aboutsummaryrefslogtreecommitdiff
path: root/docs/dev/reference/nlmixr.mmkin.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/dev/reference/nlmixr.mmkin.html')
-rw-r--r--docs/dev/reference/nlmixr.mmkin.html9800
1 files changed, 9314 insertions, 486 deletions
diff --git a/docs/dev/reference/nlmixr.mmkin.html b/docs/dev/reference/nlmixr.mmkin.html
index 61f5ac07..27b5ed0f 100644
--- a/docs/dev/reference/nlmixr.mmkin.html
+++ b/docs/dev/reference/nlmixr.mmkin.html
@@ -351,12 +351,12 @@ obtained by fitting the same model to a list of datasets using <a href='mkinfit.
<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_saem_tc</span><span class='op'>)</span>
</div><div class='img'><img src='nlmixr.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'>
<span class='va'>sfo_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
- A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>fomc_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
- A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
- A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'>
+ A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='va'>fomc_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
+ A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='va'>dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
+ A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+
<span class='va'>f_mmkin_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>
<span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>sfo_sfo</span>, <span class='st'>"FOMC-SFO"</span> <span class='op'>=</span> <span class='va'>fomc_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>,
<span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"const"</span><span class='op'>)</span>
@@ -367,497 +367,9226 @@ obtained by fitting the same model to a list of datasets using <a href='mkinfit.
<span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>sfo_sfo</span>, <span class='st'>"FOMC-SFO"</span> <span class='op'>=</span> <span class='va'>fomc_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>,
<span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
+<span class='fu'>nlmixr_model</span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>Constant variance for more than one variable is not supported for est = 'saem'</span>
+#&gt; <span class='message'>Changing the error model to 'obs' (variance by observed variable)</span></div><div class='output co'>#&gt; function ()
+#&gt; {
+#&gt; ini({
+#&gt; parent_0 = 86.5344031312703
+#&gt; eta.parent_0 ~ 4.15825368312402
+#&gt; log_k_parent = -3.20701116105339
+#&gt; eta.log_k_parent ~ 1.51881531595261
+#&gt; log_k_A1 = -4.56730447776105
+#&gt; eta.log_k_A1 ~ 0.560590264281928
+#&gt; f_parent_qlogis = -0.334081143921924
+#&gt; eta.f_parent_qlogis ~ 1.14983591785967
+#&gt; sigma_parent = 4.31472323222676
+#&gt; sigma_A1 = 4.31472323222676
+#&gt; })
+#&gt; model({
+#&gt; parent_0_model = parent_0 + eta.parent_0
+#&gt; parent(0) = parent_0_model
+#&gt; k_parent = exp(log_k_parent + eta.log_k_parent)
+#&gt; k_A1 = exp(log_k_A1 + eta.log_k_A1)
+#&gt; f_parent_to_A1 = expit(f_parent_qlogis + eta.f_parent_qlogis)
+#&gt; d/dt(parent) = -k_parent * parent
+#&gt; d/dt(A1) = +f_parent_to_A1 * k_parent * parent - k_A1 *
+#&gt; A1
+#&gt; parent ~ add(sigma_parent)
+#&gt; A1 ~ add(sigma_A1)
+#&gt; })
+#&gt; }
+#&gt; &lt;environment: 0x5555669693c0&gt;</div><div class='input'>
<span class='co'># A single constant variance is currently only possible with est = 'focei' in nlmixr</span>
<span class='va'>f_nlmixr_sfo_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
-#&gt; <span class='message'>cmt(A1);</span>
-#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
-#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
-#&gt; <span class='message'>rx_expr_7~ETA[2]+THETA[2];</span>
-#&gt; <span class='message'>rx_expr_10~exp(rx_expr_7);</span>
-#&gt; <span class='message'>d/dt(parent)=-rx_expr_10*parent;</span>
-#&gt; <span class='message'>rx_expr_8~ETA[3]+THETA[3];</span>
-#&gt; <span class='message'>rx_expr_11~exp(rx_expr_8);</span>
-#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_10*parent*f_parent_to_A1;</span>
-#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
-#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
-#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
-#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_13~rx_expr_5*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_lambda_~rx_expr_13+rx_expr_3;</span>
-#&gt; <span class='message'>rx_hi_~rx_expr_13+rx_expr_3;</span>
-#&gt; <span class='message'>rx_low_~0;</span>
-#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_9~parent*(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_14~rx_expr_9*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_14)*(rx_expr_0)+(rx_expr_4+rx_expr_14)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_expr_12~Rx_pow_di(THETA[5],2);</span>
-#&gt; <span class='message'>rx_r_=(rx_expr_0)*rx_expr_12+(rx_expr_2)*(rx_expr_1)*rx_expr_12;</span>
-#&gt; <span class='message'>parent_0=THETA[1];</span>
-#&gt; <span class='message'>log_k_parent=THETA[2];</span>
-#&gt; <span class='message'>log_k_A1=THETA[3];</span>
-#&gt; <span class='message'>f_parent_qlogis=THETA[4];</span>
-#&gt; <span class='message'>sigma=THETA[5];</span>
-#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
-#&gt; <span class='message'>eta.log_k_parent=ETA[2];</span>
-#&gt; <span class='message'>eta.log_k_A1=ETA[3];</span>
-#&gt; <span class='message'>eta.f_parent_qlogis=ETA[4];</span>
-#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
-#&gt; <span class='message'>k_parent=rx_expr_10;</span>
-#&gt; <span class='message'>k_A1=rx_expr_11;</span>
-#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[4]+THETA[4])));</span>
-#&gt; <span class='message'>tad=tad();</span>
-#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 5.549 0.41 5.959</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
-#&gt; <span class='message'>cmt(A1);</span>
-#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
-#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
-#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
-#&gt; <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span>
-#&gt; <span class='message'>rx_expr_13~exp(-(rx_expr_8));</span>
-#&gt; <span class='message'>rx_expr_15~t*rx_expr_13;</span>
-#&gt; <span class='message'>rx_expr_16~1+rx_expr_15;</span>
-#&gt; <span class='message'>rx_expr_18~rx_expr_7-(rx_expr_8);</span>
-#&gt; <span class='message'>rx_expr_20~exp(rx_expr_18);</span>
-#&gt; <span class='message'>d/dt(parent)=-rx_expr_20*parent/(rx_expr_16);</span>
-#&gt; <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span>
-#&gt; <span class='message'>rx_expr_11~exp(rx_expr_9);</span>
-#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_20*parent*f_parent_to_A1/(rx_expr_16);</span>
-#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
-#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
-#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
-#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_14~rx_expr_5*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_lambda_~rx_expr_14+rx_expr_3;</span>
-#&gt; <span class='message'>rx_hi_~rx_expr_14+rx_expr_3;</span>
-#&gt; <span class='message'>rx_low_~0;</span>
-#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_10~parent*(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_17~rx_expr_10*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_17)*(rx_expr_0)+(rx_expr_4+rx_expr_17)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_expr_12~Rx_pow_di(THETA[6],2);</span>
-#&gt; <span class='message'>rx_r_=(rx_expr_0)*rx_expr_12+(rx_expr_2)*(rx_expr_1)*rx_expr_12;</span>
-#&gt; <span class='message'>parent_0=THETA[1];</span>
-#&gt; <span class='message'>log_k_A1=THETA[2];</span>
-#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
-#&gt; <span class='message'>log_alpha=THETA[4];</span>
-#&gt; <span class='message'>log_beta=THETA[5];</span>
-#&gt; <span class='message'>sigma=THETA[6];</span>
-#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
-#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
-#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
-#&gt; <span class='message'>eta.log_alpha=ETA[4];</span>
-#&gt; <span class='message'>eta.log_beta=ETA[5];</span>
-#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
-#&gt; <span class='message'>k_A1=rx_expr_11;</span>
-#&gt; <span class='message'>alpha=exp(rx_expr_7);</span>
-#&gt; <span class='message'>beta=exp(rx_expr_8);</span>
-#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
-#&gt; <span class='message'>tad=tad();</span>
-#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 6.93 0.367 7.293</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
-#&gt; <span class='message'>cmt(A1);</span>
-#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
-#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
-#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
-#&gt; <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span>
-#&gt; <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span>
-#&gt; <span class='message'>rx_expr_12~exp(rx_expr_7);</span>
-#&gt; <span class='message'>rx_expr_13~exp(rx_expr_9);</span>
-#&gt; <span class='message'>rx_expr_15~t*rx_expr_12;</span>
-#&gt; <span class='message'>rx_expr_16~t*rx_expr_13;</span>
-#&gt; <span class='message'>rx_expr_18~exp(-(rx_expr_8));</span>
-#&gt; <span class='message'>rx_expr_20~1+rx_expr_18;</span>
-#&gt; <span class='message'>rx_expr_25~1/(rx_expr_20);</span>
-#&gt; <span class='message'>rx_expr_27~(rx_expr_25);</span>
-#&gt; <span class='message'>rx_expr_28~1-rx_expr_27;</span>
-#&gt; <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_20)+exp(rx_expr_9-rx_expr_16)*(rx_expr_28))/(exp(-t*rx_expr_12)/(rx_expr_20)+exp(-t*rx_expr_13)*(rx_expr_28));</span>
-#&gt; <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span>
-#&gt; <span class='message'>rx_expr_14~exp(rx_expr_10);</span>
-#&gt; <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_20)+exp(rx_expr_9-rx_expr_16)*(rx_expr_28))/(exp(-t*rx_expr_12)/(rx_expr_20)+exp(-t*rx_expr_13)*(rx_expr_28));</span>
-#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
-#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
-#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
-#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_19~rx_expr_5*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_lambda_~rx_expr_19+rx_expr_3;</span>
-#&gt; <span class='message'>rx_hi_~rx_expr_19+rx_expr_3;</span>
-#&gt; <span class='message'>rx_low_~0;</span>
-#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_11~parent*(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_23~rx_expr_11*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_23)*(rx_expr_0)+(rx_expr_4+rx_expr_23)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_expr_17~Rx_pow_di(THETA[7],2);</span>
-#&gt; <span class='message'>rx_r_=(rx_expr_0)*rx_expr_17+(rx_expr_2)*(rx_expr_1)*rx_expr_17;</span>
-#&gt; <span class='message'>parent_0=THETA[1];</span>
-#&gt; <span class='message'>log_k_A1=THETA[2];</span>
-#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
-#&gt; <span class='message'>log_k1=THETA[4];</span>
-#&gt; <span class='message'>log_k2=THETA[5];</span>
-#&gt; <span class='message'>g_qlogis=THETA[6];</span>
-#&gt; <span class='message'>sigma=THETA[7];</span>
-#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
-#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
-#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
-#&gt; <span class='message'>eta.log_k1=ETA[4];</span>
-#&gt; <span class='message'>eta.log_k2=ETA[5];</span>
-#&gt; <span class='message'>eta.g_qlogis=ETA[6];</span>
-#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
-#&gt; <span class='message'>k_A1=rx_expr_14;</span>
-#&gt; <span class='message'>k1=rx_expr_12;</span>
-#&gt; <span class='message'>k2=rx_expr_13;</span>
-#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
-#&gt; <span class='message'>g=1/(rx_expr_20);</span>
-#&gt; <span class='message'>tad=tad();</span>
-#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 15.39 1.223 16.61</span></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 |log_k_parent | log_k_A1 |f_parent_qlogis |
+#&gt; |.....................| sigma | o1 | o2 | o3 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o4 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 756.06625 | 1.000 | -0.9701 | -1.000 | -0.9071 |
+#&gt; |.....................| -0.8050 | -0.8844 | -0.8800 | -0.8744 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8785 |...........|...........|...........|</span>
+#&gt; | U| 756.06625 | 86.53 | -3.207 | -4.567 | -0.3341 |
+#&gt; |.....................| 4.315 | 0.7003 | 0.9008 | 1.156 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9657 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 756.06625</span> | 86.53 | 0.04048 | 0.01039 | 0.4172 |
+#&gt; |.....................| 4.315 | 0.7003 | 0.9008 | 1.156 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9657 |...........|...........|...........|</span>
+#&gt; | G| Gill Diff. | 59.54 | 0.01874 | 0.7243 | 0.3705 |
+#&gt; |.....................| -28.18 | 5.148 | 2.958 | -8.197 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.917 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 3309.1113 | 0.1102 | -0.9704 | -1.011 | -0.9126 |
+#&gt; |.....................| -0.3838 | -0.9613 | -0.9242 | -0.7519 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7901 |...........|...........|...........|</span>
+#&gt; | U| 3309.1113 | 9.535 | -3.207 | -4.578 | -0.3359 |
+#&gt; |.....................| 5.223 | 0.6464 | 0.8610 | 1.297 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.051 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 3309.1113</span> | 9.535 | 0.04047 | 0.01027 | 0.4168 |
+#&gt; |.....................| 5.223 | 0.6464 | 0.8610 | 1.297 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.051 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 782.04188 | 0.9110 | -0.9702 | -1.001 | -0.9076 |
+#&gt; |.....................| -0.7629 | -0.8921 | -0.8844 | -0.8621 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8697 |...........|...........|...........|</span>
+#&gt; | U| 782.04188 | 78.83 | -3.207 | -4.568 | -0.3343 |
+#&gt; |.....................| 4.406 | 0.6949 | 0.8968 | 1.170 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9742 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 782.04188</span> | 78.83 | 0.04048 | 0.01037 | 0.4172 |
+#&gt; |.....................| 4.406 | 0.6949 | 0.8968 | 1.170 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9742 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 755.73406 | 0.9909 | -0.9701 | -1.000 | -0.9071 |
+#&gt; |.....................| -0.8007 | -0.8851 | -0.8804 | -0.8731 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8776 |...........|...........|...........|</span>
+#&gt; | U| 755.73406 | 85.75 | -3.207 | -4.567 | -0.3341 |
+#&gt; |.....................| 4.324 | 0.6997 | 0.9004 | 1.157 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9666 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 755.73406</span> | 85.75 | 0.04048 | 0.01038 | 0.4172 |
+#&gt; |.....................| 4.324 | 0.6997 | 0.9004 | 1.157 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9666 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -16.83 | 0.07808 | 0.6495 | 0.3224 |
+#&gt; |.....................| -27.54 | 3.811 | 2.903 | -8.359 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.718 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 755.49648 | 0.9959 | -0.9702 | -1.000 | -0.9072 |
+#&gt; |.....................| -0.7924 | -0.8863 | -0.8813 | -0.8706 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8759 |...........|...........|...........|</span>
+#&gt; | U| 755.49648 | 86.18 | -3.207 | -4.568 | -0.3341 |
+#&gt; |.....................| 4.342 | 0.6989 | 0.8996 | 1.160 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9682 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 755.49648</span> | 86.18 | 0.04048 | 0.01038 | 0.4172 |
+#&gt; |.....................| 4.342 | 0.6989 | 0.8996 | 1.160 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9682 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 25.35 | 0.04484 | 0.6934 | 0.3535 |
+#&gt; |.....................| -25.80 | 4.244 | 2.831 | -8.249 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.719 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 755.31010 | 0.9891 | -0.9702 | -1.000 | -0.9073 |
+#&gt; |.....................| -0.7855 | -0.8874 | -0.8820 | -0.8684 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8744 |...........|...........|...........|</span>
+#&gt; | U| 755.3101 | 85.59 | -3.207 | -4.568 | -0.3342 |
+#&gt; |.....................| 4.357 | 0.6981 | 0.8989 | 1.163 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9697 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 755.3101</span> | 85.59 | 0.04048 | 0.01038 | 0.4172 |
+#&gt; |.....................| 4.357 | 0.6981 | 0.8989 | 1.163 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9697 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -31.39 | 0.08909 | 0.6380 | 0.3185 |
+#&gt; |.....................| -24.71 | 3.519 | 2.751 | -7.972 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.525 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 755.09582 | 0.9961 | -0.9702 | -1.001 | -0.9074 |
+#&gt; |.....................| -0.7787 | -0.8884 | -0.8828 | -0.8661 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8728 |...........|...........|...........|</span>
+#&gt; | U| 755.09582 | 86.20 | -3.207 | -4.568 | -0.3342 |
+#&gt; |.....................| 4.372 | 0.6974 | 0.8982 | 1.165 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9712 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 755.09582</span> | 86.20 | 0.04047 | 0.01038 | 0.4172 |
+#&gt; |.....................| 4.372 | 0.6974 | 0.8982 | 1.165 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9712 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 26.63 | 0.04269 | 0.6973 | 0.3604 |
+#&gt; |.....................| -23.22 | 4.086 | 2.689 | -8.043 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.569 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 754.90743 | 0.9894 | -0.9702 | -1.001 | -0.9075 |
+#&gt; |.....................| -0.7716 | -0.8897 | -0.8836 | -0.8636 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8711 |...........|...........|...........|</span>
+#&gt; | U| 754.90743 | 85.62 | -3.207 | -4.568 | -0.3342 |
+#&gt; |.....................| 4.387 | 0.6966 | 0.8975 | 1.168 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9729 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 754.90743</span> | 85.62 | 0.04047 | 0.01038 | 0.4172 |
+#&gt; |.....................| 4.387 | 0.6966 | 0.8975 | 1.168 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9729 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -27.88 | 0.08581 | 0.6437 | 0.3265 |
+#&gt; |.....................| -22.15 | 3.354 | 2.606 | -7.748 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.369 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 754.70769 | 0.9959 | -0.9702 | -1.001 | -0.9076 |
+#&gt; |.....................| -0.7645 | -0.8908 | -0.8845 | -0.8610 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8693 |...........|...........|...........|</span>
+#&gt; | U| 754.70769 | 86.18 | -3.207 | -4.568 | -0.3343 |
+#&gt; |.....................| 4.402 | 0.6958 | 0.8967 | 1.171 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9747 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 754.70769</span> | 86.18 | 0.04047 | 0.01037 | 0.4172 |
+#&gt; |.....................| 4.402 | 0.6958 | 0.8967 | 1.171 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9747 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 25.01 | 0.04305 | 0.6984 | 0.3661 |
+#&gt; |.....................| -20.67 | 3.871 | 2.535 | -7.809 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.388 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 754.52507 | 0.9898 | -0.9703 | -1.001 | -0.9078 |
+#&gt; |.....................| -0.7574 | -0.8922 | -0.8854 | -0.8580 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8672 |...........|...........|...........|</span>
+#&gt; | U| 754.52507 | 85.65 | -3.207 | -4.569 | -0.3343 |
+#&gt; |.....................| 4.417 | 0.6948 | 0.8958 | 1.175 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9766 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 754.52507</span> | 85.65 | 0.04047 | 0.01037 | 0.4172 |
+#&gt; |.....................| 4.417 | 0.6948 | 0.8958 | 1.175 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9766 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -24.90 | 0.08308 | 0.6490 | 0.3352 |
+#&gt; |.....................| -19.59 | 3.181 | 2.445 | -7.663 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.179 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 754.34076 | 0.9957 | -0.9703 | -1.002 | -0.9079 |
+#&gt; |.....................| -0.7502 | -0.8935 | -0.8864 | -0.8548 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8650 |...........|...........|...........|</span>
+#&gt; | U| 754.34076 | 86.16 | -3.207 | -4.569 | -0.3344 |
+#&gt; |.....................| 4.433 | 0.6939 | 0.8950 | 1.178 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9787 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 754.34076</span> | 86.16 | 0.04047 | 0.01037 | 0.4172 |
+#&gt; |.....................| 4.433 | 0.6939 | 0.8950 | 1.178 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9787 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 23.15 | 0.04366 | 0.6990 | 0.3728 |
+#&gt; |.....................| -18.16 | 3.647 | 2.362 | -7.534 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.170 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 754.16941 | 0.9900 | -0.9703 | -1.002 | -0.9081 |
+#&gt; |.....................| -0.7432 | -0.8951 | -0.8875 | -0.8512 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8626 |...........|...........|...........|</span>
+#&gt; | U| 754.16941 | 85.67 | -3.207 | -4.569 | -0.3344 |
+#&gt; |.....................| 4.448 | 0.6928 | 0.8940 | 1.182 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9811 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 754.16941</span> | 85.67 | 0.04047 | 0.01036 | 0.4172 |
+#&gt; |.....................| 4.448 | 0.6928 | 0.8940 | 1.182 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9811 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -22.36 | 0.07996 | 0.6524 | 0.3446 |
+#&gt; |.....................| -17.12 | 3.002 | 2.262 | -7.362 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.949 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 754.00081 | 0.9955 | -0.9704 | -1.002 | -0.9083 |
+#&gt; |.....................| -0.7363 | -0.8967 | -0.8886 | -0.8472 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8599 |...........|...........|...........|</span>
+#&gt; | U| 754.00081 | 86.14 | -3.207 | -4.570 | -0.3345 |
+#&gt; |.....................| 4.463 | 0.6916 | 0.8930 | 1.187 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9836 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 754.00081</span> | 86.14 | 0.04047 | 0.01036 | 0.4171 |
+#&gt; |.....................| 4.463 | 0.6916 | 0.8930 | 1.187 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9836 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 21.00 | 0.04440 | 0.6979 | 0.3804 |
+#&gt; |.....................| -15.79 | 3.414 | 2.168 | -7.205 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.903 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 753.84435 | 0.9903 | -0.9704 | -1.003 | -0.9086 |
+#&gt; |.....................| -0.7296 | -0.8985 | -0.8898 | -0.8427 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8570 |...........|...........|...........|</span>
+#&gt; | U| 753.84435 | 85.70 | -3.207 | -4.570 | -0.3346 |
+#&gt; |.....................| 4.477 | 0.6903 | 0.8919 | 1.192 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9865 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.84435</span> | 85.70 | 0.04047 | 0.01036 | 0.4171 |
+#&gt; |.....................| 4.477 | 0.6903 | 0.8919 | 1.192 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9865 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -19.93 | 0.07681 | 0.6538 | 0.3555 |
+#&gt; |.....................| -14.84 | 2.820 | 2.056 | -6.999 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.662 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 753.69372 | 0.9952 | -0.9704 | -1.003 | -0.9089 |
+#&gt; |.....................| -0.7234 | -0.9005 | -0.8911 | -0.8377 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8537 |...........|...........|...........|</span>
+#&gt; | U| 753.69372 | 86.12 | -3.207 | -4.571 | -0.3347 |
+#&gt; |.....................| 4.491 | 0.6890 | 0.8908 | 1.198 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9897 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.69372</span> | 86.12 | 0.04046 | 0.01035 | 0.4171 |
+#&gt; |.....................| 4.491 | 0.6890 | 0.8908 | 1.198 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9897 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 18.81 | 0.04462 | 0.6942 | 0.3896 |
+#&gt; |.....................| -13.66 | 3.180 | 1.953 | -6.807 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.573 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 753.55534 | 0.9906 | -0.9705 | -1.004 | -0.9093 |
+#&gt; |.....................| -0.7176 | -0.9027 | -0.8924 | -0.8322 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8502 |...........|...........|...........|</span>
+#&gt; | U| 753.55534 | 85.72 | -3.207 | -4.571 | -0.3348 |
+#&gt; |.....................| 4.503 | 0.6875 | 0.8896 | 1.204 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9931 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.55534</span> | 85.72 | 0.04046 | 0.01034 | 0.4171 |
+#&gt; |.....................| 4.503 | 0.6875 | 0.8896 | 1.204 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9931 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -17.61 | 0.07313 | 0.6517 | 0.3679 |
+#&gt; |.....................| -12.86 | 2.639 | 1.835 | -6.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.309 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 753.42478 | 0.9950 | -0.9706 | -1.005 | -0.9097 |
+#&gt; |.....................| -0.7124 | -0.9049 | -0.8937 | -0.8262 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8464 |...........|...........|...........|</span>
+#&gt; | U| 753.42478 | 86.11 | -3.207 | -4.572 | -0.3350 |
+#&gt; |.....................| 4.515 | 0.6859 | 0.8884 | 1.211 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9967 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.42478</span> | 86.11 | 0.04046 | 0.01034 | 0.4170 |
+#&gt; |.....................| 4.515 | 0.6859 | 0.8884 | 1.211 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9967 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 16.74 | 0.04433 | 0.6853 | 0.4002 |
+#&gt; |.....................| -11.89 | 2.952 | 1.729 | -6.336 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.181 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 18</span>| 753.30602 | 0.9909 | -0.9706 | -1.006 | -0.9103 |
+#&gt; |.....................| -0.7078 | -0.9075 | -0.8949 | -0.8197 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8425 |...........|...........|...........|</span>
+#&gt; | U| 753.30602 | 85.74 | -3.207 | -4.573 | -0.3352 |
+#&gt; |.....................| 4.525 | 0.6841 | 0.8873 | 1.219 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.001 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.30602</span> | 85.74 | 0.04046 | 0.01033 | 0.4170 |
+#&gt; |.....................| 4.525 | 0.6841 | 0.8873 | 1.219 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.001 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -15.54 | 0.06924 | 0.6430 | 0.3812 |
+#&gt; |.....................| -11.26 | 2.462 | 1.618 | -6.066 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.903 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 19</span>| 753.19508 | 0.9949 | -0.9707 | -1.007 | -0.9109 |
+#&gt; |.....................| -0.7036 | -0.9102 | -0.8961 | -0.8129 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8385 |...........|...........|...........|</span>
+#&gt; | U| 753.19508 | 86.09 | -3.208 | -4.574 | -0.3354 |
+#&gt; |.....................| 4.533 | 0.6822 | 0.8862 | 1.227 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.004 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.19508</span> | 86.09 | 0.04045 | 0.01032 | 0.4169 |
+#&gt; |.....................| 4.533 | 0.6822 | 0.8862 | 1.227 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.004 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 14.90 | 0.04352 | 0.6689 | 0.4113 |
+#&gt; |.....................| -10.49 | 2.732 | 1.522 | -5.813 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.751 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 20</span>| 753.09443 | 0.9911 | -0.9708 | -1.008 | -0.9117 |
+#&gt; |.....................| -0.7001 | -0.9132 | -0.8972 | -0.8058 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8346 |...........|...........|...........|</span>
+#&gt; | U| 753.09443 | 85.77 | -3.208 | -4.575 | -0.3356 |
+#&gt; |.....................| 4.541 | 0.6801 | 0.8852 | 1.235 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.008 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.09443</span> | 85.77 | 0.04045 | 0.01031 | 0.4169 |
+#&gt; |.....................| 4.541 | 0.6801 | 0.8852 | 1.235 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.008 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -13.80 | 0.06521 | 0.6240 | 0.3942 |
+#&gt; |.....................| -10.02 | 2.285 | 1.423 | -5.526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.476 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 21</span>| 753.00021 | 0.9948 | -0.9709 | -1.009 | -0.9127 |
+#&gt; |.....................| -0.6968 | -0.9163 | -0.8982 | -0.7985 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8307 |...........|...........|...........|</span>
+#&gt; | U| 753.00021 | 86.08 | -3.208 | -4.576 | -0.3360 |
+#&gt; |.....................| 4.548 | 0.6779 | 0.8843 | 1.243 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.012 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.00021</span> | 86.08 | 0.04045 | 0.01029 | 0.4168 |
+#&gt; |.....................| 4.548 | 0.6779 | 0.8843 | 1.243 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.012 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 13.31 | 0.04216 | 0.6406 | 0.4217 |
+#&gt; |.....................| -9.402 | 2.517 | 1.347 | -5.262 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.321 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 22</span>| 752.91432 | 0.9914 | -0.9710 | -1.010 | -0.9139 |
+#&gt; |.....................| -0.6939 | -0.9197 | -0.8991 | -0.7911 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8272 |...........|...........|...........|</span>
+#&gt; | U| 752.91432 | 85.79 | -3.208 | -4.578 | -0.3364 |
+#&gt; |.....................| 4.555 | 0.6755 | 0.8835 | 1.252 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.015 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.91432</span> | 85.79 | 0.04044 | 0.01028 | 0.4167 |
+#&gt; |.....................| 4.555 | 0.6755 | 0.8835 | 1.252 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.015 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -12.35 | 0.06128 | 0.5909 | 0.4053 |
+#&gt; |.....................| -9.027 | 2.101 | 1.271 | -4.717 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.067 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 23</span>| 752.83200 | 0.9948 | -0.9711 | -1.012 | -0.9155 |
+#&gt; |.....................| -0.6906 | -0.9238 | -0.9000 | -0.7843 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8235 |...........|...........|...........|</span>
+#&gt; | U| 752.832 | 86.09 | -3.208 | -4.580 | -0.3369 |
+#&gt; |.....................| 4.561 | 0.6727 | 0.8827 | 1.260 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.019 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.832</span> | 86.09 | 0.04044 | 0.01026 | 0.4166 |
+#&gt; |.....................| 4.561 | 0.6727 | 0.8827 | 1.260 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.019 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 12.74 | 0.03978 | 0.5956 | 0.4312 |
+#&gt; |.....................| -8.422 | 2.296 | 1.202 | -4.471 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.914 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 24</span>| 752.75140 | 0.9918 | -0.9713 | -1.014 | -0.9179 |
+#&gt; |.....................| -0.6872 | -0.9288 | -0.9011 | -0.7785 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8198 |...........|...........|...........|</span>
+#&gt; | U| 752.7514 | 85.82 | -3.208 | -4.582 | -0.3377 |
+#&gt; |.....................| 4.569 | 0.6692 | 0.8818 | 1.266 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.022 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.7514</span> | 85.82 | 0.04043 | 0.01024 | 0.4164 |
+#&gt; |.....................| 4.569 | 0.6692 | 0.8818 | 1.266 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.022 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -10.02 | 0.05546 | 0.5361 | 0.4172 |
+#&gt; |.....................| -7.958 | 1.872 | 1.117 | -4.424 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.664 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 25</span>| 752.68235 | 0.9947 | -0.9715 | -1.016 | -0.9205 |
+#&gt; |.....................| -0.6845 | -0.9329 | -0.9018 | -0.7712 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8173 |...........|...........|...........|</span>
+#&gt; | U| 752.68235 | 86.07 | -3.208 | -4.584 | -0.3386 |
+#&gt; |.....................| 4.575 | 0.6663 | 0.8811 | 1.275 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.025 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.68235</span> | 86.07 | 0.04042 | 0.01022 | 0.4162 |
+#&gt; |.....................| 4.575 | 0.6663 | 0.8811 | 1.275 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.025 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 10.53 | 0.03715 | 0.5273 | 0.4360 |
+#&gt; |.....................| -7.447 | 2.014 | 1.063 | -3.990 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.556 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 26</span>| 752.62160 | 0.9918 | -0.9717 | -1.019 | -0.9237 |
+#&gt; |.....................| -0.6821 | -0.9370 | -0.9025 | -0.7637 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8151 |...........|...........|...........|</span>
+#&gt; | U| 752.6216 | 85.83 | -3.209 | -4.586 | -0.3397 |
+#&gt; |.....................| 4.580 | 0.6635 | 0.8804 | 1.284 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.027 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.6216</span> | 85.83 | 0.04042 | 0.01020 | 0.4159 |
+#&gt; |.....................| 4.580 | 0.6635 | 0.8804 | 1.284 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.027 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -10.27 | 0.05173 | 0.4657 | 0.4178 |
+#&gt; |.....................| -7.153 | 1.648 | 1.004 | -3.701 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.385 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 27</span>| 752.55758 | 0.9944 | -0.9719 | -1.021 | -0.9287 |
+#&gt; |.....................| -0.6786 | -0.9418 | -0.9036 | -0.7591 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8121 |...........|...........|...........|</span>
+#&gt; | U| 752.55758 | 86.05 | -3.209 | -4.588 | -0.3413 |
+#&gt; |.....................| 4.587 | 0.6600 | 0.8795 | 1.289 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.030 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.55758</span> | 86.05 | 0.04040 | 0.01017 | 0.4155 |
+#&gt; |.....................| 4.587 | 0.6600 | 0.8795 | 1.289 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.030 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 7.976 | 0.03464 | 0.4539 | 0.4351 |
+#&gt; |.....................| -6.545 | 1.728 | 0.9236 | -3.536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.257 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 28</span>| 752.50465 | 0.9921 | -0.9722 | -1.023 | -0.9345 |
+#&gt; |.....................| -0.6755 | -0.9456 | -0.9043 | -0.7539 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8090 |...........|...........|...........|</span>
+#&gt; | U| 752.50465 | 85.85 | -3.209 | -4.590 | -0.3432 |
+#&gt; |.....................| 4.594 | 0.6574 | 0.8788 | 1.295 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.033 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.50465</span> | 85.85 | 0.04039 | 0.01015 | 0.4150 |
+#&gt; |.....................| 4.594 | 0.6574 | 0.8788 | 1.295 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.033 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -8.947 | 0.04577 | 0.4043 | 0.4205 |
+#&gt; |.....................| -6.122 | 1.399 | 0.8644 | -3.339 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.062 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 29</span>| 752.46010 | 0.9944 | -0.9724 | -1.024 | -0.9405 |
+#&gt; |.....................| -0.6742 | -0.9477 | -0.9048 | -0.7467 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8068 |...........|...........|...........|</span>
+#&gt; | U| 752.4601 | 86.05 | -3.209 | -4.591 | -0.3452 |
+#&gt; |.....................| 4.597 | 0.6559 | 0.8784 | 1.303 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.035 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.4601</span> | 86.05 | 0.04039 | 0.01014 | 0.4145 |
+#&gt; |.....................| 4.597 | 0.6559 | 0.8784 | 1.303 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.035 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 6.603 | 0.03134 | 0.3976 | 0.4307 |
+#&gt; |.....................| -5.878 | 1.523 | 0.8347 | -3.098 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.971 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 30</span>| 752.42045 | 0.9923 | -0.9726 | -1.025 | -0.9478 |
+#&gt; |.....................| -0.6717 | -0.9497 | -0.9056 | -0.7410 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8056 |...........|...........|...........|</span>
+#&gt; | U| 752.42045 | 85.87 | -3.210 | -4.593 | -0.3477 |
+#&gt; |.....................| 4.602 | 0.6545 | 0.8777 | 1.310 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.036 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.42045</span> | 85.87 | 0.04038 | 0.01013 | 0.4139 |
+#&gt; |.....................| 4.602 | 0.6545 | 0.8777 | 1.310 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.036 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -7.567 | 0.04074 | 0.3551 | 0.4112 |
+#&gt; |.....................| -5.553 | 1.278 | 0.7625 | -2.890 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.881 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 31</span>| 752.38271 | 0.9943 | -0.9729 | -1.026 | -0.9563 |
+#&gt; |.....................| -0.6682 | -0.9523 | -0.9058 | -0.7392 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8032 |...........|...........|...........|</span>
+#&gt; | U| 752.38271 | 86.04 | -3.210 | -4.594 | -0.3505 |
+#&gt; |.....................| 4.610 | 0.6527 | 0.8775 | 1.312 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.038 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.38271</span> | 86.04 | 0.04037 | 0.01012 | 0.4133 |
+#&gt; |.....................| 4.610 | 0.6527 | 0.8775 | 1.312 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.038 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.602 | 0.02847 | 0.3641 | 0.4189 |
+#&gt; |.....................| -5.001 | 1.344 | 0.7516 | -2.828 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.805 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 32</span>| 752.35435 | 0.9925 | -0.9730 | -1.028 | -0.9633 |
+#&gt; |.....................| -0.6679 | -0.9545 | -0.9069 | -0.7341 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7988 |...........|...........|...........|</span>
+#&gt; | U| 752.35435 | 85.89 | -3.210 | -4.595 | -0.3529 |
+#&gt; |.....................| 4.611 | 0.6511 | 0.8766 | 1.318 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.043 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.35435</span> | 85.89 | 0.04036 | 0.01010 | 0.4127 |
+#&gt; |.....................| 4.611 | 0.6511 | 0.8766 | 1.318 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.043 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -6.571 | 0.03612 | 0.3357 | 0.4086 |
+#&gt; |.....................| -4.992 | 1.118 | 0.6605 | -2.632 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.560 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 33</span>| 752.32772 | 0.9943 | -0.9732 | -1.029 | -0.9711 |
+#&gt; |.....................| -0.6669 | -0.9557 | -0.9071 | -0.7282 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7989 |...........|...........|...........|</span>
+#&gt; | U| 752.32772 | 86.04 | -3.210 | -4.596 | -0.3555 |
+#&gt; |.....................| 4.613 | 0.6503 | 0.8764 | 1.325 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.043 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.32772</span> | 86.04 | 0.04035 | 0.01009 | 0.4121 |
+#&gt; |.....................| 4.613 | 0.6503 | 0.8764 | 1.325 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.043 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.212 | 0.02538 | 0.3153 | 0.4089 |
+#&gt; |.....................| -4.808 | 1.231 | 0.6502 | -2.445 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.583 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 34</span>| 752.30453 | 0.9927 | -0.9733 | -1.030 | -0.9795 |
+#&gt; |.....................| -0.6622 | -0.9567 | -0.9058 | -0.7271 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8012 |...........|...........|...........|</span>
+#&gt; | U| 752.30453 | 85.90 | -3.210 | -4.598 | -0.3583 |
+#&gt; |.....................| 4.623 | 0.6496 | 0.8775 | 1.326 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.040 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.30453</span> | 85.90 | 0.04035 | 0.01008 | 0.4114 |
+#&gt; |.....................| 4.623 | 0.6496 | 0.8775 | 1.326 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.040 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -5.777 | 0.03360 | 0.2795 | 0.3849 |
+#&gt; |.....................| -4.177 | 1.041 | 0.7583 | -2.411 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.694 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 35</span>| 752.28211 | 0.9943 | -0.9735 | -1.030 | -0.9865 |
+#&gt; |.....................| -0.6621 | -0.9586 | -0.9093 | -0.7251 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7954 |...........|...........|...........|</span>
+#&gt; | U| 752.28211 | 86.04 | -3.210 | -4.598 | -0.3606 |
+#&gt; |.....................| 4.623 | 0.6483 | 0.8743 | 1.328 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.046 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.28211</span> | 86.04 | 0.04034 | 0.01008 | 0.4108 |
+#&gt; |.....................| 4.623 | 0.6483 | 0.8743 | 1.328 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.046 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.685 | 0.02318 | 0.3105 | 0.3984 |
+#&gt; |.....................| -4.118 | 1.106 | 0.4577 | -2.335 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.438 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 36</span>| 752.26507 | 0.9926 | -0.9736 | -1.031 | -0.9930 |
+#&gt; |.....................| -0.6630 | -0.9604 | -0.9091 | -0.7199 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7902 |...........|...........|...........|</span>
+#&gt; | U| 752.26507 | 85.89 | -3.210 | -4.598 | -0.3628 |
+#&gt; |.....................| 4.621 | 0.6470 | 0.8745 | 1.334 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.051 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.26507</span> | 85.89 | 0.04034 | 0.01007 | 0.4103 |
+#&gt; |.....................| 4.621 | 0.6470 | 0.8745 | 1.334 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.051 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -6.810 | 0.03096 | 0.2910 | 0.3899 |
+#&gt; |.....................| -4.283 | 0.8991 | 0.4756 | -2.130 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.153 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 37</span>| 752.24597 | 0.9942 | -0.9737 | -1.033 | -1.000 |
+#&gt; |.....................| -0.6608 | -0.9614 | -0.9045 | -0.7160 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7919 |...........|...........|...........|</span>
+#&gt; | U| 752.24597 | 86.03 | -3.211 | -4.600 | -0.3653 |
+#&gt; |.....................| 4.626 | 0.6463 | 0.8787 | 1.339 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.049 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.24597</span> | 86.03 | 0.04033 | 0.01005 | 0.4097 |
+#&gt; |.....................| 4.626 | 0.6463 | 0.8787 | 1.339 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.049 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.512 | 0.02244 | 0.2659 | 0.3868 |
+#&gt; |.....................| -3.943 | 0.9821 | 0.8784 | -2.032 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.263 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 38</span>| 752.22949 | 0.9926 | -0.9738 | -1.034 | -1.007 |
+#&gt; |.....................| -0.6572 | -0.9618 | -0.9098 | -0.7144 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7948 |...........|...........|...........|</span>
+#&gt; | U| 752.22949 | 85.90 | -3.211 | -4.601 | -0.3676 |
+#&gt; |.....................| 4.634 | 0.6461 | 0.8739 | 1.341 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.047 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.22949</span> | 85.90 | 0.04033 | 0.01004 | 0.4091 |
+#&gt; |.....................| 4.634 | 0.6461 | 0.8739 | 1.341 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.047 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -6.652 | 0.02915 | 0.2261 | 0.3631 |
+#&gt; |.....................| -3.474 | 0.8493 | 0.4224 | -1.980 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.394 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 39</span>| 752.21433 | 0.9945 | -0.9739 | -1.034 | -1.016 |
+#&gt; |.....................| -0.6569 | -0.9629 | -0.9144 | -0.7124 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7922 |...........|...........|...........|</span>
