m1     131.760724 437.69965 +#> </div><div class='input'><span class='co'># \dontrun{</span> +<span class='co'># deSolve is slower when no C compiler (gcc) was available during model generation</span> +<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>fit.deSolve</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>, +                           <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>)))</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#> <span class='message'>Ordinary least squares optimisation</span></div><div class='output co'>#> Sum of squared residuals at call 1: 15156.12 +#> Sum of squared residuals at call 2: 15156.12 +#> Sum of squared residuals at call 6: 8243.645 +#> Sum of squared residuals at call 12: 6290.712 +#> Sum of squared residuals at call 13: 6290.683 +#> Sum of squared residuals at call 15: 6290.452 +#> Sum of squared residuals at call 18: 1700.749 +#> Sum of squared residuals at call 20: 1700.611 +#> Sum of squared residuals at call 24: 1190.923 +#> Sum of squared residuals at call 26: 1190.922 +#> Sum of squared residuals at call 29: 1017.417 +#> Sum of squared residuals at call 31: 1017.417 +#> Sum of squared residuals at call 33: 1017.416 +#> Sum of squared residuals at call 34: 644.0472 +#> Sum of squared residuals at call 36: 644.047 +#> Sum of squared residuals at call 38: 644.047 +#> Sum of squared residuals at call 39: 590.5025 +#> Sum of squared residuals at call 41: 590.5022 +#> Sum of squared residuals at call 43: 590.5016 +#> Sum of squared residuals at call 44: 543.2196 +#> Sum of squared residuals at call 45: 543.2193 +#> Sum of squared residuals at call 46: 543.2192 +#> Sum of squared residuals at call 50: 391.348 +#> Sum of squared residuals at call 51: 391.3479 +#> Sum of squared residuals at call 56: 386.479 +#> Sum of squared residuals at call 58: 386.479 +#> Sum of squared residuals at call 60: 386.4779 +#> Sum of squared residuals at call 61: 384.0686 +#> Sum of squared residuals at call 63: 384.0686 +#> Sum of squared residuals at call 66: 382.7813 +#> Sum of squared residuals at call 68: 382.7813 +#> Sum of squared residuals at call 70: 382.7813 +#> Sum of squared residuals at call 71: 378.9273 +#> Sum of squared residuals at call 73: 378.9273 +#> Sum of squared residuals at call 75: 378.9272 +#> Sum of squared residuals at call 76: 377.4847 +#> Sum of squared residuals at call 78: 377.4846 +#> Sum of squared residuals at call 81: 375.9738 +#> Sum of squared residuals at call 83: 375.9738 +#> Sum of squared residuals at call 86: 375.3387 +#> Sum of squared residuals at call 88: 375.3387 +#> Sum of squared residuals at call 91: 374.5774 +#> Sum of squared residuals at call 93: 374.5774 +#> Sum of squared residuals at call 95: 374.5774 +#> Sum of squared residuals at call 96: 373.5438 +#> Sum of squared residuals at call 100: 373.5438 +#> Sum of squared residuals at call 102: 373.265 +#> Sum of squared residuals at call 104: 373.265 +#> Sum of squared residuals at call 107: 372.6825 +#> Sum of squared residuals at call 111: 372.6825 +#> Sum of squared residuals at call 114: 372.6356 +#> Sum of squared residuals at call 116: 372.6356 +#> Sum of squared residuals at call 119: 372.6199 +#> Sum of squared residuals at call 121: 372.6199 +#> Sum of squared residuals at call 123: 372.6199 +#> Sum of squared residuals at call 124: 372.5881 +#> Sum of squared residuals at call 126: 372.5881 +#> Sum of squared residuals at call 129: 372.5418 +#> Sum of squared residuals at call 130: 372.4866 +#> Sum of squared residuals at call 131: 372.2242 +#> Sum