+#&gt; | U| 752.21433 | 86.05 | -3.211 | -4.601 | -0.3704 |
+#&gt; |.....................| 4.634 | 0.6453 | 0.8697 | 1.343 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.049 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.21433</span> | 86.05 | 0.04032 | 0.01004 | 0.4085 |
+#&gt; |.....................| 4.634 | 0.6453 | 0.8697 | 1.343 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.049 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.271 | 0.01812 | 0.2470 | 0.3694 |
+#&gt; |.....................| -3.388 | 0.9655 | 0.02976 | -1.920 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.299 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 40</span>| 752.19821 | 0.9933 | -0.9740 | -1.034 | -1.022 |
+#&gt; |.....................| -0.6566 | -0.9648 | -0.9096 | -0.7099 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7872 |...........|...........|...........|</span>
+#&gt; | U| 752.19821 | 85.95 | -3.211 | -4.602 | -0.3726 |
+#&gt; |.....................| 4.635 | 0.6440 | 0.8741 | 1.346 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.054 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.19821</span> | 85.95 | 0.04032 | 0.01004 | 0.4079 |
+#&gt; |.....................| 4.635 | 0.6440 | 0.8741 | 1.346 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.054 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -2.667 | 0.02369 | 0.2481 | 0.3640 |
+#&gt; |.....................| -3.371 | 0.7751 | 0.4401 | -1.801 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.045 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 41</span>| 752.18532 | 0.9951 | -0.9741 | -1.036 | -1.031 |
+#&gt; |.....................| -0.6545 | -0.9659 | -0.9070 | -0.7062 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7858 |...........|...........|...........|</span>
+#&gt; | U| 752.18532 | 86.11 | -3.211 | -4.603 | -0.3754 |
+#&gt; |.....................| 4.639 | 0.6432 | 0.8764 | 1.350 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.055 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.18532</span> | 86.11 | 0.04032 | 0.01002 | 0.4072 |
+#&gt; |.....................| 4.639 | 0.6432 | 0.8764 | 1.350 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.055 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 8.833 | 0.01368 | 0.2421 | 0.3674 |
+#&gt; |.....................| -3.039 | 0.8770 | 0.6679 | -1.687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.010 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 42</span>| 752.16831 | 0.9936 | -0.9742 | -1.037 | -1.039 |
+#&gt; |.....................| -0.6539 | -0.9664 | -0.9110 | -0.7027 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7873 |...........|...........|...........|</span>
+#&gt; | U| 752.16831 | 85.98 | -3.211 | -4.605 | -0.3782 |
+#&gt; |.....................| 4.641 | 0.6428 | 0.8728 | 1.354 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.054 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.16831</span> | 85.98 | 0.04031 | 0.01001 | 0.4066 |
+#&gt; |.....................| 4.641 | 0.6428 | 0.8728 | 1.354 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.054 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.7512 | 0.02003 | 0.1902 | 0.3449 |
+#&gt; |.....................| -2.985 | 0.7407 | 0.3269 | -1.581 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 43</span>| 752.14828 | 0.9957 | -0.9743 | -1.038 | -1.040 |
+#&gt; |.....................| -0.6457 | -0.9684 | -0.9119 | -0.6984 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7843 |...........|...........|...........|</span>
+#&gt; | U| 752.14828 | 86.16 | -3.211 | -4.605 | -0.3785 |
+#&gt; |.....................| 4.658 | 0.6414 | 0.8720 | 1.359 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.057 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.14828</span> | 86.16 | 0.04031 | 0.01000 | 0.4065 |
+#&gt; |.....................| 4.658 | 0.6414 | 0.8720 | 1.359 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.057 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 12.68 | 0.008742 | 0.2033 | 0.3626 |
+#&gt; |.....................| -1.835 | 0.8163 | 0.2532 | -1.452 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.9466 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 44</span>| 752.12689 | 0.9938 | -0.9744 | -1.038 | -1.049 |
+#&gt; |.....................| -0.6468 | -0.9706 | -0.9116 | -0.6946 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7819 |...........|...........|...........|</span>
+#&gt; | U| 752.12689 | 86.00 | -3.211 | -4.606 | -0.3814 |
+#&gt; |.....................| 4.656 | 0.6399 | 0.8723 | 1.363 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.059 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.12689</span> | 86.00 | 0.04030 | 0.009996 | 0.4058 |
+#&gt; |.....................| 4.656 | 0.6399 | 0.8723 | 1.363 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.059 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.08747 | 0.01751 | 0.1808 | 0.3434 |
+#&gt; |.....................| -2.013 | 0.5634 | 0.2760 | -1.320 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7971 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 45</span>| 752.10460 | 0.9941 | -0.9745 | -1.039 | -1.050 |
+#&gt; |.....................| -0.6390 | -0.9728 | -0.9127 | -0.6895 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7788 |...........|...........|...........|</span>
+#&gt; | U| 752.1046 | 86.03 | -3.211 | -4.606 | -0.3818 |
+#&gt; |.....................| 4.673 | 0.6383 | 0.8713 | 1.369 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.062 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.1046</span> | 86.03 | 0.04030 | 0.009989 | 0.4057 |
+#&gt; |.....................| 4.673 | 0.6383 | 0.8713 | 1.369 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.062 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 46</span>| 752.09051 | 0.9947 | -0.9746 | -1.040 | -1.052 |
+#&gt; |.....................| -0.6247 | -0.9768 | -0.9147 | -0.6801 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7732 |...........|...........|...........|</span>
+#&gt; | U| 752.09051 | 86.08 | -3.211 | -4.608 | -0.3827 |
+#&gt; |.....................| 4.704 | 0.6355 | 0.8695 | 1.380 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.09051</span> | 86.08 | 0.04030 | 0.009976 | 0.4055 |
+#&gt; |.....................| 4.704 | 0.6355 | 0.8695 | 1.380 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.771 | 0.01029 | 0.1542 | 0.3620 |
+#&gt; |.....................| 0.8997 | 0.2873 | 0.01810 | -0.9019 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3639 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 47</span>| 752.06630 | 0.9944 | -0.9751 | -1.045 | -1.068 |
+#&gt; |.....................| -0.6300 | -0.9815 | -0.9184 | -0.6573 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7726 |...........|...........|...........|</span>
+#&gt; | U| 752.0663 | 86.05 | -3.212 | -4.613 | -0.3878 |
+#&gt; |.....................| 4.692 | 0.6323 | 0.8661 | 1.407 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.068 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.0663</span> | 86.05 | 0.04028 | 0.009926 | 0.4043 |
+#&gt; |.....................| 4.692 | 0.6323 | 0.8661 | 1.407 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.068 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.128 | 0.007908 | 0.004436 | 0.3353 |
+#&gt; |.....................| 0.2209 | 0.1645 | -0.3029 | -0.2852 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2419 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 48</span>| 752.06241 | 0.9926 | -0.9758 | -1.042 | -1.095 |
+#&gt; |.....................| -0.6306 | -0.9841 | -0.9113 | -0.6557 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7685 |...........|...........|...........|</span>
+#&gt; | U| 752.06241 | 85.89 | -3.213 | -4.609 | -0.3969 |
+#&gt; |.....................| 4.691 | 0.6304 | 0.8725 | 1.408 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.072 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.06241</span> | 85.89 | 0.04025 | 0.009958 | 0.4021 |
+#&gt; |.....................| 4.691 | 0.6304 | 0.8725 | 1.408 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.072 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -8.924 | 0.01284 | 0.1020 | 0.2919 |
+#&gt; |.....................| 0.1011 | -0.08995 | 0.3194 | -0.2130 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.05120 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 49</span>| 752.04768 | 0.9941 | -0.9763 | -1.043 | -1.124 |
+#&gt; |.....................| -0.6313 | -0.9862 | -0.9116 | -0.6566 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7644 |...........|...........|...........|</span>
+#&gt; | U| 752.04768 | 86.02 | -3.213 | -4.611 | -0.4065 |
+#&gt; |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.076 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.04768</span> | 86.02 | 0.04023 | 0.009946 | 0.3998 |
+#&gt; |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.076 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 0.04447 | 0.001311 | 0.1345 | 0.2729 |
+#&gt; |.....................| 0.05334 | -0.06694 | 0.2984 | -0.1966 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.06514 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 50</span>| 752.04768 | 0.9941 | -0.9763 | -1.043 | -1.124 |
+#&gt; |.....................| -0.6313 | -0.9862 | -0.9116 | -0.6566 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7644 |...........|...........|...........|</span>
+#&gt; | U| 752.04768 | 86.02 | -3.213 | -4.611 | -0.4065 |
+#&gt; |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.076 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.04768</span> | 86.02 | 0.04023 | 0.009946 | 0.3998 |
+#&gt; |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.076 |...........|...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#&gt; |.....................| log_beta | sigma | o1 | o2 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o3 | o4 | o5 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 491.68697 | 1.000 | -1.000 | -0.9113 | -0.8954 |
+#&gt; |.....................| -0.8491 | -0.8582 | -0.8760 | -0.8739 |
+#&gt; |.....................| -0.8673 | -0.8694 | -0.8683 |...........|
+#&gt; | U| 491.68697 | 94.21 | -5.416 | -0.9966 | -0.2046 |
+#&gt; |.....................| 2.098 | 1.647 | 0.7612 | 0.8665 |
+#&gt; |.....................| 1.192 | 1.089 | 1.144 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 491.68697</span> | 94.21 | 0.004447 | 0.2696 | 0.8150 |
+#&gt; |.....................| 8.153 | 1.647 | 0.7612 | 0.8665 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.192 | 1.089 | 1.144 |...........|</span>
+#&gt; | G| Gill Diff. | 19.86 | 1.831 | -0.1132 | -0.03447 |
+#&gt; |.....................| -0.1365 | -48.08 | 10.28 | 8.952 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -12.04 | -8.764 | -10.61 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 1105.9428 | 0.6506 | -1.032 | -0.9093 | -0.8948 |
+#&gt; |.....................| -0.8467 | -0.01215 | -1.057 | -1.031 |
+#&gt; |.....................| -0.6554 | -0.7152 | -0.6817 |...........|
+#&gt; | U| 1105.9428 | 61.29 | -5.448 | -0.9946 | -0.2040 |
+#&gt; |.....................| 2.101 | 2.344 | 0.6235 | 0.7300 |
+#&gt; |.....................| 1.445 | 1.256 | 1.357 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 1105.9428</span> | 61.29 | 0.004306 | 0.2700 | 0.8155 |
+#&gt; |.....................| 8.173 | 2.344 | 0.6235 | 0.7300 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.445 | 1.256 | 1.357 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 499.02505 | 0.9651 | -1.003 | -0.9111 | -0.8953 |
+#&gt; |.....................| -0.8489 | -0.7736 | -0.8941 | -0.8896 |
+#&gt; |.....................| -0.8462 | -0.8540 | -0.8497 |...........|
+#&gt; | U| 499.02505 | 90.91 | -5.419 | -0.9964 | -0.2045 |
+#&gt; |.....................| 2.099 | 1.717 | 0.7475 | 0.8529 |
+#&gt; |.....................| 1.217 | 1.105 | 1.165 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 499.02505</span> | 90.91 | 0.004433 | 0.2696 | 0.8150 |
+#&gt; |.....................| 8.155 | 1.717 | 0.7475 | 0.8529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.217 | 1.105 | 1.165 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 491.11153 | 0.9924 | -1.001 | -0.9112 | -0.8954 |
+#&gt; |.....................| -0.8491 | -0.8397 | -0.8799 | -0.8773 |
+#&gt; |.....................| -0.8627 | -0.8661 | -0.8642 |...........|
+#&gt; | U| 491.11153 | 93.49 | -5.416 | -0.9966 | -0.2046 |
+#&gt; |.....................| 2.098 | 1.663 | 0.7582 | 0.8635 |
+#&gt; |.....................| 1.198 | 1.092 | 1.148 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 491.11153</span> | 93.49 | 0.004444 | 0.2696 | 0.8150 |
+#&gt; |.....................| 8.154 | 1.663 | 0.7582 | 0.8635 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.198 | 1.092 | 1.148 |...........|</span>
+#&gt; | F| Forward Diff. | -141.0 | 1.761 | -0.2309 | -0.1084 |
+#&gt; |.....................| -0.3671 | -44.06 | 11.23 | 7.698 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.77 | -8.480 | -10.17 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 489.72110 | 1.001 | -1.001 | -0.9112 | -0.8954 |
+#&gt; |.....................| -0.8490 | -0.8217 | -0.8840 | -0.8806 |
+#&gt; |.....................| -0.8581 | -0.8627 | -0.8602 |...........|
+#&gt; | U| 489.7211 | 94.29 | -5.417 | -0.9965 | -0.2046 |
+#&gt; |.....................| 2.099 | 1.678 | 0.7552 | 0.8607 |
+#&gt; |.....................| 1.203 | 1.096 | 1.153 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 489.7211</span> | 94.29 | 0.004441 | 0.2696 | 0.8150 |
+#&gt; |.....................| 8.154 | 1.678 | 0.7552 | 0.8607 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.203 | 1.096 | 1.153 |...........|</span>
+#&gt; | F| Forward Diff. | 37.99 | 1.786 | -0.09663 | -0.03934 |
+#&gt; |.....................| -0.1210 | -40.49 | 9.520 | 7.642 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.65 | -8.313 | -10.04 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 488.87741 | 0.9957 | -1.002 | -0.9111 | -0.8953 |
+#&gt; |.....................| -0.8490 | -0.8027 | -0.8883 | -0.8842 |
+#&gt; |.....................| -0.8530 | -0.8591 | -0.8558 |...........|
+#&gt; | U| 488.87741 | 93.80 | -5.418 | -0.9965 | -0.2045 |
+#&gt; |.....................| 2.099 | 1.693 | 0.7519 | 0.8576 |
+#&gt; |.....................| 1.209 | 1.100 | 1.158 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 488.87741</span> | 93.80 | 0.004437 | 0.2696 | 0.8150 |
+#&gt; |.....................| 8.155 | 1.693 | 0.7519 | 0.8576 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.209 | 1.100 | 1.158 |...........|</span>
+#&gt; | F| Forward Diff. | -68.52 | 1.732 | -0.1791 | -0.08434 |
+#&gt; |.....................| -0.2775 | -36.72 | 9.505 | 7.234 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.37 | -8.098 | -9.790 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 487.98842 | 1.002 | -1.003 | -0.9111 | -0.8953 |
+#&gt; |.....................| -0.8489 | -0.7841 | -0.8926 | -0.8878 |
+#&gt; |.....................| -0.8478 | -0.8553 | -0.8512 |...........|
+#&gt; | U| 487.98842 | 94.37 | -5.418 | -0.9964 | -0.2045 |
+#&gt; |.....................| 2.099 | 1.708 | 0.7486 | 0.8545 |
+#&gt; |.....................| 1.215 | 1.104 | 1.163 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 487.98842</span> | 94.37 | 0.004434 | 0.2697 | 0.8150 |
+#&gt; |.....................| 8.156 | 1.708 | 0.7486 | 0.8545 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.215 | 1.104 | 1.163 |...........|</span>
+#&gt; | F| Forward Diff. | 53.83 | 1.743 | -0.07921 | -0.03701 |
+#&gt; |.....................| -0.09401 | -33.22 | 8.823 | 7.101 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.24 | -7.914 | -9.621 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 487.18834 | 0.9967 | -1.004 | -0.9110 | -0.8953 |
+#&gt; |.....................| -0.8488 | -0.7657 | -0.8973 | -0.8916 |
+#&gt; |.....................| -0.8421 | -0.8512 | -0.8463 |...........|
+#&gt; | U| 487.18834 | 93.89 | -5.419 | -0.9963 | -0.2045 |
+#&gt; |.....................| 2.099 | 1.724 | 0.7451 | 0.8512 |
+#&gt; |.....................| 1.222 | 1.108 | 1.169 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 487.18834</span> | 93.89 | 0.004430 | 0.2697 | 0.8151 |
+#&gt; |.....................| 8.156 | 1.724 | 0.7451 | 0.8512 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.222 | 1.108 | 1.169 |...........|</span>
+#&gt; | F| Forward Diff. | -47.29 | 1.692 | -0.1608 | -0.08286 |
+#&gt; |.....................| -0.2512 | -29.89 | 8.493 | 6.629 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -10.92 | -7.677 | -9.350 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 486.46922 | 1.002 | -1.005 | -0.9109 | -0.8952 |
+#&gt; |.....................| -0.8487 | -0.7480 | -0.9022 | -0.8958 |
+#&gt; |.....................| -0.8355 | -0.8466 | -0.8406 |...........|
+#&gt; | U| 486.46922 | 94.36 | -5.420 | -0.9963 | -0.2045 |
+#&gt; |.....................| 2.099 | 1.738 | 0.7413 | 0.8476 |
+#&gt; |.....................| 1.230 | 1.113 | 1.175 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 486.46922</span> | 94.36 | 0.004425 | 0.2697 | 0.8151 |
+#&gt; |.....................| 8.157 | 1.738 | 0.7413 | 0.8476 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.230 | 1.113 | 1.175 |...........|</span>
+#&gt; | F| Forward Diff. | 49.83 | 1.694 | -0.07480 | -0.03429 |
+#&gt; |.....................| -0.09436 | -26.68 | 8.123 | 6.503 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -10.68 | -7.439 | -9.119 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 485.78721 | 0.9968 | -1.006 | -0.9109 | -0.8952 |
+#&gt; |.....................| -0.8486 | -0.7319 | -0.9078 | -0.9005 |
+#&gt; |.....................| -0.8277 | -0.8412 | -0.8339 |...........|
+#&gt; | U| 485.78721 | 93.91 | -5.422 | -0.9962 | -0.2044 |
+#&gt; |.....................| 2.099 | 1.752 | 0.7370 | 0.8435 |
+#&gt; |.....................| 1.239 | 1.119 | 1.183 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 485.78721</span> | 93.91 | 0.004420 | 0.2697 | 0.8151 |
+#&gt; |.....................| 8.158 | 1.752 | 0.7370 | 0.8435 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.239 | 1.119 | 1.183 |...........|</span>
+#&gt; | F| Forward Diff. | -42.45 | 1.646 | -0.1526 | -0.07491 |
+#&gt; |.....................| -0.2510 | -24.12 | 7.576 | 5.974 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -10.35 | -7.128 | -8.768 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 485.17009 | 1.001 | -1.008 | -0.9107 | -0.8952 |
+#&gt; |.....................| -0.8484 | -0.7183 | -0.9141 | -0.9058 |
+#&gt; |.....................| -0.8180 | -0.8347 | -0.8257 |...........|
+#&gt; | U| 485.17009 | 94.32 | -5.423 | -0.9961 | -0.2044 |
+#&gt; |.....................| 2.099 | 1.763 | 0.7322 | 0.8389 |
+#&gt; |.....................| 1.251 | 1.126 | 1.192 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 485.17009</span> | 94.32 | 0.004413 | 0.2697 | 0.8152 |
+#&gt; |.....................| 8.160 | 1.763 | 0.7322 | 0.8389 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.251 | 1.126 | 1.192 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 484.56759 | 1.002 | -1.010 | -0.9106 | -0.8951 |
+#&gt; |.....................| -0.8481 | -0.7038 | -0.9212 | -0.9119 |
+#&gt; |.....................| -0.8067 | -0.8272 | -0.8163 |...........|
+#&gt; | U| 484.56759 | 94.37 | -5.425 | -0.9959 | -0.2043 |
+#&gt; |.....................| 2.099 | 1.775 | 0.7268 | 0.8336 |
+#&gt; |.....................| 1.264 | 1.134 | 1.203 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 484.56759</span> | 94.37 | 0.004404 | 0.2697 | 0.8152 |
+#&gt; |.....................| 8.162 | 1.775 | 0.7268 | 0.8336 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.264 | 1.134 | 1.203 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 483.17982 | 1.003 | -1.015 | -0.9102 | -0.8949 |
+#&gt; |.....................| -0.8475 | -0.6634 | -0.9410 | -0.9287 |
+#&gt; |.....................| -0.7754 | -0.8064 | -0.7900 |...........|
+#&gt; | U| 483.17982 | 94.51 | -5.431 | -0.9956 | -0.2042 |
+#&gt; |.....................| 2.100 | 1.808 | 0.7117 | 0.8190 |
+#&gt; |.....................| 1.302 | 1.157 | 1.233 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 483.17982</span> | 94.51 | 0.004381 | 0.2698 | 0.8153 |
+#&gt; |.....................| 8.167 | 1.808 | 0.7117 | 0.8190 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.302 | 1.157 | 1.233 |...........|</span>
+#&gt; | F| Forward Diff. | 68.60 | 1.559 | 0.008498 | -0.01857 |
+#&gt; |.....................| -0.01950 | -13.38 | 5.413 | 4.461 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.084 | -5.202 | -6.751 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 482.50435 | 0.9937 | -1.034 | -0.9105 | -0.8944 |
+#&gt; |.....................| -0.8462 | -0.6947 | -0.9713 | -0.9553 |
+#&gt; |.....................| -0.7043 | -0.7694 | -0.7343 |...........|
+#&gt; | U| 482.50435 | 93.61 | -5.449 | -0.9958 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.782 | 0.6887 | 0.7959 |
+#&gt; |.....................| 1.386 | 1.197 | 1.297 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 482.50435</span> | 93.61 | 0.004300 | 0.2698 | 0.8158 |
+#&gt; |.....................| 8.177 | 1.782 | 0.6887 | 0.7959 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.386 | 1.197 | 1.297 |...........|</span>
+#&gt; | F| Forward Diff. | -85.62 | 1.442 | -0.1650 | -0.08233 |
+#&gt; |.....................| -0.3434 | -17.31 | 3.930 | 3.048 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.934 | -3.045 | -4.080 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 481.97261 | 1.003 | -1.090 | -0.9106 | -0.8929 |
+#&gt; |.....................| -0.8403 | -0.7109 | -0.9936 | -0.9798 |
+#&gt; |.....................| -0.6305 | -0.7595 | -0.6850 |...........|
+#&gt; | U| 481.97261 | 94.53 | -5.505 | -0.9959 | -0.2021 |
+#&gt; |.....................| 2.107 | 1.769 | 0.6717 | 0.7747 |
+#&gt; |.....................| 1.474 | 1.208 | 1.353 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 481.97261</span> | 94.53 | 0.004066 | 0.2697 | 0.8170 |
+#&gt; |.....................| 8.226 | 1.769 | 0.6717 | 0.7747 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.474 | 1.208 | 1.353 |...........|</span>
+#&gt; | F| Forward Diff. | 56.89 | 1.274 | 0.1237 | 0.02279 |
+#&gt; |.....................| 0.2367 | -19.64 | 1.923 | 2.281 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.663 | -2.419 | -1.870 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 481.06506 | 1.001 | -1.169 | -0.9152 | -0.8919 |
+#&gt; |.....................| -0.8407 | -0.6475 | -0.9528 | -0.9773 |
+#&gt; |.....................| -0.6368 | -0.7786 | -0.6952 |...........|
+#&gt; | U| 481.06506 | 94.29 | -5.585 | -1.000 | -0.2011 |
+#&gt; |.....................| 2.107 | 1.821 | 0.7028 | 0.7769 |
+#&gt; |.....................| 1.467 | 1.187 | 1.341 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 481.06506</span> | 94.29 | 0.003755 | 0.2688 | 0.8179 |
+#&gt; |.....................| 8.223 | 1.821 | 0.7028 | 0.7769 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.467 | 1.187 | 1.341 |...........|</span>
+#&gt; | F| Forward Diff. | 24.24 | 0.9898 | -0.1087 | 0.01886 |
+#&gt; |.....................| 0.1247 | -10.78 | 3.743 | 2.188 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.085 | -3.507 | -2.452 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 481.22982 | 0.9921 | -1.212 | -0.9099 | -0.8928 |
+#&gt; |.....................| -0.8459 | -0.6315 | -1.015 | -0.9814 |
+#&gt; |.....................| -0.6906 | -0.7213 | -0.7106 |...........|
+#&gt; | U| 481.22982 | 93.46 | -5.628 | -0.9952 | -0.2020 |
+#&gt; |.....................| 2.102 | 1.834 | 0.6553 | 0.7733 |
+#&gt; |.....................| 1.403 | 1.250 | 1.324 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 481.22982</span> | 93.46 | 0.003596 | 0.2699 | 0.8171 |
+#&gt; |.....................| 8.180 | 1.834 | 0.6553 | 0.7733 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.403 | 1.250 | 1.324 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 18</span>| 481.29798 | 0.9919 | -1.186 | -0.9131 | -0.8922 |
+#&gt; |.....................| -0.8428 | -0.6388 | -0.9780 | -0.9794 |
+#&gt; |.....................| -0.6574 | -0.7554 | -0.7007 |...........|
+#&gt; | U| 481.29798 | 93.44 | -5.602 | -0.9984 | -0.2014 |
+#&gt; |.....................| 2.105 | 1.828 | 0.6836 | 0.7751 |
+#&gt; |.....................| 1.442 | 1.213 | 1.335 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 481.29798</span> | 93.44 | 0.003691 | 0.2693 | 0.8176 |
+#&gt; |.....................| 8.206 | 1.828 | 0.6836 | 0.7751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.442 | 1.213 | 1.335 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 19</span>| 481.41397 | 0.9918 | -1.173 | -0.9147 | -0.8919 |
+#&gt; |.....................| -0.8412 | -0.6424 | -0.9596 | -0.9784 |
+#&gt; |.....................| -0.6408 | -0.7724 | -0.6957 |...........|
+#&gt; | U| 481.41397 | 93.43 | -5.589 | -1.000 | -0.2012 |
+#&gt; |.....................| 2.106 | 1.825 | 0.6976 | 0.7759 |
+#&gt; |.....................| 1.462 | 1.194 | 1.341 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 481.41397</span> | 93.43 | 0.003739 | 0.2689 | 0.8178 |
+#&gt; |.....................| 8.219 | 1.825 | 0.6976 | 0.7759 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.462 | 1.194 | 1.341 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 20</span>| 481.05031 | 0.9977 | -1.169 | -0.9152 | -0.8919 |
+#&gt; |.....................| -0.8407 | -0.6461 | -0.9533 | -0.9776 |
+#&gt; |.....................| -0.6366 | -0.7782 | -0.6949 |...........|
+#&gt; | U| 481.05031 | 93.99 | -5.585 | -1.000 | -0.2011 |
+#&gt; |.....................| 2.107 | 1.822 | 0.7024 | 0.7766 |
+#&gt; |.....................| 1.467 | 1.188 | 1.342 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 481.05031</span> | 93.99 | 0.003754 | 0.2688 | 0.8179 |
+#&gt; |.....................| 8.223 | 1.822 | 0.7024 | 0.7766 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.467 | 1.188 | 1.342 |...........|</span>
+#&gt; | F| Forward Diff. | -27.42 | 0.9768 | -0.2107 | -0.01109 |
+#&gt; |.....................| -0.02839 | -10.63 | 3.585 | 2.076 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.082 | -3.487 | -2.432 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 21</span>| 481.00693 | 0.9997 | -1.170 | -0.9150 | -0.8919 |
+#&gt; |.....................| -0.8408 | -0.6450 | -0.9548 | -0.9778 |
+#&gt; |.....................| -0.6377 | -0.7765 | -0.6951 |...........|
+#&gt; | U| 481.00693 | 94.18 | -5.586 | -1.000 | -0.2011 |
+#&gt; |.....................| 2.107 | 1.823 | 0.7012 | 0.7764 |
+#&gt; |.....................| 1.466 | 1.190 | 1.342 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 481.00693</span> | 94.18 | 0.003750 | 0.2689 | 0.8178 |
+#&gt; |.....................| 8.222 | 1.823 | 0.7012 | 0.7764 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.466 | 1.190 | 1.342 |...........|</span>
+#&gt; | F| Forward Diff. | 5.549 | 0.9801 | -0.1366 | 0.007724 |
+#&gt; |.....................| 0.06864 | -10.47 | 3.736 | 2.095 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.145 | -3.386 | -2.439 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 22</span>| 480.97727 | 0.9982 | -1.171 | -0.9150 | -0.8919 |
+#&gt; |.....................| -0.8408 | -0.6422 | -0.9558 | -0.9784 |
+#&gt; |.....................| -0.6371 | -0.7756 | -0.6944 |...........|
+#&gt; | U| 480.97727 | 94.04 | -5.586 | -1.000 | -0.2011 |
+#&gt; |.....................| 2.107 | 1.825 | 0.7005 | 0.7760 |
+#&gt; |.....................| 1.466 | 1.191 | 1.342 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.97727</span> | 94.04 | 0.003749 | 0.2689 | 0.8178 |
+#&gt; |.....................| 8.222 | 1.825 | 0.7005 | 0.7760 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.466 | 1.191 | 1.342 |...........|</span>
+#&gt; | F| Forward Diff. | -18.22 | 0.9728 | -0.1820 | -0.005388 |
+#&gt; |.....................| -0.004679 | -10.15 | 3.348 | 1.956 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.141 | -3.348 | -2.415 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 23</span>| 480.94781 | 0.9999 | -1.172 | -0.9148 | -0.8919 |
+#&gt; |.....................| -0.8410 | -0.6410 | -0.9575 | -0.9785 |
+#&gt; |.....................| -0.6383 | -0.7738 | -0.6946 |...........|
+#&gt; | U| 480.94781 | 94.20 | -5.587 | -1.000 | -0.2011 |
+#&gt; |.....................| 2.107 | 1.826 | 0.6992 | 0.7758 |
+#&gt; |.....................| 1.465 | 1.193 | 1.342 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.94781</span> | 94.20 | 0.003745 | 0.2689 | 0.8178 |
+#&gt; |.....................| 8.220 | 1.826 | 0.6992 | 0.7758 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.465 | 1.193 | 1.342 |...........|</span>
+#&gt; | F| Forward Diff. | 8.568 | 0.9740 | -0.1199 | 0.009837 |
+#&gt; |.....................| 0.07469 | -9.926 | 3.371 | 0.7973 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.181 | -3.230 | -2.408 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 24</span>| 480.92664 | 0.9984 | -1.173 | -0.9147 | -0.8919 |
+#&gt; |.....................| -0.8411 | -0.6390 | -0.9589 | -0.9778 |
+#&gt; |.....................| -0.6386 | -0.7721 | -0.6942 |...........|
+#&gt; | U| 480.92664 | 94.06 | -5.588 | -1.000 | -0.2011 |
+#&gt; |.....................| 2.107 | 1.828 | 0.6981 | 0.7765 |
+#&gt; |.....................| 1.465 | 1.195 | 1.343 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.92664</span> | 94.06 | 0.003741 | 0.2689 | 0.8178 |
+#&gt; |.....................| 8.219 | 1.828 | 0.6981 | 0.7765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.465 | 1.195 | 1.343 |...........|</span>
+#&gt; | F| Forward Diff. | -15.24 | 0.9644 | -0.1632 | -0.002739 |
+#&gt; |.....................| -0.008738 | -9.656 | 3.177 | 0.7945 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.140 | -3.159 | -2.407 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 25</span>| 480.90633 | 0.9999 | -1.174 | -0.9146 | -0.8920 |
+#&gt; |.....................| -0.8412 | -0.6376 | -0.9602 | -0.9760 |
+#&gt; |.....................| -0.6390 | -0.7705 | -0.6939 |...........|
+#&gt; | U| 480.90633 | 94.20 | -5.589 | -0.9999 | -0.2012 |
+#&gt; |.....................| 2.106 | 1.829 | 0.6971 | 0.7780 |
+#&gt; |.....................| 1.464 | 1.196 | 1.343 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.90633</span> | 94.20 | 0.003737 | 0.2690 | 0.8178 |
+#&gt; |.....................| 8.219 | 1.829 | 0.6971 | 0.7780 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.464 | 1.196 | 1.343 |...........|</span>
+#&gt; | F| Forward Diff. | 8.878 | 0.9654 | -0.1149 | 0.008298 |
+#&gt; |.....................| 0.06381 | -9.456 | 3.199 | 2.165 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.158 | -3.035 | -2.359 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 26</span>| 480.88677 | 0.9984 | -1.175 | -0.9145 | -0.8920 |
+#&gt; |.....................| -0.8413 | -0.6358 | -0.9617 | -0.9757 |
+#&gt; |.....................| -0.6395 | -0.7687 | -0.6936 |...........|
+#&gt; | U| 480.88677 | 94.05 | -5.591 | -0.9998 | -0.2012 |
+#&gt; |.....................| 2.106 | 1.831 | 0.6960 | 0.7783 |
+#&gt; |.....................| 1.464 | 1.198 | 1.343 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.88677</span> | 94.05 | 0.003733 | 0.2690 | 0.8178 |
+#&gt; |.....................| 8.218 | 1.831 | 0.6960 | 0.7783 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.464 | 1.198 | 1.343 |...........|</span>
+#&gt; | F| Forward Diff. | -15.55 | 0.9550 | -0.1566 | -0.004027 |
+#&gt; |.....................| -0.01529 | -9.334 | 3.082 | 0.8457 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.216 | -2.967 | -2.371 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 27</span>| 480.86430 | 0.9998 | -1.177 | -0.9143 | -0.8920 |
+#&gt; |.....................| -0.8414 | -0.6346 | -0.9633 | -0.9749 |
+#&gt; |.....................| -0.6404 | -0.7668 | -0.6935 |...........|
+#&gt; | U| 480.8643 | 94.19 | -5.592 | -0.9996 | -0.2012 |
+#&gt; |.....................| 2.106 | 1.832 | 0.6948 | 0.7790 |
+#&gt; |.....................| 1.463 | 1.200 | 1.343 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.8643</span> | 94.19 | 0.003727 | 0.2690 | 0.8177 |
+#&gt; |.....................| 8.217 | 1.832 | 0.6948 | 0.7790 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.463 | 1.200 | 1.343 |...........|</span>
+#&gt; | F| Forward Diff. | 6.756 | 0.9537 | -0.1079 | 0.006011 |
+#&gt; |.....................| 0.04748 | -9.023 | 3.021 | 2.222 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.227 | -2.836 | -2.339 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 28</span>| 480.84403 | 0.9982 | -1.178 | -0.9142 | -0.8920 |
+#&gt; |.....................| -0.8415 | -0.6324 | -0.9646 | -0.9751 |
+#&gt; |.....................| -0.6405 | -0.7653 | -0.6931 |...........|
+#&gt; | U| 480.84403 | 94.04 | -5.593 | -0.9995 | -0.2012 |
+#&gt; |.....................| 2.106 | 1.833 | 0.6938 | 0.7788 |
+#&gt; |.....................| 1.462 | 1.202 | 1.344 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.84403</span> | 94.04 | 0.003723 | 0.2690 | 0.8177 |
+#&gt; |.....................| 8.216 | 1.833 | 0.6938 | 0.7788 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.462 | 1.202 | 1.344 |...........|</span>
+#&gt; | F| Forward Diff. | -17.74 | 0.9443 | -0.1486 | -0.005686 |
+#&gt; |.....................| -0.02964 | -8.905 | 2.905 | 2.091 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.264 | -2.753 | -2.319 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 29</span>| 480.81486 | 0.9998 | -1.179 | -0.9140 | -0.8921 |
+#&gt; |.....................| -0.8417 | -0.6315 | -0.9657 | -0.9770 |
+#&gt; |.....................| -0.6415 | -0.7640 | -0.6932 |...........|
+#&gt; | U| 480.81486 | 94.18 | -5.595 | -0.9993 | -0.2013 |
+#&gt; |.....................| 2.106 | 1.834 | 0.6930 | 0.7772 |
+#&gt; |.....................| 1.461 | 1.203 | 1.344 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.81486</span> | 94.18 | 0.003718 | 0.2691 | 0.8177 |
+#&gt; |.....................| 8.215 | 1.834 | 0.6930 | 0.7772 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.461 | 1.203 | 1.344 |...........|</span>
+#&gt; | F| Forward Diff. | 6.172 | 0.9439 | -0.09077 | 0.005496 |
+#&gt; |.....................| 0.04002 | -8.557 | 3.060 | 0.8688 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.237 | -2.681 | -2.329 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 30</span>| 480.79675 | 0.9982 | -1.180 | -0.9139 | -0.8921 |
+#&gt; |.....................| -0.8418 | -0.6292 | -0.9672 | -0.9770 |
+#&gt; |.....................| -0.6415 | -0.7628 | -0.6927 |...........|
+#&gt; | U| 480.79675 | 94.04 | -5.596 | -0.9992 | -0.2013 |
+#&gt; |.....................| 2.106 | 1.836 | 0.6918 | 0.7772 |
+#&gt; |.....................| 1.461 | 1.205 | 1.344 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.79675</span> | 94.04 | 0.003714 | 0.2691 | 0.8177 |
+#&gt; |.....................| 8.214 | 1.836 | 0.6918 | 0.7772 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.461 | 1.205 | 1.344 |...........|</span>
+#&gt; | F| Forward Diff. | -18.05 | 0.9344 | -0.1333 | -0.006636 |
+#&gt; |.....................| -0.03697 | -8.406 | 2.763 | 0.7695 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.291 | -2.623 | -2.307 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 31</span>| 480.77804 | 0.9997 | -1.182 | -0.9138 | -0.8921 |
+#&gt; |.....................| -0.8419 | -0.6281 | -0.9686 | -0.9750 |
+#&gt; |.....................| -0.6417 | -0.7615 | -0.6923 |...........|
+#&gt; | U| 480.77804 | 94.18 | -5.597 | -0.9991 | -0.2013 |
+#&gt; |.....................| 2.106 | 1.837 | 0.6907 | 0.7789 |
+#&gt; |.....................| 1.461 | 1.206 | 1.345 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.77804</span> | 94.18 | 0.003708 | 0.2691 | 0.8176 |
+#&gt; |.....................| 8.213 | 1.837 | 0.6907 | 0.7789 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.461 | 1.206 | 1.345 |...........|</span>
+#&gt; | F| Forward Diff. | 5.466 | 0.9331 | -0.08875 | 0.003744 |
+#&gt; |.....................| 0.02543 | -8.171 | 2.670 | 2.155 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.279 | -2.534 | -2.278 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 32</span>| 480.75892 | 0.9982 | -1.183 | -0.9137 | -0.8921 |
+#&gt; |.....................| -0.8419 | -0.6258 | -0.9698 | -0.9756 |
+#&gt; |.....................| -0.6414 | -0.7603 | -0.6917 |...........|
+#&gt; | U| 480.75892 | 94.03 | -5.598 | -0.9991 | -0.2014 |
+#&gt; |.....................| 2.106 | 1.839 | 0.6899 | 0.7784 |
+#&gt; |.....................| 1.461 | 1.207 | 1.346 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.75892</span> | 94.03 | 0.003704 | 0.2691 | 0.8176 |
+#&gt; |.....................| 8.212 | 1.839 | 0.6899 | 0.7784 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.461 | 1.207 | 1.346 |...........|</span>
+#&gt; | F| Forward Diff. | -18.29 | 0.9240 | -0.1279 | -0.008301 |
+#&gt; |.....................| -0.04619 | -7.961 | 2.584 | 0.8229 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.311 | -2.476 | -2.253 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 33</span>| 480.73432 | 0.9997 | -1.185 | -0.9136 | -0.8922 |
+#&gt; |.....................| -0.8421 | -0.6250 | -0.9708 | -0.9758 |
+#&gt; |.....................| -0.6420 | -0.7587 | -0.6914 |...........|
+#&gt; | U| 480.73432 | 94.18 | -5.601 | -0.9989 | -0.2014 |
+#&gt; |.....................| 2.105 | 1.840 | 0.6891 | 0.7782 |
+#&gt; |.....................| 1.461 | 1.209 | 1.346 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.73432</span> | 94.18 | 0.003695 | 0.2692 | 0.8176 |
+#&gt; |.....................| 8.211 | 1.840 | 0.6891 | 0.7782 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.461 | 1.209 | 1.346 |...........|</span>
+#&gt; | F| Forward Diff. | 5.056 | 0.9202 | -0.07575 | 0.002374 |
+#&gt; |.....................| 0.02179 | -7.789 | 2.502 | 2.101 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.273 | -2.370 | -2.217 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 34</span>| 480.71449 | 0.9983 | -1.187 | -0.9135 | -0.8922 |
+#&gt; |.....................| -0.8422 | -0.6227 | -0.9719 | -0.9765 |
+#&gt; |.....................| -0.6416 | -0.7575 | -0.6908 |...........|
+#&gt; | U| 480.71449 | 94.05 | -5.602 | -0.9988 | -0.2014 |
+#&gt; |.....................| 2.105 | 1.841 | 0.6883 | 0.7776 |
+#&gt; |.....................| 1.461 | 1.210 | 1.347 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.71449</span> | 94.05 | 0.003690 | 0.2692 | 0.8175 |
+#&gt; |.....................| 8.210 | 1.841 | 0.6883 | 0.7776 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.461 | 1.210 | 1.347 |...........|</span>
+#&gt; | F| Forward Diff. | -16.10 | 0.9104 | -0.1099 | -0.008208 |
+#&gt; |.....................| -0.04557 | -7.571 | 2.606 | 1.992 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.295 | -2.312 | -2.196 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 35</span>| 480.68777 | 0.9997 | -1.189 | -0.9134 | -0.8923 |
+#&gt; |.....................| -0.8423 | -0.6220 | -0.9726 | -0.9789 |
+#&gt; |.....................| -0.6421 | -0.7569 | -0.6908 |...........|
+#&gt; | U| 480.68777 | 94.18 | -5.604 | -0.9987 | -0.2015 |
+#&gt; |.....................| 2.105 | 1.842 | 0.6877 | 0.7755 |
+#&gt; |.....................| 1.461 | 1.211 | 1.347 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.68777</span> | 94.18 | 0.003683 | 0.2692 | 0.8175 |
+#&gt; |.....................| 8.209 | 1.842 | 0.6877 | 0.7755 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.461 | 1.211 | 1.347 |...........|</span>
+#&gt; | F| Forward Diff. | 4.858 | 0.9091 | -0.06076 | 0.001972 |
+#&gt; |.....................| 0.01464 | -7.318 | 2.391 | 0.7174 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.245 | -2.255 | -2.188 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 36</span>| 480.67297 | 0.9982 | -1.190 | -0.9134 | -0.8923 |
+#&gt; |.....................| -0.8424 | -0.6196 | -0.9738 | -0.9789 |
+#&gt; |.....................| -0.6415 | -0.7559 | -0.6900 |...........|
+#&gt; | U| 480.67297 | 94.03 | -5.605 | -0.9987 | -0.2015 |
+#&gt; |.....................| 2.105 | 1.844 | 0.6868 | 0.7755 |
+#&gt; |.....................| 1.461 | 1.212 | 1.348 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.67297</span> | 94.03 | 0.003678 | 0.2692 | 0.8175 |
+#&gt; |.....................| 8.209 | 1.844 | 0.6868 | 0.7755 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.461 | 1.212 | 1.348 |...........|</span>
+#&gt; | F| Forward Diff. | -18.29 | 0.8994 | -0.1037 | -0.01039 |
+#&gt; |.....................| -0.05604 | -7.086 | 2.324 | 0.6431 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.272 | -2.229 | -2.170 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 37</span>| 480.65610 | 0.9996 | -1.192 | -0.9134 | -0.8923 |
+#&gt; |.....................| -0.8424 | -0.6187 | -0.9745 | -0.9768 |
+#&gt; |.....................| -0.6410 | -0.7549 | -0.6892 |...........|
+#&gt; | U| 480.6561 | 94.17 | -5.607 | -0.9987 | -0.2015 |
+#&gt; |.....................| 2.105 | 1.845 | 0.6862 | 0.7773 |
+#&gt; |.....................| 1.462 | 1.213 | 1.348 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.6561</span> | 94.17 | 0.003671 | 0.2692 | 0.8175 |
+#&gt; |.....................| 8.208 | 1.845 | 0.6862 | 0.7773 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.462 | 1.213 | 1.348 |...........|</span>
+#&gt; | F| Forward Diff. | 3.523 | 0.8967 | -0.06519 |-0.0005238 |
+#&gt; |.....................| 0.007306 | -6.938 | 2.250 | 0.8205 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.209 | -2.143 | -2.109 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 38</span>| 480.63930 | 0.9982 | -1.192 | -0.9133 | -0.8923 |
+#&gt; |.....................| -0.8425 | -0.6159 | -0.9754 | -0.9772 |
+#&gt; |.....................| -0.6401 | -0.7540 | -0.6884 |...........|
+#&gt; | U| 480.6393 | 94.04 | -5.608 | -0.9987 | -0.2015 |
+#&gt; |.....................| 2.105 | 1.847 | 0.6856 | 0.7770 |
+#&gt; |.....................| 1.463 | 1.214 | 1.349 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.6393</span> | 94.04 | 0.003670 | 0.2692 | 0.8175 |
+#&gt; |.....................| 8.208 | 1.847 | 0.6856 | 0.7770 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.463 | 1.214 | 1.349 |...........|</span>
+#&gt; | F| Forward Diff. | -17.45 | 0.8903 | -0.1044 | -0.01155 |
+#&gt; |.....................| -0.05881 | -6.641 | 2.195 | 1.966 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.207 | -2.119 | -2.090 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 39</span>| 480.61554 | 0.9996 | -1.195 | -0.9133 | -0.8924 |
+#&gt; |.....................| -0.8426 | -0.6153 | -0.9757 | -0.9778 |
+#&gt; |.....................| -0.6400 | -0.7531 | -0.6877 |...........|
+#&gt; | U| 480.61554 | 94.16 | -5.611 | -0.9986 | -0.2016 |
+#&gt; |.....................| 2.105 | 1.848 | 0.6853 | 0.7765 |
+#&gt; |.....................| 1.463 | 1.215 | 1.350 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.61554</span> | 94.16 | 0.003659 | 0.2692 | 0.8174 |
+#&gt; |.....................| 8.207 | 1.848 | 0.6853 | 0.7765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.463 | 1.215 | 1.350 |...........|</span>
+#&gt; | F| Forward Diff. | 2.395 | 0.8850 | -0.05988 | -0.001937 |
+#&gt; |.....................| 0.0008548 | -6.531 | 2.145 | 0.7341 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.178 | -2.045 | -2.040 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 40</span>| 480.59501 | 0.9985 | -1.195 | -0.9132 | -0.8924 |
+#&gt; |.....................| -0.8426 | -0.6124 | -0.9766 | -0.9781 |
+#&gt; |.....................| -0.6390 | -0.7522 | -0.6868 |...........|
+#&gt; | U| 480.59501 | 94.06 | -5.611 | -0.9986 | -0.2016 |
+#&gt; |.....................| 2.105 | 1.850 | 0.6846 | 0.7762 |
+#&gt; |.....................| 1.464 | 1.216 | 1.351 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.59501</span> | 94.06 | 0.003658 | 0.2692 | 0.8174 |
+#&gt; |.....................| 8.207 | 1.850 | 0.6846 | 0.7762 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.464 | 1.216 | 1.351 |...........|</span>
+#&gt; | F| Forward Diff. | -13.20 | 0.8797 | -0.08878 | -0.01245 |
+#&gt; |.....................| -0.05202 | -6.149 | 2.097 | 1.936 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.128 | -2.007 | -2.021 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 41</span>| 480.57374 | 0.9995 | -1.198 | -0.9132 | -0.8924 |
+#&gt; |.....................| -0.8426 | -0.6117 | -0.9768 | -0.9794 |
+#&gt; |.....................| -0.6387 | -0.7515 | -0.6862 |...........|
+#&gt; | U| 480.57374 | 94.16 | -5.614 | -0.9986 | -0.2016 |
+#&gt; |.....................| 2.105 | 1.851 | 0.6845 | 0.7751 |
+#&gt; |.....................| 1.464 | 1.217 | 1.352 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.57374</span> | 94.16 | 0.003647 | 0.2692 | 0.8174 |
+#&gt; |.....................| 8.207 | 1.851 | 0.6845 | 0.7751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.464 | 1.217 | 1.352 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 42</span>| 480.55656 | 0.9993 | -1.203 | -0.9133 | -0.8924 |
+#&gt; |.....................| -0.8427 | -0.6115 | -0.9767 | -0.9815 |
+#&gt; |.....................| -0.6386 | -0.7506 | -0.6853 |...........|
+#&gt; | U| 480.55656 | 94.14 | -5.619 | -0.9986 | -0.2016 |
+#&gt; |.....................| 2.105 | 1.851 | 0.6846 | 0.7733 |
+#&gt; |.....................| 1.465 | 1.218 | 1.353 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.55656</span> | 94.14 | 0.003629 | 0.2692 | 0.8174 |
+#&gt; |.....................| 8.206 | 1.851 | 0.6846 | 0.7733 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.465 | 1.218 | 1.353 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 43</span>| 480.48642 | 0.9984 | -1.228 | -0.9134 | -0.8925 |
+#&gt; |.....................| -0.8432 | -0.6102 | -0.9761 | -0.9914 |
+#&gt; |.....................| -0.6380 | -0.7463 | -0.6812 |...........|
+#&gt; | U| 480.48642 | 94.05 | -5.643 | -0.9987 | -0.2017 |
+#&gt; |.....................| 2.104 | 1.852 | 0.6850 | 0.7647 |
+#&gt; |.....................| 1.465 | 1.223 | 1.357 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.48642</span> | 94.05 | 0.003541 | 0.2692 | 0.8174 |
+#&gt; |.....................| 8.202 | 1.852 | 0.6850 | 0.7647 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.465 | 1.223 | 1.357 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 44</span>| 480.43193 | 0.9946 | -1.325 | -0.9138 | -0.8928 |
+#&gt; |.....................| -0.8452 | -0.6054 | -0.9741 | -1.031 |
+#&gt; |.....................| -0.6354 | -0.7292 | -0.6649 |...........|
+#&gt; | U| 480.43193 | 93.70 | -5.741 | -0.9991 | -0.2020 |
+#&gt; |.....................| 2.102 | 1.856 | 0.6866 | 0.7303 |
+#&gt; |.....................| 1.469 | 1.241 | 1.376 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.43193</span> | 93.70 | 0.003212 | 0.2691 | 0.8171 |
+#&gt; |.....................| 8.185 | 1.856 | 0.6866 | 0.7303 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.469 | 1.241 | 1.376 |...........|</span>
+#&gt; | F| Forward Diff. | -73.68 | 0.5532 | -0.05170 | -0.03792 |
+#&gt; |.....................| -0.2632 | -4.949 | 2.751 | -2.063 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.027 | -0.5538 | -1.006 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 45</span>| 480.12037 | 0.9986 | -1.465 | -0.9157 | -0.8935 |
+#&gt; |.....................| -0.8478 | -0.6011 | -0.9922 | -1.022 |
+#&gt; |.....................| -0.6184 | -0.7143 | -0.6451 |...........|
+#&gt; | U| 480.12037 | 94.07 | -5.880 | -1.001 | -0.2027 |
+#&gt; |.....................| 2.100 | 1.859 | 0.6728 | 0.7378 |
+#&gt; |.....................| 1.489 | 1.257 | 1.399 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.12037</span> | 94.07 | 0.002795 | 0.2687 | 0.8166 |
+#&gt; |.....................| 8.164 | 1.859 | 0.6728 | 0.7378 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.489 | 1.257 | 1.399 |...........|</span>
+#&gt; | F| Forward Diff. | -14.31 | 0.1919 | -0.006458 | -0.005637 |
+#&gt; |.....................| -0.1500 | -5.088 | 0.6605 | -0.1467 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.672 | 0.02074 | -0.4009 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 46</span>| 480.21684 | 0.9998 | -1.532 | -0.9143 | -0.8951 |
+#&gt; |.....................| -0.8360 | -0.5884 | -0.9862 | -1.032 |
+#&gt; |.....................| -0.5071 | -0.7680 | -0.6684 |...........|
+#&gt; | U| 480.21684 | 94.19 | -5.947 | -0.9996 | -0.2043 |
+#&gt; |.....................| 2.112 | 1.870 | 0.6773 | 0.7298 |
+#&gt; |.....................| 1.621 | 1.199 | 1.372 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.21684</span> | 94.19 | 0.002613 | 0.2690 | 0.8152 |
+#&gt; |.....................| 8.261 | 1.870 | 0.6773 | 0.7298 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.621 | 1.199 | 1.372 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 47</span>| 480.06028 | 1.000 | -1.489 | -0.9152 | -0.8941 |
+#&gt; |.....................| -0.8435 | -0.5961 | -0.9901 | -1.026 |
+#&gt; |.....................| -0.5774 | -0.7340 | -0.6536 |...........|
+#&gt; | U| 480.06028 | 94.21 | -5.905 | -1.000 | -0.2033 |
+#&gt; |.....................| 2.104 | 1.863 | 0.6744 | 0.7349 |
+#&gt; |.....................| 1.538 | 1.236 | 1.389 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.06028</span> | 94.21 | 0.002726 | 0.2688 | 0.8161 |
+#&gt; |.....................| 8.200 | 1.863 | 0.6744 | 0.7349 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.538 | 1.236 | 1.389 |...........|</span>
+#&gt; | F| Forward Diff. | 6.437 | 0.1507 | 0.07551 | -0.008836 |
+#&gt; |.....................| 0.08632 | -3.858 | 0.8547 | 0.1963 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.4591 | -0.8475 | -0.5830 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 48</span>| 480.03665 | 0.9987 | -1.532 | -0.9229 | -0.8934 |
+#&gt; |.....................| -0.8415 | -0.5884 | -1.015 | -1.029 |
+#&gt; |.....................| -0.5816 | -0.7442 | -0.6445 |...........|
+#&gt; | U| 480.03665 | 94.09 | -5.948 | -1.008 | -0.2026 |
+#&gt; |.....................| 2.106 | 1.870 | 0.6552 | 0.7323 |
+#&gt; |.....................| 1.533 | 1.225 | 1.399 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.03665</span> | 94.09 | 0.002612 | 0.2673 | 0.8166 |
+#&gt; |.....................| 8.216 | 1.870 | 0.6552 | 0.7323 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.533 | 1.225 | 1.399 |...........|</span>
+#&gt; | F| Forward Diff. | -11.33 | 0.04720 | -0.3576 | -0.009993 |
+#&gt; |.....................| 0.09366 | -3.049 | -0.8552 | 2.379 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.07272 | -1.673 | -0.4189 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 49</span>| 480.00388 | 0.9997 | -1.574 | -0.9191 | -0.8927 |
+#&gt; |.....................| -0.8426 | -0.5789 | -1.009 | -1.024 |
+#&gt; |.....................| -0.5828 | -0.7165 | -0.6339 |...........|
+#&gt; | U| 480.00388 | 94.18 | -5.990 | -1.004 | -0.2019 |
+#&gt; |.....................| 2.105 | 1.878 | 0.6600 | 0.7361 |
+#&gt; |.....................| 1.531 | 1.255 | 1.412 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.00388</span> | 94.18 | 0.002504 | 0.2681 | 0.8172 |
+#&gt; |.....................| 8.207 | 1.878 | 0.6600 | 0.7361 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.531 | 1.255 | 1.412 |...........|</span>
+#&gt; | F| Forward Diff. | 1.604 | -0.07853 | -0.1199 | 0.02191 |
+#&gt; |.....................| 0.1056 | -1.650 | -0.4080 | 0.6580 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2834 | 0.2201 | 0.3460 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 50</span>| 480.03472 | 1.000 | -1.551 | -0.8873 | -0.8972 |
+#&gt; |.....................| -0.8660 | -0.5703 | -1.019 | -1.030 |
+#&gt; |.....................| -0.5914 | -0.7201 | -0.6545 |...........|
+#&gt; | U| 480.03472 | 94.21 | -5.967 | -0.9727 | -0.2064 |
+#&gt; |.....................| 2.082 | 1.885 | 0.6528 | 0.7314 |
+#&gt; |.....................| 1.521 | 1.251 | 1.388 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.03472</span> | 94.21 | 0.002563 | 0.2743 | 0.8135 |
+#&gt; |.....................| 8.017 | 1.885 | 0.6528 | 0.7314 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.521 | 1.251 | 1.388 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 51</span>| 480.00362 | 0.9987 | -1.569 | -0.9113 | -0.8938 |
+#&gt; |.....................| -0.8484 | -0.5757 | -1.011 | -1.026 |
+#&gt; |.....................| -0.5851 | -0.7175 | -0.6392 |...........|
+#&gt; | U| 480.00362 | 94.09 | -5.984 | -0.9966 | -0.2030 |
+#&gt; |.....................| 2.099 | 1.880 | 0.6585 | 0.7346 |
+#&gt; |.....................| 1.528 | 1.254 | 1.406 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.00362</span> | 94.09 | 0.002519 | 0.2696 | 0.8163 |
+#&gt; |.....................| 8.160 | 1.880 | 0.6585 | 0.7346 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.528 | 1.254 | 1.406 |...........|</span>
+#&gt; | F| Forward Diff. | -11.27 | -0.06004 | 0.2734 | -0.003181 |
+#&gt; |.....................| -0.1459 | -1.804 | -0.6958 | 0.2356 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.08489 | -0.1057 | -0.1437 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 52</span>| 479.99564 | 1.000 | -1.563 | -0.9133 | -0.8943 |
+#&gt; |.....................| -0.8490 | -0.5744 | -1.010 | -1.027 |
+#&gt; |.....................| -0.5870 | -0.7192 | -0.6381 |...........|
+#&gt; | U| 479.99564 | 94.21 | -5.979 | -0.9986 | -0.2035 |
+#&gt; |.....................| 2.099 | 1.881 | 0.6592 | 0.7342 |
+#&gt; |.....................| 1.526 | 1.252 | 1.407 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99564</span> | 94.21 | 0.002532 | 0.2692 | 0.8159 |
+#&gt; |.....................| 8.155 | 1.881 | 0.6592 | 0.7342 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.526 | 1.252 | 1.407 |...........|</span>
+#&gt; | F| Forward Diff. | 5.442 | -0.04353 | 0.2015 | -0.005586 |
+#&gt; |.....................| -0.1078 | -1.130 | -0.4765 | -0.6210 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.09560 | 0.04932 | 0.1423 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 53</span>| 479.99256 | 0.9995 | -1.560 | -0.9178 | -0.8945 |
+#&gt; |.....................| -0.8473 | -0.5732 | -1.008 | -1.026 |
+#&gt; |.....................| -0.5881 | -0.7196 | -0.6366 |...........|
+#&gt; | U| 479.99256 | 94.16 | -5.975 | -1.003 | -0.2037 |
+#&gt; |.....................| 2.100 | 1.882 | 0.6609 | 0.7344 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99256</span> | 94.16 | 0.002541 | 0.2683 | 0.8157 |
+#&gt; |.....................| 8.169 | 1.882 | 0.6609 | 0.7344 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; | F| Forward Diff. | -1.663 | -0.03616 | -0.04918 | -0.01811 |
+#&gt; |.....................| -0.07323 | -1.616 | -0.5475 | -0.9126 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2713 | -0.2260 | -0.04317 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 54</span>| 479.99337 | 0.9995 | -1.558 | -0.9178 | -0.8940 |
+#&gt; |.....................| -0.8453 | -0.5718 | -1.004 | -1.025 |
+#&gt; |.....................| -0.5887 | -0.7198 | -0.6325 |...........|
+#&gt; | U| 479.99337 | 94.16 | -5.974 | -1.003 | -0.2032 |
+#&gt; |.....................| 2.102 | 1.883 | 0.6641 | 0.7358 |
+#&gt; |.....................| 1.524 | 1.251 | 1.413 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99337</span> | 94.16 | 0.002545 | 0.2683 | 0.8161 |
+#&gt; |.....................| 8.185 | 1.883 | 0.6641 | 0.7358 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.524 | 1.251 | 1.413 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 55</span>| 479.99257 | 0.9996 | -1.559 | -0.9178 | -0.8942 |
+#&gt; |.....................| -0.8464 | -0.5725 | -1.006 | -1.026 |
+#&gt; |.....................| -0.5884 | -0.7197 | -0.6348 |...........|
+#&gt; | U| 479.99257 | 94.17 | -5.975 | -1.003 | -0.2035 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6623 | 0.7351 |
+#&gt; |.....................| 1.525 | 1.252 | 1.411 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99257</span> | 94.17 | 0.002543 | 0.2683 | 0.8159 |
+#&gt; |.....................| 8.175 | 1.883 | 0.6623 | 0.7351 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.411 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 56</span>| 479.99255 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99255 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99255</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; | C| Central Diff. | 1.014 | -0.03924 | -0.07311 | -0.03520 |
+#&gt; |.....................| -0.07193 | -1.047 | -0.3482 | -0.6653 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.001386 | 0.002313 | -0.01832 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 57</span>| 479.99382 | 0.9993 | -1.559 | -0.9177 | -0.8943 |
+#&gt; |.....................| -0.8469 | -0.5723 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99382 | 94.14 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6617 | 0.7350 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99382</span> | 94.14 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6617 | 0.7350 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 58</span>| 479.99260 | 0.9996 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5726 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.9926 | 94.17 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.9926</span> | 94.17 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 59</span>| 479.99255 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99255 | 94.17 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99255</span> | 94.17 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 60</span>| 479.99254 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99254 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99254</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; | C| Central Diff. | 0.7083 | -0.03937 | -0.07377 | -0.03537 |
+#&gt; |.....................| -0.07427 | -1.038 | -0.3482 | -0.6698 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.009774 | 0.01032 | -0.01719 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 61</span>| 479.99255 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99255 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99255</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 62</span>| 479.99264 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99264 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99264</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 63</span>| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99259</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 64</span>| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99259</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 65</span>| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99259</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 66</span>| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99259</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 67</span>| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99259</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 68</span>| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99259</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 69</span>| 479.99258 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99258 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99258</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 70</span>| 479.99258 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99258 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99258</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 71</span>| 479.99258 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#&gt; |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#&gt; |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#&gt; | U| 479.99258 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#&gt; |.....................| 1.525 | 1.252 | 1.409 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99258</span> | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#&gt; |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.252 | 1.409 |...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#&gt; |.....................| log_k2 | g_qlogis | sigma | o1 |
+#&gt; |.....................| o2 | o3 | o4 | o5 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o6 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 514.27068 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 514.27068 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 514.27068</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | G| Gill Diff. | 26.19 | 1.724 | -0.1273 | 0.01210 |
+#&gt; |.....................| -0.2599 | 0.04964 | -46.10 | 17.02 |
+#&gt; |.....................| 9.682 | -11.00 | -4.182 | 3.869 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -10.57 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 1072.3430 | 0.5548 | -1.029 | -0.9091 | -0.9298 |
+#&gt; |.....................| -0.9733 | -0.8898 | -0.07504 | -1.166 |
+#&gt; |.....................| -1.039 | -0.6809 | -0.8005 | -0.9394 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6887 |...........|...........|...........|</span>
+#&gt; | U| 1072.343 | 52.05 | -5.403 | -0.9690 | -1.880 |
+#&gt; |.....................| -4.266 | 0.1355 | 2.292 | 0.5199 |
+#&gt; |.....................| 0.7209 | 1.403 | 1.065 | 0.8339 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.368 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 1072.343</span> | 52.05 | 0.004504 | 0.2751 | 0.1526 |
+#&gt; |.....................| 0.01403 | 0.5338 | 2.292 | 0.5199 |
+#&gt; |.....................| 0.7209 | 1.403 | 1.065 | 0.8339 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.368 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 539.25377 | 0.9555 | -1.003 | -0.9110 | -0.9296 |
+#&gt; |.....................| -0.9773 | -0.8890 | -0.7801 | -0.9058 |
+#&gt; |.....................| -0.8907 | -0.8491 | -0.8645 | -0.8802 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8503 |...........|...........|...........|</span>
+#&gt; | U| 539.25377 | 89.63 | -5.376 | -0.9709 | -1.880 |
+#&gt; |.....................| -4.270 | 0.1356 | 1.712 | 0.7103 |
+#&gt; |.....................| 0.8487 | 1.204 | 1.001 | 0.8867 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.181 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 539.25377</span> | 89.63 | 0.004625 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01398 | 0.5339 | 1.712 | 0.7103 |
+#&gt; |.....................| 0.8487 | 1.204 | 1.001 | 0.8867 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.181 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 527.20532 | 0.9955 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9777 | -0.8889 | -0.8506 | -0.8798 |
+#&gt; |.....................| -0.8759 | -0.8659 | -0.8709 | -0.8743 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8665 |...........|...........|...........|</span>
+#&gt; | U| 527.20532 | 93.39 | -5.374 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.654 | 0.7293 |
+#&gt; |.....................| 0.8615 | 1.184 | 0.9947 | 0.8920 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.162 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.20532</span> | 93.39 | 0.004637 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.654 | 0.7293 |
+#&gt; |.....................| 0.8615 | 1.184 | 0.9947 | 0.8920 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.162 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 527.55150 | 0.9996 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8576 | -0.8772 |
+#&gt; |.....................| -0.8744 | -0.8676 | -0.8715 | -0.8737 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8681 |...........|...........|...........|</span>
+#&gt; | U| 527.5515 | 93.77 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.648 | 0.7312 |
+#&gt; |.....................| 0.8628 | 1.182 | 0.9941 | 0.8925 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.5515</span> | 93.77 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.648 | 0.7312 |
+#&gt; |.....................| 0.8628 | 1.182 | 0.9941 | 0.8925 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 527.60332 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8743 | -0.8678 | -0.8716 | -0.8737 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8682 |...........|...........|...........|</span>
+#&gt; | U| 527.60332 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.60332</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 527.60868 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.60868 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.60868</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 527.60932 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.60932 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.60932</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 527.60939 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.60939 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.60939</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 527.60940 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.6094 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.6094</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 527.60940 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.6094 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.6094</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 527.60940 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.6094 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.6094</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.60941</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.60941</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.60941</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.60941</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#&gt; |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8683 |...........|...........|...........|</span>
+#&gt; | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#&gt; |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.60941</span> | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#&gt; |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#&gt; |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 |...........|...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
<span class='co'># Variance by variable is supported by 'saem' and 'focei'</span>
<span class='va'>f_nlmixr_fomc_sfo_saem_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 1.288 0.09 1.379</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
-#&gt; <span class='message'>cmt(A1);</span>
-#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
-#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
-#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
-#&gt; <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span>
-#&gt; <span class='message'>rx_expr_12~exp(-(rx_expr_8));</span>
-#&gt; <span class='message'>rx_expr_14~t*rx_expr_12;</span>
-#&gt; <span class='message'>rx_expr_15~1+rx_expr_14;</span>
-#&gt; <span class='message'>rx_expr_17~rx_expr_7-(rx_expr_8);</span>
-#&gt; <span class='message'>rx_expr_19~exp(rx_expr_17);</span>
-#&gt; <span class='message'>d/dt(parent)=-rx_expr_19*parent/(rx_expr_15);</span>
-#&gt; <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span>
-#&gt; <span class='message'>rx_expr_11~exp(rx_expr_9);</span>
-#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_19*parent*f_parent_to_A1/(rx_expr_15);</span>
-#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
-#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
-#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
-#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_13~rx_expr_5*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_lambda_~rx_expr_13+rx_expr_3;</span>
-#&gt; <span class='message'>rx_hi_~rx_expr_13+rx_expr_3;</span>
-#&gt; <span class='message'>rx_low_~0;</span>
-#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_10~parent*(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_16~rx_expr_10*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_r_=(rx_expr_0)*Rx_pow_di(THETA[7],2)+(rx_expr_2)*(rx_expr_1)*Rx_pow_di(THETA[6],2);</span>
-#&gt; <span class='message'>parent_0=THETA[1];</span>
-#&gt; <span class='message'>log_k_A1=THETA[2];</span>
-#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
-#&gt; <span class='message'>log_alpha=THETA[4];</span>
-#&gt; <span class='message'>log_beta=THETA[5];</span>
-#&gt; <span class='message'>sigma_parent=THETA[6];</span>
-#&gt; <span class='message'>sigma_A1=THETA[7];</span>
-#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
-#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
-#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
-#&gt; <span class='message'>eta.log_alpha=ETA[4];</span>
-#&gt; <span class='message'>eta.log_beta=ETA[5];</span>
-#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
-#&gt; <span class='message'>k_A1=rx_expr_11;</span>
-#&gt; <span class='message'>alpha=exp(rx_expr_7);</span>
-#&gt; <span class='message'>beta=exp(rx_expr_8);</span>
-#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
-#&gt; <span class='message'>tad=tad();</span>
-#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 6.666 0.38 7.044</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 1.39 0.093 1.483</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
-#&gt; <span class='message'>cmt(A1);</span>
-#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
-#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
-#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
-#&gt; <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span>
-#&gt; <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span>
-#&gt; <span class='message'>rx_expr_12~exp(rx_expr_7);</span>
-#&gt; <span class='message'>rx_expr_13~exp(rx_expr_9);</span>
-#&gt; <span class='message'>rx_expr_15~t*rx_expr_12;</span>
-#&gt; <span class='message'>rx_expr_16~t*rx_expr_13;</span>
-#&gt; <span class='message'>rx_expr_17~exp(-(rx_expr_8));</span>
-#&gt; <span class='message'>rx_expr_19~1+rx_expr_17;</span>
-#&gt; <span class='message'>rx_expr_24~1/(rx_expr_19);</span>
-#&gt; <span class='message'>rx_expr_26~(rx_expr_24);</span>
-#&gt; <span class='message'>rx_expr_27~1-rx_expr_26;</span>
-#&gt; <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span>
-#&gt; <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span>
-#&gt; <span class='message'>rx_expr_14~exp(rx_expr_10);</span>
-#&gt; <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span>
-#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
-#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
-#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
-#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_18~rx_expr_5*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_lambda_~rx_expr_18+rx_expr_3;</span>
-#&gt; <span class='message'>rx_hi_~rx_expr_18+rx_expr_3;</span>
-#&gt; <span class='message'>rx_low_~0;</span>
-#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_11~parent*(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_22~rx_expr_11*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_r_=(rx_expr_0)*Rx_pow_di(THETA[8],2)+(rx_expr_2)*(rx_expr_1)*Rx_pow_di(THETA[7],2);</span>
-#&gt; <span class='message'>parent_0=THETA[1];</span>
-#&gt; <span class='message'>log_k_A1=THETA[2];</span>
-#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
-#&gt; <span class='message'>log_k1=THETA[4];</span>
-#&gt; <span class='message'>log_k2=THETA[5];</span>
-#&gt; <span class='message'>g_qlogis=THETA[6];</span>
-#&gt; <span class='message'>sigma_parent=THETA[7];</span>
-#&gt; <span class='message'>sigma_A1=THETA[8];</span>
-#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
-#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
-#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
-#&gt; <span class='message'>eta.log_k1=ETA[4];</span>
-#&gt; <span class='message'>eta.log_k2=ETA[5];</span>
-#&gt; <span class='message'>eta.g_qlogis=ETA[6];</span>
-#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
-#&gt; <span class='message'>k_A1=rx_expr_14;</span>
-#&gt; <span class='message'>k1=rx_expr_12;</span>
-#&gt; <span class='message'>k2=rx_expr_13;</span>
-#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
-#&gt; <span class='message'>g=1/(rx_expr_19);</span>
-#&gt; <span class='message'>tad=tad();</span>
-#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 14.67 0.529 15.2</span></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; 1: 93.6104 -5.6552 -0.1308 2.1755 -1.1174 2.9315 1.6064 0.6616 0.5897 0.4753 9.7765 10.2253
+#&gt; 2: 93.8838 -5.6936 -0.1062 2.2361 -1.0529 2.7849 1.5260 0.6285 0.5602 0.4515 7.9206 5.2721
+#&gt; 3: 93.9304 -5.7260 -0.0940 2.2480 -1.0317 2.6457 1.4889 0.5971 0.5322 0.4290 7.5051 3.6573
+#&gt; 4: 93.6107 -5.7914 -0.0929 2.2382 -1.0171 2.5134 2.0027 0.5676 0.5056 0.4075 7.3763 3.1438
+#&gt; 5: 93.7262 -5.7517 -0.0926 2.2365 -1.0306 2.3877 1.9026 0.5679 0.4803 0.3871 7.2914 3.0275
+#&gt; 6: 93.7261 -5.7719 -0.0823 2.2625 -1.0391 2.2683 2.1168 0.5638 0.4563 0.3678 7.0857 2.8196
+#&gt; 7: 93.5991 -5.8553 -0.0917 2.2659 -1.0146 2.1549 2.3708 0.5618 0.4335 0.3494 6.9413 2.7447
+#&gt; 8: 93.4288 -5.8969 -0.0885 2.2757 -1.0253 2.1183 2.4324 0.5615 0.4118 0.3319 7.2269 2.6781
+#&gt; 9: 93.4049 -6.1188 -0.0863 2.2841 -1.0154 2.0124 3.0090 0.5633 0.3912 0.3153 7.2084 2.7464
+#&gt; 10: 93.4773 -6.1940 -0.0816 2.2893 -1.0174 1.9958 3.6308 0.5540 0.3716 0.2996 7.2414 2.8980
+#&gt; 11: 93.5334 -6.1739 -0.0772 2.2901 -1.0479 2.2841 3.4492 0.5567 0.3531 0.2846 7.0567 2.8159
+#&gt; 12: 93.5824 -6.3716 -0.0875 2.2706 -1.0452 2.1699 4.3087 0.5505 0.3354 0.2704 7.2970 2.3790
+#&gt; 13: 93.8528 -6.3302 -0.0846 2.2564 -1.0302 2.0614 4.6014 0.5475 0.3186 0.2568 7.3901 2.1942
+#&gt; 14: 94.0343 -6.1408 -0.0887 2.2666 -1.0280 1.9995 4.3714 0.5202 0.3027 0.2440 7.1696 2.0730
+#&gt; 15: 94.1712 -6.3900 -0.0759 2.2825 -1.0112 1.8995 5.0913 0.5358 0.2876 0.2318 7.2155 2.0259
+#&gt; 16: 93.9481 -6.1284 -0.0798 2.2707 -1.0264 1.8046 4.8368 0.5501 0.2732 0.2202 7.2731 2.0912
+#&gt; 17: 93.7828 -6.2736 -0.0852 2.2870 -1.0249 1.7143 4.5949 0.5408 0.2595 0.2092 7.0213 2.0417
+#&gt; 18: 93.8758 -6.3616 -0.0851 2.2713 -1.0157 1.8699 4.9132 0.5349 0.2465 0.1987 7.0613 1.8601
+#&gt; 19: 93.7565 -6.5413 -0.0866 2.2695 -1.0166 2.5251 5.9754 0.5312 0.2547 0.1888 7.2555 1.7947
+#&gt; 20: 93.7233 -6.3942 -0.0970 2.2620 -1.0195 2.3989 5.6766 0.5484 0.2576 0.1794 7.0292 1.8687
+#&gt; 21: 93.8298 -6.2619 -0.0974 2.2570 -1.0118 2.2789 5.3928 0.5497 0.2545 0.1704 6.7138 1.8157
+#&gt; 22: 93.9520 -6.1633 -0.0874 2.2777 -1.0274 2.1650 5.1232 0.5437 0.2641 0.1622 6.8254 1.8443
+#&gt; 23: 93.8442 -6.3255 -0.0855 2.2568 -1.0151 2.1243 4.9615 0.5334 0.2885 0.1556 6.8049 1.8073
+#&gt; 24: 93.9659 -6.5470 -0.0855 2.2572 -1.0178 2.0788 6.2156 0.5425 0.2834 0.1583 6.9598 1.8686
+#&gt; 25: 94.3004 -6.4881 -0.0920 2.2371 -1.0187 3.2507 5.9048 0.5367 0.2872 0.1609 6.8709 1.8839
+#&gt; 26: 94.1750 -6.4437 -0.0964 2.2337 -1.0301 3.1136 5.6096 0.5307 0.2820 0.1611 6.5948 1.8742
+#&gt; 27: 94.6007 -6.3072 -0.0750 2.2936 -1.0343 3.9844 5.3291 0.5042 0.2679 0.1695 6.7524 1.8335
+#&gt; 28: 94.4915 -6.1389 -0.0826 2.2730 -1.0223 3.7852 5.0626 0.4998 0.2590 0.1812 6.4646 1.8937
+#&gt; 29: 94.1900 -6.1516 -0.0836 2.2680 -1.0287 3.7861 4.8095 0.4976 0.2612 0.1875 6.4674 1.8998
+#&gt; 30: 94.6632 -6.0574 -0.0773 2.2637 -1.0280 3.5968 4.5690 0.4948 0.2525 0.2040 6.5945 1.9022
+#&gt; 31: 94.3460 -6.1684 -0.0761 2.2677 -1.0276 3.4170 4.3406 0.4901 0.2690 0.2038 6.9918 1.8446
+#&gt; 32: 94.4385 -5.9347 -0.0751 2.2893 -1.0146 3.3283 4.1235 0.4882 0.2576 0.2002 6.7622 1.7754
+#&gt; 33: 94.7021 -5.9329 -0.0787 2.2987 -1.0108 3.3485 3.9174 0.4859 0.2640 0.1941 6.9648 1.8014
+#&gt; 34: 94.4058 -6.0311 -0.0692 2.2980 -1.0125 3.1811 3.7215 0.4994 0.2676 0.1936 6.9791 1.7561
+#&gt; 35: 94.4503 -6.0470 -0.0692 2.2950 -1.0100 3.5600 3.7611 0.4994 0.2637 0.1928 6.8010 1.7890
+#&gt; 36: 94.3400 -6.0339 -0.0792 2.2960 -1.0204 3.3820 3.5731 0.4822 0.2638 0.1887 6.6462 1.6763
+#&gt; 37: 94.1497 -6.0221 -0.0879 2.2653 -1.0073 3.2129 3.3944 0.4979 0.2506 0.1793 6.4853 1.7911
+#&gt; 38: 94.1574 -5.8638 -0.0884 2.2752 -1.0156 3.0523 3.2247 0.4992 0.2435 0.1772 6.4329 1.7707
+#&gt; 39: 94.1680 -5.9558 -0.0948 2.2535 -1.0205 2.8997 3.0635 0.5065 0.2448 0.1819 6.4462 1.8100
+#&gt; 40: 94.0516 -6.0814 -0.0881 2.2531 -1.0356 2.7547 3.4976 0.4949 0.2515 0.1827 6.4734 1.8133
+#&gt; 41: 94.1522 -6.1880 -0.0849 2.2618 -1.0230 2.6170 4.1610 0.5129 0.2389 0.1797 6.4165 1.7782
+#&gt; 42: 94.2178 -6.1829 -0.0854 2.2791 -1.0325 2.8092 4.1174 0.5052 0.2288 0.1853 6.4332 1.7883
+#&gt; 43: 93.9083 -6.1600 -0.0831 2.2860 -1.0350 2.9631 3.9116 0.4914 0.2310 0.1826 6.4865 1.8449
+#&gt; 44: 93.9636 -6.1494 -0.0824 2.2903 -1.0150 2.8149 3.7221 0.4921 0.2214 0.1805 6.4818 1.9385
+#&gt; 45: 93.9937 -6.2329 -0.0895 2.2832 -1.0157 4.2815 4.5622 0.5075 0.2250 0.1796 6.4098 1.8355
+#&gt; 46: 93.8001 -6.1784 -0.0944 2.2664 -1.0212 4.0674 4.3341 0.5023 0.2274 0.1795 6.5539 1.7875
+#&gt; 47: 93.8997 -6.3400 -0.0945 2.2627 -1.0183 3.8641 4.9860 0.5017 0.2312 0.1834 6.5497 1.7838
+#&gt; 48: 93.7861 -6.3496 -0.0944 2.2713 -1.0255 3.6709 5.3403 0.5025 0.2197 0.1839 6.1766 1.9080
+#&gt; 49: 93.7128 -6.3914 -0.0944 2.2752 -1.0137 3.4873 5.6007 0.5051 0.2198 0.1788 6.3050 1.8320
+#&gt; 50: 94.1645 -6.3056 -0.0945 2.2755 -1.0062 3.3130 5.3207 0.4998 0.2176 0.1781 6.4998 1.8516
+#&gt; 51: 93.9897 -6.1556 -0.1026 2.2633 -1.0097 3.1473 5.0547 0.4853 0.2439 0.1796 6.3184 1.7981
+#&gt; 52: 93.7604 -6.2264 -0.1068 2.2485 -0.9936 2.9899 4.8209 0.4887 0.2542 0.1793 6.5076 1.7916
+#&gt; 53: 93.8821 -6.5447 -0.1049 2.2546 -1.0020 2.8404 6.5603 0.4701 0.2556 0.1789 6.5735 1.7763
+#&gt; 54: 93.8865 -6.4028 -0.1081 2.2507 -1.0162 2.6984 6.2323 0.4724 0.2576 0.1846 6.3607 1.8295
+#&gt; 55: 94.0120 -6.5455 -0.0986 2.2728 -1.0119 2.5635 6.3983 0.4550 0.2686 0.1773 6.6815 1.7869
+#&gt; 56: 94.1921 -6.6581 -0.0953 2.2713 -1.0151 2.4353 8.2169 0.4478 0.2675 0.1763 6.6257 1.7873
+#&gt; 57: 93.8812 -6.4499 -0.1081 2.2447 -1.0182 2.3136 7.8060 0.4683 0.2562 0.1804 6.2421 1.8455
+#&gt; 58: 93.9830 -6.5112 -0.1092 2.2436 -1.0136 2.1979 7.4157 0.4695 0.2569 0.1762 6.3196 1.8224
+#&gt; 59: 93.8537 -6.6528 -0.1105 2.2390 -1.0089 2.0880 9.0039 0.4689 0.2534 0.1692 6.3735 1.8049
+#&gt; 60: 93.7399 -6.4780 -0.1212 2.2263 -0.9979 1.9836 8.5537 0.4565 0.2445 0.1696 6.4748 1.8439
+#&gt; 61: 93.8180 -6.4608 -0.1243 2.2275 -1.0039 1.8844 8.1260 0.4630 0.2414 0.1693 6.3936 1.7653
+#&gt; 62: 93.5774 -6.3127 -0.1298 2.2250 -1.0022 1.7902 7.7197 0.4711 0.2452 0.1708 6.5708 1.8014
+#&gt; 63: 93.5731 -6.2060 -0.1327 2.2213 -1.0031 1.7007 7.3337 0.4685 0.2426 0.1712 6.4933 1.8318
+#&gt; 64: 93.3587 -6.2299 -0.1316 2.2290 -1.0004 1.6302 6.9671 0.4694 0.2460 0.1710 6.2584 1.8361
+#&gt; 65: 93.2982 -6.1900 -0.1354 2.2341 -0.9963 1.5487 6.6187 0.4685 0.2482 0.1750 6.0950 1.8341
+#&gt; 66: 93.4532 -6.2107 -0.1251 2.2254 -0.9786 1.4713 6.2878 0.4822 0.2489 0.1701 6.3732 1.7951
+#&gt; 67: 93.5878 -6.1823 -0.1208 2.2455 -0.9766 1.3977 5.9734 0.4860 0.2407 0.1668 6.4456 1.8371
+#&gt; 68: 93.5819 -5.9209 -0.1200 2.2599 -0.9792 1.3278 5.6747 0.4793 0.2412 0.1686 6.5728 1.8144
+#&gt; 69: 93.4002 -6.1142 -0.1242 2.2542 -0.9878 1.4433 5.3910 0.4730 0.2511 0.1830 6.3888 1.7900
+#&gt; 70: 93.2631 -6.1875 -0.1271 2.2639 -0.9844 1.5244 5.1214 0.4711 0.2444 0.1770 6.5093 1.7117
+#&gt; 71: 93.2629 -6.2944 -0.1275 2.2418 -0.9805 1.4481 4.8654 0.4612 0.2522 0.1748 6.4659 1.8500
+#&gt; 72: 93.0324 -6.2727 -0.1332 2.2421 -0.9766 1.3757 5.1467 0.4519 0.2524 0.1673 6.3452 1.8054
+#&gt; 73: 93.0174 -6.4402 -0.1391 2.2320 -0.9795 1.3069 6.1963 0.4480 0.2563 0.1637 6.3915 1.8506
+#&gt; 74: 93.0073 -6.4286 -0.1450 2.2241 -0.9962 1.2416 6.0011 0.4510 0.2461 0.1682 6.6924 1.8302
+#&gt; 75: 93.2607 -6.5056 -0.1379 2.2233 -0.9926 1.1795 6.0508 0.4573 0.2540 0.1669 6.4813 1.7896
+#&gt; 76: 93.2937 -6.1637 -0.1404 2.2228 -0.9970 1.1205 5.7483 0.4588 0.2529 0.1656 6.3781 1.7976
+#&gt; 77: 93.2223 -6.1702 -0.1381 2.2200 -0.9858 1.4369 5.4609 0.4633 0.2585 0.1697 6.3510 1.8749
+#&gt; 78: 93.3189 -6.1924 -0.1355 2.2238 -0.9944 1.3651 5.1878 0.4608 0.2631 0.1612 6.1888 1.7669
+#&gt; 79: 93.2417 -6.6345 -0.1335 2.2340 -0.9865 1.2968 7.3486 0.4570 0.2564 0.1532 6.0902 1.7505
+#&gt; 80: 93.3476 -6.3069 -0.1305 2.2319 -0.9880 1.6281 6.9812 0.4649 0.2525 0.1514 6.0659 1.7582
+#&gt; 81: 93.4798 -6.3145 -0.1253 2.2468 -0.9989 1.9108 6.6321 0.4447 0.2583 0.1579 6.0843 1.7959
+#&gt; 82: 93.2745 -6.2461 -0.1184 2.2529 -0.9937 1.8153 6.3005 0.4439 0.2602 0.1691 6.2826 1.7896
+#&gt; 83: 93.4628 -6.3953 -0.1189 2.2640 -0.9880 1.7245 6.1094 0.4430 0.2612 0.1709 6.4474 1.6820
+#&gt; 84: 93.3664 -6.2885 -0.1105 2.2675 -0.9875 1.6383 6.1170 0.4498 0.2689 0.1719 6.4847 1.6731
+#&gt; 85: 93.5090 -6.3029 -0.1095 2.2709 -0.9898 1.6666 6.1406 0.4365 0.2693 0.1710 6.2452 1.6594
+#&gt; 86: 93.5097 -6.2256 -0.1106 2.2701 -0.9928 1.5833 6.2468 0.4365 0.2749 0.1632 6.2007 1.7178
+#&gt; 87: 93.5165 -6.3038 -0.1046 2.2731 -0.9877 1.5041 5.9345 0.4398 0.2667 0.1603 6.3928 1.7003
+#&gt; 88: 93.3766 -6.2723 -0.1071 2.2771 -0.9881 1.4289 5.6378 0.4241 0.2538 0.1598 6.1043 1.6772
+#&gt; 89: 93.4448 -6.0430 -0.1102 2.2781 -0.9725 1.3575 5.3559 0.4187 0.2915 0.1518 6.0153 1.7593
+#&gt; 90: 93.2843 -6.1065 -0.1089 2.2866 -0.9705 1.5362 5.0881 0.4203 0.2844 0.1656 5.9235 1.6631
+#&gt; 91: 93.4159 -6.0210 -0.1095 2.2879 -0.9798 2.1371 4.8337 0.4245 0.2857 0.1573 5.9182 1.7482
+#&gt; 92: 93.3198 -6.2526 -0.1075 2.2919 -0.9791 2.0303 4.7352 0.4159 0.2918 0.1590 6.0853 1.6755
+#&gt; 93: 93.3269 -6.1838 -0.1173 2.2809 -0.9999 1.9287 4.4985 0.4211 0.2893 0.1684 6.1189 1.6734
+#&gt; 94: 93.2077 -6.1086 -0.1148 2.2890 -0.9918 2.1061 4.2736 0.4230 0.2802 0.1662 5.9328 1.7116
+#&gt; 95: 93.0207 -6.1510 -0.1170 2.2665 -0.9791 2.1360 4.0630 0.4199 0.2937 0.1734 6.1415 1.6737
+#&gt; 96: 93.2134 -6.1614 -0.1152 2.2861 -0.9711 2.5372 4.1579 0.4211 0.2790 0.1647 6.1575 1.6338
+#&gt; 97: 93.1425 -6.2333 -0.1140 2.2912 -0.9665 2.4103 4.4551 0.4136 0.2835 0.1645 6.0790 1.6652
+#&gt; 98: 92.9412 -6.2651 -0.1167 2.2847 -0.9738 2.2898 4.7233 0.4095 0.2882 0.1836 5.9305 1.6158
+#&gt; 99: 92.9087 -6.1870 -0.1177 2.2833 -0.9744 2.1753 4.4872 0.4142 0.2913 0.1876 5.9838 1.7003
+#&gt; 100: 92.7788 -6.2113 -0.1146 2.2928 -0.9939 2.0665 4.4195 0.4109 0.2945 0.1866 6.0195 1.7275
+#&gt; 101: 92.8783 -6.0718 -0.1080 2.2959 -0.9968 1.9632 4.1985 0.4142 0.2966 0.1778 6.2542 1.6844
+#&gt; 102: 93.0451 -6.3706 -0.1086 2.2894 -0.9974 1.8650 5.2121 0.4135 0.3030 0.1769 6.2204 1.6281
+#&gt; 103: 93.2901 -6.4069 -0.1066 2.2943 -0.9896 1.7718 5.7453 0.4152 0.2879 0.1818 6.0239 1.7299
+#&gt; 104: 93.3437 -6.3694 -0.1063 2.2769 -0.9914 1.6832 5.8903 0.4210 0.2884 0.1855 6.1116 1.7415
+#&gt; 105: 93.4609 -6.2767 -0.1060 2.2751 -1.0157 1.5990 5.5958 0.4214 0.2865 0.1841 6.1287 1.7322
+#&gt; 106: 93.5833 -6.2340 -0.1006 2.2879 -1.0084 1.8669 5.3160 0.4272 0.2982 0.1829 6.0211 1.6726
+#&gt; 107: 93.7800 -6.1505 -0.0948 2.2685 -1.0219 1.7735 5.0502 0.4325 0.2841 0.1753 5.8556 1.7636
+#&gt; 108: 93.8532 -6.3744 -0.0938 2.2650 -1.0210 2.0297 5.7080 0.4307 0.2836 0.1701 6.0669 1.6804
+#&gt; 109: 93.8994 -6.3544 -0.0829 2.2862 -1.0287 1.9282 5.4226 0.4184 0.3113 0.1789 6.2343 1.6667
+#&gt; 110: 94.0150 -6.5609 -0.0905 2.2821 -1.0088 2.1118 6.8121 0.4276 0.3275 0.1845 6.1640 1.6706
+#&gt; 111: 93.7887 -6.0185 -0.0925 2.2831 -1.0097 2.0062 6.4715 0.4209 0.3255 0.1852 6.2823 1.6301
+#&gt; 112: 93.9709 -6.0918 -0.0934 2.2857 -1.0067 2.2032 6.1479 0.4207 0.3285 0.1817 6.1718 1.6494
+#&gt; 113: 93.8761 -6.3434 -0.0955 2.2919 -1.0223 2.5209 5.8405 0.4259 0.3293 0.1842 6.0377 1.6431
+#&gt; 114: 93.6959 -6.2312 -0.0934 2.2782 -1.0154 2.3949 5.5485 0.4237 0.3460 0.1814 6.2225 1.6229
+#&gt; 115: 93.5487 -6.0915 -0.0971 2.2836 -1.0083 2.2751 5.2711 0.4199 0.3557 0.1783 6.5929 1.6479
+#&gt; 116: 93.5953 -6.1479 -0.1013 2.2760 -1.0018 2.1614 5.0075 0.4163 0.3399 0.1794 6.1822 1.6222
+#&gt; 117: 93.3508 -6.1730 -0.1076 2.2632 -0.9953 2.0533 4.7571 0.4057 0.3303 0.1803 6.3444 1.7106
+#&gt; 118: 93.4462 -5.9724 -0.1177 2.2557 -0.9963 2.0318 4.5193 0.3956 0.3349 0.1920 6.0439 1.7146
+#&gt; 119: 93.5841 -6.0400 -0.1151 2.2480 -1.0035 1.9956 4.2933 0.3968 0.3448 0.1929 6.0754 1.6750
+#&gt; 120: 93.4891 -6.0937 -0.1175 2.2499 -1.0006 1.8958 4.0786 0.3927 0.3392 0.1927 6.1654 1.6495
+#&gt; 121: 93.4611 -6.1371 -0.1217 2.2538 -1.0067 1.8011 3.8747 0.3864 0.3549 0.1851 5.9558 1.6940
+#&gt; 122: 93.4636 -6.1015 -0.1243 2.2564 -1.0002 1.7414 3.6810 0.3840 0.3557 0.1860 6.0583 1.6629
+#&gt; 123: 93.2988 -5.9318 -0.1243 2.2601 -0.9989 2.2063 3.4969 0.3840 0.3543 0.1833 5.9686 1.5966
+#&gt; 124: 93.4200 -5.9847 -0.1231 2.2594 -0.9991 2.0959 3.3221 0.3846 0.3544 0.1787 6.1292 1.5957
+#&gt; 125: 93.3727 -6.1217 -0.1239 2.2584 -1.0082 1.9911 3.6395 0.3838 0.3577 0.1782 6.2794 1.6262
+#&gt; 126: 93.4956 -6.0529 -0.1244 2.2482 -1.0096 1.8916 3.4576 0.3847 0.3505 0.1753 6.1181 1.6347
+#&gt; 127: 93.6265 -5.9360 -0.1298 2.2342 -1.0075 1.7970 3.2847 0.3887 0.3367 0.1691 6.2315 1.7051
+#&gt; 128: 93.4446 -6.0523 -0.1337 2.2453 -1.0079 1.7072 3.1205 0.3840 0.3302 0.1759 6.2082 1.6705
+#&gt; 129: 93.4470 -6.0065 -0.1321 2.2321 -1.0015 1.6636 2.9644 0.3853 0.3303 0.1671 6.1479 1.6733
+#&gt; 130: 93.3205 -5.9628 -0.1290 2.2252 -0.9954 2.0336 2.9210 0.3879 0.3284 0.1634 6.0582 1.6372
+#&gt; 131: 93.3836 -5.8919 -0.1358 2.2375 -0.9930 2.1392 2.7749 0.3801 0.3202 0.1644 5.9972 1.6837
+#&gt; 132: 93.1041 -5.9265 -0.1203 2.2552 -0.9929 2.0323 2.8741 0.3831 0.3353 0.1755 6.0648 1.5934
+#&gt; 133: 93.1617 -6.0668 -0.1175 2.2538 -0.9963 1.9306 3.6825 0.3846 0.3187 0.1790 6.0732 1.5684
+#&gt; 134: 93.1503 -6.1208 -0.1232 2.2644 -0.9851 2.3429 3.8026 0.3788 0.3296 0.1737 5.8807 1.5722
+#&gt; 135: 92.8629 -5.9726 -0.1197 2.2650 -0.9761 2.2257 3.6124 0.3802 0.3407 0.1765 5.8408 1.5446
+#&gt; 136: 93.1460 -6.0654 -0.1227 2.2661 -0.9736 2.1144 3.4583 0.3770 0.3434 0.1700 5.7690 1.5561
+#&gt; 137: 93.1243 -6.2350 -0.1274 2.2472 -0.9811 2.0087 4.3526 0.3733 0.3670 0.1615 5.9377 1.5224
+#&gt; 138: 93.1203 -6.1704 -0.1283 2.2472 -0.9891 1.9083 4.1557 0.3788 0.3671 0.1641 5.8765 1.5525
+#&gt; 139: 93.2841 -6.0586 -0.1366 2.2404 -0.9894 1.8129 4.3184 0.3718 0.3693 0.1630 6.1854 1.6388
+#&gt; 140: 93.4239 -6.2398 -0.1382 2.2459 -0.9713 1.7241 4.5903 0.3713 0.3627 0.1548 6.0737 1.5826
+#&gt; 141: 93.4149 -6.1972 -0.1388 2.2605 -0.9686 2.2179 4.5557 0.3701 0.3675 0.1486 6.0793 1.5603
+#&gt; 142: 93.4404 -5.8955 -0.1203 2.2682 -0.9706 2.1070 4.3279 0.3830 0.3719 0.1581 5.9534 1.6189
+#&gt; 143: 93.3108 -5.8069 -0.1142 2.2835 -0.9672 2.0194 4.1115 0.3787 0.3924 0.1592 5.9410 1.5521
+#&gt; 144: 93.3953 -5.7456 -0.1154 2.2891 -0.9553 2.2741 3.9059 0.3787 0.3849 0.1633 6.0163 1.5640
+#&gt; 145: 93.3322 -5.8301 -0.1100 2.2926 -0.9595 2.1604 3.7106 0.3687 0.3754 0.1657 5.8968 1.5844
+#&gt; 146: 93.0844 -5.8926 -0.1084 2.2870 -0.9605 2.0524 3.5251 0.3649 0.3713 0.1646 6.1960 1.5691
+#&gt; 147: 93.2106 -6.0084 -0.1074 2.2931 -0.9654 1.9498 3.5341 0.3646 0.3669 0.1641 6.0548 1.5230
+#&gt; 148: 93.2005 -6.1989 -0.1065 2.2924 -0.9740 1.8523 4.4855 0.3631 0.3660 0.1759 5.9600 1.5194
+#&gt; 149: 93.0788 -6.2470 -0.1108 2.2861 -0.9836 2.1348 4.7630 0.3597 0.3815 0.1815 5.9584 1.5227
+#&gt; 150: 93.2241 -6.2660 -0.1126 2.2847 -0.9912 2.1149 5.0574 0.3656 0.3788 0.1781 5.7213 1.5379
+#&gt; 151: 93.0046 -6.5379 -0.1164 2.2757 -0.9845 2.0092 6.8660 0.3719 0.3827 0.1807 5.7612 1.5697
+#&gt; 152: 93.2222 -6.4637 -0.1154 2.2737 -0.9950 1.6744 6.2289 0.3670 0.3881 0.1638 5.8514 1.5920
+#&gt; 153: 93.1619 -6.3230 -0.1224 2.2638 -0.9924 1.7907 5.5429 0.3842 0.3946 0.1720 5.7562 1.5493
+#&gt; 154: 93.0402 -6.4004 -0.1205 2.2633 -0.9868 1.7620 6.2494 0.3860 0.3891 0.1737 5.7577 1.5109
+#&gt; 155: 93.1692 -6.4353 -0.1203 2.2696 -0.9761 1.8710 6.4519 0.3949 0.3962 0.1721 5.8348 1.4949
+#&gt; 156: 93.2709 -6.2672 -0.1203 2.2663 -0.9708 2.1172 5.1692 0.3949 0.4187 0.1637 6.1251 1.5012
+#&gt; 157: 93.1264 -6.1931 -0.1208 2.2728 -0.9669 1.9985 4.7739 0.3938 0.4031 0.1696 6.1014 1.5627
+#&gt; 158: 93.1263 -6.1951 -0.1237 2.2826 -0.9729 1.7675 4.6131 0.3928 0.3904 0.1659 6.1582 1.5647
+#&gt; 159: 92.9780 -6.2831 -0.1242 2.2726 -0.9770 1.8348 5.4674 0.3938 0.3887 0.1631 6.0622 1.5787
+#&gt; 160: 93.1289 -6.4397 -0.1263 2.2651 -0.9675 2.4637 6.0560 0.3919 0.4017 0.1626 5.9486 1.5859
+#&gt; 161: 93.2629 -6.3336 -0.1294 2.2670 -0.9666 2.9602 5.4966 0.3872 0.3988 0.1667 5.9034 1.5421
+#&gt; 162: 93.1652 -6.3800 -0.1342 2.2518 -0.9754 2.8800 5.6206 0.3908 0.4158 0.1627 5.9332 1.5306
+#&gt; 163: 93.2886 -6.4115 -0.1437 2.2330 -0.9685 1.9997 6.2760 0.4015 0.4076 0.1623 5.7905 1.5398
+#&gt; 164: 93.4631 -6.7246 -0.1396 2.2358 -0.9854 1.8885 7.8014 0.3952 0.4028 0.1573 5.7052 1.5695
+#&gt; 165: 93.4757 -6.8408 -0.1404 2.2346 -0.9825 2.4877 9.3632 0.3948 0.4019 0.1615 5.8406 1.5902
+#&gt; 166: 93.9075 -6.7707 -0.1428 2.2331 -0.9848 1.9761 8.9292 0.3939 0.3909 0.1610 5.7600 1.5966
+#&gt; 167: 93.8895 -7.1938 -0.1363 2.2449 -0.9870 2.0894 11.4058 0.3850 0.3899 0.1627 5.8501 1.5748
+#&gt; 168: 93.5849 -6.8478 -0.1294 2.2466 -0.9888 2.3573 9.4037 0.3935 0.3808 0.1645 6.0206 1.6591
+#&gt; 169: 93.4931 -6.4550 -0.1173 2.2727 -0.9990 2.1948 6.5738 0.3844 0.4029 0.1699 6.0990 1.6123
+#&gt; 170: 93.7188 -6.4015 -0.1173 2.2715 -0.9981 1.8800 6.1745 0.3844 0.4001 0.1635 6.1990 1.5745
+#&gt; 171: 93.5938 -6.4389 -0.1119 2.2663 -0.9893 2.5731 6.5397 0.3858 0.4044 0.1554 6.1636 1.5631
+#&gt; 172: 93.4515 -6.2049 -0.1050 2.2937 -0.9701 2.6134 4.6813 0.3687 0.4017 0.1715 6.3875 1.5006
+#&gt; 173: 93.2254 -6.2074 -0.1041 2.3111 -0.9661 2.5799 4.6939 0.3669 0.4016 0.1738 6.5633 1.5229
+#&gt; 174: 93.4116 -6.1198 -0.1050 2.3075 -0.9711 3.0196 4.3080 0.3720 0.3988 0.1778 6.4856 1.5214
+#&gt; 175: 93.4952 -6.0439 -0.1050 2.3008 -0.9714 3.1172 3.7728 0.3720 0.3979 0.1749 6.1918 1.4985
+#&gt; 176: 93.6186 -6.0891 -0.1061 2.3033 -0.9794 2.1081 3.8909 0.3705 0.4029 0.1796 6.1064 1.4657
+#&gt; 177: 93.6432 -5.9977 -0.1031 2.2953 -0.9950 1.9411 3.4156 0.3694 0.3970 0.1843 6.0473 1.4918
+#&gt; 178: 93.5736 -6.0079 -0.0996 2.2986 -0.9809 1.7778 3.5107 0.3696 0.3909 0.1840 6.1243 1.4937
+#&gt; 179: 93.6407 -6.0246 -0.0977 2.3042 -0.9770 2.0631 3.8144 0.3718 0.3885 0.1798 6.1851 1.5212
+#&gt; 180: 93.6336 -5.8865 -0.0969 2.3217 -0.9871 2.2566 3.1377 0.3721 0.3715 0.1784 6.0747 1.5546
+#&gt; 181: 93.5075 -5.8632 -0.0965 2.3140 -0.9764 2.5812 2.9771 0.3715 0.3728 0.1876 5.9833 1.5356
+#&gt; 182: 93.4464 -5.8627 -0.0930 2.3211 -0.9713 2.5956 2.8054 0.3836 0.3759 0.1861 6.1293 1.6259
+#&gt; 183: 93.2737 -5.8238 -0.0977 2.3127 -0.9642 2.8739 2.6277 0.3846 0.3743 0.1868 6.0451 1.6493
+#&gt; 184: 93.2191 -5.9175 -0.0993 2.3107 -0.9592 2.3088 3.0689 0.3829 0.3515 0.1711 6.1487 1.6666
+#&gt; 185: 93.3626 -5.8872 -0.1070 2.3112 -0.9413 2.2812 3.2719 0.3712 0.3555 0.1783 6.1295 1.6288
+#&gt; 186: 93.1585 -5.8532 -0.1053 2.3140 -0.9665 2.7906 2.8415 0.3734 0.3531 0.1680 6.0294 1.6104
+#&gt; 187: 93.3041 -5.6798 -0.0957 2.3158 -0.9608 3.1056 2.0850 0.3813 0.3484 0.1728 6.1191 1.5813
+#&gt; 188: 93.2466 -5.6791 -0.0954 2.3172 -0.9446 3.8296 2.1956 0.3816 0.3439 0.1757 5.9670 1.5445
+#&gt; 189: 93.3532 -5.6883 -0.0859 2.3335 -0.9594 2.8968 2.3125 0.3691 0.3512 0.1812 5.9467 1.6101
+#&gt; 190: 93.5064 -5.6288 -0.0726 2.3548 -0.9562 2.8233 2.1930 0.3334 0.3700 0.1759 6.4036 1.5877
+#&gt; 191: 93.4145 -5.6906 -0.0726 2.3467 -0.9624 2.8818 2.3581 0.3334 0.3771 0.1712 6.2046 1.4952
+#&gt; 192: 93.2060 -5.7479 -0.0716 2.3433 -0.9618 2.5221 2.6613 0.3324 0.3909 0.1552 6.1651 1.4971
+#&gt; 193: 93.2904 -5.7634 -0.0811 2.3327 -0.9585 2.6968 2.6324 0.3339 0.3856 0.1632 6.5621 1.5258
+#&gt; 194: 93.5271 -5.7859 -0.0874 2.3419 -0.9580 2.8361 2.8424 0.3286 0.3784 0.1636 6.3714 1.5386
+#&gt; 195: 93.3944 -5.9358 -0.0838 2.3407 -0.9718 3.4161 3.2427 0.3315 0.3787 0.1678 6.3722 1.5181
+#&gt; 196: 93.2341 -5.9078 -0.0701 2.3492 -0.9816 3.1580 3.0586 0.3285 0.3666 0.1681 6.4633 1.5382
+#&gt; 197: 93.2967 -6.0131 -0.0745 2.3426 -0.9991 3.7978 3.6459 0.3353 0.3491 0.1796 6.2264 1.5310
+#&gt; 198: 93.2628 -5.7991 -0.0730 2.3434 -0.9819 2.3896 2.6695 0.3371 0.3431 0.1762 6.3141 1.5254
+#&gt; 199: 93.2765 -5.9078 -0.0782 2.3553 -0.9864 2.2760 3.3883 0.3420 0.3459 0.1866 6.0192 1.4982
+#&gt; 200: 93.0447 -5.9148 -0.0769 2.3543 -0.9759 2.1516 2.9675 0.3455 0.3476 0.1870 5.9079 1.4688
+#&gt; 201: 93.1655 -5.8951 -0.0763 2.3493 -0.9707 1.8254 2.9481 0.3448 0.3526 0.1831 6.0676 1.5097
+#&gt; 202: 93.1082 -5.8916 -0.0768 2.3499 -0.9673 1.8503 2.9562 0.3447 0.3574 0.1821 6.1282 1.5026
+#&gt; 203: 93.0728 -5.9316 -0.0774 2.3506 -0.9650 2.0210 3.2306 0.3441 0.3563 0.1827 6.1253 1.4974