of squared residuals at call 132: 371.5237 +#> Sum of squared residuals at call 134: 371.5237 +#> Sum of squared residuals at call 137: 371.292 +#> Sum of squared residuals at call 139: 371.292 +#> Sum of squared residuals at call 143: 371.2256 +#> Sum of squared residuals at call 144: 371.2256 +#> Sum of squared residuals at call 146: 371.2256 +#> Sum of squared residuals at call 149: 371.2194 +#> Sum of squared residuals at call 150: 371.2147 +#> Sum of squared residuals at call 153: 371.2147 +#> Sum of squared residuals at call 155: 371.2137 +#> Sum of squared residuals at call 156: 371.2137 +#> Sum of squared residuals at call 157: 371.2137 +#> Sum of squared residuals at call 160: 371.2134 +#> Sum of squared residuals at call 164: 371.2134 +#> Sum of squared residuals at call 165: 371.2134 +#> Sum of squared residuals at call 167: 371.2134 +#> Negative log-likelihood at call 177: 97.22429</div><div class='output co'>#> <span class='message'>Optimisation successfully terminated.</span></div><div class='output co'>#>    user  system elapsed  +#>   0.371   0.001   0.370 </div><div class='input'><span class='fu'><a href='parms.html'>parms</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#>       parent_0       k_parent           k_m1 f_parent_to_m1          sigma  +#>   99.598480300    0.098697739    0.005260651    0.514475968    3.125503874 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> $ff +#>   parent_m1 parent_sink  +#>    0.514476    0.485524  +#>  +#> $distimes +#>              DT50      DT90 +#> parent   7.022929  23.32966 +#> m1     131.760721 437.69964 +#> </div><div class='input'><span class='co'># }</span> + +<span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, FOMC</span> +<span class='co'># \dontrun{</span> +<span class='no'>FOMC_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>( +  <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"FOMC"</span>, <span class='st'>"m1"</span>), +  <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> +<span class='no'>fit.FOMC_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>FOMC_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='co'># Use starting parameters from parent only FOMC fit</span> +<span class='no'>fit.FOMC</span> <span class='kw'>=</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='no'>fit.FOMC_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>FOMC_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, +  <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='no'>fit.FOMC</span>$<span class='no'>bparms.ode</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> +<span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, SFORB</span> +<span class='no'>SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>( +  <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFORB"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"m1"</span>, <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>), +  <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> +<span class='no'>fit.SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='no'>fit.SFORB_SFO.deSolve</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>, +                                 <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='co'># Use starting parameters from parent only SFORB fit (not really needed in this case)</span> +<span class='no'>fit.SFORB</span> <span class='kw'>=</span> <span class='fu'>mkinfit</span>(<span class='st'>"SFORB"</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='no'>fit.SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='no'>fit.SFORB</span>$<span