+#&gt; 204: 93.0846 -5.9347 -0.0773 2.3494 -0.9648 2.1463 3.2567 0.3453 0.3563 0.1824 6.1301 1.4911
+#&gt; 205: 93.0929 -5.9439 -0.0781 2.3491 -0.9659 2.2204 3.3165 0.3453 0.3572 0.1823 6.1098 1.4941
+#&gt; 206: 93.1795 -5.9401 -0.0795 2.3481 -0.9681 2.2588 3.2940 0.3470 0.3568 0.1829 6.1132 1.4996
+#&gt; 207: 93.2303 -5.9158 -0.0805 2.3467 -0.9703 2.3439 3.1823 0.3484 0.3571 0.1845 6.1021 1.5059
+#&gt; 208: 93.2161 -5.8969 -0.0825 2.3440 -0.9700 2.3306 3.0999 0.3496 0.3563 0.1848 6.0998 1.5177
+#&gt; 209: 93.2077 -5.8842 -0.0848 2.3413 -0.9681 2.3580 3.0406 0.3499 0.3553 0.1841 6.0829 1.5199
+#&gt; 210: 93.1951 -5.8661 -0.0867 2.3383 -0.9656 2.4170 2.9578 0.3501 0.3543 0.1833 6.0562 1.5261
+#&gt; 211: 93.1870 -5.8543 -0.0892 2.3347 -0.9645 2.4650 2.9307 0.3502 0.3548 0.1831 6.0286 1.5289
+#&gt; 212: 93.2077 -5.8506 -0.0915 2.3316 -0.9626 2.4909 2.9544 0.3504 0.3555 0.1835 6.0079 1.5300
+#&gt; 213: 93.2104 -5.8492 -0.0938 2.3283 -0.9612 2.4695 2.9635 0.3503 0.3548 0.1841 5.9859 1.5341
+#&gt; 214: 93.2059 -5.8537 -0.0959 2.3255 -0.9615 2.4264 3.0084 0.3499 0.3540 0.1835 5.9698 1.5370
+#&gt; 215: 93.2051 -5.8569 -0.0977 2.3227 -0.9608 2.4277 3.0541 0.3495 0.3534 0.1830 5.9586 1.5374
+#&gt; 216: 93.1879 -5.8596 -0.0993 2.3199 -0.9600 2.4347 3.0802 0.3493 0.3534 0.1828 5.9465 1.5380
+#&gt; 217: 93.1834 -5.8621 -0.1008 2.3173 -0.9594 2.4479 3.0998 0.3491 0.3535 0.1827 5.9369 1.5402
+#&gt; 218: 93.1796 -5.8657 -0.1021 2.3152 -0.9593 2.4234 3.1238 0.3492 0.3534 0.1835 5.9184 1.5441
+#&gt; 219: 93.1680 -5.8721 -0.1032 2.3132 -0.9588 2.4640 3.1464 0.3494 0.3531 0.1839 5.8929 1.5493
+#&gt; 220: 93.1579 -5.8839 -0.1044 2.3118 -0.9586 2.5707 3.1909 0.3495 0.3531 0.1847 5.8754 1.5496
+#&gt; 221: 93.1557 -5.8882 -0.1058 2.3100 -0.9583 2.6662 3.2052 0.3492 0.3533 0.1854 5.8662 1.5518
+#&gt; 222: 93.1624 -5.8832 -0.1074 2.3075 -0.9578 2.7993 3.1736 0.3490 0.3542 0.1861 5.8489 1.5546
+#&gt; 223: 93.1699 -5.8771 -0.1086 2.3052 -0.9583 2.9085 3.1456 0.3488 0.3558 0.1871 5.8436 1.5610
+#&gt; 224: 93.1870 -5.8751 -0.1097 2.3037 -0.9583 2.9988 3.1279 0.3487 0.3570 0.1878 5.8390 1.5628
+#&gt; 225: 93.2094 -5.8719 -0.1110 2.3012 -0.9583 3.0581 3.1018 0.3485 0.3574 0.1885 5.8214 1.5656
+#&gt; 226: 93.2352 -5.8683 -0.1122 2.2988 -0.9587 3.1297 3.0761 0.3482 0.3584 0.1895 5.8105 1.5680
+#&gt; 227: 93.2611 -5.8653 -0.1132 2.2964 -0.9589 3.1563 3.0610 0.3476 0.3594 0.1904 5.8038 1.5701
+#&gt; 228: 93.2741 -5.8593 -0.1140 2.2943 -0.9591 3.1641 3.0356 0.3470 0.3603 0.1911 5.7984 1.5730
+#&gt; 229: 93.2899 -5.8593 -0.1151 2.2919 -0.9595 3.1626 3.0313 0.3466 0.3613 0.1918 5.7999 1.5745
+#&gt; 230: 93.3048 -5.8650 -0.1164 2.2899 -0.9593 3.1743 3.0542 0.3460 0.3624 0.1921 5.7990 1.5753
+#&gt; 231: 93.3159 -5.8638 -0.1177 2.2875 -0.9592 3.1930 3.0524 0.3454 0.3631 0.1924 5.7956 1.5748
+#&gt; 232: 93.3209 -5.8611 -0.1189 2.2852 -0.9590 3.1872 3.0420 0.3450 0.3639 0.1926 5.7921 1.5755
+#&gt; 233: 93.3196 -5.8556 -0.1200 2.2833 -0.9589 3.1861 3.0209 0.3445 0.3644 0.1926 5.7852 1.5779
+#&gt; 234: 93.3245 -5.8530 -0.1210 2.2813 -0.9591 3.1890 3.0115 0.3441 0.3651 0.1922 5.7781 1.5786
+#&gt; 235: 93.3219 -5.8522 -0.1218 2.2800 -0.9593 3.1573 3.0042 0.3437 0.3659 0.1917 5.7813 1.5797
+#&gt; 236: 93.3155 -5.8524 -0.1227 2.2789 -0.9595 3.1542 3.0035 0.3433 0.3669 0.1913 5.7834 1.5800
+#&gt; 237: 93.3060 -5.8556 -0.1235 2.2779 -0.9599 3.1308 3.0158 0.3430 0.3678 0.1910 5.7833 1.5809
+#&gt; 238: 93.3111 -5.8563 -0.1242 2.2772 -0.9602 3.1194 3.0099 0.3427 0.3683 0.1907 5.7842 1.5809
+#&gt; 239: 93.3177 -5.8580 -0.1248 2.2764 -0.9605 3.0944 3.0130 0.3423 0.3686 0.1904 5.7840 1.5815
+#&gt; 240: 93.3222 -5.8606 -0.1255 2.2754 -0.9608 3.0739 3.0140 0.3420 0.3686 0.1902 5.7843 1.5825
+#&gt; 241: 93.3289 -5.8627 -0.1262 2.2740 -0.9611 3.0848 3.0167 0.3417 0.3688 0.1900 5.7836 1.5840
+#&gt; 242: 93.3366 -5.8627 -0.1270 2.2727 -0.9612 3.1273 3.0103 0.3415 0.3691 0.1898 5.7855 1.5850
+#&gt; 243: 93.3441 -5.8646 -0.1277 2.2714 -0.9614 3.1530 3.0218 0.3414 0.3692 0.1896 5.7829 1.5856
+#&gt; 244: 93.3499 -5.8645 -0.1285 2.2700 -0.9618 3.1705 3.0265 0.3412 0.3694 0.1894 5.7778 1.5874
+#&gt; 245: 93.3619 -5.8673 -0.1294 2.2686 -0.9622 3.1863 3.0397 0.3412 0.3694 0.1892 5.7752 1.5889
+#&gt; 246: 93.3745 -5.8698 -0.1301 2.2671 -0.9627 3.2105 3.0484 0.3412 0.3693 0.1890 5.7716 1.5905
+#&gt; 247: 93.3838 -5.8757 -0.1307 2.2659 -0.9632 3.2158 3.0715 0.3412 0.3693 0.1889 5.7688 1.5922
+#&gt; 248: 93.3914 -5.8799 -0.1314 2.2650 -0.9640 3.2268 3.0851 0.3413 0.3690 0.1889 5.7648 1.5934
+#&gt; 249: 93.3983 -5.8844 -0.1319 2.2640 -0.9648 3.2471 3.0990 0.3415 0.3691 0.1889 5.7641 1.5944
+#&gt; 250: 93.4032 -5.8898 -0.1324 2.2629 -0.9655 3.2828 3.1197 0.3414 0.3694 0.1887 5.7623 1.5965
+#&gt; 251: 93.4053 -5.8939 -0.1329 2.2621 -0.9657 3.3074 3.1303 0.3414 0.3698 0.1887 5.7611 1.5978
+#&gt; 252: 93.4095 -5.8950 -0.1334 2.2613 -0.9658 3.3479 3.1281 0.3414 0.3701 0.1887 5.7578 1.5986
+#&gt; 253: 93.4132 -5.8956 -0.1340 2.2606 -0.9660 3.3486 3.1283 0.3413 0.3703 0.1887 5.7559 1.5999
+#&gt; 254: 93.4201 -5.8966 -0.1345 2.2597 -0.9660 3.3502 3.1298 0.3413 0.3706 0.1888 5.7593 1.5997
+#&gt; 255: 93.4235 -5.8953 -0.1349 2.2590 -0.9656 3.3332 3.1220 0.3412 0.3706 0.1887 5.7571 1.6012
+#&gt; 256: 93.4231 -5.8926 -0.1353 2.2585 -0.9651 3.3255 3.1104 0.3411 0.3706 0.1886 5.7569 1.6018
+#&gt; 257: 93.4247 -5.8874 -0.1356 2.2582 -0.9646 3.3164 3.0917 0.3410 0.3705 0.1885 5.7585 1.6030
+#&gt; 258: 93.4198 -5.8857 -0.1359 2.2580 -0.9641 3.3086 3.0828 0.3409 0.3702 0.1885 5.7608 1.6026
+#&gt; 259: 93.4125 -5.8833 -0.1362 2.2576 -0.9638 3.2926 3.0726 0.3408 0.3701 0.1885 5.7651 1.6023
+#&gt; 260: 93.4073 -5.8847 -0.1365 2.2572 -0.9640 3.2737 3.0759 0.3406 0.3703 0.1885 5.7687 1.6030
+#&gt; 261: 93.4049 -5.8885 -0.1368 2.2571 -0.9642 3.2510 3.0904 0.3402 0.3702 0.1882 5.7742 1.6028
+#&gt; 262: 93.4036 -5.8931 -0.1371 2.2566 -0.9645 3.2279 3.1104 0.3397 0.3699 0.1880 5.7766 1.6033
+#&gt; 263: 93.4026 -5.8964 -0.1375 2.2562 -0.9647 3.2024 3.1313 0.3395 0.3696 0.1877 5.7786 1.6029
+#&gt; 264: 93.3990 -5.9003 -0.1377 2.2559 -0.9649 3.1808 3.1545 0.3393 0.3694 0.1874 5.7778 1.6022
+#&gt; 265: 93.4005 -5.9013 -0.1380 2.2555 -0.9650 3.1664 3.1680 0.3390 0.3693 0.1871 5.7765 1.6021
+#&gt; 266: 93.4005 -5.9011 -0.1382 2.2552 -0.9653 3.1530 3.1708 0.3387 0.3692 0.1869 5.7763 1.6020
+#&gt; 267: 93.4006 -5.9035 -0.1384 2.2549 -0.9654 3.1384 3.1902 0.3384 0.3690 0.1866 5.7768 1.6014
+#&gt; 268: 93.3972 -5.9086 -0.1385 2.2547 -0.9653 3.1224 3.2331 0.3380 0.3688 0.1863 5.7778 1.6008
+#&gt; 269: 93.3936 -5.9113 -0.1386 2.2547 -0.9654 3.0959 3.2552 0.3377 0.3688 0.1861 5.7782 1.6001
+#&gt; 270: 93.3867 -5.9139 -0.1387 2.2547 -0.9653 3.0853 3.2756 0.3372 0.3687 0.1859 5.7787 1.5989
+#&gt; 271: 93.3836 -5.9154 -0.1389 2.2545 -0.9654 3.0824 3.2889 0.3367 0.3686 0.1858 5.7761 1.5980
+#&gt; 272: 93.3812 -5.9160 -0.1390 2.2543 -0.9653 3.0741 3.2919 0.3362 0.3686 0.1857 5.7729 1.5977
+#&gt; 273: 93.3767 -5.9174 -0.1390 2.2542 -0.9652 3.0663 3.2992 0.3358 0.3687 0.1856 5.7699 1.5970
+#&gt; 274: 93.3696 -5.9171 -0.1391 2.2543 -0.9652 3.0604 3.2940 0.3355 0.3687 0.1855 5.7688 1.5958
+#&gt; 275: 93.3658 -5.9177 -0.1393 2.2544 -0.9651 3.0605 3.2961 0.3353 0.3687 0.1853 5.7675 1.5952
+#&gt; 276: 93.3621 -5.9185 -0.1395 2.2543 -0.9649 3.0508 3.2992 0.3351 0.3686 0.1852 5.7672 1.5940
+#&gt; 277: 93.3602 -5.9206 -0.1397 2.2542 -0.9649 3.0453 3.3087 0.3349 0.3685 0.1851 5.7679 1.5935
+#&gt; 278: 93.3565 -5.9213 -0.1400 2.2539 -0.9648 3.0366 3.3117 0.3347 0.3683 0.1852 5.7695 1.5931
+#&gt; 279: 93.3548 -5.9222 -0.1403 2.2535 -0.9647 3.0284 3.3179 0.3345 0.3682 0.1854 5.7703 1.5928
+#&gt; 280: 93.3544 -5.9215 -0.1407 2.2528 -0.9647 3.0193 3.3141 0.3344 0.3683 0.1854 5.7714 1.5927
+#&gt; 281: 93.3533 -5.9205 -0.1410 2.2522 -0.9647 3.0130 3.3090 0.3341 0.3685 0.1855 5.7706 1.5927
+#&gt; 282: 93.3564 -5.9189 -0.1414 2.2514 -0.9648 3.0025 3.3019 0.3339 0.3686 0.1856 5.7682 1.5930
+#&gt; 283: 93.3571 -5.9164 -0.1417 2.2508 -0.9646 2.9990 3.2926 0.3337 0.3686 0.1858 5.7642 1.5943
+#&gt; 284: 93.3576 -5.9154 -0.1421 2.2501 -0.9644 2.9976 3.2895 0.3336 0.3686 0.1860 5.7625 1.5942
+#&gt; 285: 93.3584 -5.9142 -0.1425 2.2496 -0.9644 2.9906 3.2835 0.3334 0.3684 0.1861 5.7591 1.5939
+#&gt; 286: 93.3609 -5.9137 -0.1429 2.2491 -0.9642 2.9852 3.2817 0.3332 0.3682 0.1863 5.7572 1.5939
+#&gt; 287: 93.3641 -5.9131 -0.1433 2.2485 -0.9641 2.9732 3.2785 0.3331 0.3680 0.1863 5.7547 1.5944
+#&gt; 288: 93.3671 -5.9128 -0.1436 2.2480 -0.9641 2.9673 3.2767 0.3330 0.3679 0.1864 5.7540 1.5939
+#&gt; 289: 93.3676 -5.9125 -0.1440 2.2474 -0.9639 2.9663 3.2765 0.3329 0.3678 0.1865 5.7536 1.5939
+#&gt; 290: 93.3659 -5.9126 -0.1443 2.2469 -0.9637 2.9570 3.2776 0.3328 0.3678 0.1866 5.7523 1.5941
+#&gt; 291: 93.3620 -5.9109 -0.1447 2.2466 -0.9634 2.9472 3.2713 0.3327 0.3676 0.1866 5.7527 1.5943
+#&gt; 292: 93.3601 -5.9096 -0.1450 2.2462 -0.9632 2.9359 3.2664 0.3326 0.3675 0.1866 5.7517 1.5944
+#&gt; 293: 93.3582 -5.9077 -0.1453 2.2457 -0.9629 2.9295 3.2586 0.3326 0.3675 0.1866 5.7514 1.5945
+#&gt; 294: 93.3583 -5.9054 -0.1456 2.2454 -0.9626 2.9203 3.2478 0.3326 0.3676 0.1867 5.7508 1.5942
+#&gt; 295: 93.3577 -5.9037 -0.1459 2.2449 -0.9624 2.9216 3.2406 0.3325 0.3678 0.1867 5.7493 1.5934
+#&gt; 296: 93.3570 -5.9016 -0.1462 2.2445 -0.9623 2.9304 3.2334 0.3323 0.3680 0.1868 5.7502 1.5933
+#&gt; 297: 93.3538 -5.8988 -0.1462 2.2441 -0.9621 2.9429 3.2217 0.3321 0.3681 0.1870 5.7539 1.5939
+#&gt; 298: 93.3525 -5.8966 -0.1463 2.2438 -0.9620 2.9662 3.2118 0.3319 0.3683 0.1870 5.7555 1.5942
+#&gt; 299: 93.3526 -5.8957 -0.1465 2.2437 -0.9619 2.9812 3.2056 0.3318 0.3685 0.1870 5.7582 1.5938
+#&gt; 300: 93.3504 -5.8953 -0.1467 2.2436 -0.9616 2.9982 3.2029 0.3316 0.3688 0.1873 5.7609 1.5937
+#&gt; 301: 93.3469 -5.8941 -0.1469 2.2434 -0.9612 3.0124 3.1993 0.3315 0.3690 0.1875 5.7641 1.5933
+#&gt; 302: 93.3442 -5.8944 -0.1472 2.2434 -0.9609 3.0353 3.2015 0.3313 0.3692 0.1876 5.7660 1.5937
+#&gt; 303: 93.3428 -5.8970 -0.1474 2.2432 -0.9607 3.0454 3.2160 0.3312 0.3692 0.1876 5.7654 1.5938
+#&gt; 304: 93.3407 -5.9012 -0.1475 2.2430 -0.9607 3.0626 3.2409 0.3310 0.3693 0.1877 5.7649 1.5932
+#&gt; 305: 93.3395 -5.9051 -0.1476 2.2429 -0.9607 3.0756 3.2632 0.3308 0.3693 0.1879 5.7650 1.5924
+#&gt; 306: 93.3398 -5.9099 -0.1478 2.2429 -0.9607 3.0881 3.2952 0.3306 0.3694 0.1880 5.7655 1.5920
+#&gt; 307: 93.3406 -5.9128 -0.1479 2.2427 -0.9608 3.0995 3.3163 0.3305 0.3695 0.1880 5.7666 1.5921
+#&gt; 308: 93.3418 -5.9165 -0.1480 2.2426 -0.9610 3.1060 3.3420 0.3303 0.3696 0.1881 5.7674 1.5914
+#&gt; 309: 93.3437 -5.9205 -0.1481 2.2424 -0.9610 3.1185 3.3703 0.3301 0.3697 0.1882 5.7665 1.5908
+#&gt; 310: 93.3442 -5.9236 -0.1482 2.2422 -0.9612 3.1270 3.3902 0.3299 0.3698 0.1882 5.7650 1.5904
+#&gt; 311: 93.3482 -5.9268 -0.1482 2.2421 -0.9614 3.1333 3.4086 0.3296 0.3698 0.1882 5.7636 1.5900
+#&gt; 312: 93.3529 -5.9286 -0.1482 2.2420 -0.9615 3.1348 3.4186 0.3294 0.3699 0.1882 5.7622 1.5895
+#&gt; 313: 93.3573 -5.9290 -0.1481 2.2419 -0.9617 3.1332 3.4199 0.3291 0.3699 0.1882 5.7621 1.5891
+#&gt; 314: 93.3630 -5.9293 -0.1482 2.2418 -0.9619 3.1398 3.4211 0.3289 0.3700 0.1883 5.7594 1.5888
+#&gt; 315: 93.3669 -5.9284 -0.1483 2.2416 -0.9622 3.1464 3.4155 0.3286 0.3702 0.1885 5.7586 1.5889
+#&gt; 316: 93.3724 -5.9279 -0.1485 2.2412 -0.9624 3.1426 3.4124 0.3283 0.3704 0.1887 5.7581 1.5887
+#&gt; 317: 93.3763 -5.9281 -0.1487 2.2409 -0.9626 3.1335 3.4108 0.3281 0.3706 0.1888 5.7573 1.5880
+#&gt; 318: 93.3786 -5.9275 -0.1488 2.2405 -0.9627 3.1262 3.4057 0.3279 0.3709 0.1888 5.7579 1.5876
+#&gt; 319: 93.3821 -5.9275 -0.1490 2.2402 -0.9628 3.1273 3.4032 0.3276 0.3711 0.1889 5.7570 1.5870
+#&gt; 320: 93.3856 -5.9272 -0.1491 2.2401 -0.9629 3.1337 3.3989 0.3273 0.3715 0.1888 5.7563 1.5861
+#&gt; 321: 93.3902 -5.9263 -0.1492 2.2399 -0.9631 3.1388 3.3931 0.3269 0.3718 0.1887 5.7555 1.5852
+#&gt; 322: 93.3951 -5.9251 -0.1493 2.2397 -0.9631 3.1415 3.3856 0.3266 0.3721 0.1886 5.7552 1.5846
+#&gt; 323: 93.3988 -5.9251 -0.1493 2.2395 -0.9632 3.1377 3.3824 0.3262 0.3724 0.1885 5.7556 1.5841
+#&gt; 324: 93.4030 -5.9236 -0.1494 2.2394 -0.9633 3.1355 3.3738 0.3259 0.3727 0.1885 5.7562 1.5837
+#&gt; 325: 93.4047 -5.9219 -0.1495 2.2393 -0.9633 3.1415 3.3647 0.3256 0.3731 0.1884 5.7553 1.5831
+#&gt; 326: 93.4077 -5.9204 -0.1495 2.2391 -0.9634 3.1489 3.3564 0.3254 0.3735 0.1884 5.7562 1.5829
+#&gt; 327: 93.4121 -5.9185 -0.1496 2.2390 -0.9635 3.1503 3.3472 0.3250 0.3739 0.1884 5.7562 1.5825
+#&gt; 328: 93.4157 -5.9182 -0.1496 2.2389 -0.9636 3.1564 3.3432 0.3246 0.3743 0.1884 5.7559 1.5823
+#&gt; 329: 93.4181 -5.9169 -0.1496 2.2388 -0.9638 3.1666 3.3361 0.3243 0.3746 0.1884 5.7544 1.5822
+#&gt; 330: 93.4206 -5.9171 -0.1497 2.2386 -0.9640 3.1726 3.3349 0.3239 0.3748 0.1885 5.7538 1.5824
+#&gt; 331: 93.4214 -5.9172 -0.1497 2.2385 -0.9642 3.1764 3.3332 0.3236 0.3750 0.1886 5.7540 1.5824
+#&gt; 332: 93.4226 -5.9171 -0.1497 2.2385 -0.9645 3.1787 3.3303 0.3232 0.3752 0.1887 5.7539 1.5826
+#&gt; 333: 93.4242 -5.9168 -0.1497 2.2384 -0.9645 3.1757 3.3287 0.3229 0.3755 0.1886 5.7545 1.5823
+#&gt; 334: 93.4273 -5.9167 -0.1497 2.2383 -0.9645 3.1832 3.3290 0.3226 0.3758 0.1887 5.7540 1.5818
+#&gt; 335: 93.4306 -5.9170 -0.1498 2.2384 -0.9644 3.1910 3.3318 0.3223 0.3760 0.1887 5.7548 1.5814
+#&gt; 336: 93.4315 -5.9177 -0.1498 2.2384 -0.9644 3.1999 3.3355 0.3219 0.3762 0.1887 5.7558 1.5811
+#&gt; 337: 93.4332 -5.9181 -0.1499 2.2384 -0.9643 3.2145 3.3360 0.3216 0.3764 0.1887 5.7581 1.5805
+#&gt; 338: 93.4352 -5.9169 -0.1498 2.2384 -0.9643 3.2221 3.3307 0.3213 0.3767 0.1887 5.7592 1.5802
+#&gt; 339: 93.4385 -5.9152 -0.1498 2.2384 -0.9643 3.2356 3.3242 0.3210 0.3770 0.1887 5.7605 1.5797
+#&gt; 340: 93.4417 -5.9130 -0.1498 2.2384 -0.9643 3.2506 3.3167 0.3207 0.3773 0.1888 5.7599 1.5794
+#&gt; 341: 93.4452 -5.9102 -0.1497 2.2382 -0.9641 3.2568 3.3064 0.3205 0.3772 0.1888 5.7590 1.5799
+#&gt; 342: 93.4487 -5.9077 -0.1497 2.2381 -0.9641 3.2628 3.2970 0.3203 0.3772 0.1889 5.7587 1.5802
+#&gt; 343: 93.4519 -5.9055 -0.1497 2.2380 -0.9642 3.2685 3.2892 0.3201 0.3772 0.1889 5.7585 1.5810
+#&gt; 344: 93.4556 -5.9048 -0.1497 2.2379 -0.9643 3.2690 3.2847 0.3200 0.3771 0.1891 5.7573 1.5812
+#&gt; 345: 93.4588 -5.9041 -0.1498 2.2377 -0.9645 3.2704 3.2807 0.3199 0.3771 0.1893 5.7567 1.5811
+#&gt; 346: 93.4605 -5.9033 -0.1498 2.2376 -0.9647 3.2655 3.2747 0.3198 0.3770 0.1893 5.7557 1.5808
+#&gt; 347: 93.4638 -5.9027 -0.1498 2.2375 -0.9648 3.2725 3.2701 0.3198 0.3768 0.1894 5.7532 1.5808
+#&gt; 348: 93.4643 -5.9028 -0.1498 2.2373 -0.9649 3.2764 3.2676 0.3197 0.3768 0.1893 5.7523 1.5807
+#&gt; 349: 93.4664 -5.9023 -0.1497 2.2372 -0.9650 3.2806 3.2638 0.3197 0.3767 0.1893 5.7527 1.5815
+#&gt; 350: 93.4700 -5.9014 -0.1497 2.2370 -0.9651 3.2817 3.2585 0.3196 0.3767 0.1892 5.7534 1.5817
+#&gt; 351: 93.4724 -5.9001 -0.1497 2.2369 -0.9652 3.2825 3.2522 0.3196 0.3768 0.1892 5.7541 1.5818
+#&gt; 352: 93.4744 -5.8986 -0.1497 2.2369 -0.9653 3.2875 3.2460 0.3195 0.3768 0.1891 5.7546 1.5819
+#&gt; 353: 93.4738 -5.8975 -0.1496 2.2369 -0.9653 3.2891 3.2407 0.3195 0.3769 0.1889 5.7560 1.5822
+#&gt; 354: 93.4733 -5.8960 -0.1496 2.2369 -0.9652 3.2856 3.2333 0.3194 0.3768 0.1889 5.7579 1.5824
+#&gt; 355: 93.4731 -5.8944 -0.1496 2.2370 -0.9652 3.2893 3.2259 0.3194 0.3767 0.1888 5.7599 1.5826
+#&gt; 356: 93.4724 -5.8933 -0.1495 2.2373 -0.9652 3.2924 3.2197 0.3194 0.3767 0.1888 5.7608 1.5832
+#&gt; 357: 93.4723 -5.8929 -0.1493 2.2376 -0.9654 3.2907 3.2164 0.3194 0.3767 0.1887 5.7605 1.5833
+#&gt; 358: 93.4723 -5.8923 -0.1491 2.2378 -0.9654 3.2875 3.2120 0.3194 0.3766 0.1886 5.7608 1.5837
+#&gt; 359: 93.4705 -5.8931 -0.1490 2.2379 -0.9656 3.2875 3.2121 0.3194 0.3764 0.1886 5.7606 1.5843
+#&gt; 360: 93.4699 -5.8938 -0.1488 2.2382 -0.9658 3.2837 3.2133 0.3195 0.3763 0.1886 5.7606 1.5848
+#&gt; 361: 93.4693 -5.8951 -0.1487 2.2383 -0.9659 3.2822 3.2164 0.3195 0.3763 0.1886 5.7600 1.5852
+#&gt; 362: 93.4691 -5.8963 -0.1486 2.2385 -0.9660 3.2770 3.2196 0.3195 0.3763 0.1884 5.7618 1.5856
+#&gt; 363: 93.4681 -5.8970 -0.1485 2.2387 -0.9660 3.2706 3.2208 0.3195 0.3762 0.1883 5.7639 1.5857
+#&gt; 364: 93.4674 -5.8970 -0.1484 2.2389 -0.9660 3.2593 3.2189 0.3195 0.3760 0.1881 5.7659 1.5855
+#&gt; 365: 93.4680 -5.8968 -0.1482 2.2391 -0.9659 3.2513 3.2174 0.3196 0.3758 0.1881 5.7686 1.5857
+#&gt; 366: 93.4672 -5.8962 -0.1480 2.2393 -0.9658 3.2493 3.2161 0.3196 0.3755 0.1880 5.7714 1.5861
+#&gt; 367: 93.4656 -5.8953 -0.1479 2.2396 -0.9657 3.2462 3.2121 0.3195 0.3753 0.1881 5.7721 1.5862
+#&gt; 368: 93.4645 -5.8946 -0.1478 2.2398 -0.9657 3.2469 3.2083 0.3194 0.3750 0.1882 5.7724 1.5860
+#&gt; 369: 93.4638 -5.8946 -0.1476 2.2401 -0.9657 3.2544 3.2068 0.3194 0.3749 0.1882 5.7713 1.5856
+#&gt; 370: 93.4639 -5.8946 -0.1475 2.2404 -0.9657 3.2547 3.2066 0.3194 0.3748 0.1882 5.7719 1.5853
+#&gt; 371: 93.4646 -5.8959 -0.1474 2.2407 -0.9657 3.2584 3.2129 0.3194 0.3746 0.1883 5.7725 1.5847
+#&gt; 372: 93.4648 -5.8964 -0.1473 2.2409 -0.9658 3.2649 3.2172 0.3193 0.3745 0.1883 5.7730 1.5843
+#&gt; 373: 93.4658 -5.8958 -0.1471 2.2411 -0.9659 3.2744 3.2135 0.3193 0.3743 0.1884 5.7730 1.5843
+#&gt; 374: 93.4678 -5.8953 -0.1470 2.2412 -0.9662 3.2855 3.2100 0.3192 0.3742 0.1885 5.7727 1.5847
+#&gt; 375: 93.4697 -5.8955 -0.1470 2.2413 -0.9663 3.2917 3.2087 0.3190 0.3742 0.1885 5.7733 1.5845
+#&gt; 376: 93.4707 -5.8960 -0.1469 2.2414 -0.9664 3.2997 3.2095 0.3189 0.3741 0.1885 5.7726 1.5841
+#&gt; 377: 93.4712 -5.8965 -0.1468 2.2415 -0.9665 3.3016 3.2100 0.3188 0.3741 0.1885 5.7724 1.5836
+#&gt; 378: 93.4706 -5.8971 -0.1468 2.2416 -0.9665 3.2958 3.2113 0.3187 0.3741 0.1884 5.7733 1.5829
+#&gt; 379: 93.4699 -5.8983 -0.1467 2.2418 -0.9666 3.2940 3.2174 0.3186 0.3741 0.1883 5.7732 1.5827
+#&gt; 380: 93.4709 -5.8993 -0.1467 2.2418 -0.9667 3.2907 3.2225 0.3185 0.3739 0.1882 5.7726 1.5826
+#&gt; 381: 93.4730 -5.9009 -0.1467 2.2418 -0.9667 3.2861 3.2325 0.3185 0.3737 0.1881 5.7709 1.5825
+#&gt; 382: 93.4746 -5.9018 -0.1467 2.2418 -0.9667 3.2841 3.2407 0.3184 0.3734 0.1880 5.7692 1.5822
+#&gt; 383: 93.4744 -5.9033 -0.1468 2.2418 -0.9667 3.2847 3.2537 0.3184 0.3732 0.1878 5.7672 1.5819
+#&gt; 384: 93.4747 -5.9049 -0.1468 2.2418 -0.9667 3.2854 3.2640 0.3184 0.3729 0.1878 5.7657 1.5816
+#&gt; 385: 93.4751 -5.9062 -0.1468 2.2418 -0.9666 3.2917 3.2702 0.3184 0.3727 0.1877 5.7642 1.5813
+#&gt; 386: 93.4756 -5.9074 -0.1468 2.2418 -0.9666 3.2971 3.2753 0.3185 0.3725 0.1876 5.7625 1.5810
+#&gt; 387: 93.4761 -5.9084 -0.1469 2.2417 -0.9666 3.2988 3.2789 0.3185 0.3723 0.1875 5.7613 1.5804
+#&gt; 388: 93.4777 -5.9092 -0.1469 2.2417 -0.9666 3.3055 3.2811 0.3185 0.3721 0.1875 5.7599 1.5803
+#&gt; 389: 93.4805 -5.9092 -0.1468 2.2417 -0.9667 3.3138 3.2802 0.3185 0.3719 0.1874 5.7588 1.5803
+#&gt; 390: 93.4828 -5.9089 -0.1468 2.2417 -0.9667 3.3164 3.2782 0.3186 0.3718 0.1873 5.7576 1.5806
+#&gt; 391: 93.4854 -5.9094 -0.1467 2.2416 -0.9668 3.3265 3.2800 0.3186 0.3716 0.1873 5.7556 1.5804
+#&gt; 392: 93.4877 -5.9103 -0.1467 2.2416 -0.9669 3.3327 3.2836 0.3187 0.3715 0.1873 5.7535 1.5803
+#&gt; 393: 93.4899 -5.9110 -0.1467 2.2416 -0.9669 3.3419 3.2876 0.3187 0.3715 0.1873 5.7517 1.5803
+#&gt; 394: 93.4925 -5.9117 -0.1467 2.2416 -0.9669 3.3494 3.2903 0.3187 0.3714 0.1873 5.7508 1.5801
+#&gt; 395: 93.4945 -5.9121 -0.1467 2.2416 -0.9670 3.3536 3.2912 0.3187 0.3714 0.1873 5.7497 1.5796
+#&gt; 396: 93.4951 -5.9124 -0.1467 2.2416 -0.9670 3.3590 3.2918 0.3187 0.3715 0.1873 5.7476 1.5793
+#&gt; 397: 93.4955 -5.9123 -0.1467 2.2416 -0.9669 3.3626 3.2904 0.3186 0.3715 0.1873 5.7456 1.5788
+#&gt; 398: 93.4971 -5.9120 -0.1467 2.2416 -0.9669 3.3735 3.2887 0.3186 0.3716 0.1873 5.7433 1.5786
+#&gt; 399: 93.4995 -5.9116 -0.1467 2.2415 -0.9669 3.3854 3.2866 0.3186 0.3716 0.1873 5.7422 1.5785
+#&gt; 400: 93.5007 -5.9116 -0.1466 2.2415 -0.9669 3.3923 3.2856 0.3186 0.3717 0.1873 5.7416 1.5786
+#&gt; 401: 93.5028 -5.9109 -0.1467 2.2415 -0.9669 3.4020 3.2820 0.3186 0.3718 0.1873 5.7412 1.5787
+#&gt; 402: 93.5042 -5.9099 -0.1467 2.2414 -0.9669 3.4114 3.2781 0.3186 0.3719 0.1874 5.7406 1.5788
+#&gt; 403: 93.5054 -5.9090 -0.1467 2.2413 -0.9670 3.4179 3.2735 0.3186 0.3720 0.1874 5.7401 1.5785
+#&gt; 404: 93.5071 -5.9093 -0.1468 2.2412 -0.9670 3.4190 3.2726 0.3186 0.3720 0.1875 5.7392 1.5779
+#&gt; 405: 93.5087 -5.9087 -0.1468 2.2411 -0.9671 3.4186 3.2689 0.3186 0.3721 0.1876 5.7386 1.5776
+#&gt; 406: 93.5091 -5.9087 -0.1469 2.2411 -0.9671 3.4228 3.2688 0.3186 0.3721 0.1876 5.7377 1.5774
+#&gt; 407: 93.5094 -5.9091 -0.1470 2.2411 -0.9672 3.4285 3.2698 0.3186 0.3720 0.1877 5.7368 1.5770
+#&gt; 408: 93.5108 -5.9081 -0.1470 2.2410 -0.9672 3.4378 3.2648 0.3187 0.3719 0.1877 5.7358 1.5766
+#&gt; 409: 93.5113 -5.9082 -0.1470 2.2410 -0.9672 3.4444 3.2643 0.3187 0.3719 0.1878 5.7357 1.5763
+#&gt; 410: 93.5102 -5.9099 -0.1470 2.2410 -0.9672 3.4502 3.2731 0.3188 0.3719 0.1878 5.7359 1.5756
+#&gt; 411: 93.5097 -5.9109 -0.1469 2.2410 -0.9673 3.4534 3.2793 0.3188 0.3718 0.1878 5.7348 1.5753
+#&gt; 412: 93.5102 -5.9114 -0.1469 2.2410 -0.9673 3.4522 3.2836 0.3189 0.3717 0.1878 5.7330 1.5753
+#&gt; 413: 93.5110 -5.9120 -0.1469 2.2410 -0.9675 3.4534 3.2885 0.3189 0.3716 0.1878 5.7320 1.5756
+#&gt; 414: 93.5126 -5.9130 -0.1469 2.2410 -0.9675 3.4550 3.2943 0.3190 0.3716 0.1878 5.7314 1.5753
+#&gt; 415: 93.5144 -5.9140 -0.1469 2.2409 -0.9676 3.4574 3.3003 0.3190 0.3715 0.1878 5.7304 1.5751
+#&gt; 416: 93.5147 -5.9149 -0.1469 2.2409 -0.9676 3.4632 3.3059 0.3191 0.3714 0.1878 5.7292 1.5750
+#&gt; 417: 93.5132 -5.9156 -0.1468 2.2410 -0.9677 3.4675 3.3090 0.3192 0.3713 0.1878 5.7292 1.5747
+#&gt; 418: 93.5131 -5.9165 -0.1468 2.2410 -0.9678 3.4680 3.3130 0.3192 0.3712 0.1878 5.7296 1.5747
+#&gt; 419: 93.5142 -5.9166 -0.1467 2.2411 -0.9678 3.4663 3.3143 0.3193 0.3712 0.1879 5.7302 1.5744
+#&gt; 420: 93.5150 -5.9164 -0.1466 2.2412 -0.9679 3.4626 3.3130 0.3193 0.3712 0.1879 5.7303 1.5744
+#&gt; 421: 93.5162 -5.9169 -0.1465 2.2413 -0.9681 3.4596 3.3158 0.3194 0.3713 0.1880 5.7315 1.5743
+#&gt; 422: 93.5173 -5.9172 -0.1465 2.2414 -0.9682 3.4567 3.3165 0.3194 0.3714 0.1881 5.7332 1.5740
+#&gt; 423: 93.5174 -5.9178 -0.1464 2.2415 -0.9684 3.4550 3.3185 0.3194 0.3715 0.1882 5.7348 1.5741
+#&gt; 424: 93.5174 -5.9189 -0.1464 2.2417 -0.9685 3.4531 3.3225 0.3193 0.3716 0.1882 5.7360 1.5737
+#&gt; 425: 93.5171 -5.9184 -0.1463 2.2418 -0.9685 3.4508 3.3186 0.3192 0.3718 0.1882 5.7372 1.5738
+#&gt; 426: 93.5167 -5.9177 -0.1462 2.2419 -0.9686 3.4566 3.3143 0.3192 0.3720 0.1882 5.7385 1.5735
+#&gt; 427: 93.5185 -5.9174 -0.1462 2.2420 -0.9687 3.4561 3.3114 0.3191 0.3721 0.1881 5.7389 1.5734
+#&gt; 428: 93.5192 -5.9177 -0.1461 2.2421 -0.9688 3.4574 3.3112 0.3191 0.3722 0.1880 5.7398 1.5731
+#&gt; 429: 93.5184 -5.9179 -0.1460 2.2421 -0.9689 3.4558 3.3102 0.3190 0.3723 0.1879 5.7405 1.5729
+#&gt; 430: 93.5170 -5.9187 -0.1460 2.2421 -0.9690 3.4575 3.3132 0.3190 0.3724 0.1879 5.7404 1.5727
+#&gt; 431: 93.5156 -5.9192 -0.1460 2.2422 -0.9691 3.4556 3.3150 0.3190 0.3724 0.1879 5.7405 1.5726
+#&gt; 432: 93.5148 -5.9203 -0.1459 2.2422 -0.9692 3.4557 3.3201 0.3190 0.3725 0.1878 5.7409 1.5727
+#&gt; 433: 93.5134 -5.9215 -0.1459 2.2422 -0.9692 3.4569 3.3263 0.3190 0.3726 0.1878 5.7415 1.5731
+#&gt; 434: 93.5128 -5.9222 -0.1459 2.2423 -0.9691 3.4623 3.3304 0.3190 0.3726 0.1877 5.7422 1.5728
+#&gt; 435: 93.5116 -5.9231 -0.1459 2.2424 -0.9691 3.4672 3.3376 0.3191 0.3727 0.1877 5.7424 1.5726
+#&gt; 436: 93.5111 -5.9228 -0.1459 2.2425 -0.9692 3.4658 3.3352 0.3190 0.3727 0.1876 5.7429 1.5725
+#&gt; 437: 93.5100 -5.9227 -0.1459 2.2425 -0.9692 3.4651 3.3328 0.3190 0.3727 0.1876 5.7430 1.5725
+#&gt; 438: 93.5071 -5.9230 -0.1459 2.2425 -0.9692 3.4614 3.3329 0.3190 0.3728 0.1876 5.7437 1.5725
+#&gt; 439: 93.5035 -5.9225 -0.1459 2.2426 -0.9691 3.4555 3.3298 0.3190 0.3728 0.1875 5.7449 1.5725
+#&gt; 440: 93.5006 -5.9222 -0.1459 2.2426 -0.9690 3.4503 3.3286 0.3190 0.3728 0.1874 5.7461 1.5723
+#&gt; 441: 93.4988 -5.9220 -0.1459 2.2427 -0.9689 3.4445 3.3272 0.3190 0.3728 0.1874 5.7466 1.5721
+#&gt; 442: 93.4971 -5.9216 -0.1459 2.2428 -0.9688 3.4392 3.3265 0.3190 0.3728 0.1874 5.7475 1.5721
+#&gt; 443: 93.4957 -5.9214 -0.1458 2.2429 -0.9688 3.4338 3.3256 0.3190 0.3729 0.1874 5.7487 1.5723
+#&gt; 444: 93.4949 -5.9210 -0.1458 2.2430 -0.9688 3.4288 3.3236 0.3189 0.3729 0.1874 5.7502 1.5721
+#&gt; 445: 93.4932 -5.9210 -0.1458 2.2430 -0.9687 3.4283 3.3237 0.3189 0.3731 0.1874 5.7516 1.5719
+#&gt; 446: 93.4922 -5.9205 -0.1458 2.2430 -0.9687 3.4253 3.3215 0.3188 0.3733 0.1873 5.7524 1.5717
+#&gt; 447: 93.4917 -5.9205 -0.1458 2.2430 -0.9686 3.4257 3.3213 0.3187 0.3736 0.1873 5.7528 1.5715
+#&gt; 448: 93.4924 -5.9205 -0.1458 2.2430 -0.9685 3.4296 3.3209 0.3186 0.3737 0.1872 5.7532 1.5717
+#&gt; 449: 93.4920 -5.9203 -0.1459 2.2430 -0.9684 3.4302 3.3194 0.3185 0.3739 0.1872 5.7542 1.5717
+#&gt; 450: 93.4915 -5.9207 -0.1459 2.2430 -0.9684 3.4314 3.3217 0.3184 0.3741 0.1871 5.7551 1.5715
+#&gt; 451: 93.4915 -5.9214 -0.1459 2.2430 -0.9684 3.4371 3.3253 0.3183 0.3743 0.1871 5.7562 1.5717
+#&gt; 452: 93.4926 -5.9212 -0.1458 2.2430 -0.9683 3.4417 3.3242 0.3182 0.3745 0.1870 5.7567 1.5717
+#&gt; 453: 93.4935 -5.9211 -0.1459 2.2430 -0.9683 3.4413 3.3232 0.3182 0.3746 0.1870 5.7574 1.5714
+#&gt; 454: 93.4941 -5.9209 -0.1459 2.2429 -0.9683 3.4406 3.3222 0.3182 0.3748 0.1870 5.7580 1.5713
+#&gt; 455: 93.4947 -5.9212 -0.1459 2.2429 -0.9684 3.4450 3.3232 0.3181 0.3750 0.1870 5.7580 1.5710
+#&gt; 456: 93.4950 -5.9214 -0.1459 2.2429 -0.9684 3.4481 3.3236 0.3181 0.3751 0.1870 5.7585 1.5708
+#&gt; 457: 93.4961 -5.9220 -0.1459 2.2429 -0.9685 3.4516 3.3266 0.3180 0.3752 0.1869 5.7590 1.5707
+#&gt; 458: 93.4965 -5.9218 -0.1459 2.2428 -0.9685 3.4553 3.3257 0.3179 0.3753 0.1869 5.7589 1.5707
+#&gt; 459: 93.4959 -5.9212 -0.1459 2.2428 -0.9685 3.4572 3.3229 0.3178 0.3754 0.1868 5.7596 1.5705
+#&gt; 460: 93.4960 -5.9209 -0.1459 2.2428 -0.9685 3.4573 3.3209 0.3178 0.3755 0.1868 5.7598 1.5704
+#&gt; 461: 93.4944 -5.9211 -0.1459 2.2428 -0.9685 3.4592 3.3202 0.3177 0.3757 0.1868 5.7609 1.5701
+#&gt; 462: 93.4941 -5.9214 -0.1459 2.2428 -0.9686 3.4630 3.3206 0.3176 0.3759 0.1868 5.7617 1.5700
+#&gt; 463: 93.4932 -5.9215 -0.1459 2.2429 -0.9686 3.4708 3.3197 0.3175 0.3761 0.1868 5.7622 1.5699
+#&gt; 464: 93.4933 -5.9209 -0.1459 2.2429 -0.9685 3.4759 3.3162 0.3175 0.3762 0.1869 5.7628 1.5696
+#&gt; 465: 93.4928 -5.9204 -0.1459 2.2428 -0.9685 3.4794 3.3133 0.3174 0.3764 0.1870 5.7642 1.5693
+#&gt; 466: 93.4934 -5.9197 -0.1460 2.2428 -0.9685 3.4838 3.3105 0.3173 0.3766 0.1870 5.7659 1.5693
+#&gt; 467: 93.4931 -5.9197 -0.1460 2.2428 -0.9685 3.4866 3.3094 0.3172 0.3768 0.1871 5.7667 1.5691
+#&gt; 468: 93.4933 -5.9198 -0.1460 2.2428 -0.9685 3.4916 3.3099 0.3172 0.3769 0.1871 5.7672 1.5690
+#&gt; 469: 93.4936 -5.9200 -0.1461 2.2427 -0.9685 3.4929 3.3119 0.3171 0.3771 0.1871 5.7681 1.5689
+#&gt; 470: 93.4938 -5.9200 -0.1461 2.2427 -0.9685 3.4931 3.3111 0.3171 0.3773 0.1871 5.7685 1.5687
+#&gt; 471: 93.4943 -5.9198 -0.1461 2.2427 -0.9685 3.4932 3.3097 0.3170 0.3776 0.1871 5.7681 1.5686
+#&gt; 472: 93.4931 -5.9197 -0.1461 2.2427 -0.9684 3.4923 3.3092 0.3170 0.3778 0.1870 5.7683 1.5686
+#&gt; 473: 93.4928 -5.9193 -0.1461 2.2426 -0.9684 3.4918 3.3068 0.3169 0.3781 0.1870 5.7690 1.5685
+#&gt; 474: 93.4920 -5.9193 -0.1462 2.2426 -0.9683 3.4878 3.3075 0.3169 0.3781 0.1870 5.7687 1.5688
+#&gt; 475: 93.4909 -5.9191 -0.1463 2.2425 -0.9683 3.4868 3.3069 0.3169 0.3782 0.1869 5.7681 1.5692
+#&gt; 476: 93.4887 -5.9190 -0.1464 2.2424 -0.9682 3.4881 3.3072 0.3169 0.3783 0.1869 5.7673 1.5694
+#&gt; 477: 93.4875 -5.9185 -0.1465 2.2423 -0.9681 3.4847 3.3059 0.3169 0.3784 0.1868 5.7667 1.5696
+#&gt; 478: 93.4867 -5.9182 -0.1466 2.2421 -0.9681 3.4804 3.3056 0.3170 0.3784 0.1867 5.7661 1.5700
+#&gt; 479: 93.4865 -5.9178 -0.1468 2.2419 -0.9681 3.4768 3.3043 0.3171 0.3784 0.1867 5.7657 1.5702
+#&gt; 480: 93.4863 -5.9181 -0.1469 2.2417 -0.9680 3.4733 3.3057 0.3172 0.3784 0.1866 5.7656 1.5702
+#&gt; 481: 93.4865 -5.9182 -0.1470 2.2415 -0.9680 3.4694 3.3069 0.3173 0.3784 0.1866 5.7648 1.5705
+#&gt; 482: 93.4871 -5.9187 -0.1472 2.2412 -0.9681 3.4667 3.3089 0.3173 0.3784 0.1865 5.7631 1.5709
+#&gt; 483: 93.4860 -5.9192 -0.1473 2.2410 -0.9681 3.4668 3.3107 0.3174 0.3785 0.1865 5.7624 1.5709
+#&gt; 484: 93.4858 -5.9193 -0.1474 2.2408 -0.9681 3.4681 3.3111 0.3174 0.3786 0.1864 5.7615 1.5713
+#&gt; 485: 93.4858 -5.9195 -0.1476 2.2406 -0.9681 3.4643 3.3110 0.3174 0.3787 0.1864 5.7612 1.5717
+#&gt; 486: 93.4853 -5.9198 -0.1477 2.2404 -0.9682 3.4665 3.3115 0.3174 0.3788 0.1864 5.7612 1.5717
+#&gt; 487: 93.4856 -5.9201 -0.1478 2.2402 -0.9682 3.4687 3.3143 0.3173 0.3790 0.1864 5.7612 1.5719
+#&gt; 488: 93.4858 -5.9209 -0.1479 2.2401 -0.9683 3.4688 3.3186 0.3173 0.3792 0.1864 5.7626 1.5722
+#&gt; 489: 93.4870 -5.9211 -0.1480 2.2399 -0.9684 3.4681 3.3198 0.3174 0.3794 0.1863 5.7640 1.5725
+#&gt; 490: 93.4881 -5.9213 -0.1481 2.2398 -0.9684 3.4694 3.3211 0.3174 0.3797 0.1864 5.7650 1.5728
+#&gt; 491: 93.4892 -5.9210 -0.1482 2.2395 -0.9685 3.4716 3.3193 0.3173 0.3799 0.1864 5.7650 1.5732
+#&gt; 492: 93.4907 -5.9211 -0.1483 2.2393 -0.9686 3.4754 3.3179 0.3173 0.3801 0.1865 5.7648 1.5736
+#&gt; 493: 93.4928 -5.9215 -0.1484 2.2390 -0.9686 3.4858 3.3185 0.3173 0.3803 0.1865 5.7640 1.5738
+#&gt; 494: 93.4937 -5.9217 -0.1485 2.2388 -0.9687 3.4940 3.3182 0.3172 0.3805 0.1865 5.7639 1.5740
+#&gt; 495: 93.4945 -5.9213 -0.1485 2.2386 -0.9688 3.4998 3.3151 0.3172 0.3808 0.1866 5.7638 1.5742
+#&gt; 496: 93.4953 -5.9208 -0.1486 2.2384 -0.9688 3.5036 3.3123 0.3172 0.3810 0.1867 5.7635 1.5745
+#&gt; 497: 93.4969 -5.9205 -0.1487 2.2382 -0.9689 3.5064 3.3109 0.3172 0.3813 0.1868 5.7637 1.5747
+#&gt; 498: 93.4980 -5.9205 -0.1488 2.2379 -0.9690 3.5057 3.3104 0.3171 0.3815 0.1868 5.7639 1.5752
+#&gt; 499: 93.4999 -5.9205 -0.1488 2.2377 -0.9691 3.5095 3.3102 0.3171 0.3817 0.1869 5.7639 1.5756
+#&gt; 500: 93.5013 -5.9210 -0.1489 2.2376 -0.9691 3.5093 3.3135 0.3171 0.3818 0.1869 5.7644 1.5758</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#&gt; |.....................| log_beta |sigma_parent | sigma_A1 | o1 |
+#&gt; |.....................| o2 | o3 | o4 | o5 |
+#&gt; |<span style='font-weight: bold;'> 1</span>| 470.09130 | 1.000 | -1.000 | -0.9119 | -0.8960 |
+#&gt; |.....................| -0.8494 | -0.8528 | -0.8683 | -0.8768 |
+#&gt; |.....................| -0.8744 | -0.8681 | -0.8700 | -0.8694 |
+#&gt; | U| 470.0913 | 94.11 | -5.371 | -0.9909 | -0.1965 |
+#&gt; |.....................| 2.121 | 1.952 | 1.178 | 0.7545 |
+#&gt; |.....................| 0.8769 | 1.189 | 1.095 | 1.127 |
+#&gt; | X|<span style='font-weight: bold;'> 470.0913</span> | 94.11 | 0.004648 | 0.2707 | 0.8216 |
+#&gt; |.....................| 8.339 | 1.952 | 1.178 | 0.7545 |
+#&gt; |.....................| 0.8769 | 1.189 | 1.095 | 1.127 |
+#&gt; | G| Gill Diff. | 72.01 | 2.213 | -0.2476 | -0.3163 |
+#&gt; |.....................| -0.8532 | -32.82 | -13.44 | 9.552 |
+#&gt; |.....................| 11.72 | -12.16 | -9.599 | -9.049 |
+#&gt; |<span style='font-weight: bold;'> 2</span>| 5180.4321 | 0.1393 | -1.026 | -0.9090 | -0.8922 |
+#&gt; |.....................| -0.8392 | -0.4605 | -0.7077 | -0.9910 |
+#&gt; |.....................| -1.014 | -0.7228 | -0.7553 | -0.7612 |
+#&gt; | U| 5180.4321 | 13.11 | -5.398 | -0.9880 | -0.1927 |
+#&gt; |.....................| 2.131 | 2.334 | 1.272 | 0.6684 |
+#&gt; |.....................| 0.7541 | 1.362 | 1.220 | 1.248 |
+#&gt; | X|<span style='font-weight: bold;'> 5180.4321</span> | 13.11 | 0.004526 | 0.2713 | 0.8247 |
+#&gt; |.....................| 8.424 | 2.334 | 1.272 | 0.6684 |
+#&gt; |.....................| 0.7541 | 1.362 | 1.220 | 1.248 |
+#&gt; |<span style='font-weight: bold;'> 3</span>| 529.93288 | 0.9139 | -1.003 | -0.9116 | -0.8956 |
+#&gt; |.....................| -0.8484 | -0.8135 | -0.8523 | -0.8883 |
+#&gt; |.....................| -0.8884 | -0.8536 | -0.8585 | -0.8585 |
+#&gt; | U| 529.93288 | 86.01 | -5.374 | -0.9906 | -0.1961 |
+#&gt; |.....................| 2.122 | 1.990 | 1.187 | 0.7459 |
+#&gt; |.....................| 0.8647 | 1.206 | 1.107 | 1.139 |
+#&gt; | X|<span style='font-weight: bold;'> 529.93288</span> | 86.01 | 0.004635 | 0.2708 | 0.8219 |
+#&gt; |.....................| 8.347 | 1.990 | 1.187 | 0.7459 |
+#&gt; |.....................| 0.8647 | 1.206 | 1.107 | 1.139 |
+#&gt; |<span style='font-weight: bold;'> 4</span>| 469.96296 | 0.9914 | -1.000 | -0.9119 | -0.8959 |
+#&gt; |.....................| -0.8493 | -0.8489 | -0.8667 | -0.8780 |
+#&gt; |.....................| -0.8758 | -0.8667 | -0.8689 | -0.8683 |
+#&gt; | U| 469.96296 | 93.30 | -5.372 | -0.9909 | -0.1965 |
+#&gt; |.....................| 2.121 | 1.955 | 1.179 | 0.7536 |
+#&gt; |.....................| 0.8757 | 1.191 | 1.096 | 1.128 |
+#&gt; | X|<span style='font-weight: bold;'> 469.96296</span> | 93.30 | 0.004646 | 0.2707 | 0.8216 |
+#&gt; |.....................| 8.339 | 1.955 | 1.179 | 0.7536 |
+#&gt; |.....................| 0.8757 | 1.191 | 1.096 | 1.128 |
+#&gt; | F| Forward Diff. | -91.63 | 2.121 | -0.4143 | -0.3985 |
+#&gt; |.....................| -1.124 | -34.23 | -12.87 | 9.567 |
+#&gt; |.....................| 8.592 | -11.79 | -9.469 | -8.518 |
+#&gt; |<span style='font-weight: bold;'> 5</span>| 469.41305 | 0.9973 | -1.001 | -0.9118 | -0.8959 |
+#&gt; |.....................| -0.8491 | -0.8424 | -0.8642 | -0.8798 |
+#&gt; |.....................| -0.8776 | -0.8644 | -0.8670 | -0.8666 |
+#&gt; | U| 469.41305 | 93.85 | -5.372 | -0.9908 | -0.1964 |
+#&gt; |.....................| 2.121 | 1.962 | 1.180 | 0.7523 |
+#&gt; |.....................| 0.8741 | 1.193 | 1.098 | 1.130 |
+#&gt; | X|<span style='font-weight: bold;'> 469.41305</span> | 93.85 | 0.004644 | 0.2707 | 0.8217 |
+#&gt; |.....................| 8.341 | 1.962 | 1.180 | 0.7523 |
+#&gt; |.....................| 0.8741 | 1.193 | 1.098 | 1.130 |
+#&gt; | F| Forward Diff. | 19.88 | 2.163 | -0.2989 | -0.3449 |
+#&gt; |.....................| -0.9473 | -32.84 | -13.22 | 8.952 |
+#&gt; |.....................| 11.37 | -11.75 | -9.421 | -8.530 |
+#&gt; |<span style='font-weight: bold;'> 6</span>| 469.13124 | 0.9930 | -1.001 | -0.9118 | -0.8958 |
+#&gt; |.....................| -0.8489 | -0.8354 | -0.8614 | -0.8817 |
+#&gt; |.....................| -0.8801 | -0.8619 | -0.8650 | -0.8648 |
+#&gt; | U| 469.13124 | 93.45 | -5.373 | -0.9908 | -0.1963 |
+#&gt; |.....................| 2.121 | 1.969 | 1.182 | 0.7508 |
+#&gt; |.....................| 0.8719 | 1.196 | 1.100 | 1.132 |
+#&gt; | X|<span style='font-weight: bold;'> 469.13124</span> | 93.45 | 0.004642 | 0.2708 | 0.8218 |
+#&gt; |.....................| 8.343 | 1.969 | 1.182 | 0.7508 |
+#&gt; |.....................| 0.8719 | 1.196 | 1.100 | 1.132 |
+#&gt; | F| Forward Diff. | -60.06 | 2.108 | -0.3845 | -0.3876 |
+#&gt; |.....................| -1.088 | -32.82 | -12.89 | 8.720 |
+#&gt; |.....................| 9.663 | -11.60 | -9.301 | -8.348 |
+#&gt; |<span style='font-weight: bold;'> 7</span>| 468.71336 | 0.9979 | -1.002 | -0.9117 | -0.8957 |
+#&gt; |.....................| -0.8487 | -0.8285 | -0.8586 | -0.8835 |
+#&gt; |.....................| -0.8823 | -0.8594 | -0.8631 | -0.8630 |
+#&gt; | U| 468.71336 | 93.91 | -5.373 | -0.9907 | -0.1962 |
+#&gt; |.....................| 2.122 | 1.975 | 1.183 | 0.7495 |
+#&gt; |.....................| 0.8700 | 1.199 | 1.102 | 1.134 |
+#&gt; | X|<span style='font-weight: bold;'> 468.71336</span> | 93.91 | 0.004640 | 0.2708 | 0.8218 |
+#&gt; |.....................| 8.345 | 1.975 | 1.183 | 0.7495 |
+#&gt; |.....................| 0.8700 | 1.199 | 1.102 | 1.134 |
+#&gt; | F| Forward Diff. | 31.80 | 2.131 | -0.3007 | -0.3556 |
+#&gt; |.....................| -0.9543 | -30.66 | -12.35 | 8.979 |
+#&gt; |.....................| 9.681 | -11.54 | -9.231 | -8.330 |
+#&gt; |<span style='font-weight: bold;'> 8</span>| 468.42878 | 0.9931 | -1.002 | -0.9116 | -0.8956 |
+#&gt; |.....................| -0.8484 | -0.8217 | -0.8559 | -0.8855 |
+#&gt; |.....................| -0.8845 | -0.8568 | -0.8610 | -0.8612 |
+#&gt; | U| 468.42878 | 93.46 | -5.373 | -0.9906 | -0.1962 |
+#&gt; |.....................| 2.122 | 1.982 | 1.185 | 0.7480 |
+#&gt; |.....................| 0.8681 | 1.202 | 1.105 | 1.136 |
+#&gt; | X|<span style='font-weight: bold;'> 468.42878</span> | 93.46 | 0.004638 | 0.2708 | 0.8219 |
+#&gt; |.....................| 8.346 | 1.982 | 1.185 | 0.7480 |
+#&gt; |.....................| 0.8681 | 1.202 | 1.105 | 1.136 |
+#&gt; | F| Forward Diff. | -55.97 | 2.081 | -0.3855 | -0.3928 |
+#&gt; |.....................| -1.100 | -30.89 | -12.11 | 8.596 |
+#&gt; |.....................| 9.353 | -11.36 | -9.087 | -8.137 |
+#&gt; |<span style='font-weight: bold;'> 9</span>| 468.02528 | 0.9977 | -1.003 | -0.9115 | -0.8955 |
+#&gt; |.....................| -0.8482 | -0.8148 | -0.8531 | -0.8875 |
+#&gt; |.....................| -0.8866 | -0.8542 | -0.8589 | -0.8593 |
+#&gt; | U| 468.02528 | 93.90 | -5.374 | -0.9905 | -0.1961 |
+#&gt; |.....................| 2.122 | 1.989 | 1.187 | 0.7465 |
+#&gt; |.....................| 0.8662 | 1.206 | 1.107 | 1.138 |
+#&gt; | X|<span style='font-weight: bold;'> 468.02528</span> | 93.90 | 0.004636 | 0.2708 | 0.8220 |
+#&gt; |.....................| 8.348 | 1.989 | 1.187 | 0.7465 |
+#&gt; |.....................| 0.8662 | 1.206 | 1.107 | 1.138 |
+#&gt; | F| Forward Diff. | 28.40 | 2.101 | -0.3066 | -0.3612 |
+#&gt; |.....................| -0.9721 | -29.21 | -11.91 | 8.561 |
+#&gt; |.....................| 9.360 | -11.31 | -9.026 | -8.108 |
+#&gt; |<span style='font-weight: bold;'> 10</span>| 467.76129 | 0.9930 | -1.003 | -0.9115 | -0.8954 |
+#&gt; |.....................| -0.8479 | -0.8081 | -0.8503 | -0.8895 |
+#&gt; |.....................| -0.8888 | -0.8515 | -0.8567 | -0.8574 |
+#&gt; | U| 467.76129 | 93.46 | -5.374 | -0.9905 | -0.1960 |
+#&gt; |.....................| 2.122 | 1.995 | 1.188 | 0.7450 |
+#&gt; |.....................| 0.8643 | 1.209 | 1.109 | 1.140 |
+#&gt; | X|<span style='font-weight: bold;'> 467.76129</span> | 93.46 | 0.004633 | 0.2708 | 0.8220 |
+#&gt; |.....................| 8.351 | 1.995 | 1.188 | 0.7450 |
+#&gt; |.....................| 0.8643 | 1.209 | 1.109 | 1.140 |
+#&gt; | F| Forward Diff. | -56.33 | 2.052 | -0.3905 | -0.3944 |
+#&gt; |.....................| -1.108 | -29.62 | -11.80 | 8.124 |
+#&gt; |.....................| 9.000 | -11.14 | -8.878 | -7.912 |
+#&gt; |<span style='font-weight: bold;'> 11</span>| 467.36507 | 0.9976 | -1.004 | -0.9114 | -0.8953 |
+#&gt; |.....................| -0.8477 | -0.8013 | -0.8475 | -0.8914 |
+#&gt; |.....................| -0.8910 | -0.8487 | -0.8545 | -0.8554 |
+#&gt; | U| 467.36507 | 93.88 | -5.375 | -0.9904 | -0.1959 |
+#&gt; |.....................| 2.123 | 2.002 | 1.190 | 0.7435 |
+#&gt; |.....................| 0.8624 | 1.212 | 1.112 | 1.142 |
+#&gt; | X|<span style='font-weight: bold;'> 467.36507</span> | 93.88 | 0.004631 | 0.2708 | 0.8221 |
+#&gt; |.....................| 8.353 | 2.002 | 1.190 | 0.7435 |
+#&gt; |.....................| 0.8624 | 1.212 | 1.112 | 1.142 |
+#&gt; | F| Forward Diff. | 25.62 | 2.072 | -0.2964 | -0.3658 |
+#&gt; |.....................| -0.9890 | -26.78 | -10.91 | 8.547 |
+#&gt; |.....................| 9.002 | -11.08 | -8.799 | -7.879 |
+#&gt; |<span style='font-weight: bold;'> 12</span>| 467.13453 | 0.9928 | -1.004 | -0.9113 | -0.8952 |
+#&gt; |.....................| -0.8474 | -0.7947 | -0.8448 | -0.8935 |
+#&gt; |.....................| -0.8932 | -0.8459 | -0.8523 | -0.8534 |
+#&gt; | U| 467.13453 | 93.43 | -5.376 | -0.9903 | -0.1958 |
+#&gt; |.....................| 2.123 | 2.008 | 1.191 | 0.7419 |
+#&gt; |.....................| 0.8604 | 1.215 | 1.114 | 1.145 |
+#&gt; | X|<span style='font-weight: bold;'> 467.13453</span> | 93.43 | 0.004628 | 0.2709 | 0.8222 |
+#&gt; |.....................| 8.355 | 2.008 | 1.191 | 0.7419 |
+#&gt; |.....................| 0.8604 | 1.215 | 1.114 | 1.145 |
+#&gt; | F| Forward Diff. | -59.86 | 2.021 | -0.3893 | -0.4093 |
+#&gt; |.....................| -1.140 | -28.00 | -11.13 | 7.926 |
+#&gt; |.....................| 9.918 | -10.90 | -8.684 | -7.680 |
+#&gt; |<span style='font-weight: bold;'> 13</span>| 466.72836 | 0.9971 | -1.005 | -0.9112 | -0.8951 |
+#&gt; |.....................| -0.8471 | -0.7882 | -0.8421 | -0.8957 |
+#&gt; |.....................| -0.8959 | -0.8428 | -0.8499 | -0.8513 |
+#&gt; | U| 466.72836 | 93.84 | -5.376 | -0.9902 | -0.1956 |
+#&gt; |.....................| 2.123 | 2.015 | 1.193 | 0.7403 |
+#&gt; |.....................| 0.8581 | 1.219 | 1.117 | 1.147 |
+#&gt; | X|<span style='font-weight: bold;'> 466.72836</span> | 93.84 | 0.004626 | 0.2709 | 0.8223 |
+#&gt; |.....................| 8.358 | 2.015 | 1.193 | 0.7403 |
+#&gt; |.....................| 0.8581 | 1.219 | 1.117 | 1.147 |
+#&gt; | F| Forward Diff. | 18.13 | 2.039 | -0.3145 | -0.3694 |
+#&gt; |.....................| -1.015 | -26.10 | -10.63 | 8.044 |
+#&gt; |.....................| 8.616 | -10.80 | -8.580 | -7.637 |
+#&gt; |<span style='font-weight: bold;'> 14</span>| 466.53378 | 0.9925 | -1.005 | -0.9111 | -0.8950 |
+#&gt; |.....................| -0.8468 | -0.7815 | -0.8394 | -0.8978 |
+#&gt; |.....................| -0.8981 | -0.8400 | -0.8477 | -0.8494 |
+#&gt; | U| 466.53378 | 93.40 | -5.377 | -0.9901 | -0.1956 |
+#&gt; |.....................| 2.123 | 2.021 | 1.195 | 0.7387 |
+#&gt; |.....................| 0.8562 | 1.222 | 1.119 | 1.149 |
+#&gt; | X|<span style='font-weight: bold;'> 466.53378</span> | 93.40 | 0.004623 | 0.2709 | 0.8224 |
+#&gt; |.....................| 8.360 | 2.021 | 1.195 | 0.7387 |
+#&gt; |.....................| 0.8562 | 1.222 | 1.119 | 1.149 |
+#&gt; | F| Forward Diff. | -63.81 | 1.989 | -0.4067 | -0.4178 |
+#&gt; |.....................| -1.167 | -26.39 | -10.45 | 7.924 |
+#&gt; |.....................| 8.221 | -10.62 | -8.445 | -7.432 |
+#&gt; |<span style='font-weight: bold;'> 15</span>| 466.13347 | 0.9972 | -1.006 | -0.9110 | -0.8949 |
+#&gt; |.....................| -0.8464 | -0.7752 | -0.8368 | -0.9000 |
+#&gt; |.....................| -0.9002 | -0.8369 | -0.8452 | -0.8472 |
+#&gt; | U| 466.13347 | 93.85 | -5.377 | -0.9900 | -0.1954 |
+#&gt; |.....................| 2.124 | 2.027 | 1.196 | 0.7370 |
+#&gt; |.....................| 0.8543 | 1.226 | 1.122 | 1.152 |
+#&gt; | X|<span style='font-weight: bold;'> 466.13347</span> | 93.85 | 0.004620 | 0.2709 | 0.8225 |
+#&gt; |.....................| 8.363 | 2.027 | 1.196 | 0.7370 |
+#&gt; |.....................| 0.8543 | 1.226 | 1.122 | 1.152 |
+#&gt; | F| Forward Diff. | 18.92 | 2.012 | -0.3108 | -0.3757 |
+#&gt; |.....................| -1.021 | -25.52 | -10.81 | 7.279 |
+#&gt; |.....................| 9.661 | -10.54 | -8.331 | -7.395 |
+#&gt; |<span style='font-weight: bold;'> 16</span>| 465.94504 | 0.9925 | -1.006 | -0.9109 | -0.8948 |
+#&gt; |.....................| -0.8461 | -0.7686 | -0.8339 | -0.9019 |
+#&gt; |.....................| -0.9028 | -0.8341 | -0.8430 | -0.8453 |
+#&gt; | U| 465.94504 | 93.41 | -5.378 | -0.9899 | -0.1953 |
+#&gt; |.....................| 2.124 | 2.034 | 1.198 | 0.7356 |
+#&gt; |.....................| 0.8521 | 1.229 | 1.124 | 1.154 |
+#&gt; | X|<span style='font-weight: bold;'> 465.94504</span> | 93.41 | 0.004618 | 0.2709 | 0.8226 |
+#&gt; |.....................| 8.366 | 2.034 | 1.198 | 0.7356 |
+#&gt; |.....................| 0.8521 | 1.229 | 1.124 | 1.154 |
+#&gt; | F| Forward Diff. | -61.65 | 1.961 | -0.4097 | -0.4254 |
+#&gt; |.....................| -1.181 | -25.22 | -10.13 | 7.338 |
+#&gt; |.....................| 9.206 | -10.38 | -8.223 | -7.205 |
+#&gt; |<span style='font-weight: bold;'> 17</span>| 465.56754 | 0.9973 | -1.007 | -0.9108 | -0.8946 |
+#&gt; |.....................| -0.8457 | -0.7626 | -0.8312 | -0.9037 |
+#&gt; |.....................| -0.9058 | -0.8309 | -0.8405 | -0.8432 |
+#&gt; | U| 465.56754 | 93.86 | -5.378 | -0.9898 | -0.1952 |
+#&gt; |.....................| 2.125 | 2.040 | 1.199 | 0.7342 |
+#&gt; |.....................| 0.8494 | 1.233 | 1.127 | 1.156 |
+#&gt; | X|<span style='font-weight: bold;'> 465.56754</span> | 93.86 | 0.004615 | 0.2710 | 0.8227 |
+#&gt; |.....................| 8.369 | 2.040 | 1.199 | 0.7342 |
+#&gt; |.....................| 0.8494 | 1.233 | 1.127 | 1.156 |
+#&gt; | F| Forward Diff. | 20.78 | 1.982 | -0.3060 | -0.3796 |
+#&gt; |.....................| -1.026 | -23.61 | -9.859 | 7.282 |
+#&gt; |.....................| 6.603 | -10.29 | -8.096 | -7.167 |
+#&gt; |<span style='font-weight: bold;'> 18</span>| 465.36858 | 0.9928 | -1.008 | -0.9107 | -0.8945 |
+#&gt; |.....................| -0.8454 | -0.7560 | -0.8284 | -0.9059 |
+#&gt; |.....................| -0.9077 | -0.8278 | -0.8381 | -0.8410 |
+#&gt; | U| 465.36858 | 93.44 | -5.379 | -0.9897 | -0.1950 |
+#&gt; |.....................| 2.125 | 2.046 | 1.201 | 0.7326 |
+#&gt; |.....................| 0.8477 | 1.237 | 1.130 | 1.159 |
+#&gt; | X|<span style='font-weight: bold;'> 465.36858</span> | 93.44 | 0.004612 | 0.2710 | 0.8228 |
+#&gt; |.....................| 8.372 | 2.046 | 1.201 | 0.7326 |
+#&gt; |.....................| 0.8477 | 1.237 | 1.130 | 1.159 |
+#&gt; | F| Forward Diff. | -55.43 | 1.935 | -0.4028 | -0.4254 |
+#&gt; |.....................| -1.182 | -23.34 | -9.189 | 7.305 |
+#&gt; |.....................| 7.555 | -10.07 | -7.946 | -6.960 |
+#&gt; |<span style='font-weight: bold;'> 19</span>| 465.01863 | 0.9972 | -1.008 | -0.9105 | -0.8943 |
+#&gt; |.....................| -0.8449 | -0.7499 | -0.8257 | -0.9082 |
+#&gt; |.....................| -0.9092 | -0.8240 | -0.8352 | -0.8386 |
+#&gt; | U| 465.01863 | 93.84 | -5.380 | -0.9895 | -0.1948 |
+#&gt; |.....................| 2.125 | 2.052 | 1.203 | 0.7308 |
+#&gt; |.....................| 0.8464 | 1.241 | 1.133 | 1.161 |
+#&gt; | X|<span style='font-weight: bold;'> 465.01863</span> | 93.84 | 0.004609 | 0.2710 | 0.8230 |
+#&gt; |.....................| 8.376 | 2.052 | 1.203 | 0.7308 |
+#&gt; |.....................| 0.8464 | 1.241 | 1.133 | 1.161 |
+#&gt; | F| Forward Diff. | 18.74 | 1.956 | -0.3105 | -0.3857 |
+#&gt; |.....................| -1.041 | -22.36 | -9.386 | 7.151 |
+#&gt; |.....................| 7.639 | -9.969 | -7.832 | -6.900 |
+#&gt; |<span style='font-weight: bold;'> 20</span>| 464.81883 | 0.9930 | -1.009 | -0.9104 | -0.8942 |
+#&gt; |.....................| -0.8445 | -0.7435 | -0.8230 | -0.9105 |
+#&gt; |.....................| -0.9115 | -0.8207 | -0.8326 | -0.8363 |
+#&gt; | U| 464.81883 | 93.45 | -5.381 | -0.9894 | -0.1947 |
+#&gt; |.....................| 2.126 | 2.058 | 1.204 | 0.7291 |
+#&gt; |.....................| 0.8444 | 1.245 | 1.136 | 1.164 |
+#&gt; | X|<span style='font-weight: bold;'> 464.81883</span> | 93.45 | 0.004605 | 0.2710 | 0.8231 |
+#&gt; |.....................| 8.380 | 2.058 | 1.204 | 0.7291 |
+#&gt; |.....................| 0.8444 | 1.245 | 1.136 | 1.164 |
+#&gt; | F| Forward Diff. | -51.40 | 1.910 | -0.3971 | -0.4173 |
+#&gt; |.....................| -1.192 | -21.85 | -8.569 | 7.088 |
+#&gt; |.....................| 7.257 | -9.784 | -7.694 | -6.698 |
+#&gt; |<span style='font-weight: bold;'> 21</span>| 464.49434 | 0.9973 | -1.010 | -0.9102 | -0.8940 |
+#&gt; |.....................| -0.8439 | -0.7380 | -0.8206 | -0.9131 |
+#&gt; |.....................| -0.9139 | -0.8168 | -0.8296 | -0.8338 |
+#&gt; | U| 464.49434 | 93.85 | -5.381 | -0.9892 | -0.1945 |
+#&gt; |.....................| 2.126 | 2.064 | 1.206 | 0.7271 |
+#&gt; |.....................| 0.8423 | 1.250 | 1.139 | 1.167 |
+#&gt; | X|<span style='font-weight: bold;'> 464.49434</span> | 93.85 | 0.004602 | 0.2711 | 0.8233 |
+#&gt; |.....................| 8.385 | 2.064 | 1.206 | 0.7271 |
+#&gt; |.....................| 0.8423 | 1.250 | 1.139 | 1.167 |
+#&gt; | F| Forward Diff. | 20.43 | 1.927 | -0.3065 | -0.3887 |
+#&gt; |.....................| -1.043 | -20.85 | -8.676 | 6.819 |
+#&gt; |.....................| 7.291 | -9.652 | -7.555 | -6.636 |
+#&gt; |<span style='font-weight: bold;'> 22</span>| 464.27900 | 0.9935 | -1.011 | -0.9101 | -0.8938 |
+#&gt; |.....................| -0.8433 | -0.7319 | -0.8180 | -0.9156 |
+#&gt; |.....................| -0.9164 | -0.8129 | -0.8266 | -0.8314 |
+#&gt; | U| 464.279 | 93.50 | -5.382 | -0.9891 | -0.1943 |
+#&gt; |.....................| 2.127 | 2.070 | 1.207 | 0.7252 |
+#&gt; |.....................| 0.8401 | 1.255 | 1.142 | 1.169 |
+#&gt; | X|<span style='font-weight: bold;'> 464.279</span> | 93.50 | 0.004598 | 0.2711 | 0.8234 |
+#&gt; |.....................| 8.389 | 2.070 | 1.207 | 0.7252 |
+#&gt; |.....................| 0.8401 | 1.255 | 1.142 | 1.169 |
+#&gt; | F| Forward Diff. | -42.65 | 1.884 | -0.3905 | -0.4168 |
+#&gt; |.....................| -1.174 | -21.12 | -8.566 | 6.431 |
+#&gt; |.....................| 8.301 | -9.439 | -7.399 | -6.436 |
+#&gt; |<span style='font-weight: bold;'> 23</span>| 463.98221 | 0.9971 | -1.012 | -0.9099 | -0.8935 |
+#&gt; |.....................| -0.8426 | -0.7266 | -0.8156 | -0.9179 |
+#&gt; |.....................| -0.9200 | -0.8088 | -0.8235 | -0.8288 |
+#&gt; | U| 463.98221 | 93.84 | -5.383 | -0.9889 | -0.1940 |
+#&gt; |.....................| 2.128 | 2.075 | 1.209 | 0.7235 |
+#&gt; |.....................| 0.8370 | 1.260 | 1.146 | 1.172 |
+#&gt; | X|<span style='font-weight: bold;'> 463.98221</span> | 93.84 | 0.004593 | 0.2711 | 0.8236 |
+#&gt; |.....................| 8.395 | 2.075 | 1.209 | 0.7235 |
+#&gt; |.....................| 0.8370 | 1.260 | 1.146 | 1.172 |
+#&gt; | F| Forward Diff. | 17.69 | 1.891 | -0.3039 | -0.3774 |
+#&gt; |.....................| -1.038 | -20.36 | -8.704 | 6.334 |
+#&gt; |.....................| 6.886 | -9.291 | -7.246 | -6.355 |
+#&gt; |<span style='font-weight: bold;'> 24</span>| 463.80345 | 0.9930 | -1.013 | -0.9097 | -0.8933 |
+#&gt; |.....................| -0.8421 | -0.7205 | -0.8127 | -0.9199 |
+#&gt; |.....................| -0.9227 | -0.8053 | -0.8209 | -0.8265 |
+#&gt; | U| 463.80345 | 93.45 | -5.384 | -0.9887 | -0.1939 |
+#&gt; |.....................| 2.128 | 2.081 | 1.210 | 0.7220 |
+#&gt; |.....................| 0.8346 | 1.264 | 1.148 | 1.175 |
+#&gt; | X|<span style='font-weight: bold;'> 463.80345</span> | 93.45 | 0.004590 | 0.2712 | 0.8238 |
+#&gt; |.....................| 8.399 | 2.081 | 1.210 | 0.7220 |
+#&gt; |.....................| 0.8346 | 1.264 | 1.148 | 1.175 |
+#&gt; | F| Forward Diff. | -49.16 | 1.846 | -0.3979 | -0.4233 |
+#&gt; |.....................| -1.191 | -20.11 | -8.128 | 6.150 |
+#&gt; |.....................| 7.842 | -9.114 | -7.113 | -6.163 |
+#&gt; |<span style='font-weight: bold;'> 25</span>| 463.50095 | 0.9970 | -1.014 | -0.9095 | -0.8930 |
+#&gt; |.....................| -0.8413 | -0.7152 | -0.8100 | -0.9219 |
+#&gt; |.....................| -0.9258 | -0.8011 | -0.8178 | -0.8240 |
+#&gt; | U| 463.50095 | 93.83 | -5.385 | -0.9885 | -0.1936 |
+#&gt; |.....................| 2.129 | 2.086 | 1.212 | 0.7205 |
+#&gt; |.....................| 0.8318 | 1.269 | 1.152 | 1.178 |
+#&gt; | X|<span style='font-weight: bold;'> 463.50095</span> | 93.83 | 0.004585 | 0.2712 | 0.8240 |
+#&gt; |.....................| 8.406 | 2.086 | 1.212 | 0.7205 |
+#&gt; |.....................| 0.8318 | 1.269 | 1.152 | 1.178 |
+#&gt; | F| Forward Diff. | 15.76 | 1.857 | -0.2989 | -0.3817 |
+#&gt; |.....................| -1.050 | -19.47 | -8.354 | 5.597 |
+#&gt; |.....................| 5.177 | -8.956 | -6.950 | -6.091 |
+#&gt; |<span style='font-weight: bold;'> 26</span>| 463.33971 | 0.9930 | -1.014 | -0.9093 | -0.8928 |
+#&gt; |.....................| -0.8408 | -0.7088 | -0.8070 | -0.9237 |
+#&gt; |.....................| -0.9274 | -0.7974 | -0.8150 | -0.8217 |
+#&gt; | U| 463.33971 | 93.45 | -5.386 | -0.9883 | -0.1934 |
+#&gt; |.....................| 2.129 | 2.092 | 1.214 | 0.7192 |
+#&gt; |.....................| 0.8304 | 1.273 | 1.155 | 1.180 |
+#&gt; | X|<span style='font-weight: bold;'> 463.33971</span> | 93.45 | 0.004581 | 0.2712 | 0.8242 |
+#&gt; |.....................| 8.411 | 2.092 | 1.214 | 0.7192 |
+#&gt; |.....................| 0.8304 | 1.273 | 1.155 | 1.180 |
+#&gt; | F| Forward Diff. | -49.38 | 1.817 | -0.3945 | -0.4254 |
+#&gt; |.....................| -1.192 | -18.49 | -7.219 | 6.140 |
+#&gt; |.....................| 6.147 | -8.752 | -6.775 | -5.892 |
+#&gt; |<span style='font-weight: bold;'> 27</span>| 463.06378 | 0.9971 | -1.016 | -0.9091 | -0.8925 |
+#&gt; |.....................| -0.8398 | -0.7035 | -0.8044 | -0.9255 |
+#&gt; |.....................| -0.9274 | -0.7927 | -0.8116 | -0.8189 |
+#&gt; | U| 463.06378 | 93.84 | -5.387 | -0.9881 | -0.1930 |
+#&gt; |.....................| 2.130 | 2.097 | 1.215 | 0.7178 |
+#&gt; |.....................| 0.8305 | 1.279 | 1.159 | 1.184 |
+#&gt; | X|<span style='font-weight: bold;'> 463.06378</span> | 93.84 | 0.004575 | 0.2713 | 0.8245 |
+#&gt; |.....................| 8.419 | 2.097 | 1.215 | 0.7178 |
+#&gt; |.....................| 0.8305 | 1.279 | 1.159 | 1.184 |
+#&gt; | F| Forward Diff. | 17.15 | 1.839 | -0.2941 | -0.3829 |
+#&gt; |.....................| -1.046 | -18.21 | -7.786 | 5.595 |
+#&gt; |.....................| 7.714 | -8.592 | -6.652 | -5.814 |
+#&gt; |<span style='font-weight: bold;'> 28</span>| 462.87224 | 0.9938 | -1.017 | -0.9088 | -0.8922 |
+#&gt; |.....................| -0.8390 | -0.6982 | -0.8019 | -0.9277 |
+#&gt; |.....................| -0.9311 | -0.7885 | -0.8085 | -0.8163 |
+#&gt; | U| 462.87224 | 93.52 | -5.388 | -0.9879 | -0.1927 |
+#&gt; |.....................| 2.131 | 2.102 | 1.217 | 0.7161 |
+#&gt; |.....................| 0.8272 | 1.284 | 1.162 | 1.186 |
+#&gt; | X|<span style='font-weight: bold;'> 462.87224</span> | 93.52 | 0.004570 | 0.2713 | 0.8247 |
+#&gt; |.....................| 8.425 | 2.102 | 1.217 | 0.7161 |
+#&gt; |.....................| 0.8272 | 1.284 | 1.162 | 1.186 |
+#&gt; | F| Forward Diff. | -35.81 | 1.797 | -0.3699 | -0.4180 |
+#&gt; |.....................| -1.164 | -17.54 | -6.949 | 5.683 |
+#&gt; |.....................| 5.938 | -8.368 | -6.484 | -5.617 |
+#&gt; |<span style='font-weight: bold;'> 29</span>| 462.64279 | 0.9976 | -1.018 | -0.9085 | -0.8918 |
+#&gt; |.....................| -0.8379 | -0.6938 | -0.7998 | -0.9297 |
+#&gt; |.....................| -0.9347 | -0.7837 | -0.8051 | -0.8136 |
+#&gt; | U| 462.64279 | 93.88 | -5.390 | -0.9876 | -0.1923 |
+#&gt; |.....................| 2.132 | 2.107 | 1.218 | 0.7146 |
+#&gt; |.....................| 0.8240 | 1.289 | 1.166 | 1.189 |
+#&gt; | X|<span style='font-weight: bold;'> 462.64279</span> | 93.88 | 0.004563 | 0.2714 | 0.8250 |
+#&gt; |.....................| 8.435 | 2.107 | 1.218 | 0.7146 |
+#&gt; |.....................| 0.8240 | 1.289 | 1.166 | 1.189 |
+#&gt; | F| Forward Diff. | 23.89 | 1.802 | -0.2695 | -0.3764 |
+#&gt; |.....................| -1.014 | -17.48 | -7.590 | 5.234 |
+#&gt; |.....................| 7.275 | -8.199 | -6.306 | -5.540 |
+#&gt; |<span style='font-weight: bold;'> 30</span>| 462.43086 | 0.9946 | -1.020 | -0.9083 | -0.8914 |
+#&gt; |.....................| -0.8367 | -0.6890 | -0.7974 | -0.9317 |
+#&gt; |.....................| -0.9381 | -0.7789 | -0.8017 | -0.8108 |
+#&gt; | U| 462.43086 | 93.61 | -5.391 | -0.9873 | -0.1919 |
+#&gt; |.....................| 2.134 | 2.111 | 1.219 | 0.7131 |
+#&gt; |.....................| 0.8211 | 1.295 | 1.169 | 1.193 |
+#&gt; | X|<span style='font-weight: bold;'> 462.43086</span> | 93.61 | 0.004556 | 0.2715 | 0.8254 |
+#&gt; |.....................| 8.445 | 2.111 | 1.219 | 0.7131 |
+#&gt; |.....................| 0.8211 | 1.295 | 1.169 | 1.193 |
+#&gt; | F| Forward Diff. | -22.12 | 1.763 | -0.3409 | -0.4033 |
+#&gt; |.....................| -1.105 | -16.76 | -6.743 | 5.132 |
+#&gt; |.....................| 5.573 | -7.935 | -6.123 | -5.337 |
+#&gt; |<span style='font-weight: bold;'> 31</span>| 462.24769 | 0.9981 | -1.021 | -0.9079 | -0.8909 |
+#&gt; |.....................| -0.8355 | -0.6838 | -0.7950 | -0.9332 |
+#&gt; |.....................| -0.9404 | -0.7741 | -0.7984 | -0.8080 |
+#&gt; | U| 462.24769 | 93.94 | -5.393 | -0.9870 | -0.1915 |
+#&gt; |.....................| 2.135 | 2.117 | 1.221 | 0.7120 |
+#&gt; |.....................| 0.8190 | 1.301 | 1.173 | 1.196 |
+#&gt; | X|<span style='font-weight: bold;'> 462.24769</span> | 93.94 | 0.004549 | 0.2715 | 0.8258 |
+#&gt; |.....................| 8.455 | 2.117 | 1.221 | 0.7120 |
+#&gt; |.....................| 0.8190 | 1.301 | 1.173 | 1.196 |
+#&gt; | F| Forward Diff. | 32.76 | 1.771 | -0.2440 | -0.3645 |
+#&gt; |.....................| -0.9678 | -16.08 | -6.874 | 5.077 |
+#&gt; |.....................| 5.606 | -7.758 | -5.959 | -5.256 |
+#&gt; |<span style='font-weight: bold;'> 32</span>| 462.04894 | 0.9949 | -1.023 | -0.9076 | -0.8904 |
+#&gt; |.....................| -0.8341 | -0.6790 | -0.7932 | -0.9353 |
+#&gt; |.....................| -0.9395 | -0.7687 | -0.7947 | -0.8049 |
+#&gt; | U| 462.04894 | 93.63 | -5.395 | -0.9866 | -0.1909 |
+#&gt; |.....................| 2.136 | 2.121 | 1.222 | 0.7104 |
+#&gt; |.....................| 0.8198 | 1.307 | 1.177 | 1.199 |
+#&gt; | X|<span style='font-weight: bold;'> 462.04894</span> | 93.63 | 0.004540 | 0.2716 | 0.8262 |
+#&gt; |.....................| 8.467 | 2.121 | 1.222 | 0.7104 |
+#&gt; |.....................| 0.8198 | 1.307 | 1.177 | 1.199 |
+#&gt; | F| Forward Diff. | -16.92 | 1.743 | -0.3189 | -0.3951 |
+#&gt; |.....................| -1.072 | -15.84 | -6.430 | 4.847 |
+#&gt; |.....................| 5.467 | -7.483 | -5.756 | -5.023 |
+#&gt; |<span style='font-weight: bold;'> 33</span>| 461.88553 | 0.9980 | -1.025 | -0.9073 | -0.8898 |
+#&gt; |.....................| -0.8327 | -0.6736 | -0.7912 | -0.9375 |
+#&gt; |.....................| -0.9397 | -0.7637 | -0.7912 | -0.8019 |
+#&gt; | U| 461.88553 | 93.92 | -5.397 | -0.9863 | -0.1904 |
+#&gt; |.....................| 2.138 | 2.126 | 1.223 | 0.7088 |
+#&gt; |.....................| 0.8197 | 1.313 | 1.181 | 1.203 |
+#&gt; | X|<span style='font-weight: bold;'> 461.88553</span> | 93.92 | 0.004531 | 0.2716 | 0.8266 |
+#&gt; |.....................| 8.479 | 2.126 | 1.223 | 0.7088 |
+#&gt; |.....................| 0.8197 | 1.313 | 1.181 | 1.203 |
+#&gt; | F| Forward Diff. | 30.55 | 1.755 | -0.2327 | -0.3563 |
+#&gt; |.....................| -0.9551 | -15.13 | -6.434 | 4.973 |
+#&gt; |.....................| 5.515 | -7.304 | -5.584 | -4.904 |
+#&gt; |<span style='font-weight: bold;'> 34</span>| 461.69674 | 0.9949 | -1.028 | -0.9069 | -0.8892 |
+#&gt; |.....................| -0.8309 | -0.6692 | -0.7896 | -0.9402 |
+#&gt; |.....................| -0.9399 | -0.7583 | -0.7876 | -0.7990 |
+#&gt; | U| 461.69674 | 93.63 | -5.400 | -0.9859 | -0.1897 |
+#&gt; |.....................| 2.139 | 2.131 | 1.224 | 0.7067 |
+#&gt; |.....................| 0.8195 | 1.320 | 1.185 | 1.206 |
+#&gt; | X|<span style='font-weight: bold;'> 461.69674</span> | 93.63 | 0.004519 | 0.2717 | 0.8272 |
+#&gt; |.....................| 8.494 | 2.131 | 1.224 | 0.7067 |
+#&gt; |.....................| 0.8195 | 1.320 | 1.185 | 1.206 |
+#&gt; | F| Forward Diff. | -16.57 | 1.720 | -0.3086 | -0.3856 |
+#&gt; |.....................| -1.039 | -14.73 | -5.908 | 4.823 |
+#&gt; |.....................| 5.359 | -7.008 | -5.393 | -4.695 |
+#&gt; |<span style='font-weight: bold;'> 35</span>| 461.54208 | 0.9978 | -1.031 | -0.9065 | -0.8885 |
+#&gt; |.....................| -0.8293 | -0.6648 | -0.7883 | -0.9440 |
+#&gt; |.....................| -0.9414 | -0.7533 | -0.7842 | -0.7963 |
+#&gt; | U| 461.54208 | 93.91 | -5.402 | -0.9855 | -0.1891 |
+#&gt; |.....................| 2.141 | 2.135 | 1.225 | 0.7038 |
+#&gt; |.....................| 0.8182 | 1.325 | 1.189 | 1.209 |
+#&gt; | X|<span style='font-weight: bold;'> 461.54208</span> | 93.91 | 0.004507 | 0.2718 | 0.8277 |
+#&gt; |.....................| 8.508 | 2.135 | 1.225 | 0.7038 |
+#&gt; |.....................| 0.8182 | 1.325 | 1.189 | 1.209 |
+#&gt; | F| Forward Diff. | 27.49 | 1.722 | -0.2172 | -0.3438 |
+#&gt; |.....................| -0.9069 | -13.76 | -5.979 | 4.702 |
+#&gt; |.....................| 5.353 | -6.828 | -5.231 | -4.587 |
+#&gt; |<span style='font-weight: bold;'> 36</span>| 461.38014 | 0.9949 | -1.034 | -0.9061 | -0.8878 |
+#&gt; |.....................| -0.8274 | -0.6624 | -0.7872 | -0.9482 |
+#&gt; |.....................| -0.9437 | -0.7482 | -0.7807 | -0.7935 |
+#&gt; | U| 461.38014 | 93.63 | -5.405 | -0.9851 | -0.1883 |
+#&gt; |.....................| 2.143 | 2.137 | 1.225 | 0.7007 |
+#&gt; |.....................| 0.8162 | 1.332 | 1.192 | 1.212 |
+#&gt; | X|<span style='font-weight: bold;'> 461.38014</span> | 93.63 | 0.004492 | 0.2719 | 0.8283 |
+#&gt; |.....................| 8.524 | 2.137 | 1.225 | 0.7007 |
+#&gt; |.....................| 0.8162 | 1.332 | 1.192 | 1.212 |
+#&gt; | F| Forward Diff. | -16.54 | 1.681 | -0.2967 | -0.3702 |
+#&gt; |.....................| -1.003 | -14.15 | -5.693 | 4.358 |
+#&gt; |.....................| 5.078 | -6.560 | -5.051 | -4.397 |
+#&gt; |<span style='font-weight: bold;'> 37</span>| 461.22820 | 0.9976 | -1.038 | -0.9057 | -0.8870 |
+#&gt; |.....................| -0.8255 | -0.6585 | -0.7854 | -0.9513 |
+#&gt; |.....................| -0.9460 | -0.7433 | -0.7774 | -0.7908 |
+#&gt; | U| 461.2282 | 93.88 | -5.409 | -0.9847 | -0.1876 |
+#&gt; |.....................| 2.145 | 2.141 | 1.226 | 0.6983 |
+#&gt; |.....................| 0.8141 | 1.337 | 1.196 | 1.215 |
+#&gt; | X|<span style='font-weight: bold;'> 461.2282</span> | 93.88 | 0.004476 | 0.2720 | 0.8290 |
+#&gt; |.....................| 8.540 | 2.141 | 1.226 | 0.6983 |
+#&gt; |.....................| 0.8141 | 1.337 | 1.196 | 1.215 |
+#&gt; | F| Forward Diff. | 22.68 | 1.675 | -0.2117 | -0.3293 |
+#&gt; |.....................| -0.8651 | -13.27 | -5.458 | 4.237 |
+#&gt; |.....................| 3.708 | -6.326 | -4.874 | -4.289 |
+#&gt; |<span style='font-weight: bold;'> 38</span>| 461.10880 | 0.9948 | -1.041 | -0.9053 | -0.8864 |
+#&gt; |.....................| -0.8238 | -0.6532 | -0.7845 | -0.9533 |
+#&gt; |.....................| -0.9419 | -0.7394 | -0.7747 | -0.7885 |
+#&gt; | U| 461.1088 | 93.62 | -5.412 | -0.9844 | -0.1869 |
+#&gt; |.....................| 2.146 | 2.146 | 1.227 | 0.6968 |
+#&gt; |.....................| 0.8177 | 1.342 | 1.199 | 1.218 |
+#&gt; | X|<span style='font-weight: bold;'> 461.1088</span> | 93.62 | 0.004461 | 0.2720 | 0.8295 |
+#&gt; |.....................| 8.555 | 2.146 | 1.227 | 0.6968 |
+#&gt; |.....................| 0.8177 | 1.342 | 1.199 | 1.218 |
+#&gt; | F| Forward Diff. | -17.23 | 1.655 | -0.2888 | -0.3567 |
+#&gt; |.....................| -0.9524 | -13.71 | -5.652 | 3.877 |
+#&gt; |.....................| 5.125 | -6.149 | -4.743 | -4.110 |
+#&gt; |<span style='font-weight: bold;'> 39</span>| 460.99174 | 0.9974 | -1.045 | -0.9049 | -0.8856 |
+#&gt; |.....................| -0.8221 | -0.6468 | -0.7824 | -0.9536 |
+#&gt; |.....................| -0.9388 | -0.7360 | -0.7723 | -0.7867 |
+#&gt; | U| 460.99174 | 93.87 | -5.416 | -0.9840 | -0.1862 |
+#&gt; |.....................| 2.148 | 2.153 | 1.228 | 0.6966 |
+#&gt; |.....................| 0.8204 | 1.346 | 1.202 | 1.220 |
+#&gt; | X|<span style='font-weight: bold;'> 460.99174</span> | 93.87 | 0.004444 | 0.2721 | 0.8301 |
+#&gt; |.....................| 8.569 | 2.153 | 1.228 | 0.6966 |
+#&gt; |.....................| 0.8204 | 1.346 | 1.202 | 1.220 |
+#&gt; | F| Forward Diff. | 21.44 | 1.663 | -0.2166 | -0.3206 |
+#&gt; |.....................| -0.8444 | -13.00 | -5.647 | 3.881 |
+#&gt; |.....................| 5.370 | -6.036 | -4.631 | -4.039 |
+#&gt; |<span style='font-weight: bold;'> 40</span>| 460.85317 | 0.9948 | -1.049 | -0.9044 | -0.8849 |
+#&gt; |.....................| -0.8203 | -0.6417 | -0.7791 | -0.9516 |
+#&gt; |.....................| -0.9438 | -0.7341 | -0.7712 | -0.7862 |
+#&gt; | U| 460.85317 | 93.62 | -5.420 | -0.9835 | -0.1854 |
+#&gt; |.....................| 2.150 | 2.158 | 1.230 | 0.6981 |
+#&gt; |.....................| 0.8161 | 1.348 | 1.203 | 1.220 |
+#&gt; | X|<span style='font-weight: bold;'> 460.85317</span> | 93.62 | 0.004425 | 0.2722 | 0.8308 |
+#&gt; |.....................| 8.585 | 2.158 | 1.230 | 0.6981 |
+#&gt; |.....................| 0.8161 | 1.348 | 1.203 | 1.220 |
+#&gt; | F| Forward Diff. | -17.08 | 1.613 | -0.2650 | -0.3380 |
+#&gt; |.....................| -0.8994 | -12.83 | -5.261 | 3.879 |
+#&gt; |.....................| 3.650 | -5.911 | -4.518 | -3.985 |
+#&gt; |<span style='font-weight: bold;'> 41</span>| 460.73362 | 0.9974 | -1.054 | -0.9040 | -0.8841 |
+#&gt; |.....................| -0.8184 | -0.6359 | -0.7754 | -0.9517 |
+#&gt; |.....................| -0.9423 | -0.7308 | -0.7693 | -0.7845 |
+#&gt; | U| 460.73362 | 93.86 | -5.425 | -0.9831 | -0.1846 |
+#&gt; |.....................| 2.152 | 2.163 | 1.232 | 0.6980 |
+#&gt; |.....................| 0.8173 | 1.352 | 1.205 | 1.222 |
+#&gt; | X|<span style='font-weight: bold;'> 460.73362</span> | 93.86 | 0.004404 | 0.2723 | 0.8314 |
+#&gt; |.....................| 8.601 | 2.163 | 1.232 | 0.6980 |
+#&gt; |.....................| 0.8173 | 1.352 | 1.205 | 1.222 |
+#&gt; | F| Forward Diff. | 20.68 | 1.612 | -0.1811 | -0.2966 |
+#&gt; |.....................| -0.7710 | -11.91 | -4.976 | 4.011 |
+#&gt; |.....................| 3.788 | -5.788 | -4.468 | -3.936 |
+#&gt; |<span style='font-weight: bold;'> 42</span>| 460.64877 | 0.9948 | -1.058 | -0.9038 | -0.8835 |
+#&gt; |.....................| -0.8171 | -0.6318 | -0.7737 | -0.9543 |
+#&gt; |.....................| -0.9372 | -0.7272 | -0.7669 | -0.7822 |
+#&gt; | U| 460.64877 | 93.62 | -5.429 | -0.9829 | -0.1841 |
+#&gt; |.....................| 2.153 | 2.167 | 1.233 | 0.6961 |
+#&gt; |.....................| 0.8219 | 1.357 | 1.208 | 1.225 |
+#&gt; | X|<span style='font-weight: bold;'> 460.64877</span> | 93.62 | 0.004387 | 0.2723 | 0.8319 |
+#&gt; |.....................| 8.612 | 2.167 | 1.233 | 0.6961 |
+#&gt; |.....................| 0.8219 | 1.357 | 1.208 | 1.225 |
+#&gt; | F| Forward Diff. | -16.17 | 1.594 | -0.2646 | -0.3254 |
+#&gt; |.....................| -0.8335 | -11.77 | -4.666 | 3.810 |
+#&gt; |.....................| 5.289 | -5.625 | -4.348 | -3.754 |
+#&gt; |<span style='font-weight: bold;'> 43</span>| 460.54180 | 0.9972 | -1.063 | -0.9035 | -0.8829 |
+#&gt; |.....................| -0.8158 | -0.6297 | -0.7745 | -0.9584 |
+#&gt; |.....................| -0.9393 | -0.7227 | -0.7634 | -0.7794 |
+#&gt; | U| 460.5418 | 93.85 | -5.434 | -0.9826 | -0.1834 |
+#&gt; |.....................| 2.154 | 2.169 | 1.233 | 0.6929 |
+#&gt; |.....................| 0.8200 | 1.362 | 1.211 | 1.228 |
+#&gt; | X|<span style='font-weight: bold;'> 460.5418</span> | 93.85 | 0.004366 | 0.2724 | 0.8324 |
+#&gt; |.....................| 8.623 | 2.169 | 1.233 | 0.6929 |
+#&gt; |.....................| 0.8200 | 1.362 | 1.211 | 1.228 |
+#&gt; | F| Forward Diff. | 18.48 | 1.582 | -0.1851 | -0.2851 |
+#&gt; |.....................| -0.7462 | -11.38 | -4.808 | 3.651 |
+#&gt; |.....................| 5.261 | -5.402 | -4.159 | -3.623 |
+#&gt; |<span style='font-weight: bold;'> 44</span>| 460.43711 | 0.9948 | -1.067 | -0.9032 | -0.8823 |
+#&gt; |.....................| -0.8147 | -0.6284 | -0.7753 | -0.9609 |
+#&gt; |.....................| -0.9464 | -0.7199 | -0.7613 | -0.7778 |
+#&gt; | U| 460.43711 | 93.63 | -5.438 | -0.9823 | -0.1829 |
+#&gt; |.....................| 2.156 | 2.171 | 1.232 | 0.6911 |
+#&gt; |.....................| 0.8138 | 1.365 | 1.214 | 1.230 |
+#&gt; | X|<span style='font-weight: bold;'> 460.43711</span> | 93.63 | 0.004347 | 0.2724 | 0.8329 |
+#&gt; |.....................| 8.632 | 2.171 | 1.232 | 0.6911 |
+#&gt; |.....................| 0.8138 | 1.365 | 1.214 | 1.230 |
+#&gt; |<span style='font-weight: bold;'> 45</span>| 460.35910 | 0.9948 | -1.072 | -0.9029 | -0.8817 |
+#&gt; |.....................| -0.8135 | -0.6285 | -0.7770 | -0.9633 |
+#&gt; |.....................| -0.9542 | -0.7172 | -0.7594 | -0.7765 |
+#&gt; | U| 460.3591 | 93.63 | -5.443 | -0.9820 | -0.1822 |
+#&gt; |.....................| 2.157 | 2.170 | 1.231 | 0.6893 |
+#&gt; |.....................| 0.8069 | 1.368 | 1.216 | 1.231 |
+#&gt; | X|<span style='font-weight: bold;'> 460.3591</span> | 93.63 | 0.004325 | 0.2725 | 0.8334 |
+#&gt; |.....................| 8.643 | 2.170 | 1.231 | 0.6893 |
+#&gt; |.....................| 0.8069 | 1.368 | 1.216 | 1.231 |
+#&gt; |<span style='font-weight: bold;'> 46</span>| 460.06586 | 0.9948 | -1.095 | -0.9016 | -0.8789 |
+#&gt; |.....................| -0.8080 | -0.6294 | -0.7850 | -0.9744 |
+#&gt; |.....................| -0.9902 | -0.7052 | -0.7507 | -0.7704 |
+#&gt; | U| 460.06586 | 93.63 | -5.466 | -0.9807 | -0.1794 |
+#&gt; |.....................| 2.162 | 2.170 | 1.227 | 0.6809 |
+#&gt; |.....................| 0.7753 | 1.383 | 1.225 | 1.238 |
+#&gt; | X|<span style='font-weight: bold;'> 460.06586</span> | 93.63 | 0.004227 | 0.2728 | 0.8358 |
+#&gt; |.....................| 8.691 | 2.170 | 1.227 | 0.6809 |
+#&gt; |.....................| 0.7753 | 1.383 | 1.225 | 1.238 |
+#&gt; |<span style='font-weight: bold;'> 47</span>| 459.86897 | 0.9949 | -1.169 | -0.8972 | -0.8697 |
+#&gt; |.....................| -0.7899 | -0.6321 | -0.8109 | -1.010 |
+#&gt; |.....................| -1.107 | -0.6662 | -0.7224 | -0.7508 |
+#&gt; | U| 459.86897 | 93.63 | -5.541 | -0.9763 | -0.1702 |
+#&gt; |.....................| 2.180 | 2.167 | 1.211 | 0.6537 |
+#&gt; |.....................| 0.6731 | 1.429 | 1.256 | 1.260 |
+#&gt; | X|<span style='font-weight: bold;'> 459.86897</span> | 93.63 | 0.003924 | 0.2736 | 0.8435 |
+#&gt; |.....................| 8.849 | 2.167 | 1.211 | 0.6537 |
+#&gt; |.....................| 0.6731 | 1.429 | 1.256 | 1.260 |
+#&gt; | F| Forward Diff. | -18.09 | 0.8663 | 0.2544 | 0.003114 |
+#&gt; |.....................| -0.1212 | -11.64 | -7.047 | 0.1395 |
+#&gt; |.....................| -6.727 | -2.881 | -1.866 | -2.263 |
+#&gt; |<span style='font-weight: bold;'> 48</span>| 458.58262 | 0.9946 | -1.323 | -0.9067 | -0.8597 |
+#&gt; |.....................| -0.7710 | -0.5295 | -0.7001 | -0.9650 |
+#&gt; |.....................| -1.113 | -0.6398 | -0.7228 | -0.7390 |
+#&gt; | U| 458.58262 | 93.60 | -5.695 | -0.9858 | -0.1602 |
+#&gt; |.....................| 2.199 | 2.267 | 1.277 | 0.6880 |
+#&gt; |.....................| 0.6674 | 1.460 | 1.256 | 1.273 |
+#&gt; | X|<span style='font-weight: bold;'> 458.58262</span> | 93.60 | 0.003363 | 0.2717 | 0.8520 |
+#&gt; |.....................| 9.019 | 2.267 | 1.277 | 0.6880 |
+#&gt; |.....................| 0.6674 | 1.460 | 1.256 | 1.273 |
+#&gt; | F| Forward Diff. | -24.91 | 0.5848 | -0.03458 | 0.2475 |
+#&gt; |.....................| 0.3762 | -4.573 | -0.04388 | 1.648 |
+#&gt; |.....................| -5.878 | -2.073 | -1.935 | -2.146 |
+#&gt; |<span style='font-weight: bold;'> 49</span>| 460.44377 | 0.9922 | -1.558 | -0.9059 | -0.8818 |
+#&gt; |.....................| -0.8081 | -0.3861 | -0.8607 | -1.070 |
+#&gt; |.....................| -0.9432 | -0.5131 | -0.5915 | -0.5851 |
+#&gt; | U| 460.44377 | 93.38 | -5.929 | -0.9849 | -0.1824 |
+#&gt; |.....................| 2.162 | 2.407 | 1.182 | 0.6086 |
+#&gt; |.....................| 0.8166 | 1.611 | 1.400 | 1.447 |
+#&gt; | X|<span style='font-weight: bold;'> 460.44377</span> | 93.38 | 0.002660 | 0.2719 | 0.8333 |
+#&gt; |.....................| 8.690 | 2.407 | 1.182 | 0.6086 |
+#&gt; |.....................| 0.8166 | 1.611 | 1.400 | 1.447 |
+#&gt; |<span style='font-weight: bold;'> 50</span>| 458.18867 | 0.9958 | -1.393 | -0.9065 | -0.8663 |
+#&gt; |.....................| -0.7821 | -0.4865 | -0.7479 | -0.9965 |
+#&gt; |.....................| -1.062 | -0.6019 | -0.6835 | -0.6930 |
+#&gt; | U| 458.18867 | 93.71 | -5.765 | -0.9855 | -0.1668 |
+#&gt; |.....................| 2.188 | 2.309 | 1.248 | 0.6642 |
+#&gt; |.....................| 0.7122 | 1.506 | 1.299 | 1.325 |
+#&gt; | X|<span style='font-weight: bold;'> 458.18867</span> | 93.71 | 0.003136 | 0.2718 | 0.8463 |
+#&gt; |.....................| 8.919 | 2.309 | 1.248 | 0.6642 |
+#&gt; |.....................| 0.7122 | 1.506 | 1.299 | 1.325 |
+#&gt; | F| Forward Diff. | -3.049 | 0.4396 | -0.1330 | 0.02964 |
+#&gt; |.....................| -0.08039 | -2.599 | -3.012 | -0.1957 |
+#&gt; |.....................| -2.463 | -0.6721 | 0.3494 | 0.7476 |
+#&gt; |<span style='font-weight: bold;'> 51</span>| 458.45407 | 0.9980 | -1.449 | -0.8787 | -0.8738 |
+#&gt; |.....................| -0.7836 | -0.4935 | -0.7244 | -1.061 |
+#&gt; |.....................| -1.034 | -0.5419 | -0.6952 | -0.7610 |
+#&gt; | U| 458.45407 | 93.92 | -5.821 | -0.9579 | -0.1743 |
+#&gt; |.....................| 2.187 | 2.302 | 1.262 | 0.6155 |
+#&gt; |.....................| 0.7366 | 1.577 | 1.286 | 1.249 |
+#&gt; | X|<span style='font-weight: bold;'> 458.45407</span> | 93.92 | 0.002965 | 0.2773 | 0.8400 |
+#&gt; |.....................| 8.906 | 2.302 | 1.262 | 0.6155 |
+#&gt; |.....................| 0.7366 | 1.577 | 1.286 | 1.249 |
+#&gt; |<span style='font-weight: bold;'> 52</span>| 458.19883 | 0.9985 | -1.406 | -0.9001 | -0.8680 |
+#&gt; |.....................| -0.7823 | -0.4861 | -0.7404 | -1.011 |
+#&gt; |.....................| -1.054 | -0.5879 | -0.6864 | -0.7089 |
+#&gt; | U| 458.19883 | 93.97 | -5.778 | -0.9792 | -0.1685 |
+#&gt; |.....................| 2.188 | 2.309 | 1.253 | 0.6534 |
+#&gt; |.....................| 0.7193 | 1.522 | 1.296 | 1.307 |
+#&gt; | X|<span style='font-weight: bold;'> 458.19883</span> | 93.97 | 0.003096 | 0.2731 | 0.8449 |
+#&gt; |.....................| 8.917 | 2.309 | 1.253 | 0.6534 |
+#&gt; |.....................| 0.7193 | 1.522 | 1.296 | 1.307 |
+#&gt; |<span style='font-weight: bold;'> 53</span>| 458.20478 | 0.9986 | -1.399 | -0.9039 | -0.8670 |
+#&gt; |.....................| -0.7821 | -0.4848 | -0.7433 | -1.002 |
+#&gt; |.....................| -1.058 | -0.5961 | -0.6848 | -0.6996 |
+#&gt; | U| 458.20478 | 93.98 | -5.770 | -0.9830 | -0.1675 |
+#&gt; |.....................| 2.188 | 2.311 | 1.251 | 0.6601 |
+#&gt; |.....................| 0.7162 | 1.512 | 1.297 | 1.318 |
+#&gt; | X|<span style='font-weight: bold;'> 458.20478</span> | 93.98 | 0.003120 | 0.2723 | 0.8458 |
+#&gt; |.....................| 8.919 | 2.311 | 1.251 | 0.6601 |
+#&gt; |.....................| 0.7162 | 1.512 | 1.297 | 1.318 |
+#&gt; |<span style='font-weight: bold;'> 54</span>| 458.21371 | 0.9986 | -1.394 | -0.9063 | -0.8663 |
+#&gt; |.....................| -0.7820 | -0.4840 | -0.7451 | -0.9963 |
+#&gt; |.....................| -1.060 | -0.6013 | -0.6838 | -0.6937 |
+#&gt; | U| 458.21371 | 93.98 | -5.765 | -0.9854 | -0.1669 |
+#&gt; |.....................| 2.188 | 2.311 | 1.250 | 0.6644 |
+#&gt; |.....................| 0.7142 | 1.506 | 1.298 | 1.325 |
+#&gt; | X|<span style='font-weight: bold;'> 458.21371</span> | 93.98 | 0.003135 | 0.2718 | 0.8463 |
+#&gt; |.....................| 8.920 | 2.311 | 1.250 | 0.6644 |
+#&gt; |.....................| 0.7142 | 1.506 | 1.298 | 1.325 |
+#&gt; |<span style='font-weight: bold;'> 55</span>| 458.18572 | 0.9965 | -1.393 | -0.9064 | -0.8663 |
+#&gt; |.....................| -0.7820 | -0.4858 | -0.7472 | -0.9964 |
+#&gt; |.....................| -1.062 | -0.6017 | -0.6836 | -0.6932 |
+#&gt; | U| 458.18572 | 93.79 | -5.765 | -0.9855 | -0.1668 |
+#&gt; |.....................| 2.188 | 2.310 | 1.249 | 0.6643 |
+#&gt; |.....................| 0.7128 | 1.506 | 1.299 | 1.325 |
+#&gt; | X|<span style='font-weight: bold;'> 458.18572</span> | 93.79 | 0.003136 | 0.2718 | 0.8463 |
+#&gt; |.....................| 8.919 | 2.310 | 1.249 | 0.6643 |
+#&gt; |.....................| 0.7128 | 1.506 | 1.299 | 1.325 |
+#&gt; | F| Forward Diff. | 5.905 | 0.4355 | -0.1157 | 0.02634 |
+#&gt; |.....................| -0.05151 | -1.735 | -2.785 | -0.07657 |
+#&gt; |.....................| -2.587 | -0.1320 | 0.06282 | 0.8041 |
+#&gt; |<span style='font-weight: bold;'> 56</span>| 458.18221 | 0.9957 | -1.394 | -0.9063 | -0.8663 |
+#&gt; |.....................| -0.7820 | -0.4856 | -0.7465 | -0.9968 |
+#&gt; |.....................| -1.061 | -0.6016 | -0.6835 | -0.6937 |
+#&gt; | U| 458.18221 | 93.70 | -5.765 | -0.9853 | -0.1669 |
+#&gt; |.....................| 2.188 | 2.310 | 1.249 | 0.6640 |
+#&gt; |.....................| 0.7132 | 1.506 | 1.299 | 1.325 |
+#&gt; | X|<span style='font-weight: bold;'> 458.18221</span> | 93.70 | 0.003135 | 0.2718 | 0.8463 |
+#&gt; |.....................| 8.920 | 2.310 | 1.249 | 0.6640 |
+#&gt; |.....................| 0.7132 | 1.506 | 1.299 | 1.325 |
+#&gt; | F| Forward Diff. | -4.339 | 0.4378 | -0.1282 | 0.03581 |
+#&gt; |.....................| -0.09329 | -1.978 | -2.551 | -0.01933 |
+#&gt; |.....................| -3.951 | -0.1424 | 0.01723 | 0.8408 |
+#&gt; |<span style='font-weight: bold;'> 57</span>| 458.17882 | 0.9963 | -1.394 | -0.9061 | -0.8663 |
+#&gt; |.....................| -0.7819 | -0.4855 | -0.7459 | -0.9972 |
+#&gt; |.....................| -1.060 | -0.6016 | -0.6832 | -0.6941 |
+#&gt; | U| 458.17882 | 93.76 | -5.766 | -0.9852 | -0.1669 |
+#&gt; |.....................| 2.188 | 2.310 | 1.250 | 0.6637 |
+#&gt; |.....................| 0.7139 | 1.506 | 1.299 | 1.324 |
+#&gt; | X|<span style='font-weight: bold;'> 458.17882</span> | 93.76 | 0.003134 | 0.2719 | 0.8463 |
+#&gt; |.....................| 8.920 | 2.310 | 1.250 | 0.6637 |
+#&gt; |.....................| 0.7139 | 1.506 | 1.299 | 1.324 |
+#&gt; | F| Forward Diff. | 2.737 | 0.4289 | -0.1193 | 0.04099 |
+#&gt; |.....................| -0.07175 | -2.104 | -2.655 | -0.1084 |
+#&gt; |.....................| -2.489 | -0.08715 | 0.1037 | 0.7775 |
+#&gt; |<span style='font-weight: bold;'> 58</span>| 458.17628 | 0.9955 | -1.394 | -0.9061 | -0.8663 |
+#&gt; |.....................| -0.7819 | -0.4849 | -0.7451 | -0.9972 |
+#&gt; |.....................| -1.060 | -0.6016 | -0.6832 | -0.6943 |
+#&gt; | U| 458.17628 | 93.69 | -5.766 | -0.9851 | -0.1669 |
+#&gt; |.....................| 2.188 | 2.311 | 1.250 | 0.6637 |
+#&gt; |.....................| 0.7145 | 1.506 | 1.299 | 1.324 |
+#&gt; | X|<span style='font-weight: bold;'> 458.17628</span> | 93.69 | 0.003133 | 0.2719 | 0.8463 |
+#&gt; |.....................| 8.920 | 2.311 | 1.250 | 0.6637 |
+#&gt; |.....................| 0.7145 | 1.506 | 1.299 | 1.324 |
+#&gt; | F| Forward Diff. | -5.829 | 0.4364 | -0.1238 | 0.03009 |
+#&gt; |.....................| -0.09450 | -1.871 | -2.366 | 0.01771 |
+#&gt; |.....................| -2.486 | -0.08743 | 0.03350 | 0.7982 |
+#&gt; |<span style='font-weight: bold;'> 59</span>| 458.17323 | 0.9963 | -1.395 | -0.9059 | -0.8664 |
+#&gt; |.....................| -0.7819 | -0.4846 | -0.7446 | -0.9977 |
+#&gt; |.....................| -1.059 | -0.6018 | -0.6829 | -0.6949 |
+#&gt; | U| 458.17323 | 93.77 | -5.766 | -0.9850 | -0.1669 |
+#&gt; |.....................| 2.188 | 2.311 | 1.250 | 0.6633 |
+#&gt; |.....................| 0.7149 | 1.506 | 1.299 | 1.323 |
+#&gt; | X|<span style='font-weight: bold;'> 458.17323</span> | 93.77 | 0.003132 | 0.2719 | 0.8463 |
+#&gt; |.....................| 8.921 | 2.311 | 1.250 | 0.6633 |
+#&gt; |.....................| 0.7149 | 1.506 | 1.299 | 1.323 |
+#&gt; | F| Forward Diff. | 3.135 | 0.4259 | -0.1111 | 0.03860 |
+#&gt; |.....................| -0.07150 | -1.713 | -2.294 | -0.1635 |
+#&gt; |.....................| -3.755 | -0.1071 | 0.1242 | 0.7274 |
+#&gt; |<span style='font-weight: bold;'> 60</span>| 458.17055 | 0.9957 | -1.395 | -0.9058 | -0.8664 |
+#&gt; |.....................| -0.7818 | -0.4843 | -0.7440 | -0.9980 |
+#&gt; |.....................| -1.058 | -0.6018 | -0.6828 | -0.6953 |
+#&gt; | U| 458.17055 | 93.70 | -5.766 | -0.9848 | -0.1669 |
+#&gt; |.....................| 2.188 | 2.311 | 1.251 | 0.6631 |
+#&gt; |.....................| 0.7157 | 1.506 | 1.300 | 1.323 |
+#&gt; | X|<span style='font-weight: bold;'> 458.17055</span> | 93.70 | 0.003131 | 0.2719 | 0.8463 |
+#&gt; |.....................| 8.921 | 2.311 | 1.251 | 0.6631 |
+#&gt; |.....................| 0.7157 | 1.506 | 1.300 | 1.323 |
+#&gt; | F| Forward Diff. | -3.767 | 0.4346 | -0.1027 | 0.03296 |
+#&gt; |.....................| -0.07232 | -2.503 | -3.089 | -0.1630 |
+#&gt; |.....................| -2.382 | -0.08570 | 0.1151 | 0.7161 |
+#&gt; |<span style='font-weight: bold;'> 61</span>| 458.16819 | 0.9965 | -1.395 | -0.9058 | -0.8664 |
+#&gt; |.....................| -0.7818 | -0.4837 | -0.7432 | -0.9981 |
+#&gt; |.....................| -1.058 | -0.6018 | -0.6828 | -0.6955 |
+#&gt; | U| 458.16819 | 93.79 | -5.767 | -0.9848 | -0.1669 |
+#&gt; |.....................| 2.188 | 2.312 | 1.251 | 0.6630 |
+#&gt; |.....................| 0.7162 | 1.506 | 1.300 | 1.322 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16819</span> | 93.79 | 0.003130 | 0.2719 | 0.8462 |
+#&gt; |.....................| 8.921 | 2.312 | 1.251 | 0.6630 |
+#&gt; |.....................| 0.7162 | 1.506 | 1.300 | 1.322 |
+#&gt; | F| Forward Diff. | 6.568 | 0.4333 | -0.07429 | 0.03599 |
+#&gt; |.....................| -0.03802 | -2.553 | -3.191 | -0.5393 |
+#&gt; |.....................| -0.9714 | -0.8035 | 0.1031 | 0.6902 |
+#&gt; |<span style='font-weight: bold;'> 62</span>| 458.16513 | 0.9957 | -1.396 | -0.9056 | -0.8666 |
+#&gt; |.....................| -0.7821 | -0.4835 | -0.7425 | -0.9983 |
+#&gt; |.....................| -1.057 | -0.6019 | -0.6824 | -0.6959 |
+#&gt; | U| 458.16513 | 93.70 | -5.767 | -0.9847 | -0.1672 |
+#&gt; |.....................| 2.188 | 2.312 | 1.252 | 0.6629 |
+#&gt; |.....................| 0.7164 | 1.506 | 1.300 | 1.322 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16513</span> | 93.70 | 0.003129 | 0.2720 | 0.8461 |
+#&gt; |.....................| 8.919 | 2.312 | 1.252 | 0.6629 |
+#&gt; |.....................| 0.7164 | 1.506 | 1.300 | 1.322 |
+#&gt; | F| Forward Diff. | -3.933 | 0.4306 | -0.09800 | 0.02413 |
+#&gt; |.....................| -0.09225 | -1.469 | -2.000 | -0.05194 |
+#&gt; |.....................| -3.675 | -0.07209 | 0.09082 | 0.7196 |
+#&gt; |<span style='font-weight: bold;'> 63</span>| 458.16261 | 0.9962 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4834 | -0.7420 | -0.9986 |
+#&gt; |.....................| -1.057 | -0.6017 | -0.6820 | -0.6964 |
+#&gt; | U| 458.16261 | 93.76 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.312 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7170 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16261</span> | 93.76 | 0.003127 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.312 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7170 | 1.506 | 1.300 | 1.321 |
+#&gt; | F| Forward Diff. | 2.233 | 0.4197 | -0.09277 | 0.03004 |
+#&gt; |.....................| -0.08165 | -1.772 | -2.245 | -0.08206 |
+#&gt; |.....................| -2.339 | -0.1510 | 0.07888 | 0.6887 |
+#&gt; |<span style='font-weight: bold;'> 64</span>| 458.16062 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16062 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16062</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | M| Mixed Diff. | -6.515 | 0.4169 | -0.1028 |-1.670e+05 |
+#&gt; |.....................| -0.1097 | -2.956 | -2.997 | -0.5657 |
+#&gt; |.....................| -4.153 | -0.6659 | -0.7853 | 0.1256 |
+#&gt; |<span style='font-weight: bold;'> 65</span>| 458.16519 | 0.9948 | -1.397 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4822 | -0.7405 | -0.9986 |
+#&gt; |.....................| -1.055 | -0.6016 | -0.6821 | -0.6969 |
+#&gt; | U| 458.16519 | 93.62 | -5.768 | -0.9844 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.253 | 0.6627 |
+#&gt; |.....................| 0.7183 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16519</span> | 93.62 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.253 | 0.6627 |
+#&gt; |.....................| 0.7183 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 66</span>| 458.16209 | 0.9951 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4825 | -0.7409 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6968 |
+#&gt; | U| 458.16209 | 93.65 | -5.768 | -0.9844 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.253 | 0.6626 |
+#&gt; |.....................| 0.7180 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16209</span> | 93.65 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.253 | 0.6626 |
+#&gt; |.....................| 0.7180 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 67</span>| 458.16115 | 0.9953 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4827 | -0.7410 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16115 | 93.67 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.253 | 0.6626 |
+#&gt; |.....................| 0.7178 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16115</span> | 93.67 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.253 | 0.6626 |
+#&gt; |.....................| 0.7178 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 68</span>| 458.16084 | 0.9954 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4827 | -0.7411 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16084 | 93.68 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16084</span> | 93.68 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 69</span>| 458.16072 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16072 | 93.68 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16072</span> | 93.68 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 70</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 71</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 72</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 73</span>| 458.16072 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16072 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16072</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 74</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 75</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 76</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 77</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 78</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 79</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 80</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 81</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 82</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 83</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 84</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 85</span>| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16068</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 86</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 87</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 88</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 89</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 90</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 91</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; |<span style='font-weight: bold;'> 92</span>| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#&gt; |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#&gt; |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#&gt; | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#&gt; |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; | X|<span style='font-weight: bold;'> 458.16067</span> | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#&gt; |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#&gt; |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; 1: 93.5791 -5.6199 -2.0817 -3.9984 -1.2037 0.1481 4.5359 1.6042 1.1515 2.4545 0.4989 0.5230 19.1822 10.0277
+#&gt; 2: 93.5157 -5.6781 -1.9742 -4.0546 -1.1333 0.1109 4.4678 1.5240 1.0939 2.3318 0.4740 0.6338 12.8885 7.4711
+#&gt; 3: 93.2898 -5.7047 -1.8559 -4.1328 -1.0939 0.0438 5.0096 1.4478 1.1939 2.2152 0.4503 0.6021 11.0381 5.1444
+#&gt; 4: 93.0426 -5.7814 -1.8501 -4.1839 -1.0410 0.0594 6.3802 1.4778 1.2229 2.1556 0.4278 0.5972 10.2381 4.4049
+#&gt; 5: 92.9134 -5.8482 -1.8162 -4.2071 -1.0582 0.0732 6.9858 1.8242 1.1718 2.3151 0.4064 0.5822 9.8642 4.4088
+#&gt; 6: 92.7655 -5.8047 -1.8535 -4.2041 -0.9870 0.0611 6.6365 1.7739 1.1619 2.2910 0.3861 0.5531 8.6374 4.0594
+#&gt; 7: 93.0259 -5.8252 -1.9173 -4.2093 -0.9549 0.0995 6.3047 2.2731 1.1038 2.1765 0.3668 0.5255 9.0819 3.0678
+#&gt; 8: 93.1406 -5.7510 -1.9019 -4.2213 -0.9559 0.1508 5.9894 2.5908 1.0919 2.0948 0.3484 0.4992 8.3332 2.3703
+#&gt; 9: 93.3980 -5.5162 -1.9512 -4.2707 -0.9026 0.1570 5.6900 2.4612 1.0373 2.3579 0.3310 0.4742 7.7762 2.1692
+#&gt; 10: 93.5148 -5.4966 -1.9184 -4.2482 -0.9045 0.1396 5.4055 2.3382 0.9855 2.2400 0.3145 0.4652 7.5796 1.9233
+#&gt; 11: 93.1833 -5.5679 -1.9315 -4.2869 -0.9148 0.1713 5.1352 2.2213 0.9362 2.1465 0.2987 0.4622 7.5181 1.8003
+#&gt; 12: 92.9902 -5.7249 -1.9741 -4.3054 -0.9148 0.1927 4.8784 2.9298 0.8975 2.3858 0.2838 0.5005 7.3638 1.7074
+#&gt; 13: 92.5821 -5.7143 -1.9662 -4.3403 -0.8940 0.1595 4.6345 2.8035 0.9305 2.5370 0.2696 0.4755 7.1732 1.6333
+#&gt; 14: 92.1385 -5.5571 -1.9874 -4.2935 -0.8815 0.1762 5.5000 2.6634 0.9011 2.4102 0.2561 0.5012 7.1920 1.7020
+#&gt; 15: 92.1244 -5.5198 -1.9701 -4.3134 -0.8984 0.1704 5.2250 2.5302 0.9705 2.4401 0.2433 0.4839 7.4072 1.6160
+#&gt; 16: 92.6306 -5.4666 -1.9776 -4.3023 -0.8906 0.1737 4.9638 2.4037 1.0278 2.3181 0.2312 0.5183 7.5105 1.6033
+#&gt; 17: 92.5769 -5.4886 -2.0034 -4.3892 -0.8863 0.1967 5.6659 2.2835 1.0796 2.7700 0.2196 0.5138 7.6495 1.4656
+#&gt; 18: 92.0321 -5.5257 -2.0086 -4.3651 -0.8914 0.1869 6.5345 2.1693 1.0771 2.6315 0.2086 0.4906 7.8248 1.4297
+#&gt; 19: 92.5497 -5.5509 -1.9892 -4.3590 -0.8947 0.2148 6.2078 2.0936 1.0629 2.4999 0.1992 0.4847 7.8809 1.4881
+#&gt; 20: 92.3638 -5.5322 -1.9943 -4.3507 -0.9153 0.1787 6.2176 2.1784 1.0242 2.5190 0.1923 0.4604 7.7900 1.5147
+#&gt; 21: 92.3946 -5.5963 -1.9984 -4.3234 -0.9031 0.1961 5.9067 2.4305 0.9962 2.3930 0.1827 0.4374 7.6671 1.5182
+#&gt; 22: 92.3389 -5.7757 -1.9686 -4.3485 -0.9054 0.1677 5.6113 3.2010 0.9650 2.4493 0.1907 0.4220 7.1305 1.5425
+#&gt; 23: 92.5054 -5.7766 -1.9947 -4.3613 -0.9069 0.1781 5.3308 3.2506 0.9932 2.5478 0.1868 0.4217 7.6690 1.4526
+#&gt; 24: 92.5865 -5.8597 -1.9691 -4.4676 -0.8950 0.1755 5.0642 4.0954 0.9471 3.5482 0.1891 0.4438 7.2397 1.6349
+#&gt; 25: 92.3775 -5.8727 -1.9577 -4.4964 -0.8955 0.1477 4.8354 3.8906 0.9557 3.5054 0.2003 0.4216 6.7966 1.5576
+#&gt; 26: 92.2427 -5.9696 -1.9672 -4.4384 -0.9063 0.1733 4.5937 4.0917 0.9924 3.3326 0.1918 0.4341 6.9377 1.5723
+#&gt; 27: 92.7312 -5.8434 -1.9590 -4.3655 -0.9095 0.1669 4.4448 3.8871 1.0032 3.1660 0.2006 0.4320 7.1970 1.5118
+#&gt; 28: 92.7033 -5.8759 -1.9827 -4.3776 -0.9145 0.1844 4.5885 3.6928 0.9750 3.0077 0.2093 0.4104 6.8745 1.4865
+#&gt; 29: 92.5242 -5.8627 -1.9806 -4.4623 -0.9142 0.2069 5.2823 3.5081 0.9748 3.5849 0.2098 0.4120 6.9735 1.5115
+#&gt; 30: 92.2312 -5.8332 -1.9739 -4.3699 -0.9100 0.1624 5.0182 3.5473 0.9553 3.4056 0.2102 0.3914 6.8547 1.5172
+#&gt; 31: 92.1659 -5.7898 -1.9642 -4.3956 -0.9105 0.1625 4.7672 3.3700 0.9442 3.2571 0.2071 0.3795 6.5191 1.5452
+#&gt; 32: 92.5436 -5.7968 -1.9642 -4.3987 -0.9179 0.1110 4.5289 3.2015 0.9382 3.0943 0.2024 0.3605 6.5921 1.5105
+#&gt; 33: 92.7837 -5.8155 -1.9539 -4.3145 -0.9157 0.1398 4.3024 3.3616 0.9119 2.9395 0.1981 0.3494 6.2870 1.6036
+#&gt; 34: 93.0500 -5.8853 -1.9587 -4.2507 -0.9146 0.1455 4.0873 4.3592 0.9129 2.7926 0.1961 0.3319 6.3493 1.6059
+#&gt; 35: 93.1208 -5.8581 -1.9614 -4.2722 -0.9127 0.1255 4.0645 4.1413 0.9262 2.6529 0.1964 0.3157 6.1337 1.6010
+#&gt; 36: 93.1002 -5.8598 -1.9886 -4.2092 -0.9076 0.1192 4.2392 3.9342 0.9566 2.5203 0.2015 0.3222 6.5326 1.4847
+#&gt; 37: 92.8242 -5.6228 -1.9655 -4.2054 -0.9099 0.1010 6.8190 3.7375 0.9087 2.3943 0.1942 0.3141 6.2613 1.6015
+#&gt; 38: 93.1512 -5.5747 -1.9736 -4.2054 -0.9115 0.0887 6.4781 3.5506 0.8904 2.2746 0.1930 0.3298 6.4960 1.5750
+#&gt; 39: 92.9998 -5.5416 -1.9750 -4.2124 -0.9101 0.0953 6.1542 3.3731 0.9013 2.1608 0.1858 0.3204 6.6470 1.5705
+#&gt; 40: 93.2158 -5.7057 -1.9587 -4.2101 -0.9122 0.0630 5.8464 3.2044 0.9350 2.1357 0.1851 0.3044 6.6842 1.5069
+#&gt; 41: 93.0585 -5.5453 -1.9306 -4.2101 -0.9021 0.0531 5.5541 3.0442 0.9458 2.1673 0.1851 0.2892 6.3923 1.5949
+#&gt; 42: 93.0958 -5.4512 -1.9484 -4.2227 -0.8959 0.0649 5.2764 2.8920 0.9571 2.1930 0.1829 0.2747 6.3082 1.5985
+#&gt; 43: 93.2333 -5.5398 -1.9391 -4.2400 -0.8972 0.0870 5.0126 2.7474 0.9913 2.2830 0.1984 0.2720 6.0810 1.6131
+#&gt; 44: 92.9479 -5.5648 -1.9227 -4.2468 -0.9104 0.0963 4.7620 2.6100 0.9682 2.2976 0.2038 0.2648 5.8461 1.6955
+#&gt; 45: 93.0244 -5.6247 -1.9379 -4.2588 -0.9093 0.0865 5.2997 2.4894 0.9837 2.3100 0.2039 0.2844 5.9439 1.6121
+#&gt; 46: 92.5959 -5.6240 -1.9513 -4.2588 -0.9172 0.0923 5.3111 2.5081 1.0158 2.3100 0.2050 0.2702 6.0141 1.6189
+#&gt; 47: 92.8483 -5.5823 -1.9529 -4.2684 -0.9194 0.0770 6.2469 2.3827 1.0328 2.3567 0.2104 0.2567 6.0472 1.5858
+#&gt; 48: 92.6210 -5.6336 -1.9379 -4.3049 -0.9054 0.0747 7.5721 2.3177 1.0379 2.5427 0.2103 0.2439 6.0431 1.5860
+#&gt; 49: 92.6337 -5.6723 -1.9486 -4.2879 -0.8985 0.0773 7.1935 2.6572 1.0181 2.4515 0.2056 0.2559 6.0895 1.5217
+#&gt; 50: 92.2413 -5.7138 -1.9587 -4.2804 -0.8926 0.0774 8.1551 2.9779 1.0282 2.4807 0.2090 0.2510 6.2355 1.5223
+#&gt; 51: 92.2223 -5.6765 -1.9496 -4.2971 -0.8840 0.1034 7.7638 3.0625 1.0017 2.6024 0.2075 0.2384 6.3495 1.6621
+#&gt; 52: 92.4242 -5.6573 -1.9408 -4.2943 -0.8993 0.1136 8.3190 2.9093 1.0044 2.4822 0.2163 0.2411 6.0611 1.5241
+#&gt; 53: 92.6070 -5.5921 -1.9397 -4.2873 -0.9046 0.0904 10.3681 2.7639 1.0098 2.4895 0.2194 0.2393 6.1728 1.5264
+#&gt; 54: 92.9339 -5.6194 -1.9292 -4.2950 -0.9006 0.1010 9.9150 2.6257 1.0088 2.4268 0.2346 0.2492 5.9203 1.5693
+#&gt; 55: 93.4640 -5.5851 -1.8969 -4.2614 -0.9065 0.1058 10.3986 2.4944 1.0204 2.3055 0.2257 0.2403 5.7030 1.5717
+#&gt; 56: 93.3646 -5.5851 -1.9127 -4.3130 -0.9196 0.1077 9.8787 2.3697 1.0067 2.6259 0.2261 0.2370 5.7389 1.5053
+#&gt; 57: 93.5408 -5.4962 -1.9150 -4.3285 -0.9148 0.0880 9.3848 2.2512 0.9903 2.6118 0.2160 0.2494 5.7530 1.5780