class='no'>bparms.ode</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#> <span class='warning'>Warning: Initial parameter(s) k_parent_free_sink not used in the model</span></div><div class='input'><span class='co'># }</span> + +<span class='co'># \dontrun{</span> +<span class='co'># Weighted fits, including IRLS (error_model = "obs")</span> +<span class='no'>SFO_SFO.ff</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>), +                      <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>f.noweight</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.noweight</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50.3  +#> R version used for fitting:       4.0.0  +#> Date of fit:     Wed May 27 05:54:19 2020  +#> Date of summary: Wed May 27 05:54:19 2020  +#>  +#> Equations: +#> d_parent/dt = - k_parent * parent +#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 +#>  +#> Model predictions using solution type analytical  +#>  +#> Fitted using 421 model solutions performed in 0.126 s +#>  +#> Error model: Constant variance  +#>  +#> Error model algorithm: OLS  +#>  +#> Starting values for parameters to be optimised: +#>                   value   type +#> parent_0       100.7500  state +#> k_parent         0.1000 deparm +#> k_m1             0.1001 deparm +#> f_parent_to_m1   0.5000 deparm +#>  +#> Starting values for the transformed parameters actually optimised: +#>                     value lower upper +#> parent_0       100.750000  -Inf   Inf +#> log_k_parent    -2.302585  -Inf   Inf +#> log_k_m1        -2.301586  -Inf   Inf +#> f_parent_ilr_1   0.000000  -Inf   Inf +#>  +#> Fixed parameter values: +#>      value  type +#> m1_0     0 state +#>  +#> Results: +#>  +#>        AIC      BIC    logLik +#>   204.4486 212.6365 -97.22429 +#>  +#> Optimised, transformed parameters with symmetric confidence intervals: +#>                Estimate Std. Error    Lower    Upper +#> parent_0       99.60000    1.57000 96.40000 102.8000 +#> log_k_parent   -2.31600    0.04087 -2.39900  -2.2330 +#> log_k_m1       -5.24800    0.13320 -5.51800  -4.9770 +#> f_parent_ilr_1  0.04096    0.06312 -0.08746   0.1694 +#> sigma           3.12600    0.35850  2.39600   3.8550 +#>  +#> Parameter correlation: +#>                  parent_0 log_k_parent   log_k_m1 f_parent_ilr_1      sigma +#> parent_0        1.000e+00    5.174e-01 -1.688e-01     -5.471e-01 -3.190e-07 +#> log_k_parent    5.174e-01    1.000e+00 -3.263e-01     -5.426e-01  3.168e-07 +#> log_k_m1       -1.688e-01   -3.263e-01  1.000e+00      7.478e-01 -1.406e-07 +#> f_parent_ilr_1 -5.471e-01   -5.426e-01  7.478e-01      1.000e+00 -1.587e-10 +#> sigma          -3.190e-07    3.168e-07 -1.406e-07     -1.587e-10  1.000e+00 +#>  +#> Backtransformed parameters: +#> Confidence intervals for internally transformed parameters are asymmetric. +#> t-test (unrealistically) based on the assumption of normal distribution +#> for estimators of untransformed parameters. +#>                 Estimate t value    Pr(>t)     Lower     Upper +#> parent_0       99.600000  63.430 2.298e-36 96.400000 1.028e+02 +#> k_parent        0.098700  24.470 4.955e-23  0.090820 1.073e-01 +#> k_m1            0.005261   7.510 6.165e-09  0.004012 6.898e-03 +#> f_parent_to_m1  0.514500  23.070 3.104e-22  0.469100 5.596e-01 +#> sigma           3.126000   8.718 2.235e-10  2.396000 3.855e+00 +#>  +#> FOCUS Chi2 error levels in percent: +#>          err.min n.optim df +#> All data   6.398       4 15 +#> parent     6.459       2  7 +#> m1         