+#&gt; 58: 93.5195 -5.4358 -1.9459 -4.3041 -0.9076 0.1022 8.9155 2.1386 1.0220 2.5253 0.2220 0.2578 6.0138 1.4494
+#&gt; 59: 93.5906 -5.4624 -1.9507 -4.3065 -0.9124 0.1374 8.4698 2.0317 1.0230 2.5539 0.2212 0.2449 5.7538 1.6021
+#&gt; 60: 93.3308 -5.3784 -1.9540 -4.2417 -0.9173 0.1337 8.0463 1.9301 1.0298 2.4262 0.2173 0.2327 5.8841 1.4634
+#&gt; 61: 93.3506 -5.4000 -1.9688 -4.2389 -0.9130 0.0942 7.6440 1.8336 1.0437 2.3049 0.2216 0.2210 6.0098 1.4243
+#&gt; 62: 93.6969 -5.4175 -1.9467 -4.2389 -0.9135 0.1315 7.2618 1.7419 1.0213 2.2519 0.2250 0.2149 5.6278 1.4755
+#&gt; 63: 93.6188 -5.3860 -1.9295 -4.2637 -0.9222 0.1196 7.8033 1.6548 1.0340 2.2699 0.2282 0.2282 5.6763 1.4755
+#&gt; 64: 93.6782 -5.4118 -1.9518 -4.2655 -0.9298 0.1055 8.3519 1.5721 1.0227 2.4426 0.2317 0.2560 5.8006 1.4724
+#&gt; 65: 93.5253 -5.4313 -1.9314 -4.2538 -0.9245 0.0919 7.9343 1.4980 1.0771 2.3486 0.2249 0.2635 5.8752 1.4850
+#&gt; 66: 93.3192 -5.5672 -1.9715 -4.2575 -0.9224 0.1404 8.2293 1.9722 1.0233 2.3758 0.2365 0.2546 5.9462 1.5148
+#&gt; 67: 93.0765 -5.4861 -1.9673 -4.2472 -0.9103 0.0935 8.3227 1.8736 0.9889 2.3305 0.2493 0.2419 5.7836 1.4946
+#&gt; 68: 93.2666 -5.4963 -1.9635 -4.2435 -0.9093 0.0940 9.2911 1.7800 1.0050 2.3179 0.2495 0.2298 5.7104 1.4797
+#&gt; 69: 93.3894 -5.5666 -1.9342 -4.2325 -0.9227 0.0957 9.0211 2.0287 1.0012 2.3052 0.2483 0.2348 5.8939 1.5158
+#&gt; 70: 93.2671 -5.5710 -1.9486 -4.2723 -0.9323 0.1062 8.5700 2.1251 0.9714 2.3266 0.2498 0.2466 6.1562 1.5041
+#&gt; 71: 92.9975 -5.5829 -1.9507 -4.2632 -0.9317 0.1166 8.1415 2.0322 0.9403 2.3654 0.2373 0.2454 5.8668 1.5122
+#&gt; 72: 92.6364 -5.5255 -1.9888 -4.2605 -0.9255 0.1062 8.8866 1.9306 0.9680 2.4488 0.2314 0.2438 6.2101 1.5098
+#&gt; 73: 92.4442 -5.5679 -1.9880 -4.3501 -0.9070 0.0972 9.1986 1.9203 0.9597 3.1091 0.2369 0.2412 6.1257 1.5029
+#&gt; 74: 92.3866 -5.5447 -1.9895 -4.3137 -0.9004 0.0898 10.2222 1.8961 0.9573 2.9536 0.2494 0.2361 6.0474 1.4875
+#&gt; 75: 92.2491 -5.6481 -1.9591 -4.3587 -0.8991 0.1028 9.7111 2.2694 1.0140 2.9121 0.2524 0.2243 6.0995 1.4780
+#&gt; 76: 92.4656 -5.6014 -1.9860 -4.3538 -0.9015 0.0978 11.3121 2.1560 0.9861 2.9372 0.2489 0.2314 6.0996 1.4464
+#&gt; 77: 92.5076 -5.5929 -1.9560 -4.3624 -0.9051 0.1008 12.0483 2.0482 1.0212 3.0132 0.2551 0.2378 5.9595 1.5081
+#&gt; 78: 92.5987 -5.7000 -1.9592 -4.3611 -0.9131 0.0958 11.4458 2.3873 1.0062 2.9848 0.2549 0.2372 6.0385 1.4666
+#&gt; 79: 92.4883 -5.7675 -1.9900 -4.4226 -0.9163 0.1153 10.8735 2.7867 0.9616 3.4984 0.2546 0.2309 5.9441 1.4722
+#&gt; 80: 92.1716 -5.7782 -1.9810 -4.4398 -0.9122 0.1193 10.3299 3.0280 0.9642 3.6766 0.2520 0.2291 6.3013 1.4698
+#&gt; 81: 92.1145 -5.8494 -1.9836 -4.3634 -0.9196 0.1013 9.8134 3.1850 0.9160 3.4927 0.2562 0.2409 6.2458 1.4664
+#&gt; 82: 92.3761 -5.9668 -1.9722 -4.3888 -0.9240 0.1139 9.9738 3.9484 0.8923 3.3519 0.2434 0.2318 6.0987 1.4847
+#&gt; 83: 92.7805 -6.1135 -1.9335 -4.3600 -0.9273 0.1027 11.2060 4.7684 0.8932 3.1843 0.2454 0.2202 5.9824 1.4920
+#&gt; 84: 92.9601 -6.2190 -1.9374 -4.3187 -0.9376 0.1140 10.6457 5.6632 0.9077 3.0250 0.2464 0.2188 5.9979 1.5152
+#&gt; 85: 92.4579 -6.1486 -1.9398 -4.3269 -0.9417 0.0979 10.1134 5.3800 0.9011 2.8738 0.2446 0.2330 5.7007 1.5648
+#&gt; 86: 92.3580 -6.2177 -1.9549 -4.3287 -0.9510 0.1073 9.6077 5.1608 0.9318 2.7301 0.2497 0.2214 5.9916 1.5305
+#&gt; 87: 92.8919 -6.3309 -1.9480 -4.3285 -0.9647 0.1009 9.1273 6.4577 0.9494 2.7023 0.2408 0.2126 5.9053 1.4313
+#&gt; 88: 93.0621 -6.1220 -1.9623 -4.3341 -0.9624 0.1300 8.6710 6.1349 0.9563 2.6593 0.2404 0.2130 6.1925 1.4510
+#&gt; 89: 92.7711 -6.2636 -1.9545 -4.3520 -0.9496 0.1227 8.2374 6.2143 0.9791 2.5862 0.2346 0.2333 5.9772 1.4523
+#&gt; 90: 92.9148 -6.5481 -1.9586 -4.3275 -0.9496 0.1096 7.8255 8.2617 0.9787 2.4647 0.2346 0.2216 5.9136 1.4247
+#&gt; 91: 92.8129 -6.4655 -1.9753 -4.3287 -0.9435 0.1210 9.1893 7.8487 0.9642 2.5304 0.2354 0.2268 5.9129 1.4229
+#&gt; 92: 93.1090 -6.4752 -1.9841 -4.3533 -0.9428 0.1509 10.1133 7.7232 0.9160 2.6037 0.2457 0.2265 5.8601 1.4646
+#&gt; 93: 93.4781 -6.3780 -1.9909 -4.3713 -0.9450 0.1544 9.6076 7.3370 0.9153 2.7656 0.2485 0.2499 5.9150 1.5180
+#&gt; 94: 93.2125 -6.3021 -1.9798 -4.3459 -0.9470 0.1520 9.6738 6.9702 0.9314 2.6273 0.2428 0.2519 5.8752 1.4456
+#&gt; 95: 93.0091 -5.9727 -1.9828 -4.3777 -0.9447 0.1370 9.6411 6.6217 0.9107 2.7137 0.2428 0.2556 5.8302 1.4477
+#&gt; 96: 92.8731 -5.7813 -1.9952 -4.3343 -0.9352 0.1505 9.1590 6.2906 0.9011 2.5780 0.2366 0.2546 6.0545 1.4887
+#&gt; 97: 92.7834 -5.8119 -1.9975 -4.3303 -0.9258 0.1231 8.8022 5.9760 0.9005 2.5331 0.2392 0.2419 5.9522 1.4754
+#&gt; 98: 92.8447 -5.9773 -1.9940 -4.3353 -0.9301 0.1409 8.3621 5.6772 0.9244 2.4828 0.2426 0.2490 6.1027 1.4129
+#&gt; 99: 93.1697 -5.8958 -1.9964 -4.3325 -0.9248 0.1411 7.9440 5.3934 0.9586 2.6138 0.2378 0.2545 6.2793 1.3719
+#&gt; 100: 93.2536 -5.8481 -2.0009 -4.3408 -0.9304 0.1718 8.7965 5.1237 0.9290 2.6161 0.2398 0.2418 6.0908 1.4534
+#&gt; 101: 93.2942 -5.8684 -1.9650 -4.3096 -0.9305 0.1496 9.7633 4.8675 0.9166 2.4853 0.2372 0.2565 5.9079 1.4948
+#&gt; 102: 93.2636 -6.1363 -1.9517 -4.2653 -0.9235 0.1175 10.7772 5.1927 0.8944 2.3610 0.2448 0.2812 5.7748 1.5533
+#&gt; 103: 92.6954 -5.9371 -1.9524 -4.2792 -0.9045 0.1288 10.2383 4.9331 0.8876 2.2429 0.2406 0.2720 5.5496 1.5601
+#&gt; 104: 92.6149 -6.0650 -1.9532 -4.2752 -0.9048 0.0973 10.9914 4.6864 0.8845 2.1875 0.2475 0.2584 5.5593 1.4897
+#&gt; 105: 92.8231 -5.9779 -1.9650 -4.2939 -0.9013 0.1112 10.4712 4.4521 0.9193 2.1985 0.2416 0.2455 5.4420 1.4910
+#&gt; 106: 92.7599 -5.9602 -1.9594 -4.3018 -0.9026 0.1273 10.1396 4.2295 0.9308 2.1700 0.2453 0.2625 5.5458 1.4429
+#&gt; 107: 93.1433 -5.9509 -1.9638 -4.2715 -0.9324 0.1385 9.6327 4.0415 0.9271 2.1026 0.2415 0.2626 5.4762 1.4286
+#&gt; 108: 93.1354 -5.7359 -1.9691 -4.2962 -0.9256 0.1346 10.2794 3.8394 0.9387 2.1671 0.2412 0.2627 5.5107 1.4200
+#&gt; 109: 92.9608 -5.8252 -1.9780 -4.3149 -0.9125 0.1564 9.7654 4.0619 0.9380 2.1731 0.2325 0.2657 5.8118 1.4379
+#&gt; 110: 93.1043 -5.7632 -1.9874 -4.2868 -0.9113 0.1178 9.2771 3.8588 0.9420 2.1477 0.2214 0.2524 5.9352 1.4377
+#&gt; 111: 92.8879 -5.7965 -1.9781 -4.2851 -0.9147 0.1107 8.8133 3.6659 0.9526 2.1891 0.2130 0.2398 5.6360 1.4461
+#&gt; 112: 92.9347 -5.7484 -1.9460 -4.2825 -0.9195 0.1078 8.3726 3.4826 0.9710 2.2687 0.2051 0.2278 5.5771 1.5123
+#&gt; 113: 92.7217 -5.7193 -1.9328 -4.2721 -0.9252 0.1021 7.9540 3.3085 1.0056 2.2848 0.2244 0.2164 5.7135 1.5082
+#&gt; 114: 92.9944 -5.7382 -1.9414 -4.2835 -0.9210 0.1210 7.5563 3.1430 1.0184 2.2457 0.2260 0.2182 5.6799 1.4751
+#&gt; 115: 93.1261 -5.8876 -1.9290 -4.2753 -0.9382 0.0960 9.7696 3.4406 1.0140 2.2745 0.2171 0.2073 5.3919 1.4919
+#&gt; 116: 92.7669 -5.9842 -1.9484 -4.2828 -0.9504 0.1122 9.2811 4.1332 1.0202 2.2835 0.2160 0.2136 5.3651 1.5337
+#&gt; 117: 92.9804 -5.9847 -1.9584 -4.2879 -0.9474 0.1234 9.2911 3.9265 0.9692 2.3115 0.2135 0.2163 5.1053 1.4774
+#&gt; 118: 93.2853 -5.8443 -1.9494 -4.2700 -0.9400 0.1105 9.8572 3.7302 0.9736 2.2489 0.2192 0.2223 5.2416 1.4668
+#&gt; 119: 93.2776 -5.8592 -1.9458 -4.2600 -0.9394 0.1072 9.3643 3.5437 0.9789 2.1964 0.2176 0.2205 5.2942 1.4847
+#&gt; 120: 93.0335 -5.8156 -1.9453 -4.2623 -0.9437 0.1139 8.8961 3.3665 0.9698 2.2380 0.2206 0.2231 5.4427 1.4470
+#&gt; 121: 93.0115 -5.8402 -1.9355 -4.2596 -0.9291 0.1138 8.4513 3.3018 0.9743 2.1463 0.2096 0.2120 5.1537 1.4487
+#&gt; 122: 93.6277 -5.8852 -1.9276 -4.2787 -0.9419 0.1388 8.0287 3.4114 0.9438 2.1410 0.2072 0.2104 5.1198 1.5201
+#&gt; 123: 93.4952 -6.0977 -1.9332 -4.2847 -0.9431 0.1412 7.6273 4.8225 0.9472 2.1335 0.2081 0.2129 5.2003 1.6193
+#&gt; 124: 93.7207 -6.2280 -1.9105 -4.2692 -0.9551 0.1422 7.2459 5.4835 0.9657 2.0896 0.2148 0.2272 5.2901 1.5482
+#&gt; 125: 93.6041 -6.0808 -1.9356 -4.2748 -0.9531 0.1184 7.0201 5.2094 0.9591 2.0421 0.2089 0.2158 5.3848 1.4896
+#&gt; 126: 93.5193 -6.0164 -1.9296 -4.2890 -0.9600 0.1351 7.6848 4.9489 0.9931 2.1387 0.1989 0.2129 5.1988 1.4492
+#&gt; 127: 93.7135 -5.9340 -1.9448 -4.2883 -0.9633 0.1428 8.3411 4.7014 0.9820 2.1192 0.1985 0.2046 5.3953 1.4985
+#&gt; 128: 94.2312 -5.8849 -1.9404 -4.2754 -0.9633 0.1495 7.9240 4.4664 0.9884 2.0587 0.1902 0.2171 5.7113 1.4987
+#&gt; 129: 94.0390 -5.8674 -1.9229 -4.3309 -0.9614 0.1472 8.5108 4.2430 1.0319 2.1023 0.1909 0.2154 5.5654 1.4294
+#&gt; 130: 93.4178 -6.0458 -1.9224 -4.3364 -0.9560 0.1570 8.0852 4.4639 1.0184 2.2804 0.1869 0.2182 5.6585 1.4443
+#&gt; 131: 93.5483 -6.2682 -1.9258 -4.3654 -0.9554 0.1449 7.6810 5.6020 1.0254 2.3477 0.1857 0.2230 5.4266 1.4324
+#&gt; 132: 93.5180 -6.3297 -1.9204 -4.3577 -0.9640 0.1365 7.2969 5.5672 1.0354 2.3257 0.1788 0.2118 5.4913 1.4859
+#&gt; 133: 93.4707 -6.0990 -1.9415 -4.3315 -0.9775 0.1232 6.9321 5.2888 1.0686 2.3421 0.1851 0.2012 5.8429 1.4618
+#&gt; 134: 93.1012 -6.1236 -1.9308 -4.3409 -0.9654 0.1225 7.6471 5.0244 1.0517 2.4652 0.1947 0.2008 5.6902 1.5432
+#&gt; 135: 93.2545 -6.1070 -1.9408 -4.3415 -0.9553 0.1228 9.2701 4.7732 1.0160 2.3607 0.1919 0.1907 5.5154 1.5317
+#&gt; 136: 93.3338 -6.0321 -1.9336 -4.3074 -0.9598 0.1120 8.8066 4.5345 0.9652 2.2427 0.1999 0.2249 5.3667 1.6036
+#&gt; 137: 93.5910 -6.0627 -1.9339 -4.3074 -0.9529 0.1407 8.3663 4.3078 0.9538 2.2128 0.1966 0.2195 5.2959 1.6015
+#&gt; 138: 93.6338 -5.9702 -1.9252 -4.3105 -0.9615 0.1373 7.9480 4.0924 0.9875 2.2635 0.1964 0.2218 5.4532 1.5261
+#&gt; 139: 93.6403 -5.8913 -1.9237 -4.2962 -0.9582 0.1165 8.0749 3.8878 0.9746 2.2457 0.1972 0.2125 5.9356 1.5173
+#&gt; 140: 92.8503 -5.8314 -1.9452 -4.3180 -0.9487 0.1142 8.6356 3.6934 0.9933 2.2044 0.1961 0.2019 5.7908 1.5138
+#&gt; 141: 93.1249 -6.0584 -1.9448 -4.3139 -0.9367 0.0950 8.9231 4.4196 1.0220 2.2246 0.2079 0.2077 6.0233 1.4339
+#&gt; 142: 93.1846 -6.3026 -1.9152 -4.3093 -0.9392 0.0866 10.1508 5.9592 1.0562 2.3325 0.2082 0.2133 5.5285 1.4832
+#&gt; 143: 92.4682 -6.1485 -1.9146 -4.2812 -0.9376 0.0260 9.6433 5.6613 1.0618 2.3594 0.2000 0.2027 6.0573 1.4428
+#&gt; 144: 92.7792 -6.1108 -1.8939 -4.2740 -0.9341 0.0765 9.1611 5.3782 1.0917 2.3074 0.2057 0.2240 6.2141 1.4953
+#&gt; 145: 93.1314 -6.2086 -1.8939 -4.3580 -0.9341 0.0741 8.7031 5.1093 1.0931 2.7164 0.2105 0.2229 5.8543 1.4855
+#&gt; 146: 93.2254 -6.2170 -1.8998 -4.3724 -0.9311 0.0677 8.2679 5.0506 1.0811 2.8434 0.2049 0.2118 5.5455 1.4763
+#&gt; 147: 93.3264 -6.0136 -1.8998 -4.3853 -0.9328 0.0817 9.4673 4.7980 1.0668 2.8512 0.2009 0.2114 5.5518 1.5225
+#&gt; 148: 93.2298 -5.9143 -1.8921 -4.5001 -0.9296 0.1057 8.9939 4.5581 1.0563 3.8266 0.1982 0.2043 5.5242 1.5614
+#&gt; 149: 93.3604 -5.9894 -1.8832 -4.5223 -0.9338 0.0858 8.5442 4.3302 1.0544 4.3930 0.1986 0.2003 5.4353 1.4957
+#&gt; 150: 93.4715 -5.9630 -1.8833 -4.4796 -0.9335 0.0827 8.1170 4.1137 1.0912 4.1733 0.1984 0.1903 5.7477 1.4554
+#&gt; 151: 93.3385 -5.8026 -1.9052 -4.4507 -0.9368 0.0684 8.7726 3.9080 1.1249 3.9647 0.2074 0.1808 5.7693 1.4400
+#&gt; 152: 93.1682 -5.8529 -1.9441 -4.3545 -0.9309 0.0752 8.8042 3.1783 1.0496 3.0168 0.2069 0.1688 5.9161 1.4565
+#&gt; 153: 93.0559 -6.0261 -1.9425 -4.3431 -0.9327 0.1016 9.1435 3.9939 1.0120 2.8470 0.1894 0.1509 5.4435 1.5486
+#&gt; 154: 92.8582 -6.0887 -1.9278 -4.3094 -0.9352 0.1064 8.4316 4.2991 0.9819 2.6257 0.1907 0.1609 5.4587 1.5208
+#&gt; 155: 93.3200 -5.8480 -1.9149 -4.3363 -0.9294 0.1143 9.6700 3.1734 0.9942 2.6441 0.1824 0.1906 5.5193 1.6410
+#&gt; 156: 93.3199 -5.9053 -1.9213 -4.3163 -0.9369 0.1291 7.5899 3.5902 0.9823 2.4648 0.1770 0.1956 5.3816 1.5356
+#&gt; 157: 93.2434 -5.8763 -1.9161 -4.3035 -0.9549 0.1075 8.4137 3.2576 0.9935 2.5007 0.1795 0.1852 5.4053 1.5706
+#&gt; 158: 93.1494 -5.9243 -1.8929 -4.3162 -0.9680 0.1296 8.2959 3.3262 1.0029 2.4943 0.1866 0.1921 5.4369 1.5510
+#&gt; 159: 93.5683 -6.0335 -1.9127 -4.3040 -0.9675 0.1271 7.7222 4.0079 0.9768 2.5765 0.1869 0.2028 5.7165 1.4968
+#&gt; 160: 93.9417 -6.0018 -1.9085 -4.2818 -0.9611 0.1161 5.8791 4.4991 0.9658 2.4933 0.1878 0.1986 6.0579 1.5272
+#&gt; 161: 94.1252 -5.9264 -1.8943 -4.2805 -0.9645 0.0860 4.9517 3.6307 0.9754 2.4988 0.1934 0.1785 5.7457 1.5878
+#&gt; 162: 93.9389 -5.7613 -1.8946 -4.2410 -0.9752 0.0898 6.7269 2.5865 1.0184 2.4379 0.1933 0.1908 5.9052 1.5215
+#&gt; 163: 93.5890 -5.7243 -1.8992 -4.2636 -0.9722 0.0759 8.4484 2.5137 1.0151 2.3869 0.1928 0.1889 5.4694 1.5048
+#&gt; 164: 93.9751 -5.7314 -1.8786 -4.3271 -0.9702 0.1020 6.6884 2.5136 1.0133 2.8395 0.1907 0.1998 5.4625 1.4854
+#&gt; 165: 93.9708 -5.7409 -1.8856 -4.3129 -0.9616 0.1094 5.8809 2.4589 1.0401 2.6662 0.1912 0.1998 5.4339 1.4549
+#&gt; 166: 93.9265 -5.6937 -1.9134 -4.3080 -0.9702 0.1151 5.6940 2.4086 1.0065 2.6864 0.1983 0.1987 5.6907 1.4857
+#&gt; 167: 93.4157 -5.7312 -1.9163 -4.3286 -0.9638 0.1216 5.1230 2.5468 1.0487 2.5930 0.1917 0.1940 5.5938 1.4267
+#&gt; 168: 93.3701 -5.8757 -1.9196 -4.3493 -0.9579 0.1134 6.0802 3.3929 1.0517 2.6981 0.1888 0.2063 5.4125 1.4365
+#&gt; 169: 93.4342 -6.0262 -1.9041 -4.3347 -0.9526 0.0997 6.0780 3.6349 1.0623 2.7344 0.1946 0.1978 5.4930 1.4594
+#&gt; 170: 93.3751 -6.1195 -1.9093 -4.3541 -0.9872 0.0834 6.8972 4.0337 1.0763 2.8428 0.2077 0.2005 5.6759 1.4455
+#&gt; 171: 93.3603 -6.0360 -1.9196 -4.4632 -0.9763 0.0866 7.4236 3.6025 1.0684 3.7611 0.2046 0.1894 5.6282 1.4414
+#&gt; 172: 93.2776 -5.9538 -1.9031 -4.4815 -0.9779 0.1024 5.4751 3.2802 1.0599 3.9487 0.2115 0.1990 5.6116 1.4230
+#&gt; 173: 93.4470 -5.8580 -1.9193 -4.4170 -0.9641 0.0957 5.6416 2.8005 1.0440 3.4509 0.2066 0.1863 5.5804 1.4485
+#&gt; 174: 93.2952 -5.8590 -1.9010 -4.3600 -0.9640 0.0789 6.4314 2.9503 1.0808 2.9773 0.2045 0.1969 5.4423 1.4421
+#&gt; 175: 93.3756 -5.7733 -1.8959 -4.3621 -0.9504 0.0609 6.1723 2.5287 1.0950 3.0019 0.2127 0.2053 5.4338 1.4470
+#&gt; 176: 93.1450 -5.8266 -1.9053 -4.3401 -0.9457 0.0633 6.5237 3.0522 1.0942 2.9464 0.2134 0.2021 5.6501 1.3664
+#&gt; 177: 92.7723 -5.9978 -1.9231 -4.3529 -0.9524 0.0658 7.4519 4.2374 1.0640 3.0260 0.2158 0.2146 5.9180 1.4100
+#&gt; 178: 92.7261 -5.9836 -1.9189 -4.3349 -0.9576 0.0768 5.5211 4.2557 1.0611 2.8827 0.2169 0.2088 5.8872 1.4206
+#&gt; 179: 92.9599 -6.0071 -1.9259 -4.3081 -0.9581 0.0657 6.0953 3.8205 1.0816 2.6709 0.2122 0.2014 5.8221 1.4026
+#&gt; 180: 93.0831 -6.1544 -1.9400 -4.3018 -0.9496 0.0411 4.2312 4.9005 1.1064 2.6542 0.2143 0.2221 6.3264 1.3820
+#&gt; 181: 92.8840 -6.0889 -1.9364 -4.3200 -0.9566 0.0861 4.2186 4.4615 1.0930 2.7270 0.2142 0.2424 6.0486 1.4035
+#&gt; 182: 93.1913 -6.1457 -1.9384 -4.3085 -0.9606 0.0733 6.2878 4.6026 1.0917 2.6393 0.2131 0.2151 5.7042 1.4952
+#&gt; 183: 93.1218 -6.3114 -1.9355 -4.2883 -0.9742 0.0741 7.2675 5.1377 1.0914 2.5060 0.2220 0.2111 5.5099 1.4097
+#&gt; 184: 93.1462 -6.3147 -1.9068 -4.2880 -0.9653 0.0893 7.6928 5.6510 1.0563 2.5066 0.2256 0.2201 5.4138 1.5319
+#&gt; 185: 93.1825 -6.3608 -1.9265 -4.2815 -0.9549 0.0873 7.1340 5.9801 1.0363 2.4788 0.2177 0.1958 5.4202 1.4569
+#&gt; 186: 93.6270 -6.1413 -1.9278 -4.2702 -0.9696 0.1185 6.7652 4.5535 1.0400 2.3673 0.2163 0.1932 5.3005 1.5012
+#&gt; 187: 93.9922 -6.3364 -1.9269 -4.2702 -0.9729 0.1197 7.7694 6.1592 0.9948 2.3673 0.2196 0.2091 5.3075 1.5105
+#&gt; 188: 93.8884 -6.0236 -1.9207 -4.2928 -0.9900 0.1343 7.8090 4.2847 0.9840 2.4238 0.2195 0.1966 5.2861 1.5607
+#&gt; 189: 94.3110 -6.0809 -1.9145 -4.2826 -0.9840 0.1224 8.5580 4.0998 0.9800 2.4505 0.2294 0.1840 5.7107 1.5180
+#&gt; 190: 94.0039 -6.0996 -1.9140 -4.2793 -0.9782 0.1429 10.6594 4.1655 0.9796 2.4415 0.2297 0.1960 5.7533 1.5720
+#&gt; 191: 93.9692 -6.1129 -1.9362 -4.3261 -0.9705 0.1462 8.8201 4.3146 1.0124 2.4625 0.2287 0.2049 5.5670 1.5206
+#&gt; 192: 93.3178 -5.9759 -1.9192 -4.3378 -0.9664 0.1434 8.8047 3.7150 1.0282 2.4137 0.2243 0.1977 5.3858 1.4599
+#&gt; 193: 93.1427 -5.9388 -1.9391 -4.3211 -0.9650 0.1401 7.1862 3.2835 1.0218 2.3216 0.2163 0.1866 5.3930 1.5017
+#&gt; 194: 93.0588 -6.0605 -1.9361 -4.3350 -0.9462 0.1330 6.8930 4.0020 1.0166 2.3186 0.2057 0.1818 5.2535 1.5075
+#&gt; 195: 93.1820 -6.1201 -1.9579 -4.3034 -0.9534 0.1557 8.1300 4.4218 0.9932 2.1873 0.2099 0.1834 5.4862 1.4698
+#&gt; 196: 93.2230 -5.8879 -1.9725 -4.2965 -0.9584 0.1390 8.1307 3.0777 1.0051 2.1597 0.2089 0.1683 5.7058 1.3970
+#&gt; 197: 93.3504 -5.8829 -1.9677 -4.3075 -0.9577 0.1638 6.7115 3.0660 1.0050 2.1377 0.2024 0.1642 5.4691 1.5016
+#&gt; 198: 93.3016 -5.8771 -1.9885 -4.3241 -0.9605 0.1562 6.4722 3.0381 0.9727 2.2053 0.1975 0.1683 5.3434 1.4885
+#&gt; 199: 93.2464 -5.8787 -1.9871 -4.3430 -0.9528 0.1751 4.5894 3.0445 0.9748 2.2247 0.1886 0.1780 5.4469 1.4405
+#&gt; 200: 93.3474 -5.7995 -1.9767 -4.3298 -0.9480 0.1947 4.7024 2.8535 0.9895 2.2234 0.1951 0.2012 5.5130 1.4641
+#&gt; 201: 93.3231 -5.8169 -1.9737 -4.3268 -0.9510 0.1804 4.4248 2.8913 0.9738 2.2141 0.1955 0.2057 5.5422 1.4843
+#&gt; 202: 93.3484 -5.8009 -1.9732 -4.3240 -0.9519 0.1674 4.4068 2.8084 0.9736 2.2040 0.1959 0.2033 5.5843 1.4744
+#&gt; 203: 93.2617 -5.7915 -1.9678 -4.3211 -0.9535 0.1629 4.5333 2.7678 0.9877 2.1980 0.1961 0.2023 5.6265 1.4811
+#&gt; 204: 93.2210 -5.8071 -1.9647 -4.3220 -0.9504 0.1629 4.6144 2.8347 0.9922 2.1938 0.1937 0.2013 5.5745 1.4988
+#&gt; 205: 93.1914 -5.8104 -1.9667 -4.3225 -0.9484 0.1593 4.5880 2.8639 0.9931 2.1952 0.1916 0.1979 5.5960 1.5057
+#&gt; 206: 93.1827 -5.8348 -1.9697 -4.3236 -0.9498 0.1587 4.7189 3.0353 0.9929 2.2016 0.1922 0.1947 5.6096 1.5136
+#&gt; 207: 93.2017 -5.8760 -1.9714 -4.3239 -0.9518 0.1592 4.8171 3.2659 0.9947 2.2042 0.1927 0.1910 5.6413 1.5078
+#&gt; 208: 93.2226 -5.8819 -1.9736 -4.3261 -0.9532 0.1610 4.8241 3.2964 0.9957 2.2122 0.1938 0.1878 5.6704 1.5031
+#&gt; 209: 93.2158 -5.8786 -1.9743 -4.3278 -0.9538 0.1595 4.6275 3.2763 0.9963 2.2279 0.1950 0.1848 5.6758 1.5038
+#&gt; 210: 93.2216 -5.8798 -1.9746 -4.3286 -0.9535 0.1589 4.5667 3.2857 0.9974 2.2473 0.1948 0.1834 5.6707 1.5054
+#&gt; 211: 93.2238 -5.8847 -1.9763 -4.3302 -0.9530 0.1591 4.5745 3.2932 0.9956 2.2576 0.1948 0.1823 5.6691 1.4990
+#&gt; 212: 93.2242 -5.8893 -1.9777 -4.3323 -0.9532 0.1600 4.6203 3.2955 0.9938 2.2704 0.1958 0.1814 5.6732 1.4994
+#&gt; 213: 93.2246 -5.8950 -1.9756 -4.3345 -0.9532 0.1588 4.7363 3.3106 0.9894 2.2864 0.1960 0.1791 5.6401 1.5015
+#&gt; 214: 93.2056 -5.9070 -1.9740 -4.3368 -0.9532 0.1586 4.7814 3.3538 0.9888 2.3047 0.1960 0.1761 5.6265 1.5008
+#&gt; 215: 93.2126 -5.9157 -1.9720 -4.3405 -0.9533 0.1580 4.9117 3.3916 0.9890 2.3191 0.1959 0.1742 5.6054 1.5015
+#&gt; 216: 93.2161 -5.9242 -1.9716 -4.3423 -0.9533 0.1594 5.0163 3.4425 0.9897 2.3291 0.1959 0.1739 5.5975 1.5005
+#&gt; 217: 93.2193 -5.9351 -1.9715 -4.3445 -0.9537 0.1614 4.9927 3.5085 0.9905 2.3309 0.1957 0.1739 5.5905 1.5024
+#&gt; 218: 93.1973 -5.9314 -1.9725 -4.3479 -0.9548 0.1640 5.0502 3.4902 0.9918 2.3344 0.1952 0.1740 5.5909 1.5046
+#&gt; 219: 93.1938 -5.9312 -1.9729 -4.3508 -0.9539 0.1664 5.0446 3.4901 0.9922 2.3365 0.1949 0.1746 5.5808 1.5046
+#&gt; 220: 93.1994 -5.9424 -1.9734 -4.3531 -0.9536 0.1683 5.0462 3.5593 0.9917 2.3370 0.1945 0.1754 5.5831 1.5055
+#&gt; 221: 93.2015 -5.9511 -1.9746 -4.3550 -0.9537 0.1702 5.1062 3.6002 0.9899 2.3368 0.1945 0.1762 5.5731 1.5043
+#&gt; 222: 93.2057 -5.9653 -1.9756 -4.3571 -0.9541 0.1718 5.1727 3.6876 0.9886 2.3364 0.1943 0.1776 5.5813 1.5047
+#&gt; 223: 93.1998 -5.9723 -1.9761 -4.3592 -0.9540 0.1726 5.1866 3.7239 0.9871 2.3428 0.1940 0.1791 5.5702 1.5047
+#&gt; 224: 93.2042 -5.9799 -1.9768 -4.3615 -0.9540 0.1734 5.1516 3.7613 0.9849 2.3531 0.1934 0.1809 5.5705 1.5039
+#&gt; 225: 93.1974 -5.9813 -1.9776 -4.3648 -0.9540 0.1740 5.1225 3.7676 0.9840 2.3663 0.1929 0.1834 5.5698 1.5030
+#&gt; 226: 93.1963 -5.9807 -1.9777 -4.3679 -0.9535 0.1751 5.1632 3.7694 0.9839 2.3785 0.1927 0.1850 5.5676 1.5069
+#&gt; 227: 93.1912 -5.9740 -1.9783 -4.3707 -0.9533 0.1768 5.1987 3.7421 0.9835 2.3931 0.1922 0.1855 5.5597 1.5091
+#&gt; 228: 93.1902 -5.9799 -1.9792 -4.3745 -0.9533 0.1784 5.2070 3.7641 0.9825 2.4134 0.1917 0.1861 5.5502 1.5086
+#&gt; 229: 93.1903 -5.9894 -1.9805 -4.3792 -0.9533 0.1796 5.2398 3.8109 0.9812 2.4382 0.1910 0.1870 5.5486 1.5075
+#&gt; 230: 93.1833 -5.9946 -1.9816 -4.3836 -0.9530 0.1814 5.2357 3.8346 0.9800 2.4614 0.1904 0.1883 5.5515 1.5065
+#&gt; 231: 93.1740 -6.0001 -1.9834 -4.3871 -0.9528 0.1833 5.2848 3.8635 0.9783 2.4814 0.1898 0.1893 5.5526 1.5057
+#&gt; 232: 93.1581 -6.0071 -1.9852 -4.3904 -0.9523 0.1857 5.3056 3.8967 0.9766 2.5002 0.1891 0.1904 5.5571 1.5057
+#&gt; 233: 93.1417 -6.0131 -1.9865 -4.3933 -0.9517 0.1869 5.3290 3.9227 0.9745 2.5129 0.1885 0.1909 5.5609 1.5069
+#&gt; 234: 93.1245 -6.0198 -1.9878 -4.3961 -0.9514 0.1880 5.3062 3.9567 0.9731 2.5269 0.1886 0.1916 5.5645 1.5074
+#&gt; 235: 93.1084 -6.0269 -1.9885 -4.3985 -0.9514 0.1892 5.3213 3.9969 0.9729 2.5390 0.1887 0.1931 5.5722 1.5065
+#&gt; 236: 93.1037 -6.0382 -1.9897 -4.4009 -0.9517 0.1899 5.3601 4.0674 0.9744 2.5501 0.1886 0.1949 5.5811 1.5066
+#&gt; 237: 93.0989 -6.0432 -1.9906 -4.4031 -0.9518 0.1909 5.3744 4.0877 0.9755 2.5623 0.1885 0.1964 5.5890 1.5051
+#&gt; 238: 93.0932 -6.0433 -1.9912 -4.4041 -0.9521 0.1915 5.4192 4.0775 0.9772 2.5698 0.1886 0.1980 5.5980 1.5029
+#&gt; 239: 93.0943 -6.0475 -1.9913 -4.4056 -0.9520 0.1921 5.4483 4.0960 0.9792 2.5785 0.1888 0.1997 5.5999 1.5011
+#&gt; 240: 93.0904 -6.0498 -1.9909 -4.4070 -0.9520 0.1925 5.4921 4.1095 0.9814 2.5867 0.1887 0.2011 5.5974 1.5013
+#&gt; 241: 93.0883 -6.0508 -1.9910 -4.4086 -0.9520 0.1931 5.5503 4.1140 0.9827 2.5966 0.1887 0.2023 5.6049 1.4997
+#&gt; 242: 93.0884 -6.0487 -1.9916 -4.4102 -0.9517 0.1940 5.5634 4.1021 0.9831 2.6059 0.1886 0.2039 5.6116 1.5005
+#&gt; 243: 93.0836 -6.0466 -1.9920 -4.4123 -0.9517 0.1950 5.5786 4.0878 0.9837 2.6204 0.1887 0.2054 5.6217 1.5000
+#&gt; 244: 93.0756 -6.0477 -1.9926 -4.4149 -0.9517 0.1956 5.5827 4.0904 0.9843 2.6385 0.1887 0.2070 5.6306 1.4995
+#&gt; 245: 93.0664 -6.0533 -1.9930 -4.4174 -0.9514 0.1963 5.6228 4.1208 0.9857 2.6549 0.1888 0.2086 5.6346 1.4996
+#&gt; 246: 93.0643 -6.0543 -1.9931 -4.4200 -0.9511 0.1969 5.6236 4.1257 0.9872 2.6735 0.1886 0.2096 5.6381 1.4989
+#&gt; 247: 93.0631 -6.0568 -1.9929 -4.4227 -0.9511 0.1974 5.6045 4.1389 0.9889 2.6910 0.1886 0.2107 5.6408 1.4984
+#&gt; 248: 93.0636 -6.0567 -1.9924 -4.4264 -0.9513 0.1974 5.6016 4.1412 0.9906 2.7225 0.1886 0.2117 5.6424 1.4992
+#&gt; 249: 93.0727 -6.0560 -1.9920 -4.4302 -0.9514 0.1973 5.6088 4.1383 0.9922 2.7584 0.1885 0.2125 5.6441 1.4992
+#&gt; 250: 93.0865 -6.0551 -1.9915 -4.4337 -0.9512 0.1973 5.6127 4.1386 0.9941 2.7852 0.1884 0.2135 5.6522 1.4977
+#&gt; 251: 93.0887 -6.0551 -1.9910 -4.4364 -0.9511 0.1967 5.5869 4.1455 0.9964 2.8060 0.1883 0.2146 5.6561 1.4968
+#&gt; 252: 93.0877 -6.0522 -1.9904 -4.4376 -0.9511 0.1964 5.5778 4.1346 0.9987 2.8151 0.1883 0.2155 5.6583 1.4964
+#&gt; 253: 93.0843 -6.0518 -1.9897 -4.4391 -0.9512 0.1961 5.5948 4.1323 1.0011 2.8253 0.1884 0.2164 5.6588 1.4972
+#&gt; 254: 93.0818 -6.0518 -1.9896 -4.4399 -0.9512 0.1957 5.6122 4.1352 1.0016 2.8319 0.1882 0.2169 5.6573 1.4991
+#&gt; 255: 93.0838 -6.0524 -1.9895 -4.4401 -0.9514 0.1954 5.6310 4.1366 1.0025 2.8408 0.1880 0.2174 5.6584 1.4996
+#&gt; 256: 93.0850 -6.0579 -1.9892 -4.4400 -0.9515 0.1948 5.6526 4.1752 1.0043 2.8482 0.1879 0.2181 5.6611 1.4979
+#&gt; 257: 93.0868 -6.0600 -1.9890 -4.4391 -0.9517 0.1940 5.6742 4.1941 1.0055 2.8499 0.1878 0.2189 5.6649 1.4985
+#&gt; 258: 93.0873 -6.0606 -1.9888 -4.4391 -0.9518 0.1932 5.7088 4.2037 1.0066 2.8552 0.1877 0.2196 5.6668 1.4983
+#&gt; 259: 93.0912 -6.0650 -1.9882 -4.4377 -0.9519 0.1925 5.7494 4.2300 1.0080 2.8537 0.1877 0.2204 5.6729 1.4977
+#&gt; 260: 93.0964 -6.0699 -1.9874 -4.4362 -0.9519 0.1918 5.7609 4.2588 1.0100 2.8513 0.1877 0.2212 5.6792 1.4974
+#&gt; 261: 93.1014 -6.0737 -1.9866 -4.4350 -0.9522 0.1913 5.7971 4.2807 1.0115 2.8496 0.1877 0.2220 5.6812 1.4969
+#&gt; 262: 93.1064 -6.0734 -1.9859 -4.4346 -0.9526 0.1909 5.7936 4.2719 1.0129 2.8505 0.1877 0.2228 5.6824 1.4958
+#&gt; 263: 93.1092 -6.0783 -1.9850 -4.4344 -0.9530 0.1906 5.8078 4.2973 1.0141 2.8525 0.1879 0.2233 5.6815 1.4954
+#&gt; 264: 93.1128 -6.0830 -1.9842 -4.4338 -0.9535 0.1901 5.8245 4.3273 1.0146 2.8527 0.1880 0.2237 5.6768 1.4958
+#&gt; 265: 93.1198 -6.0874 -1.9834 -4.4331 -0.9541 0.1895 5.8467 4.3490 1.0149 2.8522 0.1880 0.2238 5.6693 1.4965
+#&gt; 266: 93.1284 -6.0890 -1.9828 -4.4327 -0.9546 0.1888 5.8350 4.3488 1.0149 2.8513 0.1881 0.2239 5.6650 1.4970
+#&gt; 267: 93.1380 -6.0926 -1.9819 -4.4326 -0.9549 0.1883 5.8440 4.3677 1.0156 2.8526 0.1883 0.2240 5.6609 1.4974
+#&gt; 268: 93.1480 -6.0915 -1.9810 -4.4321 -0.9552 0.1873 5.8565 4.3552 1.0163 2.8522 0.1886 0.2238 5.6537 1.4990
+#&gt; 269: 93.1539 -6.0910 -1.9803 -4.4314 -0.9556 0.1866 5.8709 4.3438 1.0179 2.8503 0.1888 0.2237 5.6495 1.4989
+#&gt; 270: 93.1620 -6.0898 -1.9798 -4.4311 -0.9561 0.1861 5.8678 4.3301 1.0197 2.8507 0.1890 0.2235 5.6466 1.4984
+#&gt; 271: 93.1668 -6.0881 -1.9792 -4.4305 -0.9565 0.1857 5.8508 4.3147 1.0209 2.8487 0.1891 0.2234 5.6487 1.4997
+#&gt; 272: 93.1725 -6.0848 -1.9787 -4.4300 -0.9569 0.1855 5.8431 4.2948 1.0217 2.8474 0.1894 0.2233 5.6488 1.5000
+#&gt; 273: 93.1770 -6.0809 -1.9783 -4.4297 -0.9572 0.1850 5.8432 4.2739 1.0227 2.8470 0.1897 0.2235 5.6497 1.5000
+#&gt; 274: 93.1797 -6.0774 -1.9776 -4.4299 -0.9574 0.1846 5.8549 4.2532 1.0243 2.8494 0.1901 0.2235 5.6511 1.5003
+#&gt; 275: 93.1829 -6.0759 -1.9774 -4.4303 -0.9578 0.1845 5.8633 4.2387 1.0255 2.8514 0.1906 0.2234 5.6561 1.5010
+#&gt; 276: 93.1846 -6.0764 -1.9771 -4.4303 -0.9581 0.1845 5.8738 4.2322 1.0267 2.8523 0.1911 0.2232 5.6554 1.5020
+#&gt; 277: 93.1880 -6.0792 -1.9768 -4.4305 -0.9584 0.1844 5.8980 4.2423 1.0278 2.8541 0.1915 0.2229 5.6586 1.5019
+#&gt; 278: 93.1920 -6.0791 -1.9766 -4.4307 -0.9586 0.1841 5.9368 4.2391 1.0289 2.8559 0.1919 0.2226 5.6600 1.5024
+#&gt; 279: 93.1892 -6.0786 -1.9766 -4.4310 -0.9586 0.1839 5.9822 4.2309 1.0300 2.8584 0.1925 0.2226 5.6642 1.5015
+#&gt; 280: 93.1868 -6.0782 -1.9765 -4.4311 -0.9587 0.1836 6.0381 4.2253 1.0311 2.8616 0.1930 0.2227 5.6686 1.5008
+#&gt; 281: 93.1805 -6.0781 -1.9764 -4.4309 -0.9586 0.1832 6.0718 4.2228 1.0325 2.8626 0.1936 0.2227 5.6741 1.5002
+#&gt; 282: 93.1780 -6.0768 -1.9762 -4.4318 -0.9585 0.1829 6.0867 4.2160 1.0341 2.8701 0.1941 0.2228 5.6740 1.4998
+#&gt; 283: 93.1777 -6.0736 -1.9760 -4.4325 -0.9583 0.1825 6.1250 4.2003 1.0355 2.8768 0.1946 0.2228 5.6761 1.5010
+#&gt; 284: 93.1745 -6.0726 -1.9757 -4.4337 -0.9582 0.1823 6.1509 4.1975 1.0370 2.8843 0.1951 0.2227 5.6764 1.5009
+#&gt; 285: 93.1742 -6.0719 -1.9755 -4.4348 -0.9579 0.1820 6.1652 4.1936 1.0381 2.8910 0.1954 0.2225 5.6773 1.5011
+#&gt; 286: 93.1706 -6.0698 -1.9754 -4.4356 -0.9576 0.1818 6.1840 4.1844 1.0394 2.8966 0.1958 0.2224 5.6780 1.5011
+#&gt; 287: 93.1672 -6.0678 -1.9752 -4.4370 -0.9573 0.1816 6.2123 4.1767 1.0400 2.9079 0.1963 0.2224 5.6757 1.5015
+#&gt; 288: 93.1628 -6.0658 -1.9753 -4.4379 -0.9572 0.1815 6.2355 4.1700 1.0407 2.9150 0.1967 0.2223 5.6742 1.5013
+#&gt; 289: 93.1588 -6.0628 -1.9753 -4.4389 -0.9569 0.1818 6.2435 4.1565 1.0416 2.9217 0.1969 0.2218 5.6777 1.5007
+#&gt; 290: 93.1560 -6.0590 -1.9754 -4.4399 -0.9565 0.1820 6.2564 4.1394 1.0425 2.9291 0.1971 0.2214 5.6778 1.5006
+#&gt; 291: 93.1552 -6.0555 -1.9754 -4.4409 -0.9562 0.1821 6.2753 4.1246 1.0435 2.9375 0.1973 0.2210 5.6779 1.5009
+#&gt; 292: 93.1546 -6.0541 -1.9754 -4.4415 -0.9558 0.1820 6.2881 4.1183 1.0444 2.9414 0.1975 0.2205 5.6762 1.5006
+#&gt; 293: 93.1506 -6.0535 -1.9756 -4.4424 -0.9555 0.1821 6.2856 4.1182 1.0454 2.9474 0.1976 0.2200 5.6770 1.4994
+#&gt; 294: 93.1453 -6.0520 -1.9758 -4.4424 -0.9553 0.1819 6.2733 4.1124 1.0463 2.9487 0.1979 0.2195 5.6792 1.4985
+#&gt; 295: 93.1431 -6.0487 -1.9760 -4.4421 -0.9551 0.1820 6.2655 4.1009 1.0469 2.9498 0.1982 0.2190 5.6797 1.4989
+#&gt; 296: 93.1425 -6.0460 -1.9760 -4.4432 -0.9548 0.1818 6.2801 4.0912 1.0478 2.9566 0.1984 0.2185 5.6795 1.4989
+#&gt; 297: 93.1403 -6.0442 -1.9761 -4.4440 -0.9545 0.1818 6.2979 4.0836 1.0485 2.9626 0.1987 0.2182 5.6783 1.4978
+#&gt; 298: 93.1400 -6.0438 -1.9763 -4.4440 -0.9543 0.1817 6.3069 4.0842 1.0492 2.9646 0.1989 0.2178 5.6783 1.4968
+#&gt; 299: 93.1373 -6.0426 -1.9764 -4.4445 -0.9540 0.1813 6.3134 4.0790 1.0505 2.9694 0.1991 0.2175 5.6800 1.4953
+#&gt; 300: 93.1340 -6.0412 -1.9764 -4.4450 -0.9538 0.1811 6.3192 4.0731 1.0516 2.9744 0.1993 0.2171 5.6782 1.4938
+#&gt; 301: 93.1330 -6.0402 -1.9766 -4.4455 -0.9535 0.1808 6.3278 4.0685 1.0531 2.9784 0.1996 0.2167 5.6819 1.4925
+#&gt; 302: 93.1308 -6.0402 -1.9768 -4.4457 -0.9534 0.1806 6.3417 4.0684 1.0549 2.9813 0.1998 0.2163 5.6824 1.4905
+#&gt; 303: 93.1294 -6.0373 -1.9769 -4.4459 -0.9532 0.1804 6.3489 4.0538 1.0565 2.9838 0.2000 0.2159 5.6841 1.4890
+#&gt; 304: 93.1304 -6.0345 -1.9771 -4.4461 -0.9530 0.1801 6.3543 4.0409 1.0581 2.9859 0.2002 0.2155 5.6869 1.4875
+#&gt; 305: 93.1287 -6.0319 -1.9772 -4.4463 -0.9528 0.1800 6.3496 4.0293 1.0597 2.9882 0.2003 0.2151 5.6902 1.4867
+#&gt; 306: 93.1261 -6.0301 -1.9775 -4.4474 -0.9527 0.1802 6.3479 4.0231 1.0614 2.9989 0.2003 0.2145 5.6963 1.4856
+#&gt; 307: 93.1232 -6.0284 -1.9777 -4.4479 -0.9526 0.1802 6.3507 4.0135 1.0629 3.0036 0.2004 0.2141 5.6987 1.4849
+#&gt; 308: 93.1192 -6.0264 -1.9779 -4.4483 -0.9524 0.1802 6.3641 4.0019 1.0644 3.0084 0.2004 0.2135 5.6991 1.4837
+#&gt; 309: 93.1137 -6.0253 -1.9783 -4.4487 -0.9522 0.1803 6.3579 3.9953 1.0658 3.0133 0.2004 0.2130 5.7035 1.4826
+#&gt; 310: 93.1100 -6.0223 -1.9787 -4.4489 -0.9520 0.1804 6.3423 3.9800 1.0665 3.0171 0.2005 0.2126 5.7061 1.4822
+#&gt; 311: 93.1044 -6.0215 -1.9791 -4.4496 -0.9517 0.1804 6.3365 3.9744 1.0675 3.0251 0.2005 0.2121 5.7092 1.4816
+#&gt; 312: 93.1006 -6.0206 -1.9795 -4.4501 -0.9516 0.1806 6.3317 3.9681 1.0688 3.0321 0.2006 0.2115 5.7128 1.4805
+#&gt; 313: 93.0951 -6.0194 -1.9797 -4.4499 -0.9516 0.1805 6.3297 3.9609 1.0702 3.0333 0.2008 0.2109 5.7137 1.4805
+#&gt; 314: 93.0922 -6.0192 -1.9800 -4.4497 -0.9515 0.1804 6.3486 3.9570 1.0715 3.0345 0.2009 0.2104 5.7144 1.4800
+#&gt; 315: 93.0883 -6.0186 -1.9804 -4.4495 -0.9515 0.1803 6.3712 3.9528 1.0726 3.0351 0.2011 0.2100 5.7156 1.4794
+#&gt; 316: 93.0808 -6.0182 -1.9808 -4.4492 -0.9514 0.1802 6.3979 3.9483 1.0738 3.0345 0.2013 0.2097 5.7164 1.4792
+#&gt; 317: 93.0758 -6.0174 -1.9813 -4.4487 -0.9513 0.1801 6.4377 3.9428 1.0747 3.0327 0.2015 0.2094 5.7175 1.4787
+#&gt; 318: 93.0713 -6.0166 -1.9816 -4.4484 -0.9513 0.1801 6.4856 3.9375 1.0757 3.0316 0.2017 0.2091 5.7197 1.4778
+#&gt; 319: 93.0659 -6.0176 -1.9819 -4.4482 -0.9511 0.1800 6.5263 3.9425 1.0768 3.0313 0.2018 0.2088 5.7218 1.4772
+#&gt; 320: 93.0607 -6.0165 -1.9822 -4.4484 -0.9510 0.1798 6.5554 3.9372 1.0777 3.0329 0.2019 0.2087 5.7236 1.4771
+#&gt; 321: 93.0551 -6.0145 -1.9825 -4.4487 -0.9509 0.1797 6.5844 3.9275 1.0787 3.0368 0.2021 0.2085 5.7256 1.4766
+#&gt; 322: 93.0531 -6.0130 -1.9827 -4.4491 -0.9507 0.1797 6.6073 3.9201 1.0797 3.0400 0.2021 0.2082 5.7250 1.4759
+#&gt; 323: 93.0477 -6.0123 -1.9828 -4.4493 -0.9506 0.1794 6.6255 3.9149 1.0804 3.0420 0.2021 0.2080 5.7249 1.4756
+#&gt; 324: 93.0425 -6.0107 -1.9829 -4.4498 -0.9504 0.1792 6.6282 3.9060 1.0813 3.0457 0.2022 0.2078 5.7250 1.4754
+#&gt; 325: 93.0389 -6.0090 -1.9830 -4.4504 -0.9503 0.1792 6.6252 3.8965 1.0819 3.0496 0.2022 0.2077 5.7246 1.4749
+#&gt; 326: 93.0411 -6.0093 -1.9832 -4.4509 -0.9503 0.1795 6.6358 3.8976 1.0827 3.0516 0.2022 0.2076 5.7248 1.4738
+#&gt; 327: 93.0418 -6.0095 -1.9834 -4.4514 -0.9503 0.1797 6.6415 3.8962 1.0834 3.0533 0.2022 0.2075 5.7237 1.4737
+#&gt; 328: 93.0434 -6.0093 -1.9835 -4.4520 -0.9503 0.1798 6.6621 3.8957 1.0841 3.0550 0.2022 0.2074 5.7247 1.4731
+#&gt; 329: 93.0446 -6.0109 -1.9836 -4.4522 -0.9503 0.1798 6.6763 3.9048 1.0847 3.0543 0.2022 0.2072 5.7259 1.4725
+#&gt; 330: 93.0451 -6.0133 -1.9838 -4.4518 -0.9503 0.1799 6.6859 3.9192 1.0852 3.0521 0.2022 0.2070 5.7252 1.4719
+#&gt; 331: 93.0456 -6.0136 -1.9838 -4.4516 -0.9503 0.1799 6.6773 3.9217 1.0858 3.0505 0.2022 0.2067 5.7250 1.4715
+#&gt; 332: 93.0463 -6.0133 -1.9839 -4.4515 -0.9504 0.1799 6.6560 3.9195 1.0863 3.0494 0.2022 0.2063 5.7255 1.4710
+#&gt; 333: 93.0496 -6.0122 -1.9839 -4.4513 -0.9505 0.1800 6.6484 3.9134 1.0869 3.0474 0.2022 0.2060 5.7253 1.4705
+#&gt; 334: 93.0520 -6.0105 -1.9838 -4.4513 -0.9505 0.1801 6.6314 3.9035 1.0877 3.0462 0.2022 0.2056 5.7259 1.4702
+#&gt; 335: 93.0550 -6.0088 -1.9836 -4.4510 -0.9507 0.1800 6.6194 3.8941 1.0887 3.0451 0.2022 0.2051 5.7263 1.4702
+#&gt; 336: 93.0554 -6.0081 -1.9834 -4.4509 -0.9508 0.1800 6.6100 3.8896 1.0896 3.0444 0.2022 0.2048 5.7266 1.4705
+#&gt; 337: 93.0582 -6.0067 -1.9832 -4.4507 -0.9509 0.1800 6.6089 3.8805 1.0904 3.0445 0.2021 0.2044 5.7260 1.4706
+#&gt; 338: 93.0631 -6.0073 -1.9831 -4.4507 -0.9511 0.1801 6.5993 3.8798 1.0908 3.0443 0.2021 0.2040 5.7250 1.4711
+#&gt; 339: 93.0689 -6.0071 -1.9831 -4.4508 -0.9513 0.1803 6.5976 3.8749 1.0911 3.0442 0.2021 0.2037 5.7240 1.4714
+#&gt; 340: 93.0694 -6.0085 -1.9831 -4.4507 -0.9516 0.1804 6.5915 3.8779 1.0914 3.0436 0.2022 0.2032 5.7227 1.4711
+#&gt; 341: 93.0709 -6.0097 -1.9830 -4.4508 -0.9518 0.1804 6.5862 3.8803 1.0915 3.0429 0.2023 0.2026 5.7213 1.4715
+#&gt; 342: 93.0741 -6.0104 -1.9829 -4.4507 -0.9521 0.1804 6.5894 3.8812 1.0918 3.0417 0.2024 0.2022 5.7204 1.4714
+#&gt; 343: 93.0781 -6.0122 -1.9829 -4.4505 -0.9523 0.1804 6.5907 3.8870 1.0921 3.0410 0.2024 0.2016 5.7202 1.4712
+#&gt; 344: 93.0818 -6.0134 -1.9829 -4.4503 -0.9525 0.1804 6.5908 3.8895 1.0926 3.0400 0.2025 0.2011 5.7182 1.4712
+#&gt; 345: 93.0850 -6.0148 -1.9829 -4.4500 -0.9528 0.1806 6.5984 3.8931 1.0926 3.0387 0.2026 0.2006 5.7169 1.4712
+#&gt; 346: 93.0849 -6.0155 -1.9831 -4.4502 -0.9529 0.1807 6.6079 3.8986 1.0931 3.0401 0.2028 0.2002 5.7172 1.4716
+#&gt; 347: 93.0859 -6.0161 -1.9832 -4.4503 -0.9530 0.1809 6.6307 3.9028 1.0941 3.0404 0.2029 0.1998 5.7170 1.4712
+#&gt; 348: 93.0885 -6.0173 -1.9833 -4.4503 -0.9532 0.1809 6.6470 3.9096 1.0951 3.0404 0.2030 0.1993 5.7174 1.4708
+#&gt; 349: 93.0894 -6.0189 -1.9835 -4.4503 -0.9534 0.1810 6.6443 3.9190 1.0955 3.0410 0.2031 0.1989 5.7175 1.4707
+#&gt; 350: 93.0924 -6.0196 -1.9836 -4.4502 -0.9535 0.1813 6.6543 3.9218 1.0957 3.0409 0.2032 0.1983 5.7182 1.4705
+#&gt; 351: 93.0938 -6.0203 -1.9838 -4.4503 -0.9536 0.1814 6.6630 3.9233 1.0963 3.0417 0.2032 0.1977 5.7189 1.4703
+#&gt; 352: 93.0946 -6.0210 -1.9838 -4.4505 -0.9537 0.1816 6.6698 3.9263 1.0968 3.0432 0.2033 0.1973 5.7196 1.4701
+#&gt; 353: 93.0969 -6.0214 -1.9839 -4.4505 -0.9538 0.1818 6.6837 3.9270 1.0973 3.0442 0.2034 0.1968 5.7199 1.4701
+#&gt; 354: 93.1014 -6.0199 -1.9839 -4.4504 -0.9539 0.1817 6.7040 3.9204 1.0978 3.0438 0.2034 0.1962 5.7191 1.4703
+#&gt; 355: 93.1035 -6.0197 -1.9838 -4.4502 -0.9539 0.1816 6.7119 3.9222 1.0983 3.0433 0.2034 0.1957 5.7194 1.4706
+#&gt; 356: 93.1055 -6.0198 -1.9839 -4.4496 -0.9539 0.1815 6.7302 3.9277 1.0989 3.0409 0.2035 0.1952 5.7206 1.4707
+#&gt; 357: 93.1080 -6.0188 -1.9837 -4.4490 -0.9540 0.1813 6.7558 3.9243 1.0997 3.0386 0.2035 0.1948 5.7217 1.4706
+#&gt; 358: 93.1111 -6.0182 -1.9835 -4.4484 -0.9541 0.1812 6.7733 3.9204 1.1005 3.0365 0.2035 0.1944 5.7209 1.4700
+#&gt; 359: 93.1148 -6.0175 -1.9834 -4.4481 -0.9542 0.1811 6.7997 3.9151 1.1012 3.0355 0.2035 0.1940 5.7191 1.4696
+#&gt; 360: 93.1157 -6.0176 -1.9832 -4.4478 -0.9543 0.1810 6.8133 3.9155 1.1017 3.0340 0.2035 0.1937 5.7158 1.4691
+#&gt; 361: 93.1169 -6.0185 -1.9830 -4.4476 -0.9544 0.1808 6.8098 3.9232 1.1022 3.0328 0.2035 0.1934 5.7143 1.4690
+#&gt; 362: 93.1173 -6.0205 -1.9829 -4.4472 -0.9545 0.1805 6.8125 3.9361 1.1024 3.0319 0.2035 0.1931 5.7137 1.4693
+#&gt; 363: 93.1162 -6.0230 -1.9828 -4.4467 -0.9545 0.1801 6.8240 3.9524 1.1025 3.0312 0.2035 0.1928 5.7125 1.4695
+#&gt; 364: 93.1173 -6.0240 -1.9826 -4.4464 -0.9546 0.1799 6.8341 3.9575 1.1027 3.0307 0.2035 0.1924 5.7092 1.4695
+#&gt; 365: 93.1199 -6.0259 -1.9824 -4.4462 -0.9547 0.1796 6.8476 3.9687 1.1028 3.0316 0.2036 0.1920 5.7073 1.4695
+#&gt; 366: 93.1220 -6.0277 -1.9821 -4.4461 -0.9548 0.1793 6.8542 3.9777 1.1032 3.0319 0.2037 0.1916 5.7060 1.4694
+#&gt; 367: 93.1230 -6.0287 -1.9819 -4.4460 -0.9548 0.1791 6.8633 3.9829 1.1038 3.0331 0.2038 0.1914 5.7056 1.4693
+#&gt; 368: 93.1255 -6.0276 -1.9816 -4.4459 -0.9549 0.1789 6.8734 3.9764 1.1038 3.0341 0.2038 0.1912 5.7050 1.4695
+#&gt; 369: 93.1258 -6.0263 -1.9814 -4.4461 -0.9549 0.1787 6.8756 3.9698 1.1039 3.0357 0.2039 0.1910 5.7031 1.4697
+#&gt; 370: 93.1288 -6.0252 -1.9811 -4.4463 -0.9548 0.1785 6.8892 3.9639 1.1039 3.0375 0.2040 0.1909 5.7029 1.4701
+#&gt; 371: 93.1317 -6.0245 -1.9810 -4.4467 -0.9548 0.1784 6.8974 3.9601 1.1037 3.0391 0.2040 0.1907 5.7037 1.4700
+#&gt; 372: 93.1346 -6.0233 -1.9811 -4.4465 -0.9548 0.1781 6.9042 3.9536 1.1035 3.0386 0.2040 0.1905 5.7038 1.4700
+#&gt; 373: 93.1340 -6.0234 -1.9810 -4.4461 -0.9547 0.1778 6.9034 3.9548 1.1034 3.0371 0.2039 0.1903 5.7040 1.4698
+#&gt; 374: 93.1324 -6.0230 -1.9811 -4.4456 -0.9547 0.1775 6.9080 3.9527 1.1034 3.0349 0.2038 0.1901 5.7055 1.4691
+#&gt; 375: 93.1309 -6.0226 -1.9812 -4.4451 -0.9546 0.1773 6.9093 3.9493 1.1034 3.0334 0.2037 0.1899 5.7063 1.4683
+#&gt; 376: 93.1298 -6.0215 -1.9811 -4.4447 -0.9546 0.1770 6.9039 3.9432 1.1035 3.0319 0.2036 0.1897 5.7064 1.4678
+#&gt; 377: 93.1296 -6.0209 -1.9811 -4.4443 -0.9546 0.1768 6.8932 3.9390 1.1036 3.0305 0.2035 0.1895 5.7056 1.4672
+#&gt; 378: 93.1292 -6.0200 -1.9810 -4.4438 -0.9545 0.1764 6.8850 3.9349 1.1037 3.0288 0.2034 0.1892 5.7068 1.4667
+#&gt; 379: 93.1284 -6.0196 -1.9808 -4.4432 -0.9544 0.1760 6.8766 3.9318 1.1038 3.0266 0.2033 0.1890 5.7072 1.4665
+#&gt; 380: 93.1304 -6.0182 -1.9806 -4.4425 -0.9543 0.1756 6.8737 3.9249 1.1040 3.0236 0.2033 0.1888 5.7074 1.4662
+#&gt; 381: 93.1315 -6.0169 -1.9804 -4.4417 -0.9542 0.1754 6.8707 3.9193 1.1040 3.0210 0.2032 0.1886 5.7066 1.4661
+#&gt; 382: 93.1331 -6.0160 -1.9801 -4.4409 -0.9542 0.1750 6.8645 3.9150 1.1040 3.0187 0.2032 0.1885 5.7063 1.4664
+#&gt; 383: 93.1334 -6.0153 -1.9800 -4.4403 -0.9542 0.1746 6.8599 3.9123 1.1037 3.0167 0.2032 0.1882 5.7074 1.4665
+#&gt; 384: 93.1328 -6.0140 -1.9801 -4.4397 -0.9540 0.1742 6.8600 3.9074 1.1034 3.0149 0.2031 0.1879 5.7072 1.4667
+#&gt; 385: 93.1306 -6.0137 -1.9801 -4.4392 -0.9539 0.1739 6.8449 3.9073 1.1031 3.0137 0.2030 0.1876 5.7084 1.4665
+#&gt; 386: 93.1281 -6.0134 -1.9801 -4.4388 -0.9539 0.1735 6.8356 3.9088 1.1028 3.0123 0.2029 0.1872 5.7087 1.4667
+#&gt; 387: 93.1267 -6.0141 -1.9801 -4.4384 -0.9537 0.1732 6.8364 3.9150 1.1025 3.0110 0.2028 0.1869 5.7101 1.4669
+#&gt; 388: 93.1252 -6.0142 -1.9801 -4.4380 -0.9536 0.1730 6.8374 3.9192 1.1022 3.0097 0.2028 0.1866 5.7110 1.4670
+#&gt; 389: 93.1223 -6.0140 -1.9801 -4.4375 -0.9535 0.1728 6.8334 3.9209 1.1019 3.0083 0.2028 0.1862 5.7105 1.4674
+#&gt; 390: 93.1221 -6.0144 -1.9800 -4.4371 -0.9534 0.1726 6.8248 3.9256 1.1014 3.0068 0.2028 0.1859 5.7098 1.4675
+#&gt; 391: 93.1210 -6.0149 -1.9799 -4.4365 -0.9533 0.1725 6.8339 3.9293 1.1011 3.0054 0.2028 0.1856 5.7109 1.4678
+#&gt; 392: 93.1193 -6.0145 -1.9799 -4.4360 -0.9532 0.1724 6.8360 3.9279 1.1009 3.0040 0.2028 0.1852 5.7107 1.4678
+#&gt; 393: 93.1200 -6.0149 -1.9799 -4.4357 -0.9532 0.1723 6.8461 3.9287 1.1005 3.0019 0.2028 0.1849 5.7100 1.4678
+#&gt; 394: 93.1202 -6.0138 -1.9799 -4.4355 -0.9532 0.1723 6.8520 3.9229 1.1006 3.0003 0.2028 0.1846 5.7085 1.4679
+#&gt; 395: 93.1203 -6.0134 -1.9800 -4.4354 -0.9532 0.1723 6.8583 3.9200 1.1005 2.9987 0.2027 0.1844 5.7072 1.4680
+#&gt; 396: 93.1195 -6.0131 -1.9800 -4.4353 -0.9532 0.1724 6.8593 3.9169 1.1004 2.9969 0.2027 0.1842 5.7062 1.4676
+#&gt; 397: 93.1195 -6.0130 -1.9801 -4.4352 -0.9532 0.1724 6.8591 3.9143 1.1004 2.9958 0.2027 0.1839 5.7046 1.4675
+#&gt; 398: 93.1200 -6.0128 -1.9801 -4.4352 -0.9532 0.1725 6.8522 3.9125 1.1004 2.9945 0.2028 0.1836 5.7032 1.4675
+#&gt; 399: 93.1200 -6.0135 -1.9803 -4.4351 -0.9531 0.1726 6.8471 3.9166 1.1003 2.9933 0.2028 0.1833 5.7032 1.4673
+#&gt; 400: 93.1204 -6.0139 -1.9803 -4.4351 -0.9531 0.1727 6.8438 3.9191 1.1003 2.9918 0.2027 0.1832 5.7026 1.4671
+#&gt; 401: 93.1198 -6.0139 -1.9804 -4.4351 -0.9530 0.1728 6.8373 3.9186 1.1004 2.9901 0.2027 0.1831 5.7015 1.4670
+#&gt; 402: 93.1199 -6.0141 -1.9804 -4.4351 -0.9530 0.1729 6.8357 3.9194 1.1005 2.9882 0.2027 0.1830 5.7003 1.4671
+#&gt; 403: 93.1196 -6.0155 -1.9804 -4.4350 -0.9530 0.1730 6.8285 3.9255 1.1007 2.9863 0.2026 0.1829 5.7001 1.4671
+#&gt; 404: 93.1183 -6.0164 -1.9805 -4.4350 -0.9531 0.1732 6.8204 3.9308 1.1009 2.9843 0.2026 0.1829 5.7008 1.4670
+#&gt; 405: 93.1178 -6.0161 -1.9805 -4.4350 -0.9532 0.1733 6.8205 3.9286 1.1012 2.9823 0.2025 0.1829 5.7013 1.4669
+#&gt; 406: 93.1176 -6.0171 -1.9806 -4.4348 -0.9533 0.1735 6.8253 3.9319 1.1013 2.9801 0.2025 0.1828 5.7026 1.4666
+#&gt; 407: 93.1168 -6.0185 -1.9807 -4.4348 -0.9533 0.1736 6.8290 3.9373 1.1015 2.9788 0.2024 0.1830 5.7033 1.4664
+#&gt; 408: 93.1165 -6.0198 -1.9808 -4.4349 -0.9534 0.1738 6.8217 3.9428 1.1017 2.9773 0.2023 0.1830 5.7047 1.4663
+#&gt; 409: 93.1165 -6.0210 -1.9809 -4.4350 -0.9534 0.1741 6.8208 3.9505 1.1019 2.9761 0.2021 0.1830 5.7055 1.4661
+#&gt; 410: 93.1169 -6.0230 -1.9810 -4.4351 -0.9535 0.1745 6.8239 3.9617 1.1020 2.9751 0.2020 0.1829 5.7052 1.4658
+#&gt; 411: 93.1166 -6.0237 -1.9811 -4.4353 -0.9536 0.1748 6.8234 3.9664 1.1020 2.9741 0.2019 0.1829 5.7043 1.4657
+#&gt; 412: 93.1164 -6.0235 -1.9812 -4.4355 -0.9536 0.1751 6.8205 3.9643 1.1020 2.9735 0.2017 0.1827 5.7053 1.4654
+#&gt; 413: 93.1182 -6.0232 -1.9814 -4.4356 -0.9537 0.1755 6.8133 3.9615 1.1020 2.9726 0.2016 0.1825 5.7070 1.4650
+#&gt; 414: 93.1190 -6.0226 -1.9815 -4.4360 -0.9537 0.1760 6.8113 3.9578 1.1021 2.9726 0.2015 0.1825 5.7081 1.4648
+#&gt; 415: 93.1183 -6.0226 -1.9817 -4.4364 -0.9538 0.1765 6.8081 3.9557 1.1021 2.9725 0.2014 0.1824 5.7085 1.4646
+#&gt; 416: 93.1185 -6.0238 -1.9818 -4.4369 -0.9538 0.1768 6.8134 3.9617 1.1020 2.9734 0.2013 0.1822 5.7103 1.4645
+#&gt; 417: 93.1190 -6.0245 -1.9819 -4.4373 -0.9540 0.1770 6.8164 3.9664 1.1022 2.9743 0.2012 0.1819 5.7102 1.4650
+#&gt; 418: 93.1219 -6.0256 -1.9818 -4.4376 -0.9542 0.1773 6.8206 3.9710 1.1026 2.9745 0.2011 0.1816 5.7110 1.4655
+#&gt; 419: 93.1255 -6.0261 -1.9817 -4.4381 -0.9543 0.1776 6.8183 3.9714 1.1030 2.9759 0.2010 0.1814 5.7134 1.4659
+#&gt; 420: 93.1294 -6.0262 -1.9816 -4.4385 -0.9546 0.1779 6.8113 3.9704 1.1033 2.9768 0.2009 0.1810 5.7156 1.4666
+#&gt; 421: 93.1319 -6.0259 -1.9815 -4.4392 -0.9547 0.1781 6.7989 3.9685 1.1036 2.9786 0.2008 0.1808 5.7171 1.4676
+#&gt; 422: 93.1338 -6.0263 -1.9814 -4.4398 -0.9548 0.1783 6.7922 3.9681 1.1038 2.9806 0.2006 0.1808 5.7179 1.4681
+#&gt; 423: 93.1353 -6.0266 -1.9813 -4.4406 -0.9550 0.1786 6.7868 3.9674 1.1040 2.9837 0.2006 0.1808 5.7181 1.4687
+#&gt; 424: 93.1374 -6.0270 -1.9811 -4.4414 -0.9550 0.1787 6.7758 3.9674 1.1043 2.9866 0.2004 0.1807 5.7198 1.4693
+#&gt; 425: 93.1383 -6.0270 -1.9811 -4.4420 -0.9551 0.1787 6.7547 3.9674 1.1042 2.9887 0.2003 0.1806 5.7211 1.4702
+#&gt; 426: 93.1400 -6.0268 -1.9811 -4.4427 -0.9551 0.1789 6.7376 3.9654 1.1043 2.9917 0.2002 0.1805 5.7241 1.4706
+#&gt; 427: 93.1391 -6.0268 -1.9811 -4.4433 -0.9552 0.1790 6.7196 3.9634 1.1045 2.9951 0.2001 0.1805 5.7271 1.4710
+#&gt; 428: 93.1404 -6.0268 -1.9810 -4.4442 -0.9552 0.1792 6.7104 3.9628 1.1044 2.9999 0.2000 0.1803 5.7282 1.4712
+#&gt; 429: 93.1431 -6.0265 -1.9810 -4.4450 -0.9553 0.1793 6.7029 3.9612 1.1045 3.0043 0.1999 0.1803 5.7293 1.4716
+#&gt; 430: 93.1464 -6.0263 -1.9809 -4.4457 -0.9554 0.1795 6.6962 3.9606 1.1046 3.0074 0.1999 0.1802 5.7291 1.4724
+#&gt; 431: 93.1485 -6.0267 -1.9809 -4.4460 -0.9555 0.1797 6.6865 3.9623 1.1046 3.0082 0.1998 0.1802 5.7287 1.4726
+#&gt; 432: 93.1509 -6.0277 -1.9808 -4.4462 -0.9556 0.1798 6.6843 3.9658 1.1047 3.0086 0.1998 0.1801 5.7280 1.4727
+#&gt; 433: 93.1528 -6.0289 -1.9806 -4.4464 -0.9557 0.1798 6.6840 3.9714 1.1049 3.0087 0.1998 0.1801 5.7282 1.4729
+#&gt; 434: 93.1555 -6.0286 -1.9804 -4.4467 -0.9557 0.1798 6.6870 3.9693 1.1052 3.0094 0.1997 0.1800 5.7277 1.4729
+#&gt; 435: 93.1574 -6.0290 -1.9803 -4.4467 -0.9558 0.1798 6.6893 3.9712 1.1055 3.0095 0.1996 0.1800 5.7278 1.4727
+#&gt; 436: 93.1594 -6.0299 -1.9802 -4.4468 -0.9558 0.1798 6.6934 3.9749 1.1059 3.0103 0.1996 0.1801 5.7271 1.4727
+#&gt; 437: 93.1600 -6.0311 -1.9800 -4.4469 -0.9558 0.1797 6.7010 3.9812 1.1065 3.0110 0.1996 0.1801 5.7275 1.4727
+#&gt; 438: 93.1617 -6.0318 -1.9799 -4.4471 -0.9559 0.1796 6.7120 3.9865 1.1069 3.0121 0.1995 0.1801 5.7271 1.4727
+#&gt; 439: 93.1634 -6.0329 -1.9798 -4.4472 -0.9559 0.1795 6.7279 3.9930 1.1075 3.0127 0.1995 0.1802 5.7268 1.4727
+#&gt; 440: 93.1644 -6.0332 -1.9797 -4.4473 -0.9559 0.1794 6.7338 3.9962 1.1080 3.0136 0.1994 0.1803 5.7270 1.4726
+#&gt; 441: 93.1654 -6.0335 -1.9795 -4.4477 -0.9558 0.1794 6.7435 3.9988 1.1085 3.0155 0.1994 0.1805 5.7274 1.4728
+#&gt; 442: 93.1670 -6.0340 -1.9792 -4.4480 -0.9558 0.1794 6.7493 4.0028 1.1091 3.0173 0.1993 0.1808 5.7282 1.4729
+#&gt; 443: 93.1685 -6.0346 -1.9790 -4.4485 -0.9558 0.1793 6.7577 4.0073 1.1092 3.0202 0.1992 0.1811 5.7267 1.4732
+#&gt; 444: 93.1671 -6.0346 -1.9789 -4.4491 -0.9558 0.1792 6.7559 4.0069 1.1093 3.0238 0.1992 0.1813 5.7258 1.4733
+#&gt; 445: 93.1655 -6.0355 -1.9789 -4.4497 -0.9557 0.1790 6.7552 4.0127 1.1094 3.0276 0.1992 0.1814 5.7262 1.4733
+#&gt; 446: 93.1641 -6.0361 -1.9787 -4.4501 -0.9557 0.1789 6.7579 4.0169 1.1096 3.0306 0.1991 0.1816 5.7262 1.4732
+#&gt; 447: 93.1628 -6.0363 -1.9786 -4.4503 -0.9556 0.1787 6.7680 4.0196 1.1099 3.0318 0.1991 0.1818 5.7258 1.4729
+#&gt; 448: 93.1629 -6.0371 -1.9787 -4.4509 -0.9556 0.1786 6.7705 4.0248 1.1100 3.0358 0.1990 0.1820 5.7267 1.4725
+#&gt; 449: 93.1626 -6.0381 -1.9785 -4.4510 -0.9556 0.1784 6.7800 4.0298 1.1101 3.0368 0.1989 0.1822 5.7266 1.4722
+#&gt; 450: 93.1614 -6.0386 -1.9782 -4.4514 -0.9556 0.1782 6.7796 4.0316 1.1103 3.0392 0.1989 0.1824 5.7260 1.4720
+#&gt; 451: 93.1603 -6.0397 -1.9779 -4.4518 -0.9556 0.1780 6.7799 4.0381 1.1107 3.0416 0.1988 0.1827 5.7264 1.4720
+#&gt; 452: 93.1610 -6.0406 -1.9775 -4.4522 -0.9556 0.1777 6.7813 4.0424 1.1111 3.0443 0.1988 0.1828 5.7268 1.4719
+#&gt; 453: 93.1618 -6.0414 -1.9771 -4.4523 -0.9556 0.1774 6.7814 4.0490 1.1115 3.0456 0.1987 0.1830 5.7262 1.4721
+#&gt; 454: 93.1625 -6.0415 -1.9767 -4.4525 -0.9555 0.1771 6.7799 4.0499 1.1118 3.0473 0.1986 0.1831 5.7260 1.4723
+#&gt; 455: 93.1636 -6.0412 -1.9765 -4.4528 -0.9555 0.1769 6.7778 4.0489 1.1123 3.0496 0.1985 0.1832 5.7268 1.4722
+#&gt; 456: 93.1653 -6.0401 -1.9762 -4.4532 -0.9554 0.1768 6.7703 4.0441 1.1127 3.0517 0.1983 0.1834 5.7282 1.4725
+#&gt; 457: 93.1672 -6.0396 -1.9760 -4.4535 -0.9554 0.1766 6.7683 4.0427 1.1129 3.0539 0.1982 0.1835 5.7281 1.4727
+#&gt; 458: 93.1692 -6.0398 -1.9757 -4.4539 -0.9554 0.1765 6.7627 4.0450 1.1132 3.0570 0.1981 0.1835 5.7294 1.4729
+#&gt; 459: 93.1708 -6.0402 -1.9756 -4.4542 -0.9554 0.1763 6.7615 4.0483 1.1133 3.0596 0.1980 0.1836 5.7320 1.4728
+#&gt; 460: 93.1710 -6.0401 -1.9755 -4.4544 -0.9553 0.1762 6.7629 4.0487 1.1135 3.0615 0.1979 0.1835 5.7323 1.4730
+#&gt; 461: 93.1708 -6.0403 -1.9755 -4.4546 -0.9552 0.1762 6.7639 4.0492 1.1136 3.0631 0.1978 0.1834 5.7321 1.4729
+#&gt; 462: 93.1707 -6.0405 -1.9755 -4.4548 -0.9552 0.1760 6.7657 4.0506 1.1136 3.0647 0.1977 0.1833 5.7323 1.4727
+#&gt; 463: 93.1690 -6.0403 -1.9755 -4.4548 -0.9551 0.1759 6.7607 4.0494 1.1136 3.0651 0.1976 0.1832 5.7332 1.4726