4.690       2  8 +#>  +#> Resulting formation fractions: +#>                 ff +#> parent_m1   0.5145 +#> parent_sink 0.4855 +#>  +#> Estimated disappearance times: +#>           DT50   DT90 +#> parent   7.023  23.33 +#> m1     131.761 437.70 +#>  +#> Data: +#>  time variable observed predicted   residual +#>     0   parent    99.46  99.59848 -1.385e-01 +#>     0   parent   102.04  99.59848  2.442e+00 +#>     1   parent    93.50  90.23787  3.262e+00 +#>     1   parent    92.50  90.23787  2.262e+00 +#>     3   parent    63.23  74.07319 -1.084e+01 +#>     3   parent    68.99  74.07319 -5.083e+00 +#>     7   parent    52.32  49.91206  2.408e+00 +#>     7   parent    55.13  49.91206  5.218e+00 +#>    14   parent    27.27  25.01257  2.257e+00 +#>    14   parent    26.64  25.01257  1.627e+00 +#>    21   parent    11.50  12.53462 -1.035e+00 +#>    21   parent    11.64  12.53462 -8.946e-01 +#>    35   parent     2.85   3.14787 -2.979e-01 +#>    35   parent     2.91   3.14787 -2.379e-01 +#>    50   parent     0.69   0.71624 -2.624e-02 +#>    50   parent     0.63   0.71624 -8.624e-02 +#>    75   parent     0.05   0.06074 -1.074e-02 +#>    75   parent     0.06   0.06074 -7.381e-04 +#>     1       m1     4.84   4.80296  3.704e-02 +#>     1       m1     5.64   4.80296  8.370e-01 +#>     3       m1    12.91  13.02400 -1.140e-01 +#>     3       m1    12.96  13.02400 -6.400e-02 +#>     7       m1    22.97  25.04476 -2.075e+00 +#>     7       m1    24.47  25.04476 -5.748e-01 +#>    14       m1    41.69  36.69002  5.000e+00 +#>    14       m1    33.21  36.69002 -3.480e+00 +#>    21       m1    44.37  41.65310  2.717e+00 +#>    21       m1    46.44  41.65310  4.787e+00 +#>    35       m1    41.22  43.31312 -2.093e+00 +#>    35       m1    37.95  43.31312 -5.363e+00 +#>    50       m1    41.19  41.21831 -2.831e-02 +#>    50       m1    40.01  41.21831 -1.208e+00 +#>    75       m1    40.09  36.44703  3.643e+00 +#>    75       m1    33.85  36.44703 -2.597e+00 +#>   100       m1    31.04  31.98163 -9.416e-01 +#>   100       m1    33.13  31.98163  1.148e+00 +#>   120       m1    25.15  28.78984 -3.640e+00 +#>   120       m1    33.31  28.78984  4.520e+00</div><div class='input'><span class='no'>f.obs</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.obs</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50.3  +#> R version used for fitting:       4.0.0  +#> Date of fit:     Wed May 27 05:54:19 2020  +#> Date of summary: Wed May 27 05:54:19 2020  +#>  +#> Equations: +#> d_parent/dt = - k_parent * parent +#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 +#>  +#> Model predictions using solution type analytical  +#>  +#> Fitted using 978 model solutions performed in 0.33 s +#>  +#> Error model: Variance unique to each observed variable  +#>  +#> Error model algorithm: d_3  +#> Direct fitting and three-step fitting yield approximately the same likelihood  +#>  +#> Starting values for parameters to be optimised: +#>                   value   type +#> parent_0       100.7500  state +#> k_parent         0.1000 deparm +#> k_m1             0.1001 deparm +#> f_parent_to_m1   0.5000 deparm +#> sigma_parent     3.0000  error +#> sigma_m1         3.0000  error +#>  +#> Starting values for the transformed parameters actually optimised: +#>                     value lower upper +#> parent_0       100.750000  -Inf   Inf +#> log_k_parent    -2.302585  -Inf   Inf +#> log_k_m1        -2.301586  -Inf   Inf +#> f_parent_ilr_1   0.000000  -Inf   Inf +#> sigma_parent     3.000000     0   Inf +#> sigma_m1         3.000000     0   Inf +#>  +#> Fixed parameter values: +#>      value  type +#> m1_0     0 state +#>  +#> Results: +#>  +#>        AIC      BIC    logLik +#>   205.8727 215.6982 -96.93634 +#>  +#> Optimised, transformed parameters with symmetric confidence intervals: +#>                Estimate Std. Error    Lower    Upper +#> parent_0       99.65000    1.70200 96.19000 103.1000 +#> log_k_parent   -2.31300    0.04376 -2.40200  -2.2240 +#> log_k_m1       -5.25000    0.12430 -5.50400  -4.9970 +#> f_parent_ilr_1  0.03861    0.06171 -0.08708   0.1643 +#> sigma_parent    3.40100    0.56820  2.24400   4.5590 +#> sigma_m1        2.85500    0.45240  1.93400   3.7770 +#>  +#> Parameter correlation: +#>                parent_0 log_k_parent log_k_m1 f_parent_ilr_1 sigma_parent +#> parent_0        1.00000      0.51078 -0.19133       -0.59997     0.035670 +#> log_k_parent    0.51078      1.00000 -0.37458       -0.59239     0.069833 +#> log_k_m1       -0.19133     -0.37458  1.00000        0.74398    -0.026158 +#> f_parent_ilr_1 -0.59997     -0.59239  0.74398        1.00000    -0.041369 +#> sigma_parent    0.03567      0.06983 -0.02616       -0.04137     1.000000 +#> sigma_m1       -0.03385     -0.06627  0.02482        0.03926    -0.004628 +#>                 sigma_m1 +#> parent_0       -0.033847 +#> log_k_parent   -0.066265 +#> log_k_m1        0.024823 +#> f_parent_ilr_1  0.039256 +#> sigma_parent   -0.004628 +#> sigma_m1        1.000000 +#>  +#> Backtransformed parameters: +#> Confidence intervals for internally transformed parameters are asymmetric. +#> t-test (unrealistically) based on the assumption of normal distribution +#> for estimators of untransformed parameters. +#>                 Estimate t value    Pr(>t)     Lower     Upper +#> parent_0       99.650000  58.560 2.004e-34 96.190000 1.031e+02 +#> k_parent        0.098970  22.850 1.099e-21  0.090530 1.082e-01 +#> k_m1            0.005245   8.046 1.732e-09  0.004072 6.756e-03 +#> f_parent_to_m1  0.513600  23.560 4.352e-22  0.469300 5.578e-01 +#> sigma_parent    3.401000   5.985 5.662e-07  2.244000 4.559e+00 +#> sigma_m1        2.855000   6.311 2.215e-07  1.934000 3.777e+00 +#>  +#> FOCUS Chi2 error levels in percent: +#>          err.min n.optim df +#> All data   6.398       4 15 +#> parent     6.464       2  7 +#> m1         4.682       2  8 +#>  +#> Resulting formation fractions: +#>                 ff +#> parent_m1   0.5136 +#> parent_sink 0.4864 +#>  +#> Estimated disappearance times: +#>           DT50   DT90 +#> parent   7.003  23.26 +#> m1     132.154 439.01 +#>  +#> Data: +#>  time variable observed predicted   residual +#>     0   parent    99.46  99.65417 -1.942e-01 +#>     0   parent   102.04  99.65417  2.386e+00 +#>     1   parent    93.50  90.26332  3.237e+00 +#>     1   parent    92.50  90.26332  2.237e+00 +#>     3   parent    63.23  74.05306 -1.082e+01 +#>     3   parent    68.99  74.05306 -5.063e+00 +#>     7   parent    52.32  49.84325  2.477e+00 +#>     7   parent    55.13  49.84325  5.287e+00 +#>    14   parent    27.27  24.92971  2.340e+00 +#>    14   parent    26.64  24.92971  1.710e+00 +#>    21   parent    11.50  12.46890 -9.689e-01 +#>    21   parent    11.64  12.46890 -8.289e-01 +#>    35   parent     2.85   3.11925 -2.692e-01 +#>    35   parent     2.91   3.11925 -2.092e-01 +#>    50   parent     0.69   0.70679 -1.679e-02 +#>    50   parent     0.63   0.70679 -7.679e-02 +#>    75   parent     0.05   0.05952 -9.523e-03 +#>    75   parent     0.06   0.05952  4.772e-04 +#>     1       m1     4.84   4.81075  2.925e-02 +#>     1       m1     5.64   4.81075  8.292e-01 +#>     3       m1    12.91  13.04196 -1.320e-01 +#>     3       m1    12.96  13.04196 -8.196e-02 +#>     7       m1    22.97  25.06847 -2.098e+00 +#>     7       m1    24.47  25.06847 -5.985e-01 +#>    14       m1    41.69  36.70308  4.987e+00 +#>    14       m1    33.21  36.70308 -3.493e+00 +#>    21       m1    44.37  41.65115  2.719e+00 +#>    21       m1    46.44  41.65115  4.789e+00 +#>    35       m1    41.22  43.29465 -2.075e+00 +#>    35       m1    37.95  43.29465 -5.345e+00 +#>    50       m1    41.19  41.19948 -9.479e-03 +#>    50       m1    40.01  41.19948 -1.189e+00 +#>    75       m1    40.09  36.44035  3.650e+00 +#>    75       m1    33.85  36.44035 -2.590e+00 +#>   100       m1    31.04  31.98773 -9.477e-01 +#>   100       m1    33.13  31.98773  1.142e+00 +#>   120       m1    25.15  28.80429 -3.654e+00 +#>   120       m1    33.31  28.80429  4.506e+00</div><div class='input'><span class='no'>f.tc</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"tc"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.tc</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50.3  +#> R version used for fitting:       4.0.0  +#> Date of fit:     Wed May 27 05:54:20 2020  +#> Date of summary: Wed May 27 05:54:20 2020  +#>  +#> Equations: +#> d_parent/dt = - k_parent * parent +#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 +#>  +#> Model predictions using solution type analytical  +#>  +#> Fitted using 2088 model solutions performed in 0.714 s +#>  +#> Error model: Two-component variance function  +#>  +#> Error model algorithm: d_3  +#> Direct fitting and three-step fitting yield approximately the same likelihood  +#>  +#> Starting values for parameters to be optimised: +#>                   value   type +#> parent_0       100.7500  state +#> k_parent         0.1000 deparm +#> k_m1             0.1001 deparm +#> f_parent_to_m1   0.5000 deparm +#> sigma_low        0.1000  error +#> rsd_high         0.1000  error +#>  +#> Starting values for the transformed parameters actually optimised: +#>                     value lower upper +#> parent_0       100.750000  -Inf   Inf +#> log_k_parent    -2.302585  -Inf   Inf +#> log_k_m1        -2.301586  -Inf   Inf +#> f_parent_ilr_1   0.000000  -Inf   Inf +#> sigma_low        0.100000     0   Inf +#> rsd_high         0.100000     0   Inf +#>  +#> Fixed parameter values: +#>      value  type +#> m1_0     0 state +#>  +#> Results: +#>  +#>        AIC      BIC    logLik +#>   141.9656 151.7911 -64.98278 +#>  +#> Optimised, transformed parameters with symmetric confidence intervals: +#>                 Estimate Std. Error     Lower     Upper +#> parent_0       100.70000   2.621000 95.400000 106.10000 +#> log_k_parent    -2.29700   0.008862 -2.315000  -2.27900 +#> log_k_m1        -5.26600   0.091310 -5.452000  -5.08000 +#> f_parent_ilr_1   0.02374   0.055300 -0.088900   0.13640 +#> sigma_low        0.00305   0.004829 -0.006786   0.01289 +#> rsd_high         0.07928   0.009418  0.060100   0.09847 +#>  +#> Parameter correlation: +#>                parent_0 log_k_parent log_k_m1 f_parent_ilr_1 sigma_low rsd_high +#> parent_0        1.00000      0.67644 -0.10215       -0.76822   0.14294 -0.08783 +#> log_k_parent    0.67644      1.00000 -0.15102       -0.59491   0.34611 -0.08125 +#> log_k_m1       -0.10215     -0.15102  1.00000        0.51808  -0.05236  0.01240 +#> f_parent_ilr_1 -0.76822     -0.59491  0.51808        1.00000  -0.13900  0.03248 +#> sigma_low       0.14294      0.34611 -0.05236       -0.13900   1.00000 -0.16546 +#> rsd_high       -0.08783     -0.08125  