+#&gt; 464: 93.1673 -6.0400 -1.9755 -4.4548 -0.9551 0.1758 6.7588 4.0480 1.1138 3.0652 0.1975 0.1832 5.7344 1.4724
+#&gt; 465: 93.1657 -6.0399 -1.9755 -4.4548 -0.9550 0.1756 6.7601 4.0474 1.1138 3.0652 0.1974 0.1831 5.7350 1.4724
+#&gt; 466: 93.1656 -6.0406 -1.9754 -4.4548 -0.9549 0.1755 6.7589 4.0514 1.1139 3.0658 0.1973 0.1831 5.7355 1.4723
+#&gt; 467: 93.1657 -6.0408 -1.9753 -4.4548 -0.9549 0.1754 6.7558 4.0525 1.1139 3.0664 0.1972 0.1831 5.7358 1.4725
+#&gt; 468: 93.1664 -6.0411 -1.9752 -4.4551 -0.9548 0.1753 6.7546 4.0551 1.1140 3.0679 0.1971 0.1832 5.7358 1.4723
+#&gt; 469: 93.1667 -6.0412 -1.9751 -4.4552 -0.9547 0.1752 6.7547 4.0554 1.1141 3.0676 0.1970 0.1833 5.7354 1.4721
+#&gt; 470: 93.1664 -6.0413 -1.9750 -4.4552 -0.9546 0.1751 6.7579 4.0564 1.1143 3.0676 0.1969 0.1833 5.7352 1.4718
+#&gt; 471: 93.1656 -6.0411 -1.9750 -4.4553 -0.9545 0.1750 6.7611 4.0555 1.1142 3.0681 0.1968 0.1834 5.7354 1.4715
+#&gt; 472: 93.1644 -6.0408 -1.9751 -4.4554 -0.9544 0.1749 6.7577 4.0542 1.1142 3.0686 0.1968 0.1834 5.7362 1.4712
+#&gt; 473: 93.1632 -6.0405 -1.9751 -4.4554 -0.9543 0.1749 6.7527 4.0526 1.1141 3.0686 0.1967 0.1835 5.7363 1.4708
+#&gt; 474: 93.1619 -6.0405 -1.9752 -4.4555 -0.9542 0.1748 6.7479 4.0521 1.1140 3.0689 0.1967 0.1835 5.7366 1.4705
+#&gt; 475: 93.1609 -6.0413 -1.9753 -4.4557 -0.9542 0.1748 6.7469 4.0558 1.1139 3.0698 0.1967 0.1835 5.7379 1.4702
+#&gt; 476: 93.1607 -6.0411 -1.9754 -4.4556 -0.9542 0.1747 6.7414 4.0549 1.1139 3.0697 0.1966 0.1835 5.7388 1.4698
+#&gt; 477: 93.1597 -6.0413 -1.9754 -4.4560 -0.9542 0.1747 6.7321 4.0560 1.1137 3.0733 0.1966 0.1836 5.7392 1.4697
+#&gt; 478: 93.1591 -6.0421 -1.9754 -4.4563 -0.9542 0.1745 6.7239 4.0608 1.1137 3.0765 0.1965 0.1836 5.7399 1.4697
+#&gt; 479: 93.1589 -6.0438 -1.9754 -4.4564 -0.9542 0.1744 6.7150 4.0719 1.1136 3.0785 0.1964 0.1838 5.7421 1.4695
+#&gt; 480: 93.1594 -6.0459 -1.9754 -4.4566 -0.9542 0.1742 6.7102 4.0895 1.1135 3.0807 0.1964 0.1839 5.7446 1.4695
+#&gt; 481: 93.1604 -6.0472 -1.9754 -4.4570 -0.9542 0.1741 6.7104 4.1016 1.1135 3.0848 0.1964 0.1841 5.7456 1.4693
+#&gt; 482: 93.1584 -6.0486 -1.9754 -4.4573 -0.9542 0.1739 6.7061 4.1152 1.1136 3.0877 0.1964 0.1842 5.7464 1.4690
+#&gt; 483: 93.1561 -6.0501 -1.9754 -4.4576 -0.9541 0.1737 6.7067 4.1286 1.1135 3.0903 0.1963 0.1843 5.7475 1.4688
+#&gt; 484: 93.1545 -6.0507 -1.9754 -4.4578 -0.9541 0.1737 6.7113 4.1362 1.1134 3.0918 0.1963 0.1845 5.7488 1.4687
+#&gt; 485: 93.1524 -6.0507 -1.9754 -4.4583 -0.9540 0.1736 6.7094 4.1381 1.1134 3.0970 0.1964 0.1847 5.7496 1.4685
+#&gt; 486: 93.1510 -6.0508 -1.9754 -4.4586 -0.9540 0.1735 6.7118 4.1405 1.1134 3.0996 0.1964 0.1847 5.7502 1.4682
+#&gt; 487: 93.1495 -6.0507 -1.9755 -4.4591 -0.9539 0.1734 6.7128 4.1406 1.1134 3.1037 0.1965 0.1848 5.7510 1.4680
+#&gt; 488: 93.1494 -6.0502 -1.9756 -4.4597 -0.9538 0.1734 6.7171 4.1384 1.1135 3.1081 0.1965 0.1848 5.7508 1.4677
+#&gt; 489: 93.1497 -6.0497 -1.9756 -4.4604 -0.9538 0.1734 6.7188 4.1358 1.1135 3.1133 0.1966 0.1847 5.7499 1.4675
+#&gt; 490: 93.1507 -6.0486 -1.9757 -4.4607 -0.9538 0.1735 6.7206 4.1319 1.1136 3.1157 0.1967 0.1847 5.7498 1.4672
+#&gt; 491: 93.1507 -6.0476 -1.9757 -4.4612 -0.9537 0.1735 6.7141 4.1270 1.1136 3.1187 0.1968 0.1846 5.7503 1.4672
+#&gt; 492: 93.1507 -6.0470 -1.9758 -4.4618 -0.9536 0.1735 6.7140 4.1238 1.1139 3.1218 0.1969 0.1846 5.7511 1.4669
+#&gt; 493: 93.1513 -6.0468 -1.9758 -4.4623 -0.9535 0.1736 6.7214 4.1232 1.1141 3.1246 0.1970 0.1845 5.7514 1.4668
+#&gt; 494: 93.1511 -6.0467 -1.9759 -4.4629 -0.9534 0.1737 6.7332 4.1232 1.1144 3.1278 0.1971 0.1845 5.7512 1.4664
+#&gt; 495: 93.1511 -6.0464 -1.9761 -4.4635 -0.9533 0.1738 6.7377 4.1218 1.1145 3.1309 0.1972 0.1845 5.7515 1.4661
+#&gt; 496: 93.1498 -6.0465 -1.9762 -4.4639 -0.9532 0.1739 6.7412 4.1241 1.1147 3.1325 0.1974 0.1845 5.7514 1.4657
+#&gt; 497: 93.1482 -6.0467 -1.9764 -4.4644 -0.9532 0.1741 6.7506 4.1259 1.1149 3.1346 0.1975 0.1846 5.7513 1.4652
+#&gt; 498: 93.1479 -6.0465 -1.9765 -4.4647 -0.9531 0.1743 6.7588 4.1263 1.1150 3.1357 0.1977 0.1846 5.7511 1.4648
+#&gt; 499: 93.1462 -6.0455 -1.9766 -4.4651 -0.9530 0.1745 6.7659 4.1219 1.1152 3.1374 0.1978 0.1847 5.7515 1.4645
+#&gt; 500: 93.1455 -6.0439 -1.9768 -4.4657 -0.9529 0.1747 6.7747 4.1151 1.1154 3.1404 0.1980 0.1848 5.7516 1.4641</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#&gt; |.....................| log_k2 | g_qlogis |sigma_parent | sigma_A1 |
+#&gt; |.....................| o1 | o2 | o3 | o4 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o5 | o6 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 488.12318 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 488.12318 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 488.12318</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | G| Gill Diff. | 52.24 | 2.364 | -0.1419 | 0.08101 |
+#&gt; |.....................| -0.5200 | 0.08781 | -28.20 | -16.37 |
+#&gt; |.....................| 14.83 | 13.24 | -12.01 | -2.482 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 5.466 | -10.09 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 2642.5634 | 0.2192 | -1.035 | -0.9096 | -0.9332 |
+#&gt; |.....................| -0.9743 | -0.8898 | -0.4296 | -0.6255 |
+#&gt; |.....................| -1.099 | -1.073 | -0.6891 | -0.8357 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.9567 | -0.7180 |...........|...........|</span>
+#&gt; | U| 2642.5634 | 20.48 | -5.348 | -0.9517 | -1.954 |
+#&gt; |.....................| -4.421 | 0.1928 | 2.469 | 1.224 |
+#&gt; |.....................| 0.5606 | 0.7036 | 1.386 | 1.005 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7896 | 1.336 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 2642.5634</span> | 20.48 | 0.004759 | 0.2785 | 0.1417 |
+#&gt; |.....................| 0.01202 | 0.5480 | 2.469 | 1.224 |
+#&gt; |.....................| 0.5606 | 0.7036 | 1.386 | 1.005 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7896 | 1.336 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 546.98314 | 0.9219 | -1.004 | -0.9115 | -0.9321 |
+#&gt; |.....................| -0.9813 | -0.8886 | -0.8089 | -0.8458 |
+#&gt; |.....................| -0.9000 | -0.8944 | -0.8506 | -0.8691 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8831 | -0.8538 |...........|...........|</span>
+#&gt; | U| 546.98314 | 86.13 | -5.316 | -0.9535 | -1.953 |
+#&gt; |.....................| -4.428 | 0.1930 | 2.082 | 1.104 |
+#&gt; |.....................| 0.7044 | 0.8599 | 1.196 | 0.9723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8529 | 1.178 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 546.98314</span> | 86.13 | 0.004913 | 0.2782 | 0.1419 |
+#&gt; |.....................| 0.01193 | 0.5481 | 2.082 | 1.104 |
+#&gt; |.....................| 0.7044 | 0.8599 | 1.196 | 0.9723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8529 | 1.178 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 506.37737 | 0.9922 | -1.000 | -0.9117 | -0.9320 |
+#&gt; |.....................| -0.9820 | -0.8885 | -0.8469 | -0.8679 |
+#&gt; |.....................| -0.8800 | -0.8766 | -0.8668 | -0.8724 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8758 | -0.8674 |...........|...........|</span>
+#&gt; | U| 506.37737 | 92.70 | -5.313 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.043 | 1.092 |
+#&gt; |.....................| 0.7187 | 0.8755 | 1.177 | 0.9691 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8592 | 1.163 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.37737</span> | 92.70 | 0.004928 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01193 | 0.5481 | 2.043 | 1.092 |
+#&gt; |.....................| 0.7187 | 0.8755 | 1.177 | 0.9691 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8592 | 1.163 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 506.42840 | 0.9992 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8507 | -0.8701 |
+#&gt; |.....................| -0.8780 | -0.8748 | -0.8684 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8751 | -0.8687 |...........|...........|</span>
+#&gt; | U| 506.4284 | 93.35 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.091 |
+#&gt; |.....................| 0.7202 | 0.8771 | 1.175 | 0.9688 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8598 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.4284</span> | 93.35 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.091 |
+#&gt; |.....................| 0.7202 | 0.8771 | 1.175 | 0.9688 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8598 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 506.47762 | 0.9999 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.47762 | 93.42 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.47762</span> | 93.42 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 506.48298 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48298 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48298</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 506.48363 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48363 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48363</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48371</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48371</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48371</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48371</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48371</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48371</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48371</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48371</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#&gt; |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8750 | -0.8689 |...........|...........|</span>
+#&gt; | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#&gt; |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 506.48371</span> | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#&gt; |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#&gt; |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8599 | 1.161 |...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
<span class='co'># Identical two-component error for all variables is only possible with</span>
<span class='co'># est = 'focei' in nlmixr</span>
<span class='va'>f_nlmixr_fomc_sfo_focei_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
-#&gt; <span class='message'>cmt(A1);</span>
-#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
-#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
-#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
-#&gt; <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span>
-#&gt; <span class='message'>rx_expr_14~exp(-(rx_expr_8));</span>
-#&gt; <span class='message'>rx_expr_16~t*rx_expr_14;</span>
-#&gt; <span class='message'>rx_expr_17~1+rx_expr_16;</span>
-#&gt; <span class='message'>rx_expr_19~rx_expr_7-(rx_expr_8);</span>
-#&gt; <span class='message'>rx_expr_21~exp(rx_expr_19);</span>
-#&gt; <span class='message'>d/dt(parent)=-rx_expr_21*parent/(rx_expr_17);</span>
-#&gt; <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span>
-#&gt; <span class='message'>rx_expr_11~exp(rx_expr_9);</span>
-#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_21*parent*f_parent_to_A1/(rx_expr_17);</span>
-#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
-#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
-#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
-#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_15~rx_expr_5*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_lambda_~rx_expr_15+rx_expr_3;</span>
-#&gt; <span class='message'>rx_hi_~rx_expr_15+rx_expr_3;</span>
-#&gt; <span class='message'>rx_low_~0;</span>
-#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_10~parent*(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_18~rx_expr_10*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_18)*(rx_expr_0)+(rx_expr_4+rx_expr_18)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_expr_12~Rx_pow_di(THETA[7],2);</span>
-#&gt; <span class='message'>rx_expr_13~Rx_pow_di(THETA[6],2);</span>
-#&gt; <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_18)*(rx_expr_0)+(rx_expr_4+rx_expr_18)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_12+rx_expr_13)*(rx_expr_0)+(rx_expr_12*Rx_pow_di(((rx_expr_4+rx_expr_18)*(rx_expr_1)),2)+rx_expr_13)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>parent_0=THETA[1];</span>
-#&gt; <span class='message'>log_k_A1=THETA[2];</span>
-#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
-#&gt; <span class='message'>log_alpha=THETA[4];</span>
-#&gt; <span class='message'>log_beta=THETA[5];</span>
-#&gt; <span class='message'>sigma_low=THETA[6];</span>
-#&gt; <span class='message'>rsd_high=THETA[7];</span>
-#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
-#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
-#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
-#&gt; <span class='message'>eta.log_alpha=ETA[4];</span>
-#&gt; <span class='message'>eta.log_beta=ETA[5];</span>
-#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
-#&gt; <span class='message'>k_A1=rx_expr_11;</span>
-#&gt; <span class='message'>alpha=exp(rx_expr_7);</span>
-#&gt; <span class='message'>beta=exp(rx_expr_8);</span>
-#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
-#&gt; <span class='message'>tad=tad();</span>
-#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 8.455 0.377 8.841</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
-#&gt; <span class='message'>cmt(A1);</span>
-#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
-#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
-#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
-#&gt; <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span>
-#&gt; <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span>
-#&gt; <span class='message'>rx_expr_12~exp(rx_expr_7);</span>
-#&gt; <span class='message'>rx_expr_13~exp(rx_expr_9);</span>
-#&gt; <span class='message'>rx_expr_15~t*rx_expr_12;</span>
-#&gt; <span class='message'>rx_expr_16~t*rx_expr_13;</span>
-#&gt; <span class='message'>rx_expr_19~exp(-(rx_expr_8));</span>
-#&gt; <span class='message'>rx_expr_21~1+rx_expr_19;</span>
-#&gt; <span class='message'>rx_expr_26~1/(rx_expr_21);</span>
-#&gt; <span class='message'>rx_expr_28~(rx_expr_26);</span>
-#&gt; <span class='message'>rx_expr_29~1-rx_expr_28;</span>
-#&gt; <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));</span>
-#&gt; <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span>
-#&gt; <span class='message'>rx_expr_14~exp(rx_expr_10);</span>
-#&gt; <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));</span>
-#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
-#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
-#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
-#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_20~rx_expr_5*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_lambda_~rx_expr_20+rx_expr_3;</span>
-#&gt; <span class='message'>rx_hi_~rx_expr_20+rx_expr_3;</span>
-#&gt; <span class='message'>rx_low_~0;</span>
-#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_11~parent*(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_24~rx_expr_11*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_expr_17~Rx_pow_di(THETA[8],2);</span>
-#&gt; <span class='message'>rx_expr_18~Rx_pow_di(THETA[7],2);</span>
-#&gt; <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_17+rx_expr_18)*(rx_expr_0)+(rx_expr_17*Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_1)),2)+rx_expr_18)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>parent_0=THETA[1];</span>
-#&gt; <span class='message'>log_k_A1=THETA[2];</span>
-#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
-#&gt; <span class='message'>log_k1=THETA[4];</span>
-#&gt; <span class='message'>log_k2=THETA[5];</span>
-#&gt; <span class='message'>g_qlogis=THETA[6];</span>
-#&gt; <span class='message'>sigma_low=THETA[7];</span>
-#&gt; <span class='message'>rsd_high=THETA[8];</span>
-#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
-#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
-#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
-#&gt; <span class='message'>eta.log_k1=ETA[4];</span>
-#&gt; <span class='message'>eta.log_k2=ETA[5];</span>
-#&gt; <span class='message'>eta.g_qlogis=ETA[6];</span>
-#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
-#&gt; <span class='message'>k_A1=rx_expr_14;</span>
-#&gt; <span class='message'>k1=rx_expr_12;</span>
-#&gt; <span class='message'>k2=rx_expr_13;</span>
-#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
-#&gt; <span class='message'>g=1/(rx_expr_21);</span>
-#&gt; <span class='message'>tad=tad();</span>
-#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 17.73 0.679 18.41</span></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#&gt; |.....................| log_beta | sigma_low | rsd_high | o1 |
+#&gt; |.....................| o2 | o3 | o4 | o5 |
+#&gt; |<span style='font-weight: bold;'> 1</span>| 504.82714 | 1.000 | -1.000 | -0.9114 | -0.8944 |
+#&gt; |.....................| -0.8457 | -0.8687 | -0.8916 | -0.8768 |
+#&gt; |.....................| -0.8745 | -0.8676 | -0.8705 | -0.8704 |
+#&gt; | U| 504.82714 | 93.12 | -5.303 | -0.9442 | -0.1065 |
+#&gt; |.....................| 2.291 | 1.160 | 0.03005 | 0.7578 |
+#&gt; |.....................| 0.8738 | 1.213 | 1.069 | 1.072 |
+#&gt; | X|<span style='font-weight: bold;'> 504.82714</span> | 93.12 | 0.004975 | 0.2801 | 0.8989 |
+#&gt; |.....................| 9.884 | 1.160 | 0.03005 | 0.7578 |
+#&gt; |.....................| 0.8738 | 1.213 | 1.069 | 1.072 |
+#&gt; | G| Gill Diff. | 73.79 | 2.406 | 0.05615 | 0.2285 |
+#&gt; |.....................| 0.009051 | -72.42 | -25.46 | 1.201 |
+#&gt; |.....................| 11.89 | -10.88 | -9.982 | -10.81 |
+#&gt; |<span style='font-weight: bold;'> 2</span>| 4107.3121 | 0.3213 | -1.022 | -0.9119 | -0.8965 |
+#&gt; |.....................| -0.8458 | -0.2026 | -0.6574 | -0.8879 |
+#&gt; |.....................| -0.9839 | -0.7675 | -0.7787 | -0.7710 |
+#&gt; | U| 4107.3121 | 29.92 | -5.326 | -0.9447 | -0.1086 |
+#&gt; |.....................| 2.291 | 1.546 | 0.03357 | 0.7494 |
+#&gt; |.....................| 0.7782 | 1.335 | 1.167 | 1.179 |
+#&gt; | X|<span style='font-weight: bold;'> 4107.3121</span> | 29.92 | 0.004866 | 0.2800 | 0.8971 |
+#&gt; |.....................| 9.883 | 1.546 | 0.03357 | 0.7494 |
+#&gt; |.....................| 0.7782 | 1.335 | 1.167 | 1.179 |
+#&gt; |<span style='font-weight: bold;'> 3</span>| 528.17103 | 0.9321 | -1.002 | -0.9115 | -0.8946 |
+#&gt; |.....................| -0.8457 | -0.8021 | -0.8682 | -0.8779 |
+#&gt; |.....................| -0.8854 | -0.8576 | -0.8613 | -0.8605 |
+#&gt; | U| 528.17103 | 86.80 | -5.306 | -0.9442 | -0.1067 |
+#&gt; |.....................| 2.291 | 1.198 | 0.03041 | 0.7570 |
+#&gt; |.....................| 0.8642 | 1.226 | 1.079 | 1.083 |
+#&gt; | X|<span style='font-weight: bold;'> 528.17103</span> | 86.80 | 0.004964 | 0.2800 | 0.8988 |
+#&gt; |.....................| 9.884 | 1.198 | 0.03041 | 0.7570 |
+#&gt; |.....................| 0.8642 | 1.226 | 1.079 | 1.083 |
+#&gt; |<span style='font-weight: bold;'> 4</span>| 503.95550 | 0.9892 | -1.000 | -0.9114 | -0.8944 |
+#&gt; |.....................| -0.8457 | -0.8581 | -0.8879 | -0.8770 |
+#&gt; |.....................| -0.8762 | -0.8660 | -0.8691 | -0.8689 |
+#&gt; | U| 503.9555 | 92.11 | -5.304 | -0.9442 | -0.1066 |
+#&gt; |.....................| 2.291 | 1.166 | 0.03011 | 0.7577 |
+#&gt; |.....................| 0.8723 | 1.215 | 1.070 | 1.074 |
+#&gt; | X|<span style='font-weight: bold;'> 503.9555</span> | 92.11 | 0.004973 | 0.2801 | 0.8989 |
+#&gt; |.....................| 9.884 | 1.166 | 0.03011 | 0.7577 |
+#&gt; |.....................| 0.8723 | 1.215 | 1.070 | 1.074 |
+#&gt; | F| Forward Diff. | -82.12 | 2.266 | -0.2557 | 0.1457 |
+#&gt; |.....................| -0.3150 | -70.09 | -26.27 | 1.274 |
+#&gt; |.....................| 9.305 | -11.84 | -9.592 | -10.45 |
+#&gt; |<span style='font-weight: bold;'> 5</span>| 503.06948 | 1.000 | -1.001 | -0.9114 | -0.8944 |
+#&gt; |.....................| -0.8456 | -0.8479 | -0.8841 | -0.8772 |
+#&gt; |.....................| -0.8776 | -0.8643 | -0.8677 | -0.8674 |
+#&gt; | U| 503.06948 | 93.16 | -5.304 | -0.9442 | -0.1066 |
+#&gt; |.....................| 2.291 | 1.172 | 0.03017 | 0.7575 |
+#&gt; |.....................| 0.8711 | 1.217 | 1.072 | 1.075 |
+#&gt; | X|<span style='font-weight: bold;'> 503.06948</span> | 93.16 | 0.004971 | 0.2801 | 0.8989 |
+#&gt; |.....................| 9.884 | 1.172 | 0.03017 | 0.7575 |
+#&gt; |.....................| 0.8711 | 1.217 | 1.072 | 1.075 |
+#&gt; | F| Forward Diff. | 78.20 | 2.380 | 0.07920 | 0.2489 |
+#&gt; |.....................| 0.04185 | -69.32 | -24.13 | 1.306 |
+#&gt; |.....................| 9.997 | -11.88 | -9.541 | -10.51 |
+#&gt; |<span style='font-weight: bold;'> 6</span>| 502.21512 | 0.9895 | -1.001 | -0.9114 | -0.8945 |
+#&gt; |.....................| -0.8456 | -0.8375 | -0.8805 | -0.8774 |
+#&gt; |.....................| -0.8791 | -0.8625 | -0.8662 | -0.8658 |
+#&gt; | U| 502.21512 | 92.14 | -5.304 | -0.9442 | -0.1066 |
+#&gt; |.....................| 2.291 | 1.178 | 0.03022 | 0.7574 |
+#&gt; |.....................| 0.8698 | 1.220 | 1.073 | 1.077 |
+#&gt; | X|<span style='font-weight: bold;'> 502.21512</span> | 92.14 | 0.004969 | 0.2801 | 0.8989 |
+#&gt; |.....................| 9.884 | 1.178 | 0.03022 | 0.7574 |
+#&gt; |.....................| 0.8698 | 1.220 | 1.073 | 1.077 |
+#&gt; | F| Forward Diff. | -79.18 | 2.245 | -0.2400 | 0.1569 |
+#&gt; |.....................| -0.2882 | -67.02 | -25.09 | 1.000 |
+#&gt; |.....................| 9.365 | -11.67 | -9.440 | -10.32 |
+#&gt; |<span style='font-weight: bold;'> 7</span>| 501.33312 | 1.000 | -1.001 | -0.9114 | -0.8945 |
+#&gt; |.....................| -0.8456 | -0.8270 | -0.8765 | -0.8775 |
+#&gt; |.....................| -0.8805 | -0.8607 | -0.8647 | -0.8642 |
+#&gt; | U| 501.33312 | 93.14 | -5.305 | -0.9441 | -0.1067 |
+#&gt; |.....................| 2.291 | 1.184 | 0.03028 | 0.7573 |
+#&gt; |.....................| 0.8685 | 1.222 | 1.075 | 1.079 |
+#&gt; | X|<span style='font-weight: bold;'> 501.33312</span> | 93.14 | 0.004968 | 0.2801 | 0.8988 |
+#&gt; |.....................| 9.884 | 1.184 | 0.03028 | 0.7573 |
+#&gt; |.....................| 0.8685 | 1.222 | 1.075 | 1.079 |
+#&gt; | F| Forward Diff. | 73.96 | 2.351 | 0.08380 | 0.2565 |
+#&gt; |.....................| 0.05289 | -66.42 | -23.08 | 0.9343 |
+#&gt; |.....................| 11.48 | -11.71 | -9.377 | -10.38 |
+#&gt; |<span style='font-weight: bold;'> 8</span>| 500.50460 | 0.9897 | -1.002 | -0.9114 | -0.8946 |
+#&gt; |.....................| -0.8456 | -0.8163 | -0.8728 | -0.8777 |
+#&gt; |.....................| -0.8824 | -0.8588 | -0.8632 | -0.8625 |
+#&gt; | U| 500.5046 | 92.16 | -5.305 | -0.9442 | -0.1067 |
+#&gt; |.....................| 2.291 | 1.190 | 0.03034 | 0.7572 |
+#&gt; |.....................| 0.8669 | 1.224 | 1.077 | 1.081 |
+#&gt; | X|<span style='font-weight: bold;'> 500.5046</span> | 92.16 | 0.004966 | 0.2801 | 0.8988 |
+#&gt; |.....................| 9.884 | 1.190 | 0.03034 | 0.7572 |
+#&gt; |.....................| 0.8669 | 1.224 | 1.077 | 1.081 |
+#&gt; | F| Forward Diff. | -76.85 | 2.219 | -0.2273 | 0.1675 |
+#&gt; |.....................| -0.2752 | -63.09 | -23.56 | 1.068 |
+#&gt; |.....................| 8.794 | -11.52 | -9.279 | -10.19 |
+#&gt; |<span style='font-weight: bold;'> 9</span>| 499.65692 | 1.000 | -1.002 | -0.9113 | -0.8946 |
+#&gt; |.....................| -0.8456 | -0.8056 | -0.8689 | -0.8779 |
+#&gt; |.....................| -0.8839 | -0.8568 | -0.8617 | -0.8608 |
+#&gt; | U| 499.65692 | 93.14 | -5.306 | -0.9441 | -0.1067 |
+#&gt; |.....................| 2.291 | 1.196 | 0.03040 | 0.7570 |
+#&gt; |.....................| 0.8655 | 1.226 | 1.078 | 1.082 |
+#&gt; | X|<span style='font-weight: bold;'> 499.65692</span> | 93.14 | 0.004964 | 0.2801 | 0.8988 |
+#&gt; |.....................| 9.885 | 1.196 | 0.03040 | 0.7570 |
+#&gt; |.....................| 0.8655 | 1.226 | 1.078 | 1.082 |
+#&gt; | F| Forward Diff. | 72.32 | 2.320 | 0.09176 | 0.2615 |
+#&gt; |.....................| 0.06934 | -62.36 | -21.54 | 1.140 |
+#&gt; |.....................| 9.404 | -11.56 | -9.216 | -10.24 |
+#&gt; |<span style='font-weight: bold;'> 10</span>| 498.81870 | 0.9902 | -1.003 | -0.9114 | -0.8946 |
+#&gt; |.....................| -0.8456 | -0.7946 | -0.8650 | -0.8781 |
+#&gt; |.....................| -0.8856 | -0.8548 | -0.8600 | -0.8589 |
+#&gt; | U| 498.8187 | 92.21 | -5.306 | -0.9441 | -0.1068 |
+#&gt; |.....................| 2.291 | 1.203 | 0.03045 | 0.7569 |
+#&gt; |.....................| 0.8641 | 1.229 | 1.080 | 1.084 |
+#&gt; | X|<span style='font-weight: bold;'> 498.8187</span> | 92.21 | 0.004962 | 0.2801 | 0.8987 |
+#&gt; |.....................| 9.885 | 1.203 | 0.03045 | 0.7569 |
+#&gt; |.....................| 0.8641 | 1.229 | 1.080 | 1.084 |
+#&gt; | F| Forward Diff. | -70.56 | 2.198 | -0.2057 | 0.1798 |
+#&gt; |.....................| -0.2468 | -59.74 | -22.28 | 0.8150 |
+#&gt; |.....................| 7.180 | -11.33 | -9.109 | -10.05 |
+#&gt; |<span style='font-weight: bold;'> 11</span>| 497.99655 | 1.000 | -1.003 | -0.9113 | -0.8947 |
+#&gt; |.....................| -0.8455 | -0.7835 | -0.8609 | -0.8782 |
+#&gt; |.....................| -0.8869 | -0.8527 | -0.8583 | -0.8571 |
+#&gt; | U| 497.99655 | 93.13 | -5.306 | -0.9441 | -0.1068 |
+#&gt; |.....................| 2.291 | 1.209 | 0.03052 | 0.7568 |
+#&gt; |.....................| 0.8629 | 1.231 | 1.082 | 1.086 |
+#&gt; | X|<span style='font-weight: bold;'> 497.99655</span> | 93.13 | 0.004960 | 0.2801 | 0.8987 |
+#&gt; |.....................| 9.885 | 1.209 | 0.03052 | 0.7568 |
+#&gt; |.....................| 0.8629 | 1.231 | 1.082 | 1.086 |
+#&gt; | F| Forward Diff. | 69.16 | 2.293 | 0.1087 | 0.2725 |
+#&gt; |.....................| 0.08752 | -59.63 | -20.54 | 0.7584 |
+#&gt; |.....................| 10.86 | -11.45 | -9.094 | -10.13 |
+#&gt; |<span style='font-weight: bold;'> 12</span>| 497.16410 | 0.9907 | -1.003 | -0.9113 | -0.8947 |
+#&gt; |.....................| -0.8455 | -0.7720 | -0.8569 | -0.8784 |
+#&gt; |.....................| -0.8889 | -0.8505 | -0.8566 | -0.8551 |
+#&gt; | U| 497.1641 | 92.25 | -5.307 | -0.9441 | -0.1069 |
+#&gt; |.....................| 2.291 | 1.216 | 0.03058 | 0.7566 |
+#&gt; |.....................| 0.8612 | 1.234 | 1.084 | 1.088 |
+#&gt; | X|<span style='font-weight: bold;'> 497.1641</span> | 92.25 | 0.004958 | 0.2801 | 0.8987 |
+#&gt; |.....................| 9.885 | 1.216 | 0.03058 | 0.7566 |
+#&gt; |.....................| 0.8612 | 1.234 | 1.084 | 1.088 |
+#&gt; | F| Forward Diff. | -65.09 | 2.175 | -0.1829 | 0.1920 |
+#&gt; |.....................| -0.2233 | -56.76 | -21.02 | 0.6415 |
+#&gt; |.....................| 9.983 | -11.18 | -8.930 | -9.895 |
+#&gt; |<span style='font-weight: bold;'> 13</span>| 496.40281 | 1.000 | -1.004 | -0.9113 | -0.8948 |
+#&gt; |.....................| -0.8455 | -0.7609 | -0.8528 | -0.8785 |
+#&gt; |.....................| -0.8909 | -0.8483 | -0.8548 | -0.8532 |
+#&gt; | U| 496.40281 | 93.15 | -5.307 | -0.9441 | -0.1069 |
+#&gt; |.....................| 2.291 | 1.222 | 0.03064 | 0.7566 |
+#&gt; |.....................| 0.8594 | 1.237 | 1.086 | 1.091 |
+#&gt; | X|<span style='font-weight: bold;'> 496.40281</span> | 93.15 | 0.004955 | 0.2801 | 0.8986 |
+#&gt; |.....................| 9.885 | 1.222 | 0.03064 | 0.7566 |
+#&gt; |.....................| 0.8594 | 1.237 | 1.086 | 1.091 |
+#&gt; | F| Forward Diff. | 70.05 | 2.265 | 0.1236 | 0.2851 |
+#&gt; |.....................| 0.1152 | -55.71 | -19.12 | 0.8701 |
+#&gt; |.....................| 7.394 | -11.22 | -8.890 | -9.949 |
+#&gt; |<span style='font-weight: bold;'> 14</span>| 495.59236 | 0.9910 | -1.004 | -0.9113 | -0.8948 |
+#&gt; |.....................| -0.8455 | -0.7494 | -0.8488 | -0.8787 |
+#&gt; |.....................| -0.8926 | -0.8459 | -0.8530 | -0.8511 |
+#&gt; | U| 495.59236 | 92.28 | -5.308 | -0.9441 | -0.1070 |
+#&gt; |.....................| 2.291 | 1.229 | 0.03070 | 0.7564 |
+#&gt; |.....................| 0.8580 | 1.240 | 1.088 | 1.093 |
+#&gt; | X|<span style='font-weight: bold;'> 495.59236</span> | 92.28 | 0.004953 | 0.2801 | 0.8986 |
+#&gt; |.....................| 9.885 | 1.229 | 0.03070 | 0.7564 |
+#&gt; |.....................| 0.8580 | 1.240 | 1.088 | 1.093 |
+#&gt; | F| Forward Diff. | -61.97 | 2.150 | -0.1619 | 0.2028 |
+#&gt; |.....................| -0.2007 | -53.46 | -19.76 | 0.5341 |
+#&gt; |.....................| 9.715 | -10.96 | -8.745 | -9.729 |
+#&gt; |<span style='font-weight: bold;'> 15</span>| 494.82198 | 1.000 | -1.005 | -0.9113 | -0.8949 |
+#&gt; |.....................| -0.8455 | -0.7378 | -0.8446 | -0.8788 |
+#&gt; |.....................| -0.8946 | -0.8435 | -0.8510 | -0.8489 |
+#&gt; | U| 494.82198 | 93.11 | -5.308 | -0.9441 | -0.1070 |
+#&gt; |.....................| 2.291 | 1.235 | 0.03076 | 0.7563 |
+#&gt; |.....................| 0.8562 | 1.243 | 1.090 | 1.095 |
+#&gt; | X|<span style='font-weight: bold;'> 494.82198</span> | 93.11 | 0.004951 | 0.2801 | 0.8985 |
+#&gt; |.....................| 9.886 | 1.235 | 0.03076 | 0.7563 |
+#&gt; |.....................| 0.8562 | 1.243 | 1.090 | 1.095 |
+#&gt; | F| Forward Diff. | 62.35 | 2.229 | 0.1203 | 0.2879 |
+#&gt; |.....................| 0.1180 | -52.16 | -17.88 | 0.7550 |
+#&gt; |.....................| 8.431 | -10.99 | -8.665 | -9.736 |
+#&gt; |<span style='font-weight: bold;'> 16</span>| 494.07821 | 0.9910 | -1.005 | -0.9113 | -0.8949 |
+#&gt; |.....................| -0.8455 | -0.7261 | -0.8406 | -0.8789 |
+#&gt; |.....................| -0.8966 | -0.8410 | -0.8490 | -0.8467 |
+#&gt; | U| 494.07821 | 92.28 | -5.309 | -0.9441 | -0.1071 |
+#&gt; |.....................| 2.291 | 1.242 | 0.03082 | 0.7562 |
+#&gt; |.....................| 0.8544 | 1.246 | 1.092 | 1.098 |
+#&gt; | X|<span style='font-weight: bold;'> 494.07821</span> | 92.28 | 0.004948 | 0.2801 | 0.8985 |
+#&gt; |.....................| 9.885 | 1.242 | 0.03082 | 0.7562 |
+#&gt; |.....................| 0.8544 | 1.246 | 1.092 | 1.098 |
+#&gt; | F| Forward Diff. | -62.97 | 2.119 | -0.1628 | 0.2103 |
+#&gt; |.....................| -0.1835 | -49.97 | -18.50 | 0.4855 |
+#&gt; |.....................| 6.275 | -10.75 | -8.529 | -9.546 |
+#&gt; |<span style='font-weight: bold;'> 17</span>| 493.31030 | 0.9997 | -1.006 | -0.9113 | -0.8950 |
+#&gt; |.....................| -0.8455 | -0.7143 | -0.8363 | -0.8790 |
+#&gt; |.....................| -0.8981 | -0.8383 | -0.8469 | -0.8443 |
+#&gt; | U| 493.3103 | 93.08 | -5.309 | -0.9441 | -0.1071 |
+#&gt; |.....................| 2.291 | 1.249 | 0.03089 | 0.7561 |
+#&gt; |.....................| 0.8531 | 1.249 | 1.094 | 1.100 |
+#&gt; | X|<span style='font-weight: bold;'> 493.3103</span> | 93.08 | 0.004946 | 0.2801 | 0.8984 |
+#&gt; |.....................| 9.886 | 1.249 | 0.03089 | 0.7561 |
+#&gt; |.....................| 0.8531 | 1.249 | 1.094 | 1.100 |
+#&gt; | F| Forward Diff. | 56.08 | 2.195 | 0.1067 | 0.2931 |
+#&gt; |.....................| 0.1254 | -49.64 | -16.98 | 0.3491 |
+#&gt; |.....................| 8.549 | -10.78 | -8.455 | -9.552 |
+#&gt; |<span style='font-weight: bold;'> 18</span>| 492.59068 | 0.9914 | -1.006 | -0.9113 | -0.8951 |
+#&gt; |.....................| -0.8455 | -0.7023 | -0.8321 | -0.8791 |
+#&gt; |.....................| -0.9000 | -0.8355 | -0.8448 | -0.8419 |
+#&gt; | U| 492.59068 | 92.32 | -5.310 | -0.9441 | -0.1072 |
+#&gt; |.....................| 2.291 | 1.256 | 0.03095 | 0.7561 |
+#&gt; |.....................| 0.8514 | 1.252 | 1.096 | 1.103 |
+#&gt; | X|<span style='font-weight: bold;'> 492.59068</span> | 92.32 | 0.004943 | 0.2801 | 0.8983 |
+#&gt; |.....................| 9.885 | 1.256 | 0.03095 | 0.7561 |
+#&gt; |.....................| 0.8514 | 1.252 | 1.096 | 1.103 |
+#&gt; | F| Forward Diff. | -58.13 | 2.097 | -0.1289 | 0.2246 |
+#&gt; |.....................| -0.1582 | -47.13 | -17.33 | 0.3097 |
+#&gt; |.....................| 7.738 | -10.54 | -8.304 | -9.345 |
+#&gt; |<span style='font-weight: bold;'> 19</span>| 491.88063 | 0.9998 | -1.007 | -0.9113 | -0.8951 |
+#&gt; |.....................| -0.8455 | -0.6905 | -0.8279 | -0.8791 |
+#&gt; |.....................| -0.9022 | -0.8327 | -0.8426 | -0.8394 |
+#&gt; | U| 491.88063 | 93.10 | -5.310 | -0.9441 | -0.1073 |
+#&gt; |.....................| 2.291 | 1.263 | 0.03101 | 0.7561 |
+#&gt; |.....................| 0.8496 | 1.256 | 1.099 | 1.105 |
+#&gt; | X|<span style='font-weight: bold;'> 491.88063</span> | 93.10 | 0.004940 | 0.2801 | 0.8983 |
+#&gt; |.....................| 9.886 | 1.263 | 0.03101 | 0.7561 |
+#&gt; |.....................| 0.8496 | 1.256 | 1.099 | 1.105 |
+#&gt; | F| Forward Diff. | 56.71 | 2.166 | 0.1292 | 0.3076 |
+#&gt; |.....................| 0.1542 | -45.57 | -15.60 | 0.4873 |
+#&gt; |.....................| 6.413 | -10.51 | -8.202 | -9.332 |
+#&gt; |<span style='font-weight: bold;'> 20</span>| 491.19020 | 0.9917 | -1.008 | -0.9113 | -0.8952 |
+#&gt; |.....................| -0.8455 | -0.6785 | -0.8237 | -0.8792 |
+#&gt; |.....................| -0.9039 | -0.8296 | -0.8402 | -0.8366 |
+#&gt; | U| 491.1902 | 92.34 | -5.311 | -0.9441 | -0.1074 |
+#&gt; |.....................| 2.291 | 1.270 | 0.03107 | 0.7560 |
+#&gt; |.....................| 0.8481 | 1.259 | 1.101 | 1.108 |
+#&gt; | X|<span style='font-weight: bold;'> 491.1902</span> | 92.34 | 0.004937 | 0.2801 | 0.8982 |
+#&gt; |.....................| 9.885 | 1.270 | 0.03107 | 0.7560 |
+#&gt; |.....................| 0.8481 | 1.259 | 1.101 | 1.108 |
+#&gt; | F| Forward Diff. | -55.56 | 2.070 | -0.1130 | 0.2359 |
+#&gt; |.....................| -0.1346 | -44.07 | -16.23 | 0.1008 |
+#&gt; |.....................| 7.464 | -10.26 | -8.060 | -9.125 |
+#&gt; |<span style='font-weight: bold;'> 21</span>| 490.47868 | 0.9993 | -1.008 | -0.9113 | -0.8953 |
+#&gt; |.....................| -0.8455 | -0.6665 | -0.8194 | -0.8791 |
+#&gt; |.....................| -0.9059 | -0.8264 | -0.8377 | -0.8337 |
+#&gt; | U| 490.47868 | 93.05 | -5.312 | -0.9441 | -0.1075 |
+#&gt; |.....................| 2.291 | 1.277 | 0.03114 | 0.7561 |
+#&gt; |.....................| 0.8463 | 1.263 | 1.104 | 1.111 |
+#&gt; | X|<span style='font-weight: bold;'> 490.47868</span> | 93.05 | 0.004934 | 0.2801 | 0.8981 |
+#&gt; |.....................| 9.885 | 1.277 | 0.03114 | 0.7561 |
+#&gt; |.....................| 0.8463 | 1.263 | 1.104 | 1.111 |
+#&gt; | F| Forward Diff. | 47.93 | 2.132 | 0.1269 | 0.3117 |
+#&gt; |.....................| 0.1562 | -43.27 | -14.78 | 0.06906 |
+#&gt; |.....................| 9.295 | -10.26 | -7.955 | -9.092 |
+#&gt; |<span style='font-weight: bold;'> 22</span>| 489.84765 | 0.9918 | -1.009 | -0.9114 | -0.8954 |
+#&gt; |.....................| -0.8456 | -0.6545 | -0.8153 | -0.8790 |
+#&gt; |.....................| -0.9090 | -0.8231 | -0.8352 | -0.8308 |
+#&gt; | U| 489.84765 | 92.35 | -5.312 | -0.9441 | -0.1076 |
+#&gt; |.....................| 2.291 | 1.284 | 0.03120 | 0.7562 |
+#&gt; |.....................| 0.8436 | 1.267 | 1.107 | 1.115 |
+#&gt; | X|<span style='font-weight: bold;'> 489.84765</span> | 92.35 | 0.004930 | 0.2801 | 0.8980 |
+#&gt; |.....................| 9.885 | 1.284 | 0.03120 | 0.7562 |
+#&gt; |.....................| 0.8436 | 1.267 | 1.107 | 1.115 |
+#&gt; | F| Forward Diff. | -55.71 | 2.038 | -0.1283 | 0.2328 |
+#&gt; |.....................| -0.1164 | -41.15 | -15.14 | 0.009736 |
+#&gt; |.....................| 8.505 | -10.03 | -7.805 | -8.885 |
+#&gt; |<span style='font-weight: bold;'> 23</span>| 489.17644 | 0.9994 | -1.010 | -0.9113 | -0.8955 |
+#&gt; |.....................| -0.8456 | -0.6429 | -0.8112 | -0.8788 |
+#&gt; |.....................| -0.9126 | -0.8197 | -0.8325 | -0.8278 |
+#&gt; | U| 489.17644 | 93.06 | -5.313 | -0.9441 | -0.1077 |
+#&gt; |.....................| 2.291 | 1.290 | 0.03126 | 0.7563 |
+#&gt; |.....................| 0.8405 | 1.272 | 1.109 | 1.118 |
+#&gt; | X|<span style='font-weight: bold;'> 489.17644</span> | 93.06 | 0.004927 | 0.2801 | 0.8979 |
+#&gt; |.....................| 9.885 | 1.290 | 0.03126 | 0.7563 |
+#&gt; |.....................| 0.8405 | 1.272 | 1.109 | 1.118 |
+#&gt; | F| Forward Diff. | 46.87 | 2.093 | 0.1493 | 0.3243 |
+#&gt; |.....................| 0.1838 | -40.03 | -13.57 | 0.1411 |
+#&gt; |.....................| 5.593 | -9.957 | -7.669 | -8.831 |
+#&gt; |<span style='font-weight: bold;'> 24</span>| 488.58015 | 0.9920 | -1.011 | -0.9114 | -0.8957 |
+#&gt; |.....................| -0.8457 | -0.6309 | -0.8071 | -0.8787 |
+#&gt; |.....................| -0.9147 | -0.8159 | -0.8297 | -0.8244 |
+#&gt; | U| 488.58015 | 92.37 | -5.314 | -0.9442 | -0.1078 |
+#&gt; |.....................| 2.291 | 1.297 | 0.03132 | 0.7564 |
+#&gt; |.....................| 0.8386 | 1.276 | 1.112 | 1.121 |
+#&gt; | X|<span style='font-weight: bold;'> 488.58015</span> | 92.37 | 0.004923 | 0.2801 | 0.8978 |
+#&gt; |.....................| 9.884 | 1.297 | 0.03132 | 0.7564 |
+#&gt; |.....................| 0.8386 | 1.276 | 1.112 | 1.121 |
+#&gt; | F| Forward Diff. | -53.50 | 2.005 | -0.1078 | 0.2446 |
+#&gt; |.....................| -0.09190 | -37.89 | -13.87 | 0.05672 |
+#&gt; |.....................| 4.909 | -9.713 | -7.511 | -8.606 |
+#&gt; |<span style='font-weight: bold;'> 25</span>| 487.93833 | 0.9991 | -1.011 | -0.9114 | -0.8958 |
+#&gt; |.....................| -0.8457 | -0.6190 | -0.8030 | -0.8785 |
+#&gt; |.....................| -0.9153 | -0.8117 | -0.8266 | -0.8207 |
+#&gt; | U| 487.93833 | 93.04 | -5.315 | -0.9442 | -0.1080 |
+#&gt; |.....................| 2.291 | 1.304 | 0.03139 | 0.7566 |
+#&gt; |.....................| 0.8381 | 1.281 | 1.116 | 1.125 |
+#&gt; | X|<span style='font-weight: bold;'> 487.93833</span> | 93.04 | 0.004918 | 0.2801 | 0.8977 |
+#&gt; |.....................| 9.883 | 1.304 | 0.03139 | 0.7566 |
+#&gt; |.....................| 0.8381 | 1.281 | 1.116 | 1.125 |
+#&gt; | F| Forward Diff. | 41.92 | 2.065 | 0.1569 | 0.3320 |
+#&gt; |.....................| 0.1961 | -37.34 | -12.63 | 0.01172 |
+#&gt; |.....................| 5.301 | -9.646 | -7.360 | -8.530 |
+#&gt; |<span style='font-weight: bold;'> 26</span>| 487.37063 | 0.9925 | -1.012 | -0.9115 | -0.8960 |
+#&gt; |.....................| -0.8458 | -0.6069 | -0.7990 | -0.8783 |
+#&gt; |.....................| -0.9161 | -0.8073 | -0.8233 | -0.8168 |
+#&gt; | U| 487.37063 | 92.42 | -5.316 | -0.9443 | -0.1081 |
+#&gt; |.....................| 2.291 | 1.311 | 0.03145 | 0.7567 |
+#&gt; |.....................| 0.8374 | 1.287 | 1.119 | 1.130 |
+#&gt; | X|<span style='font-weight: bold;'> 487.37063</span> | 92.42 | 0.004913 | 0.2800 | 0.8975 |
+#&gt; |.....................| 9.882 | 1.311 | 0.03145 | 0.7567 |
+#&gt; |.....................| 0.8374 | 1.287 | 1.119 | 1.130 |
+#&gt; | F| Forward Diff. | -47.84 | 1.989 | -0.08553 | 0.2559 |
+#&gt; |.....................| -0.06263 | -35.59 | -12.91 | -0.09336 |
+#&gt; |.....................| 8.020 | -9.356 | -7.180 | -8.291 |
+#&gt; |<span style='font-weight: bold;'> 27</span>| 486.76802 | 0.9991 | -1.014 | -0.9115 | -0.8962 |
+#&gt; |.....................| -0.8459 | -0.5954 | -0.7952 | -0.8779 |
+#&gt; |.....................| -0.9197 | -0.8027 | -0.8200 | -0.8127 |
+#&gt; | U| 486.76802 | 93.03 | -5.317 | -0.9443 | -0.1083 |
+#&gt; |.....................| 2.291 | 1.318 | 0.03150 | 0.7570 |
+#&gt; |.....................| 0.8342 | 1.292 | 1.123 | 1.134 |
+#&gt; | X|<span style='font-weight: bold;'> 486.76802</span> | 93.03 | 0.004908 | 0.2800 | 0.8973 |
+#&gt; |.....................| 9.881 | 1.318 | 0.03150 | 0.7570 |
+#&gt; |.....................| 0.8342 | 1.292 | 1.123 | 1.134 |
+#&gt; | F| Forward Diff. | 39.28 | 2.032 | 0.1697 | 0.3409 |
+#&gt; |.....................| 0.2161 | -34.26 | -11.60 | -0.04206 |
+#&gt; |.....................| 6.414 | -9.258 | -7.014 | -8.183 |
+#&gt; |<span style='font-weight: bold;'> 28</span>| 486.25961 | 0.9924 | -1.015 | -0.9116 | -0.8964 |
+#&gt; |.....................| -0.8461 | -0.5843 | -0.7916 | -0.8775 |
+#&gt; |.....................| -0.9242 | -0.7980 | -0.8166 | -0.8086 |
+#&gt; | U| 486.25961 | 92.41 | -5.318 | -0.9444 | -0.1086 |
+#&gt; |.....................| 2.290 | 1.324 | 0.03156 | 0.7573 |
+#&gt; |.....................| 0.8303 | 1.298 | 1.126 | 1.138 |
+#&gt; | X|<span style='font-weight: bold;'> 486.25961</span> | 92.41 | 0.004902 | 0.2800 | 0.8971 |
+#&gt; |.....................| 9.880 | 1.324 | 0.03156 | 0.7573 |
+#&gt; |.....................| 0.8303 | 1.298 | 1.126 | 1.138 |
+#&gt; | F| Forward Diff. | -50.63 | 1.945 | -0.07307 | 0.2626 |
+#&gt; |.....................| -0.04930 | -33.11 | -12.03 | -0.1686 |
+#&gt; |.....................| 7.510 | -8.984 | -6.802 | -7.934 |
+#&gt; |<span style='font-weight: bold;'> 29</span>| 485.66844 | 0.9985 | -1.016 | -0.9117 | -0.8967 |
+#&gt; |.....................| -0.8462 | -0.5738 | -0.7881 | -0.8769 |
+#&gt; |.....................| -0.9293 | -0.7927 | -0.8129 | -0.8039 |
+#&gt; | U| 485.66844 | 92.98 | -5.319 | -0.9445 | -0.1089 |
+#&gt; |.....................| 2.290 | 1.331 | 0.03161 | 0.7578 |
+#&gt; |.....................| 0.8259 | 1.304 | 1.130 | 1.143 |
+#&gt; | X|<span style='font-weight: bold;'> 485.66844</span> | 92.98 | 0.004895 | 0.2800 | 0.8969 |
+#&gt; |.....................| 9.878 | 1.331 | 0.03161 | 0.7578 |
+#&gt; |.....................| 0.8259 | 1.304 | 1.130 | 1.143 |
+#&gt; | F| Forward Diff. | 30.24 | 1.977 | 0.1746 | 0.3455 |
+#&gt; |.....................| 0.2218 | -32.22 | -10.87 | -0.2249 |
+#&gt; |.....................| 4.336 | -8.820 | -6.615 | -7.812 |
+#&gt; |<span style='font-weight: bold;'> 30</span>| 485.23968 | 0.9921 | -1.017 | -0.9119 | -0.8970 |
+#&gt; |.....................| -0.8465 | -0.5622 | -0.7845 | -0.8762 |
+#&gt; |.....................| -0.9314 | -0.7876 | -0.8094 | -0.7994 |
+#&gt; | U| 485.23968 | 92.38 | -5.321 | -0.9447 | -0.1091 |
+#&gt; |.....................| 2.290 | 1.337 | 0.03166 | 0.7583 |
+#&gt; |.....................| 0.8240 | 1.310 | 1.134 | 1.148 |
+#&gt; | X|<span style='font-weight: bold;'> 485.23968</span> | 92.38 | 0.004889 | 0.2800 | 0.8966 |
+#&gt; |.....................| 9.876 | 1.337 | 0.03166 | 0.7583 |
+#&gt; |.....................| 0.8240 | 1.310 | 1.134 | 1.148 |
+#&gt; | F| Forward Diff. | -56.59 | 1.902 | -0.07536 | 0.2678 |
+#&gt; |.....................| -0.04797 | -30.46 | -11.14 | -0.09043 |
+#&gt; |.....................| 3.742 | -8.533 | -6.412 | -7.541 |
+#&gt; |<span style='font-weight: bold;'> 31</span>| 484.69662 | 0.9984 | -1.019 | -0.9121 | -0.8974 |
+#&gt; |.....................| -0.8467 | -0.5517 | -0.7813 | -0.8754 |
+#&gt; |.....................| -0.9289 | -0.7816 | -0.8053 | -0.7941 |
+#&gt; | U| 484.69662 | 92.97 | -5.322 | -0.9448 | -0.1095 |
+#&gt; |.....................| 2.290 | 1.343 | 0.03171 | 0.7589 |
+#&gt; |.....................| 0.8262 | 1.318 | 1.138 | 1.154 |
+#&gt; | X|<span style='font-weight: bold;'> 484.69662</span> | 92.97 | 0.004881 | 0.2799 | 0.8963 |
+#&gt; |.....................| 9.873 | 1.343 | 0.03171 | 0.7589 |
+#&gt; |.....................| 0.8262 | 1.318 | 1.138 | 1.154 |
+#&gt; | F| Forward Diff. | 27.47 | 1.960 | 0.1737 | 0.3487 |
+#&gt; |.....................| 0.2320 | -29.84 | -10.04 | -0.2714 |
+#&gt; |.....................| 5.731 | -8.337 | -6.228 | -7.371 |
+#&gt; |<span style='font-weight: bold;'> 32</span>| 484.27605 | 0.9928 | -1.021 | -0.9123 | -0.8978 |
+#&gt; |.....................| -0.8471 | -0.5404 | -0.7779 | -0.8746 |
+#&gt; |.....................| -0.9302 | -0.7757 | -0.8014 | -0.7889 |
+#&gt; | U| 484.27605 | 92.45 | -5.324 | -0.9451 | -0.1099 |
+#&gt; |.....................| 2.289 | 1.350 | 0.03176 | 0.7595 |
+#&gt; |.....................| 0.8251 | 1.325 | 1.143 | 1.159 |
+#&gt; | X|<span style='font-weight: bold;'> 484.27605</span> | 92.45 | 0.004872 | 0.2799 | 0.8959 |
+#&gt; |.....................| 9.870 | 1.350 | 0.03176 | 0.7595 |
+#&gt; |.....................| 0.8251 | 1.325 | 1.143 | 1.159 |
+#&gt; | F| Forward Diff. | -48.28 | 1.894 | -0.05804 | 0.2769 |
+#&gt; |.....................| -0.01457 | -28.21 | -10.24 | -0.1977 |
+#&gt; |.....................| 5.253 | -8.027 | -5.998 | -7.085 |
+#&gt; |<span style='font-weight: bold;'> 33</span>| 483.77365 | 0.9986 | -1.023 | -0.9126 | -0.8983 |
+#&gt; |.....................| -0.8475 | -0.5309 | -0.7752 | -0.8734 |
+#&gt; |.....................| -0.9343 | -0.7690 | -0.7970 | -0.7831 |
+#&gt; | U| 483.77365 | 92.99 | -5.326 | -0.9453 | -0.1104 |
+#&gt; |.....................| 2.289 | 1.355 | 0.03180 | 0.7604 |
+#&gt; |.....................| 0.8215 | 1.333 | 1.147 | 1.166 |
+#&gt; | X|<span style='font-weight: bold;'> 483.77365</span> | 92.99 | 0.004861 | 0.2798 | 0.8954 |
+#&gt; |.....................| 9.866 | 1.355 | 0.03180 | 0.7604 |
+#&gt; |.....................| 0.8215 | 1.333 | 1.147 | 1.166 |
+#&gt; | F| Forward Diff. | 28.59 | 1.923 | 0.1952 | 0.3548 |
+#&gt; |.....................| 0.2608 | -27.76 | -9.333 | -0.3645 |
+#&gt; |.....................| 3.958 | -7.814 | -5.777 | -6.894 |
+#&gt; |<span style='font-weight: bold;'> 34</span>| 483.37086 | 0.9934 | -1.025 | -0.9129 | -0.8989 |
+#&gt; |.....................| -0.8480 | -0.5203 | -0.7721 | -0.8720 |
+#&gt; |.....................| -0.9349 | -0.7624 | -0.7928 | -0.7774 |
+#&gt; | U| 483.37086 | 92.51 | -5.329 | -0.9456 | -0.1110 |
+#&gt; |.....................| 2.289 | 1.362 | 0.03185 | 0.7615 |
+#&gt; |.....................| 0.8209 | 1.341 | 1.152 | 1.172 |
+#&gt; | X|<span style='font-weight: bold;'> 483.37086</span> | 92.51 | 0.004850 | 0.2798 | 0.8949 |
+#&gt; |.....................| 9.861 | 1.362 | 0.03185 | 0.7615 |
+#&gt; |.....................| 0.8209 | 1.341 | 1.152 | 1.172 |
+#&gt; | F| Forward Diff. | -41.16 | 1.862 | -0.03265 | 0.2828 |
+#&gt; |.....................| 0.01951 | -26.43 | -9.488 | -0.2833 |
+#&gt; |.....................| 3.545 | -7.469 | -5.528 | -6.584 |
+#&gt; |<span style='font-weight: bold;'> 35</span>| 482.96272 | 0.9987 | -1.028 | -0.9132 | -0.8995 |
+#&gt; |.....................| -0.8485 | -0.5103 | -0.7694 | -0.8702 |
+#&gt; |.....................| -0.9315 | -0.7558 | -0.7888 | -0.7716 |
+#&gt; | U| 482.96272 | 92.99 | -5.332 | -0.9459 | -0.1117 |
+#&gt; |.....................| 2.288 | 1.367 | 0.03189 | 0.7629 |
+#&gt; |.....................| 0.8240 | 1.349 | 1.156 | 1.178 |
+#&gt; | X|<span style='font-weight: bold;'> 482.96272</span> | 92.99 | 0.004836 | 0.2797 | 0.8943 |
+#&gt; |.....................| 9.856 | 1.367 | 0.03189 | 0.7629 |