0.01240        0.03248  -0.16546  1.00000 +#>  +#> Backtransformed parameters: +#> Confidence intervals for internally transformed parameters are asymmetric. +#> t-test (unrealistically) based on the assumption of normal distribution +#> for estimators of untransformed parameters. +#>                 Estimate  t value    Pr(>t)     Lower     Upper +#> parent_0       1.007e+02  38.4300 1.180e-28 95.400000 1.061e+02 +#> k_parent       1.006e-01 112.8000 1.718e-43  0.098760 1.024e-01 +#> k_m1           5.167e-03  10.9500 1.171e-12  0.004290 6.223e-03 +#> f_parent_to_m1 5.084e-01  26.0100 2.146e-23  0.468600 5.481e-01 +#> sigma_low      3.050e-03   0.6314 2.661e-01 -0.006786 1.289e-02 +#> rsd_high       7.928e-02   8.4170 6.418e-10  0.060100 9.847e-02 +#>  +#> FOCUS Chi2 error levels in percent: +#>          err.min n.optim df +#> All data   6.475       4 15 +#> parent     6.573       2  7 +#> m1         4.671       2  8 +#>  +#> Resulting formation fractions: +#>                 ff +#> parent_m1   0.5084 +#> parent_sink 0.4916 +#>  +#> Estimated disappearance times: +#>           DT50  DT90 +#> parent   6.893  22.9 +#> m1     134.156 445.7 +#>  +#> Data: +#>  time variable observed predicted   residual +#>     0   parent    99.46 100.73434  -1.274340 +#>     0   parent   102.04 100.73434   1.305660 +#>     1   parent    93.50  91.09751   2.402486 +#>     1   parent    92.50  91.09751   1.402486 +#>     3   parent    63.23  74.50141 -11.271410 +#>     3   parent    68.99  74.50141  -5.511410 +#>     7   parent    52.32  49.82880   2.491200 +#>     7   parent    55.13  49.82880   5.301200 +#>    14   parent    27.27  24.64809   2.621908 +#>    14   parent    26.64  24.64809   1.991908 +#>    21   parent    11.50  12.19232  -0.692315 +#>    21   parent    11.64  12.19232  -0.552315 +#>    35   parent     2.85   2.98327  -0.133266 +#>    35   parent     2.91   2.98327  -0.073266 +#>    50   parent     0.69   0.66013   0.029874 +#>    50   parent     0.63   0.66013  -0.030126 +#>    75   parent     0.05   0.05344  -0.003438 +#>    75   parent     0.06   0.05344   0.006562 +#>     1       m1     4.84   4.88645  -0.046451 +#>     1       m1     5.64   4.88645   0.753549 +#>     3       m1    12.91  13.22867  -0.318669 +#>     3       m1    12.96  13.22867  -0.268669 +#>     7       m1    22.97  25.36417  -2.394166 +#>     7       m1    24.47  25.36417  -0.894166 +#>    14       m1    41.69  37.00974   4.680263 +#>    14       m1    33.21  37.00974  -3.799737 +#>    21       m1    44.37  41.90133   2.468669 +#>    21       m1    46.44  41.90133   4.538669 +#>    35       m1    41.22  43.45691  -2.236913 +#>    35       m1    37.95  43.45691  -5.506913 +#>    50       m1    41.19  41.34199  -0.151985 +#>    50       m1    40.01  41.34199  -1.331985 +#>    75       m1    40.09  36.61471   3.475295 +#>    75       m1    33.85  36.61471  -2.764705 +#>   100       m1    31.04  32.20082  -1.160823 +#>   100       m1    33.13  32.20082   0.929177 +#>   120       m1    25.15  29.04130  -3.891304 +#>   120       m1    33.31  29.04130   4.268696</div><div class='input'># } + + +</div></pre> +  </div> +  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> +    <nav id="toc" data-toggle="toc" class="sticky-top"> +      <h2 data-toc-skip>Contents</h2> +    </nav> +  </div> +</div> + + +      <footer> +      <div class="copyright"> +  <p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> +  <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.5.1.</p> +</div> + +      </footer> +   </div> + +   + + +  </body> +</html> + + | 