+#&gt; |.....................| 0.8240 | 1.349 | 1.156 | 1.178 |
+#&gt; | F| Forward Diff. | 28.21 | 1.908 | 0.1917 | 0.3504 |
+#&gt; |.....................| 0.2712 | -25.82 | -8.599 | -0.3385 |
+#&gt; |.....................| 4.050 | -7.278 | -5.334 | -6.398 |
+#&gt; |<span style='font-weight: bold;'> 36</span>| 482.60011 | 0.9939 | -1.032 | -0.9136 | -0.9003 |
+#&gt; |.....................| -0.8492 | -0.4998 | -0.7669 | -0.8684 |
+#&gt; |.....................| -0.9296 | -0.7490 | -0.7849 | -0.7659 |
+#&gt; | U| 482.60011 | 92.55 | -5.335 | -0.9462 | -0.1124 |
+#&gt; |.....................| 2.287 | 1.373 | 0.03193 | 0.7642 |
+#&gt; |.....................| 0.8256 | 1.357 | 1.160 | 1.184 |
+#&gt; | X|<span style='font-weight: bold;'> 482.60011</span> | 92.55 | 0.004820 | 0.2796 | 0.8937 |
+#&gt; |.....................| 9.849 | 1.373 | 0.03193 | 0.7642 |
+#&gt; |.....................| 0.8256 | 1.357 | 1.160 | 1.184 |
+#&gt; | F| Forward Diff. | -36.31 | 1.855 | -0.03781 | 0.2769 |
+#&gt; |.....................| 0.03076 | -24.99 | -8.890 | -0.4685 |
+#&gt; |.....................| 7.176 | -6.892 | -5.117 | -6.081 |
+#&gt; |<span style='font-weight: bold;'> 37</span>| 482.21198 | 0.9982 | -1.035 | -0.9138 | -0.9009 |
+#&gt; |.....................| -0.8497 | -0.4920 | -0.7653 | -0.8661 |
+#&gt; |.....................| -0.9399 | -0.7441 | -0.7821 | -0.7617 |
+#&gt; | U| 482.21198 | 92.95 | -5.338 | -0.9465 | -0.1130 |
+#&gt; |.....................| 2.287 | 1.378 | 0.03195 | 0.7659 |
+#&gt; |.....................| 0.8166 | 1.363 | 1.163 | 1.189 |
+#&gt; | X|<span style='font-weight: bold;'> 482.21198</span> | 92.95 | 0.004805 | 0.2796 | 0.8931 |
+#&gt; |.....................| 9.844 | 1.378 | 0.03195 | 0.7659 |
+#&gt; |.....................| 0.8166 | 1.363 | 1.163 | 1.189 |
+#&gt; | F| Forward Diff. | 20.01 | 1.850 | 0.1852 | 0.3312 |
+#&gt; |.....................| 0.2616 | -23.95 | -7.997 | -0.3393 |
+#&gt; |.....................| 4.985 | -6.711 | -4.923 | -5.940 |
+#&gt; |<span style='font-weight: bold;'> 38</span>| 481.96846 | 0.9924 | -1.037 | -0.9141 | -0.9014 |
+#&gt; |.....................| -0.8503 | -0.4828 | -0.7630 | -0.8646 |
+#&gt; |.....................| -0.9490 | -0.7399 | -0.7795 | -0.7579 |
+#&gt; | U| 481.96846 | 92.41 | -5.341 | -0.9468 | -0.1136 |
+#&gt; |.....................| 2.286 | 1.383 | 0.03199 | 0.7671 |
+#&gt; |.....................| 0.8087 | 1.368 | 1.166 | 1.193 |
+#&gt; | X|<span style='font-weight: bold;'> 481.96846</span> | 92.41 | 0.004793 | 0.2795 | 0.8927 |
+#&gt; |.....................| 9.838 | 1.383 | 0.03199 | 0.7671 |
+#&gt; |.....................| 0.8087 | 1.368 | 1.166 | 1.193 |
+#&gt; | F| Forward Diff. | -59.26 | 1.761 | -0.08116 | 0.2547 |
+#&gt; |.....................| -0.02692 | -22.78 | -8.366 | -0.2344 |
+#&gt; |.....................| 4.087 | -6.524 | -4.792 | -5.748 |
+#&gt; |<span style='font-weight: bold;'> 39</span>| 481.52549 | 0.9980 | -1.042 | -0.9148 | -0.9024 |
+#&gt; |.....................| -0.8514 | -0.4755 | -0.7621 | -0.8625 |
+#&gt; |.....................| -0.9558 | -0.7333 | -0.7761 | -0.7520 |
+#&gt; | U| 481.52549 | 92.93 | -5.345 | -0.9474 | -0.1146 |
+#&gt; |.....................| 2.285 | 1.388 | 0.03200 | 0.7686 |
+#&gt; |.....................| 0.8027 | 1.376 | 1.170 | 1.199 |
+#&gt; | X|<span style='font-weight: bold;'> 481.52549</span> | 92.93 | 0.004770 | 0.2794 | 0.8917 |
+#&gt; |.....................| 9.827 | 1.388 | 0.03200 | 0.7686 |
+#&gt; |.....................| 0.8027 | 1.376 | 1.170 | 1.199 |
+#&gt; | F| Forward Diff. | 14.56 | 1.771 | 0.1903 | 0.3270 |
+#&gt; |.....................| 0.2641 | -22.44 | -7.508 | -0.4496 |
+#&gt; |.....................| 2.566 | -6.373 | -4.622 | -5.584 |
+#&gt; |<span style='font-weight: bold;'> 40</span>| 481.26396 | 0.9932 | -1.045 | -0.9155 | -0.9032 |
+#&gt; |.....................| -0.8523 | -0.4642 | -0.7593 | -0.8605 |
+#&gt; |.....................| -0.9543 | -0.7272 | -0.7727 | -0.7469 |
+#&gt; | U| 481.26396 | 92.49 | -5.349 | -0.9480 | -0.1154 |
+#&gt; |.....................| 2.284 | 1.394 | 0.03204 | 0.7702 |
+#&gt; |.....................| 0.8040 | 1.384 | 1.173 | 1.205 |
+#&gt; | X|<span style='font-weight: bold;'> 481.26396</span> | 92.49 | 0.004753 | 0.2793 | 0.8910 |
+#&gt; |.....................| 9.818 | 1.394 | 0.03204 | 0.7702 |
+#&gt; |.....................| 0.8040 | 1.384 | 1.173 | 1.205 |
+#&gt; | F| Forward Diff. | -49.84 | 1.721 | -0.06329 | 0.2500 |
+#&gt; |.....................| 0.003387 | -21.58 | -7.808 | -0.4470 |
+#&gt; |.....................| 3.805 | -6.020 | -4.412 | -5.292 |
+#&gt; |<span style='font-weight: bold;'> 41</span>| 480.91101 | 0.9981 | -1.051 | -0.9163 | -0.9044 |
+#&gt; |.....................| -0.8537 | -0.4552 | -0.7584 | -0.8559 |
+#&gt; |.....................| -0.9510 | -0.7207 | -0.7698 | -0.7416 |
+#&gt; | U| 480.91101 | 92.94 | -5.355 | -0.9488 | -0.1166 |
+#&gt; |.....................| 2.283 | 1.399 | 0.03206 | 0.7737 |
+#&gt; |.....................| 0.8069 | 1.392 | 1.176 | 1.210 |
+#&gt; | X|<span style='font-weight: bold;'> 480.91101</span> | 92.94 | 0.004727 | 0.2791 | 0.8900 |
+#&gt; |.....................| 9.804 | 1.399 | 0.03206 | 0.7737 |
+#&gt; |.....................| 0.8069 | 1.392 | 1.176 | 1.210 |
+#&gt; | F| Forward Diff. | 16.05 | 1.751 | 0.1631 | 0.3020 |
+#&gt; |.....................| 0.2540 | -20.90 | -6.928 | -0.3893 |
+#&gt; |.....................| 4.288 | -5.817 | -4.263 | -5.144 |
+#&gt; |<span style='font-weight: bold;'> 42</span>| 480.64341 | 0.9941 | -1.056 | -0.9169 | -0.9053 |
+#&gt; |.....................| -0.8549 | -0.4456 | -0.7571 | -0.8527 |
+#&gt; |.....................| -0.9585 | -0.7158 | -0.7673 | -0.7373 |
+#&gt; | U| 480.64341 | 92.57 | -5.360 | -0.9493 | -0.1175 |
+#&gt; |.....................| 2.282 | 1.405 | 0.03208 | 0.7761 |
+#&gt; |.....................| 0.8004 | 1.398 | 1.179 | 1.215 |
+#&gt; | X|<span style='font-weight: bold;'> 480.64341</span> | 92.57 | 0.004703 | 0.2790 | 0.8892 |
+#&gt; |.....................| 9.793 | 1.405 | 0.03208 | 0.7761 |
+#&gt; |.....................| 0.8004 | 1.398 | 1.179 | 1.215 |
+#&gt; | F| Forward Diff. | -40.16 | 1.680 | -0.01378 | 0.2424 |
+#&gt; |.....................| 0.03021 | -20.27 | -7.228 | -0.4675 |
+#&gt; |.....................| 4.140 | -5.523 | -4.100 | -4.903 |
+#&gt; |<span style='font-weight: bold;'> 43</span>| 480.34062 | 0.9982 | -1.062 | -0.9177 | -0.9064 |
+#&gt; |.....................| -0.8561 | -0.4387 | -0.7572 | -0.8486 |
+#&gt; |.....................| -0.9687 | -0.7122 | -0.7655 | -0.7338 |
+#&gt; | U| 480.34062 | 92.95 | -5.365 | -0.9501 | -0.1185 |
+#&gt; |.....................| 2.280 | 1.409 | 0.03207 | 0.7792 |
+#&gt; |.....................| 0.7914 | 1.402 | 1.181 | 1.219 |
+#&gt; | X|<span style='font-weight: bold;'> 480.34062</span> | 92.95 | 0.004675 | 0.2789 | 0.8883 |
+#&gt; |.....................| 9.781 | 1.409 | 0.03207 | 0.7792 |
+#&gt; |.....................| 0.7914 | 1.402 | 1.181 | 1.219 |
+#&gt; |<span style='font-weight: bold;'> 44</span>| 480.11354 | 0.9982 | -1.069 | -0.9186 | -0.9075 |
+#&gt; |.....................| -0.8576 | -0.4327 | -0.7582 | -0.8437 |
+#&gt; |.....................| -0.9807 | -0.7086 | -0.7639 | -0.7301 |
+#&gt; | U| 480.11354 | 92.95 | -5.372 | -0.9510 | -0.1197 |
+#&gt; |.....................| 2.279 | 1.412 | 0.03206 | 0.7829 |
+#&gt; |.....................| 0.7810 | 1.406 | 1.183 | 1.223 |
+#&gt; | X|<span style='font-weight: bold;'> 480.11354</span> | 92.95 | 0.004643 | 0.2787 | 0.8872 |
+#&gt; |.....................| 9.767 | 1.412 | 0.03206 | 0.7829 |
+#&gt; |.....................| 0.7810 | 1.406 | 1.183 | 1.223 |
+#&gt; |<span style='font-weight: bold;'> 45</span>| 479.24256 | 0.9982 | -1.100 | -0.9228 | -0.9129 |
+#&gt; |.....................| -0.8642 | -0.4061 | -0.7626 | -0.8221 |
+#&gt; |.....................| -1.034 | -0.6924 | -0.7565 | -0.7138 |
+#&gt; | U| 479.24256 | 92.95 | -5.404 | -0.9550 | -0.1250 |
+#&gt; |.....................| 2.272 | 1.428 | 0.03199 | 0.7993 |
+#&gt; |.....................| 0.7344 | 1.426 | 1.191 | 1.240 |
+#&gt; | X|<span style='font-weight: bold;'> 479.24256</span> | 92.95 | 0.004500 | 0.2779 | 0.8825 |
+#&gt; |.....................| 9.702 | 1.428 | 0.03199 | 0.7993 |
+#&gt; |.....................| 0.7344 | 1.426 | 1.191 | 1.240 |
+#&gt; |<span style='font-weight: bold;'> 46</span>| 477.60836 | 1.003 | -1.228 | -0.9400 | -0.9346 |
+#&gt; |.....................| -0.8912 | -0.2901 | -0.7784 | -0.7332 |
+#&gt; |.....................| -1.206 | -0.6258 | -0.7257 | -0.6466 |
+#&gt; | U| 477.60836 | 93.40 | -5.531 | -0.9712 | -0.1467 |
+#&gt; |.....................| 2.245 | 1.495 | 0.03176 | 0.8667 |
+#&gt; |.....................| 0.5843 | 1.507 | 1.224 | 1.312 |
+#&gt; | X|<span style='font-weight: bold;'> 477.60836</span> | 93.40 | 0.003961 | 0.2746 | 0.8635 |
+#&gt; |.....................| 9.444 | 1.495 | 0.03176 | 0.8667 |
+#&gt; |.....................| 0.5843 | 1.507 | 1.224 | 1.312 |
+#&gt; | F| Forward Diff. | 50.81 | 0.8332 | 0.6263 | 0.04339 |
+#&gt; |.....................| 0.5543 | -9.740 | -2.969 | 0.1978 |
+#&gt; |.....................| -10.28 | -2.761 | -1.505 | -1.849 |
+#&gt; |<span style='font-weight: bold;'> 47</span>| 476.77966 | 1.006 | -1.398 | -0.9862 | -0.9532 |
+#&gt; |.....................| -0.9413 | -0.07616 | -0.7687 | -0.6374 |
+#&gt; |.....................| -0.9573 | -0.5395 | -0.7103 | -0.5930 |
+#&gt; | U| 476.77966 | 93.71 | -5.701 | -1.015 | -0.1654 |
+#&gt; |.....................| 2.195 | 1.619 | 0.03190 | 0.9393 |
+#&gt; |.....................| 0.8014 | 1.612 | 1.240 | 1.369 |
+#&gt; | X|<span style='font-weight: bold;'> 476.77966</span> | 93.71 | 0.003342 | 0.2660 | 0.8476 |
+#&gt; |.....................| 8.982 | 1.619 | 0.03190 | 0.9393 |
+#&gt; |.....................| 0.8014 | 1.612 | 1.240 | 1.369 |
+#&gt; | F| Forward Diff. | 100.8 | 0.5681 | -2.148 | -0.2910 |
+#&gt; |.....................| -0.6169 | 0.8458 | 0.8586 | 0.3650 |
+#&gt; |.....................| 3.820 | 1.443 | -0.7364 | 0.2440 |
+#&gt; |<span style='font-weight: bold;'> 48</span>| 478.65806 | 0.9952 | -1.512 | -0.6913 | -0.9031 |
+#&gt; |.....................| -0.8317 | -0.01918 | -0.7109 | -0.6555 |
+#&gt; |.....................| -0.9083 | -0.7021 | -0.6121 | -0.6260 |
+#&gt; | U| 478.65806 | 92.67 | -5.815 | -0.7363 | -0.1152 |
+#&gt; |.....................| 2.305 | 1.652 | 0.03277 | 0.9255 |
+#&gt; |.....................| 0.8442 | 1.414 | 1.345 | 1.334 |
+#&gt; | X|<span style='font-weight: bold;'> 478.65806</span> | 92.67 | 0.002982 | 0.3238 | 0.8912 |
+#&gt; |.....................| 10.02 | 1.652 | 0.03277 | 0.9255 |
+#&gt; |.....................| 0.8442 | 1.414 | 1.345 | 1.334 |
+#&gt; |<span style='font-weight: bold;'> 49</span>| 476.83500 | 0.9931 | -1.426 | -0.9118 | -0.9406 |
+#&gt; |.....................| -0.9137 | -0.06192 | -0.7543 | -0.6420 |
+#&gt; |.....................| -0.9454 | -0.5805 | -0.6855 | -0.6013 |
+#&gt; | U| 476.835 | 92.48 | -5.730 | -0.9445 | -0.1527 |
+#&gt; |.....................| 2.223 | 1.627 | 0.03212 | 0.9358 |
+#&gt; |.....................| 0.8118 | 1.562 | 1.267 | 1.361 |
+#&gt; | X|<span style='font-weight: bold;'> 476.835</span> | 92.48 | 0.003247 | 0.2800 | 0.8584 |
+#&gt; |.....................| 9.234 | 1.627 | 0.03212 | 0.9358 |
+#&gt; |.....................| 0.8118 | 1.562 | 1.267 | 1.361 |
+#&gt; |<span style='font-weight: bold;'> 50</span>| 476.86775 | 0.9928 | -1.411 | -0.9513 | -0.9473 |
+#&gt; |.....................| -0.9284 | -0.06958 | -0.7620 | -0.6396 |
+#&gt; |.....................| -0.9520 | -0.5587 | -0.6987 | -0.5969 |
+#&gt; | U| 476.86775 | 92.44 | -5.715 | -0.9819 | -0.1595 |
+#&gt; |.....................| 2.208 | 1.623 | 0.03200 | 0.9376 |
+#&gt; |.....................| 0.8060 | 1.588 | 1.252 | 1.365 |
+#&gt; | X|<span style='font-weight: bold;'> 476.86775</span> | 92.44 | 0.003297 | 0.2725 | 0.8526 |
+#&gt; |.....................| 9.099 | 1.623 | 0.03200 | 0.9376 |
+#&gt; |.....................| 0.8060 | 1.588 | 1.252 | 1.365 |
+#&gt; |<span style='font-weight: bold;'> 51</span>| 476.94436 | 0.9926 | -1.403 | -0.9724 | -0.9509 |
+#&gt; |.....................| -0.9362 | -0.07366 | -0.7662 | -0.6383 |
+#&gt; |.....................| -0.9556 | -0.5471 | -0.7057 | -0.5945 |
+#&gt; | U| 476.94436 | 92.42 | -5.706 | -1.002 | -0.1630 |
+#&gt; |.....................| 2.200 | 1.621 | 0.03194 | 0.9386 |
+#&gt; |.....................| 0.8029 | 1.602 | 1.245 | 1.368 |
+#&gt; | X|<span style='font-weight: bold;'> 476.94436</span> | 92.42 | 0.003324 | 0.2686 | 0.8496 |
+#&gt; |.....................| 9.028 | 1.621 | 0.03194 | 0.9386 |
+#&gt; |.....................| 0.8029 | 1.602 | 1.245 | 1.368 |
+#&gt; |<span style='font-weight: bold;'> 52</span>| 476.64580 | 0.9959 | -1.398 | -0.9860 | -0.9532 |
+#&gt; |.....................| -0.9413 | -0.07625 | -0.7688 | -0.6374 |
+#&gt; |.....................| -0.9577 | -0.5396 | -0.7102 | -0.5930 |
+#&gt; | U| 476.6458 | 92.74 | -5.701 | -1.015 | -0.1653 |
+#&gt; |.....................| 2.195 | 1.619 | 0.03190 | 0.9392 |
+#&gt; |.....................| 0.8011 | 1.611 | 1.240 | 1.369 |
+#&gt; | X|<span style='font-weight: bold;'> 476.6458</span> | 92.74 | 0.003342 | 0.2661 | 0.8476 |
+#&gt; |.....................| 8.983 | 1.619 | 0.03190 | 0.9392 |
+#&gt; |.....................| 0.8011 | 1.611 | 1.240 | 1.369 |
+#&gt; | F| Forward Diff. | -76.03 | 0.4748 | -3.401 | -0.5335 |
+#&gt; |.....................| -1.858 | 1.570 | -0.1336 | 0.2990 |
+#&gt; |.....................| 3.107 | 1.921 | -0.6340 | 0.6252 |
+#&gt; |<span style='font-weight: bold;'> 53</span>| 476.45477 | 1.000 | -1.400 | -0.9787 | -0.9521 |
+#&gt; |.....................| -0.9380 | -0.07508 | -0.7683 | -0.6381 |
+#&gt; |.....................| -0.9567 | -0.5427 | -0.7079 | -0.5935 |
+#&gt; | U| 476.45477 | 93.14 | -5.704 | -1.008 | -0.1642 |
+#&gt; |.....................| 2.199 | 1.620 | 0.03191 | 0.9387 |
+#&gt; |.....................| 0.8019 | 1.608 | 1.243 | 1.369 |
+#&gt; | X|<span style='font-weight: bold;'> 476.45477</span> | 93.14 | 0.003334 | 0.2674 | 0.8486 |
+#&gt; |.....................| 9.012 | 1.620 | 0.03191 | 0.9387 |
+#&gt; |.....................| 0.8019 | 1.608 | 1.243 | 1.369 |
+#&gt; | F| Forward Diff. | 0.2803 | 0.4975 | -2.426 | -0.4122 |
+#&gt; |.....................| -1.237 | 1.245 | 0.3711 | 0.1250 |
+#&gt; |.....................| 4.601 | 1.480 | -0.5654 | 0.4236 |
+#&gt; |<span style='font-weight: bold;'> 54</span>| 476.38303 | 0.9998 | -1.401 | -0.9743 | -0.9513 |
+#&gt; |.....................| -0.9358 | -0.07732 | -0.7690 | -0.6383 |
+#&gt; |.....................| -0.9650 | -0.5454 | -0.7069 | -0.5943 |
+#&gt; | U| 476.38303 | 93.10 | -5.704 | -1.004 | -0.1635 |
+#&gt; |.....................| 2.201 | 1.618 | 0.03190 | 0.9385 |
+#&gt; |.....................| 0.7947 | 1.604 | 1.244 | 1.368 |
+#&gt; | X|<span style='font-weight: bold;'> 476.38303</span> | 93.10 | 0.003331 | 0.2682 | 0.8492 |
+#&gt; |.....................| 9.032 | 1.618 | 0.03190 | 0.9385 |
+#&gt; |.....................| 0.7947 | 1.604 | 1.244 | 1.368 |
+#&gt; |<span style='font-weight: bold;'> 55</span>| 476.22864 | 0.9983 | -1.404 | -0.9612 | -0.9491 |
+#&gt; |.....................| -0.9291 | -0.08404 | -0.7710 | -0.6390 |
+#&gt; |.....................| -0.9898 | -0.5533 | -0.7039 | -0.5966 |
+#&gt; | U| 476.22864 | 92.96 | -5.707 | -0.9912 | -0.1612 |
+#&gt; |.....................| 2.207 | 1.614 | 0.03187 | 0.9380 |
+#&gt; |.....................| 0.7730 | 1.595 | 1.247 | 1.366 |
+#&gt; | X|<span style='font-weight: bold;'> 476.22864</span> | 92.96 | 0.003322 | 0.2707 | 0.8511 |
+#&gt; |.....................| 9.093 | 1.614 | 0.03187 | 0.9380 |
+#&gt; |.....................| 0.7730 | 1.595 | 1.247 | 1.366 |
+#&gt; |<span style='font-weight: bold;'> 56</span>| 476.57199 | 0.9958 | -1.445 | -0.8532 | -0.9271 |
+#&gt; |.....................| -0.8725 | -0.06353 | -0.7679 | -0.6421 |
+#&gt; |.....................| -0.9751 | -0.5970 | -0.6712 | -0.6082 |
+#&gt; | U| 476.57199 | 92.73 | -5.749 | -0.8892 | -0.1393 |
+#&gt; |.....................| 2.264 | 1.626 | 0.03191 | 0.9357 |
+#&gt; |.....................| 0.7859 | 1.542 | 1.282 | 1.353 |
+#&gt; | X|<span style='font-weight: bold;'> 476.57199</span> | 92.73 | 0.003186 | 0.2913 | 0.8700 |
+#&gt; |.....................| 9.623 | 1.626 | 0.03191 | 0.9357 |
+#&gt; |.....................| 0.7859 | 1.542 | 1.282 | 1.353 |
+#&gt; | F| Forward Diff. | -32.75 | 0.5399 | -1.515 | -0.3941 |
+#&gt; |.....................| -1.151 | 1.245 | 0.03890 | 0.2327 |
+#&gt; |.....................| 2.518 | 0.9004 | -0.2852 | 0.3306 |
+#&gt; |<span style='font-weight: bold;'> 57</span>| 476.21990 | 0.9982 | -1.515 | -0.9538 | -0.8974 |
+#&gt; |.....................| -0.8289 | -0.1020 | -0.7526 | -0.6734 |
+#&gt; |.....................| -0.9899 | -0.5334 | -0.6863 | -0.5986 |
+#&gt; | U| 476.2199 | 92.95 | -5.819 | -0.9842 | -0.1096 |
+#&gt; |.....................| 2.308 | 1.604 | 0.03214 | 0.9120 |
+#&gt; |.....................| 0.7729 | 1.619 | 1.266 | 1.364 |
+#&gt; | X|<span style='font-weight: bold;'> 476.2199</span> | 92.95 | 0.002972 | 0.2721 | 0.8962 |
+#&gt; |.....................| 10.05 | 1.604 | 0.03214 | 0.9120 |
+#&gt; |.....................| 0.7729 | 1.619 | 1.266 | 1.364 |
+#&gt; | F| Forward Diff. | -17.29 | 0.1752 | -1.213 | 0.7541 |
+#&gt; |.....................| 1.907 | 0.8055 | -0.1948 | -0.02118 |
+#&gt; |.....................| 1.522 | 1.784 | 0.5826 | 0.3001 |
+#&gt; |<span style='font-weight: bold;'> 58</span>| 476.15328 | 0.9997 | -1.587 | -0.9380 | -0.8926 |
+#&gt; |.....................| -0.8393 | -0.1057 | -0.7294 | -0.6920 |
+#&gt; |.....................| -0.9908 | -0.5546 | -0.6943 | -0.5998 |
+#&gt; | U| 476.15328 | 93.09 | -5.890 | -0.9693 | -0.1048 |
+#&gt; |.....................| 2.297 | 1.602 | 0.03249 | 0.8979 |
+#&gt; |.....................| 0.7721 | 1.593 | 1.257 | 1.362 |
+#&gt; | X|<span style='font-weight: bold;'> 476.15328</span> | 93.09 | 0.002766 | 0.2750 | 0.9005 |
+#&gt; |.....................| 9.947 | 1.602 | 0.03249 | 0.8979 |
+#&gt; |.....................| 0.7721 | 1.593 | 1.257 | 1.362 |
+#&gt; | F| Forward Diff. | 9.478 | -0.04668 | -0.07764 | 0.8847 |
+#&gt; |.....................| 1.686 | 1.059 | 0.2200 | -0.09397 |
+#&gt; |.....................| 3.078 | 0.7416 | 0.1570 | 0.2315 |
+#&gt; |<span style='font-weight: bold;'> 59</span>| 476.01802 | 1.000 | -1.651 | -0.9570 | -0.8992 |
+#&gt; |.....................| -0.8607 | -0.1274 | -0.7088 | -0.7141 |
+#&gt; |.....................| -1.015 | -0.5543 | -0.6984 | -0.6027 |
+#&gt; | U| 476.01802 | 93.12 | -5.954 | -0.9872 | -0.1113 |
+#&gt; |.....................| 2.276 | 1.589 | 0.03280 | 0.8811 |
+#&gt; |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
+#&gt; | X|<span style='font-weight: bold;'> 476.01802</span> | 93.12 | 0.002594 | 0.2715 | 0.8947 |
+#&gt; |.....................| 9.736 | 1.589 | 0.03280 | 0.8811 |
+#&gt; |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
+#&gt; |<span style='font-weight: bold;'> 60</span>| 476.22711 | 1.004 | -1.844 | -1.014 | -0.9185 |
+#&gt; |.....................| -0.9244 | -0.1921 | -0.6470 | -0.7805 |
+#&gt; |.....................| -1.085 | -0.5529 | -0.7106 | -0.6114 |
+#&gt; | U| 476.22711 | 93.52 | -6.147 | -1.041 | -0.1307 |
+#&gt; |.....................| 2.212 | 1.552 | 0.03373 | 0.8308 |
+#&gt; |.....................| 0.6895 | 1.595 | 1.240 | 1.350 |
+#&gt; | X|<span style='font-weight: bold;'> 476.22711</span> | 93.52 | 0.002140 | 0.2610 | 0.8775 |
+#&gt; |.....................| 9.136 | 1.552 | 0.03373 | 0.8308 |
+#&gt; |.....................| 0.6895 | 1.595 | 1.240 | 1.350 |
+#&gt; | F| Forward Diff. | 11.37 | -0.1053 | -1.010 | 0.7448 |
+#&gt; |.....................| 1.048 | 0.2820 | 0.2022 | -0.3140 |
+#&gt; |.....................| 0.8239 | 0.7199 | -0.08354 | 0.05077 |
+#&gt; |<span style='font-weight: bold;'> 61</span>| 477.73164 | 0.9986 | -1.783 | -0.8482 | -1.092 |
+#&gt; |.....................| -0.9355 | -0.2068 | -0.7199 | -0.6608 |
+#&gt; |.....................| -1.022 | -0.4554 | -0.5612 | -0.5707 |
+#&gt; | U| 477.73164 | 92.99 | -6.086 | -0.8845 | -0.3044 |
+#&gt; |.....................| 2.201 | 1.543 | 0.03264 | 0.9215 |
+#&gt; |.....................| 0.7445 | 1.714 | 1.399 | 1.393 |
+#&gt; | X|<span style='font-weight: bold;'> 477.73164</span> | 92.99 | 0.002274 | 0.2922 | 0.7376 |
+#&gt; |.....................| 9.035 | 1.543 | 0.03264 | 0.9215 |
+#&gt; |.....................| 0.7445 | 1.714 | 1.399 | 1.393 |
+#&gt; |<span style='font-weight: bold;'> 62</span>| 476.07192 | 0.9962 | -1.664 | -0.9459 | -0.9184 |
+#&gt; |.....................| -0.8684 | -0.1353 | -0.7100 | -0.7087 |
+#&gt; |.....................| -1.016 | -0.5448 | -0.6848 | -0.5995 |
+#&gt; | U| 476.07192 | 92.76 | -5.967 | -0.9768 | -0.1306 |
+#&gt; |.....................| 2.268 | 1.585 | 0.03278 | 0.8852 |
+#&gt; |.....................| 0.7503 | 1.605 | 1.267 | 1.362 |
+#&gt; | X|<span style='font-weight: bold;'> 476.07192</span> | 92.76 | 0.002561 | 0.2735 | 0.8776 |
+#&gt; |.....................| 9.662 | 1.585 | 0.03278 | 0.8852 |
+#&gt; |.....................| 0.7503 | 1.605 | 1.267 | 1.362 |
+#&gt; |<span style='font-weight: bold;'> 63</span>| 476.10587 | 0.9957 | -1.654 | -0.9539 | -0.9043 |
+#&gt; |.....................| -0.8630 | -0.1295 | -0.7092 | -0.7126 |
+#&gt; |.....................| -1.015 | -0.5521 | -0.6949 | -0.6019 |
+#&gt; | U| 476.10587 | 92.72 | -5.958 | -0.9843 | -0.1164 |
+#&gt; |.....................| 2.274 | 1.588 | 0.03280 | 0.8822 |
+#&gt; |.....................| 0.7508 | 1.596 | 1.257 | 1.360 |
+#&gt; | X|<span style='font-weight: bold;'> 476.10587</span> | 92.72 | 0.002586 | 0.2720 | 0.8901 |
+#&gt; |.....................| 9.714 | 1.588 | 0.03280 | 0.8822 |
+#&gt; |.....................| 0.7508 | 1.596 | 1.257 | 1.360 |
+#&gt; |<span style='font-weight: bold;'> 64</span>| 476.02413 | 0.9981 | -1.651 | -0.9568 | -0.8993 |
+#&gt; |.....................| -0.8609 | -0.1274 | -0.7088 | -0.7140 |
+#&gt; |.....................| -1.015 | -0.5544 | -0.6984 | -0.6027 |
+#&gt; | U| 476.02413 | 92.94 | -5.954 | -0.9870 | -0.1114 |
+#&gt; |.....................| 2.276 | 1.589 | 0.03280 | 0.8812 |
+#&gt; |.....................| 0.7511 | 1.593 | 1.253 | 1.359 |
+#&gt; | X|<span style='font-weight: bold;'> 476.02413</span> | 92.94 | 0.002594 | 0.2715 | 0.8946 |
+#&gt; |.....................| 9.735 | 1.589 | 0.03280 | 0.8812 |
+#&gt; |.....................| 0.7511 | 1.593 | 1.253 | 1.359 |
+#&gt; |<span style='font-weight: bold;'> 65</span>| 476.01367 | 0.9993 | -1.651 | -0.9569 | -0.8992 |
+#&gt; |.....................| -0.8608 | -0.1274 | -0.7088 | -0.7141 |
+#&gt; |.....................| -1.015 | -0.5543 | -0.6984 | -0.6027 |
+#&gt; | U| 476.01367 | 93.05 | -5.954 | -0.9871 | -0.1114 |
+#&gt; |.....................| 2.276 | 1.589 | 0.03280 | 0.8812 |
+#&gt; |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
+#&gt; | X|<span style='font-weight: bold;'> 476.01367</span> | 93.05 | 0.002594 | 0.2715 | 0.8946 |
+#&gt; |.....................| 9.736 | 1.589 | 0.03280 | 0.8812 |
+#&gt; |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
+#&gt; | F| Forward Diff. | -0.2880 | -0.1104 | -1.088 | 0.7255 |
+#&gt; |.....................| 0.9655 | -0.09765 | 0.02713 | -0.4308 |
+#&gt; |.....................| 1.898 | 0.6709 | -0.08067 | 0.06084 |
+#&gt; |<span style='font-weight: bold;'> 66</span>| 476.01068 | 0.9993 | -1.651 | -0.9566 | -0.8994 |
+#&gt; |.....................| -0.8610 | -0.1274 | -0.7088 | -0.7139 |
+#&gt; |.....................| -1.015 | -0.5545 | -0.6983 | -0.6027 |
+#&gt; | U| 476.01068 | 93.06 | -5.954 | -0.9868 | -0.1116 |
+#&gt; |.....................| 2.276 | 1.589 | 0.03280 | 0.8813 |
+#&gt; |.....................| 0.7507 | 1.593 | 1.253 | 1.359 |
+#&gt; | X|<span style='font-weight: bold;'> 476.01068</span> | 93.06 | 0.002595 | 0.2715 | 0.8944 |
+#&gt; |.....................| 9.733 | 1.589 | 0.03280 | 0.8813 |
+#&gt; |.....................| 0.7507 | 1.593 | 1.253 | 1.359 |
+#&gt; |<span style='font-weight: bold;'> 67</span>| 476.00249 | 0.9996 | -1.651 | -0.9556 | -0.9000 |
+#&gt; |.....................| -0.8619 | -0.1273 | -0.7089 | -0.7136 |
+#&gt; |.....................| -1.017 | -0.5551 | -0.6983 | -0.6027 |
+#&gt; | U| 476.00249 | 93.08 | -5.954 | -0.9860 | -0.1122 |
+#&gt; |.....................| 2.275 | 1.589 | 0.03280 | 0.8815 |
+#&gt; |.....................| 0.7493 | 1.593 | 1.253 | 1.359 |
+#&gt; | X|<span style='font-weight: bold;'> 476.00249</span> | 93.08 | 0.002595 | 0.2717 | 0.8939 |
+#&gt; |.....................| 9.725 | 1.589 | 0.03280 | 0.8815 |
+#&gt; |.....................| 0.7493 | 1.593 | 1.253 | 1.359 |
+#&gt; |<span style='font-weight: bold;'> 68</span>| 475.98648 | 0.9997 | -1.654 | -0.9518 | -0.9062 |
+#&gt; |.....................| -0.8643 | -0.1288 | -0.7101 | -0.7095 |
+#&gt; |.....................| -1.019 | -0.5521 | -0.6956 | -0.6031 |
+#&gt; | U| 475.98648 | 93.09 | -5.957 | -0.9823 | -0.1183 |
+#&gt; |.....................| 2.272 | 1.589 | 0.03278 | 0.8846 |
+#&gt; |.....................| 0.7477 | 1.596 | 1.256 | 1.359 |
+#&gt; | X|<span style='font-weight: bold;'> 475.98648</span> | 93.09 | 0.002587 | 0.2724 | 0.8884 |
+#&gt; |.....................| 9.702 | 1.589 | 0.03278 | 0.8846 |
+#&gt; |.....................| 0.7477 | 1.596 | 1.256 | 1.359 |
+#&gt; |<span style='font-weight: bold;'> 69</span>| 475.97179 | 0.9994 | -1.666 | -0.9399 | -0.9282 |
+#&gt; |.....................| -0.8710 | -0.1347 | -0.7147 | -0.6948 |
+#&gt; |.....................| -1.020 | -0.5387 | -0.6854 | -0.6045 |
+#&gt; | U| 475.97179 | 93.06 | -5.969 | -0.9711 | -0.1404 |
+#&gt; |.....................| 2.266 | 1.585 | 0.03271 | 0.8957 |
+#&gt; |.....................| 0.7463 | 1.612 | 1.267 | 1.357 |
+#&gt; | X|<span style='font-weight: bold;'> 475.97179</span> | 93.06 | 0.002557 | 0.2747 | 0.8690 |
+#&gt; |.....................| 9.637 | 1.585 | 0.03271 | 0.8957 |
+#&gt; |.....................| 0.7463 | 1.612 | 1.267 | 1.357 |
+#&gt; | F| Forward Diff. | 1.543 | -0.1187 | -0.09427 | 0.04746 |
+#&gt; |.....................| 0.7019 | 0.1743 | 0.004057 | -0.1664 |
+#&gt; |.....................| 1.824 | 1.487 | 0.8060 | -0.1087 |
+#&gt; |<span style='font-weight: bold;'> 70</span>| 475.93640 | 0.9984 | -1.664 | -0.9398 | -0.9470 |
+#&gt; |.....................| -0.8662 | -0.1315 | -0.7271 | -0.6595 |
+#&gt; |.....................| -1.030 | -0.5499 | -0.6986 | -0.5913 |
+#&gt; | U| 475.9364 | 92.96 | -5.967 | -0.9710 | -0.1592 |
+#&gt; |.....................| 2.270 | 1.587 | 0.03253 | 0.9225 |
+#&gt; |.....................| 0.7382 | 1.599 | 1.253 | 1.371 |
+#&gt; | X|<span style='font-weight: bold;'> 475.9364</span> | 92.96 | 0.002561 | 0.2747 | 0.8529 |
+#&gt; |.....................| 9.682 | 1.587 | 0.03253 | 0.9225 |
+#&gt; |.....................| 0.7382 | 1.599 | 1.253 | 1.371 |
+#&gt; | F| Forward Diff. | -18.02 | -0.07507 | -0.1675 | -0.4306 |
+#&gt; |.....................| 0.8222 | -0.4249 | -0.3576 | -0.06909 |
+#&gt; |.....................| -0.1553 | 0.7789 | -0.06902 | 0.4423 |
+#&gt; |<span style='font-weight: bold;'> 71</span>| 475.93449 | 0.9995 | -1.655 | -0.9484 | -0.9330 |
+#&gt; |.....................| -0.8784 | -0.1258 | -0.7357 | -0.6330 |
+#&gt; |.....................| -1.033 | -0.5716 | -0.6758 | -0.5988 |
+#&gt; | U| 475.93449 | 93.07 | -5.959 | -0.9791 | -0.1451 |
+#&gt; |.....................| 2.258 | 1.590 | 0.03240 | 0.9426 |
+#&gt; |.....................| 0.7351 | 1.573 | 1.277 | 1.363 |
+#&gt; | X|<span style='font-weight: bold;'> 475.93449</span> | 93.07 | 0.002583 | 0.2731 | 0.8649 |
+#&gt; |.....................| 9.566 | 1.590 | 0.03240 | 0.9426 |
+#&gt; |.....................| 0.7351 | 1.573 | 1.277 | 1.363 |
+#&gt; | F| Forward Diff. | -1.432 | -0.03245 | -0.4539 | -0.04331 |
+#&gt; |.....................| 0.5695 | -0.03993 | -0.2223 | 0.1396 |
+#&gt; |.....................| -0.3709 | -0.08203 | 1.409 | 0.03273 |
+#&gt; |<span style='font-weight: bold;'> 72</span>| 475.92305 | 1.001 | -1.648 | -0.9418 | -0.9189 |
+#&gt; |.....................| -0.8867 | -0.1240 | -0.7358 | -0.6284 |
+#&gt; |.....................| -1.035 | -0.5652 | -0.6857 | -0.6066 |
+#&gt; | U| 475.92305 | 93.18 | -5.952 | -0.9729 | -0.1311 |
+#&gt; |.....................| 2.250 | 1.591 | 0.03240 | 0.9461 |
+#&gt; |.....................| 0.7335 | 1.580 | 1.266 | 1.355 |
+#&gt; | X|<span style='font-weight: bold;'> 475.92305</span> | 93.18 | 0.002602 | 0.2743 | 0.8772 |
+#&gt; |.....................| 9.486 | 1.591 | 0.03240 | 0.9461 |
+#&gt; |.....................| 0.7335 | 1.580 | 1.266 | 1.355 |
+#&gt; | F| Forward Diff. | 18.31 | 0.001701 | 0.03033 | 0.3531 |
+#&gt; |.....................| 0.4204 | 0.05655 | -0.08057 | 0.1734 |
+#&gt; |.....................| -0.4632 | 0.1099 | 0.8178 | -0.3689 |
+#&gt; |<span style='font-weight: bold;'> 73</span>| 475.91938 | 0.9986 | -1.638 | -0.9366 | -0.9070 |
+#&gt; |.....................| -0.8945 | -0.1236 | -0.7244 | -0.6267 |
+#&gt; |.....................| -1.037 | -0.5623 | -0.6914 | -0.6147 |
+#&gt; | U| 475.91938 | 92.99 | -5.941 | -0.9680 | -0.1192 |
+#&gt; |.....................| 2.242 | 1.592 | 0.03257 | 0.9474 |
+#&gt; |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
+#&gt; | X|<span style='font-weight: bold;'> 475.91938</span> | 92.99 | 0.002629 | 0.2753 | 0.8877 |
+#&gt; |.....................| 9.412 | 1.592 | 0.03257 | 0.9474 |
+#&gt; |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
+#&gt; | F| Forward Diff. | -15.99 | 0.01876 | 0.07238 | 0.5908 |
+#&gt; |.....................| -0.09055 | 0.2914 | -0.2119 | 0.1409 |
+#&gt; |.....................| 0.4365 | 0.1061 | 0.4376 | -0.5157 |
+#&gt; |<span style='font-weight: bold;'> 74</span>| 475.91938 | 0.9986 | -1.638 | -0.9366 | -0.9070 |
+#&gt; |.....................| -0.8945 | -0.1236 | -0.7244 | -0.6267 |
+#&gt; |.....................| -1.037 | -0.5623 | -0.6914 | -0.6147 |
+#&gt; | U| 475.91938 | 92.99 | -5.941 | -0.9680 | -0.1192 |
+#&gt; |.....................| 2.242 | 1.592 | 0.03257 | 0.9474 |
+#&gt; |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
+#&gt; | X|<span style='font-weight: bold;'> 475.91938</span> | 92.99 | 0.002629 | 0.2753 | 0.8877 |
+#&gt; |.....................| 9.412 | 1.592 | 0.03257 | 0.9474 |
+#&gt; |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#&gt; |.....................| log_k2 | g_qlogis | sigma_low | rsd_high |
+#&gt; |.....................| o1 | o2 | o3 | o4 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o5 | o6 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 495.80376 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 495.80376 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 495.80376</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | G| Gill Diff. | 40.10 | 2.344 | -0.09792 | 0.01304 |
+#&gt; |.....................| -0.4854 | 0.6353 | -29.93 | -20.00 |
+#&gt; |.....................| 1.261 | 9.993 | -12.68 | -0.7774 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 8.106 | -12.55 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 2936.2793 | 0.3119 | -1.040 | -0.9093 | -0.9382 |
+#&gt; |.....................| -0.9801 | -0.8941 | -0.3619 | -0.5483 |
+#&gt; |.....................| -0.8992 | -1.046 | -0.6506 | -0.8594 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.014 | -0.6521 |...........|...........|</span>
+#&gt; | U| 2936.2793 | 28.54 | -5.229 | -0.8860 | -2.190 |
+#&gt; |.....................| -4.622 | 0.4539 | 1.041 | 0.06759 |
+#&gt; |.....................| 0.7138 | 0.7431 | 1.443 | 0.9756 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7388 | 1.478 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 2936.2793</span> | 28.54 | 0.005360 | 0.2919 | 0.1119 |
+#&gt; |.....................| 0.009832 | 0.6116 | 1.041 | 0.06759 |
+#&gt; |.....................| 0.7138 | 0.7431 | 1.443 | 0.9756 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7388 | 1.478 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 515.54714 | 0.9312 | -1.004 | -0.9108 | -0.9380 |
+#&gt; |.....................| -0.9876 | -0.8843 | -0.8242 | -0.8571 |
+#&gt; |.....................| -0.8797 | -0.8912 | -0.8464 | -0.8714 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8888 | -0.8460 |...........|...........|</span>
+#&gt; | U| 515.54714 | 85.19 | -5.193 | -0.8873 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4584 | 0.8493 | 0.05868 |
+#&gt; |.....................| 0.7280 | 0.8815 | 1.211 | 0.9641 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8462 | 1.242 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 515.54714</span> | 85.19 | 0.005557 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009758 | 0.6126 | 0.8493 | 0.05868 |
+#&gt; |.....................| 0.7280 | 0.8815 | 1.211 | 0.9641 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8462 | 1.242 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 501.46574 | 0.9922 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9884 | -0.8833 | -0.8697 | -0.8876 |
+#&gt; |.....................| -0.8778 | -0.8761 | -0.8657 | -0.8726 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8765 | -0.8650 |...........|...........|</span>
+#&gt; | U| 501.46574 | 90.77 | -5.189 | -0.8874 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8304 | 0.05781 |
+#&gt; |.....................| 0.7294 | 0.8952 | 1.188 | 0.9629 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8568 | 1.219 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.46574</span> | 90.77 | 0.005577 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009751 | 0.6127 | 0.8304 | 0.05781 |
+#&gt; |.....................| 0.7294 | 0.8952 | 1.188 | 0.9629 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8568 | 1.219 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 501.84206 | 0.9992 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9884 | -0.8832 | -0.8749 | -0.8911 |
+#&gt; |.....................| -0.8776 | -0.8743 | -0.8679 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8751 | -0.8673 |...........|...........|</span>
+#&gt; | U| 501.84206 | 91.41 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8283 | 0.05771 |
+#&gt; |.....................| 0.7296 | 0.8967 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8580 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.84206</span> | 91.41 | 0.005579 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8283 | 0.05771 |
+#&gt; |.....................| 0.7296 | 0.8967 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8580 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 501.90183 | 0.9999 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8914 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90183 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05770 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90183</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05770 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 501.90808 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90808 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90808</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 501.90873 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90873 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90873</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 501.90880 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.9088 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.9088</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 501.90881 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90881 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90881</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90882</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90882</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90882</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90882</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90882</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 501.90883 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90883 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90883</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 501.90883 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8749 | -0.8675 |...........|...........|</span>
+#&gt; | U| 501.90883 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.90883</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8582 | 1.216 |...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
<span class='co'># Two-component error by variable is possible with both estimation methods</span>
<span class='co'># Variance by variable is supported by 'saem' and 'focei'</span>
<span class='va'>f_nlmixr_fomc_sfo_saem_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 0.775 0.024 0.799</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; 1: 92.2740 -5.2361 0.2113 1.9393 -2.0029 2.8805 1.6298 0.7279 0.7192 0.4382 6.7264 0.4769 7.2363 0.6178
+#&gt; 2: 93.1532 -5.3060 0.0602 2.0735 -2.0177 2.7365 1.5483 0.6915 0.8577 0.4163 7.5229 0.0003 8.5494 0.0006
+#&gt; 3: 9.3232e+01 -5.5491e+00 5.1555e-02 2.4627e+00 -1.4981e+00 2.5997e+00 1.4709e+00 6.5697e-01 8.1480e-01 3.9549e-01 4.6581e+00 4.3492e-05 5.3112e+00 1.7818e-04
+#&gt; 4: 9.3109e+01 -5.6749e+00 3.7928e-02 2.4274e+00 -1.3355e+00 2.4697e+00 1.3973e+00 6.2412e-01 7.7406e-01 3.7572e-01 3.5252e+00 9.5643e-05 4.0990e+00 4.6584e-05
+#&gt; 5: 9.3327e+01 -5.8341e+00 -1.6798e-02 2.4024e+00 -1.2129e+00 2.3462e+00 1.3274e+00 5.9292e-01 7.3536e-01 3.5693e-01 3.3259e+00 1.6901e-05 3.5218e+00 4.0075e-05
+#&gt; 6: 9.3449e+01 -6.0745e+00 -6.1031e-02 2.3458e+00 -1.2034e+00 2.2289e+00 1.8700e+00 5.6327e-01 6.9859e-01 3.3908e-01 2.9533e+00 6.5587e-07 3.1056e+00 2.1346e-02
+#&gt; 7: 93.2519 -6.0564 -0.0590 2.3588 -1.1293 2.1174 1.8910 0.5351 0.6637 0.3221 2.8211 0.0082 2.8507 0.0251
+#&gt; 8: 93.0343 -5.9362 -0.0851 2.2949 -1.0760 2.0116 1.7964 0.5084 0.6305 0.3060 2.5340 0.0181 2.6368 0.0243
+#&gt; 9: 93.1444 -6.1910 -0.1199 2.2709 -1.1077 1.9110 1.8664 0.4829 0.5990 0.2907 2.3768 0.0191 2.3601 0.0284
+#&gt; 10: 93.2748 -6.4970 -0.1598 2.2235 -1.1034 2.1024 3.1968 0.4588 0.5690 0.2762 2.1991 0.0255 2.2790 0.0316
+#&gt; 11: 93.4141 -6.4463 -0.1698 2.1876 -1.0890 1.9973 3.0370 0.4358 0.5406 0.2624 2.1469 0.0266 2.1681 0.0325
+#&gt; 12: 93.4935 -6.5467 -0.1715 2.1666 -1.0952 1.8974 3.7848 0.4141 0.5135 0.2493 1.9137 0.0292 2.0701 0.0331
+#&gt; 13: 93.6730 -6.4173 -0.1752 2.1387 -1.0753 1.8026 3.7278 0.3934 0.4879 0.2368 1.9084 0.0272 2.0289 0.0369
+#&gt; 14: 93.5721 -6.2146 -0.1738 2.1854 -1.0740 2.0902 3.5415 0.3737 0.4635 0.2250 1.9861 0.0239 2.0052 0.0347
+#&gt; 15: 93.6638 -6.3103 -0.1693 2.1828 -1.0327 2.0702 3.3644 0.3720 0.4403 0.2137 1.8947 0.0247 1.9865 0.0375
+#&gt; 16: 93.4156 -6.0957 -0.1666 2.1755 -1.0737 2.6391 3.1962 0.3691 0.4183 0.2030 1.9089 0.0241 2.0159 0.0360
+#&gt; 17: 93.4257 -6.1494 -0.1705 2.1664 -1.0589 2.5072 3.0714 0.3697 0.3974 0.1929 1.8253 0.0268 2.0391 0.0301
+#&gt; 18: 93.5593 -6.1696 -0.1780 2.1670 -1.0129 2.3818 3.7604 0.3725 0.3775 0.1832 1.8529 0.0304 1.8784 0.0298
+#&gt; 19: 93.5027 -6.2960 -0.1791 2.1543 -1.0325 2.6052 4.5501 0.3942 0.3586 0.1741 1.8082 0.0328 1.8654 0.0335
+#&gt; 20: 93.4480 -6.4389 -0.1776 2.1772 -1.0485 2.6607 5.1881 0.3894 0.3554 0.1654 1.8032 0.0322 1.9018 0.0312
+#&gt; 21: 93.6411 -6.2893 -0.1750 2.1759 -1.0350 2.5276 4.9287 0.3817 0.3386 0.1605 1.8533 0.0264 1.9317 0.0301
+#&gt; 22: 93.9320 -6.1469 -0.1750 2.1910 -1.0527 2.4013 4.6823 0.3720 0.3642 0.1525 1.8949 0.0273 1.8977 0.0310
+#&gt; 23: 93.6074 -6.3097 -0.1502 2.2111 -1.0155 2.2812 4.6643 0.3832 0.4236 0.1449 1.7075 0.0340 1.7367 0.0337
+#&gt; 24: 93.7425 -6.4598 -0.1446 2.2249 -1.0011 2.7056 6.0597 0.3949 0.4075 0.1479 1.7180 0.0360 1.7786 0.0302
+#&gt; 25: 94.1822 -6.3674 -0.1496 2.1917 -1.0011 3.4724 5.7567 0.3897 0.4355 0.1465 1.6977 0.0356 1.8373 0.0328
+#&gt; 26: 94.0446 -6.3235 -0.1496 2.2004 -1.0414 3.5912 5.4688 0.3897 0.4438 0.1405 1.6765 0.0344 1.8262 0.0355
+#&gt; 27: 94.4454 -6.2148 -0.1370 2.2360 -1.0220 4.6238 5.1954 0.3702 0.4216 0.1335 1.7209 0.0349 1.7702 0.0336
+#&gt; 28: 94.1837 -6.1301 -0.1376 2.2253 -1.0261 4.3926 4.9356 0.3644 0.4005 0.1345 1.6968 0.0290 1.8540 0.0316
+#&gt; 29: 94.0681 -5.8726 -0.1440 2.2237 -1.0400 4.1730 4.6889 0.3750 0.4055 0.1464 1.7084 0.0329 1.7379 0.0407
+#&gt; 30: 94.5866 -5.9141 -0.1416 2.2045 -1.0350 3.9896 4.4544 0.3770 0.3852 0.1769 1.6009 0.0326 1.8718 0.0350
+#&gt; 31: 94.1640 -6.0370 -0.1382 2.2140 -1.0189 5.4942 4.2317 0.3759 0.3809 0.1680 1.5887 0.0386 1.8918 0.0286
+#&gt; 32: 94.5952 -5.8349 -0.1373 2.2374 -1.0283 5.2195 4.0201 0.3745 0.3835 0.1636 1.6451 0.0375 1.7459 0.0382
+#&gt; 33: 95.0936 -5.8145 -0.1356 2.2325 -1.0037 4.9634 3.8191 0.3614 0.3644 0.1677 1.6313 0.0414 1.6809 0.0399
+#&gt; 34: 94.7033 -5.8916 -0.1208 2.2687 -0.9896 5.4935 3.6281 0.3741 0.3536 0.1701 1.5923 0.0376 1.2962 0.0644
+#&gt; 35: 94.8127 -5.9839 -0.1122 2.2615 -0.9983 5.2188 3.7348 0.3817 0.3661 0.1712 1.5848 0.0313 1.1651 0.0752
+#&gt; 36: 94.6798 -5.8938 -0.1203 2.2441 -1.0009 4.9578 3.5480 0.3835 0.3478 0.1708 1.5525 0.0313 1.1527 0.0712
+#&gt; 37: 93.9759 -5.8017 -0.1274 2.2346 -1.0021 4.7100 3.3706 0.3868 0.3350 0.1622 1.6278 0.0256 1.7263 0.0372
+#&gt; 38: 94.2013 -5.8617 -0.1206 2.2570 -1.0125 4.4745 3.2021 0.3754 0.3520 0.1574 1.5396 0.0290 1.0653 0.0746
+#&gt; 39: 94.1314 -5.7645 -0.1261 2.2381 -1.0361 4.2507 3.0420 0.3804 0.3521 0.1543 1.6280 0.0267 1.1461 0.0755
+#&gt; 40: 93.7934 -5.8654 -0.1206 2.2417 -1.0503 4.0382 2.8899 0.3624 0.3413 0.1747 1.6231 0.0239 1.5698 0.0513
+#&gt; 41: 93.8756 -6.0150 -0.1171 2.2581 -1.0313 3.8363 3.3629 0.3809 0.3369 0.1944 1.6461 0.0217 1.7762 0.0345
+#&gt; 42: 94.0644 -5.9723 -0.1136 2.2769 -1.0295 3.6445 3.2171 0.3702 0.3394 0.1920 1.5035 0.0416 1.5148 0.0475
+#&gt; 43: 93.7394 -5.9927 -0.1233 2.2650 -1.0374 3.4622 3.0562 0.3735 0.3370 0.1824 1.6022 0.0379 1.5080 0.0468
+#&gt; 44: 93.5428 -5.9784 -0.1187 2.2780 -1.0279 3.2891 2.9495 0.3732 0.3289 0.1742 1.5456 0.0471 1.4361 0.0517
+#&gt; 45: 93.2885 -5.9836 -0.1273 2.2650 -1.0100 3.1247 3.2884 0.3768 0.3719 0.1655 1.6579 0.0336 1.4031 0.0585
+#&gt; 46: 93.4080 -5.9261 -0.1371 2.2513 -1.0159 3.4180 3.1630 0.3709 0.3762 0.1711 1.7365 0.0269 1.4612 0.0530
+#&gt; 47: 93.4548 -5.8101 -0.1372 2.2650 -1.0058 3.2471 3.0049 0.3703 0.3921 0.1797 1.7161 0.0300 1.4813 0.0524
+#&gt; 48: 93.1829 -5.6877 -0.1391 2.2594 -1.0035 3.0848 2.8546 0.3690 0.3901 0.1707 1.7558 0.0292 1.5856 0.0487
+#&gt; 49: 93.1860 -5.8153 -0.1349 2.2793 -0.9905 2.9305 2.7119 0.3619 0.3877 0.1690 1.7255 0.0299 1.6143 0.0465
+#&gt; 50: 93.5597 -5.7551 -0.1334 2.2669 -0.9808 2.7840 2.5763 0.3652 0.3795 0.1716 1.6690 0.0290 1.4895 0.0536
+#&gt; 51: 93.5952 -5.8089 -0.1358 2.2626 -1.0100 2.6448 2.4475 0.3640 0.4246 0.1630 1.5892 0.0344 1.3958 0.0604
+#&gt; 52: 93.3111 -5.9181 -0.1323 2.2489 -0.9909 2.5126 2.8739 0.3695 0.4337 0.1549 1.5200 0.0329 1.2246 0.0685
+#&gt; 53: 93.4921 -6.0837 -0.1307 2.2513 -1.0031 2.3869 3.6029 0.3678 0.4363 0.1682 1.4683 0.0336 1.2917 0.0665
+#&gt; 54: 93.4808 -6.2019 -0.1488 2.2068 -1.0207 2.2676 4.1833 0.3952 0.4145 0.1598 1.6478 0.0325 1.2418 0.0659
+#&gt; 55: 93.5453 -6.2747 -0.1411 2.2297 -1.0122 2.1542 4.5107 0.3941 0.4044 0.1556 1.5685 0.0358 1.3236 0.0654
+#&gt; 56: 94.0212 -6.2713 -0.1355 2.2228 -1.0205 2.0465 5.1718 0.3901 0.4101 0.1516 1.5568 0.0341 1.1952 0.0736
+#&gt; 57: 93.7155 -6.2511 -0.1574 2.1899 -1.0374 1.9442 4.9132 0.3991 0.3974 0.1442 1.5528 0.0364 1.5497 0.0485
+#&gt; 58: 93.9064 -6.2021 -0.1543 2.1935 -1.0277 1.8470 4.6676 0.3935 0.3944 0.1458 1.5590 0.0354 1.3512 0.0613
+#&gt; 59: 93.9059 -6.3971 -0.1550 2.1899 -1.0124 1.7546 5.8885 0.3925 0.3943 0.1446 1.5641 0.0373 1.4293 0.0550
+#&gt; 60: 93.8600 -6.2474 -0.1552 2.1978 -0.9930 1.7661 5.5941 0.3905 0.4078 0.1532 1.5235 0.0364 1.5442 0.0477
+#&gt; 61: 93.8936 -6.3077 -0.1568 2.2022 -1.0084 1.7122 5.3507 0.3946 0.4146 0.1455 1.5154 0.0342 1.3664 0.0587
+#&gt; 62: 93.6133 -6.1446 -0.1473 2.2277 -1.0195 1.6266 5.0832 0.3794 0.4254 0.1383 1.5586 0.0330 1.1663 0.0705
+#&gt; 63: 93.5549 -6.3005 -0.1437 2.2302 -1.0096 1.5452 5.0969 0.3651 0.4262 0.1349 1.5730 0.0323 1.2501 0.0668
+#&gt; 64: 93.3212 -6.1190 -0.1428 2.2309 -1.0005 1.4826 4.8421 0.3661 0.4181 0.1443 1.6657 0.0259 1.3409 0.0627
+#&gt; 65: 93.2534 -5.9614 -0.1492 2.2310 -0.9865 1.4084 4.6000 0.3735 0.4186 0.1695 1.6883 0.0235 1.4446 0.0563
+#&gt; 66: 93.3429 -5.9786 -0.1401 2.2198 -0.9934 1.3380 4.3700 0.3807 0.4094 0.1610 1.6697 0.0270 1.1164 0.0778
+#&gt; 67: 93.5657 -6.2158 -0.1405 2.2326 -0.9891 1.2711 4.4653 0.3827 0.4063 0.1530 1.5851 0.0316 1.3581 0.0590
+#&gt; 68: 93.4898 -5.9763 -0.1375 2.2431 -0.9837 1.2076 4.2420 0.3771 0.4127 0.1453 1.6134 0.0325 1.1459 0.0744
+#&gt; 69: 93.4995 -6.1375 -0.1412 2.2423 -1.0003 1.3178 4.3907 0.3746 0.4202 0.1403 1.6223 0.0304 1.3354 0.0608
+#&gt; 70: 93.4369 -6.1690 -0.1395 2.2472 -1.0047 1.6239 4.5654 0.3793 0.4087 0.1400 1.6317 0.0349 1.4812 0.0494
+#&gt; 71: 93.4041 -6.3637 -0.1489 2.2348 -1.0125 1.5427 5.3897 0.3603 0.3883 0.1330 1.5954 0.0303 1.3502 0.0612
+#&gt; 72: 93.1755 -6.4067 -0.1441 2.2492 -0.9859 1.4656 6.3554 0.3423 0.3688 0.1388 1.6135 0.0287 1.6402 0.0435
+#&gt; 73: 93.0023 -6.7319 -0.1526 2.2550 -0.9800 1.3923 7.6438 0.3341 0.3504 0.1462 1.5491 0.0312 1.3997 0.0554
+#&gt; 74: 92.8952 -6.7189 -0.1530 2.2393 -0.9936 1.5478 7.2616 0.3344 0.3329 0.1503 1.5626 0.0326 1.3340 0.0634
+#&gt; 75: 93.0812 -6.8015 -0.1546 2.2265 -0.9751 1.4704 8.9537 0.3501 0.3162 0.1438 1.6019 0.0268 1.1663 0.0715
+#&gt; 76: 93.1080 -6.1728 -0.1515 2.2259 -1.0010 1.3969 8.5060 0.3407 0.3015 0.1398 1.6484 0.0279 1.3118 0.0637
+#&gt; 77: 92.9248 -6.3432 -0.1573 2.2221 -0.9819 1.4456 8.0807 0.3506 0.3002 0.1442 1.5947 0.0294 1.6368 0.0407
+#&gt; 78: 93.0194 -6.1448 -0.1611 2.2228 -0.9831 1.3733 7.6767 0.3487 0.3046 0.1369 1.6471 0.0254 1.4261 0.0529
+#&gt; 79: 92.9378 -6.6970 -0.1593 2.2313 -0.9910 1.3046 10.0158 0.3460 0.2999 0.1386 1.6108 0.0267 1.5818 0.0420
+#&gt; 80: 93.0293 -6.3275 -0.1579 2.2290 -0.9753 1.3191 9.5150 0.3543 0.2960 0.1490 1.6570 0.0259 1.5435 0.0431
+#&gt; 81: 93.1417 -6.2258 -0.1607 2.2285 -0.9399 1.4131 9.0393 0.3514 0.3020 0.1415 1.6990 0.0236 1.6875 0.0364
+#&gt; 82: 92.9115 -6.1764 -0.1555 2.2204 -0.9471 1.3424 8.5873 0.3502 0.2954 0.1540 1.6780 0.0216 1.2280 0.0687
+#&gt; 83: 93.0528 -6.3505 -0.1559 2.2391 -0.9651 1.2753 8.1579 0.3499 0.2903 0.1706 1.6924 0.0242 1.6807 0.0465
+#&gt; 84: 93.0032 -6.2300 -0.1596 2.2300 -0.9232 1.2115 7.9391 0.3470 0.2995 0.1858 1.7153 0.0259 1.7160 0.0406
+#&gt; 85: 93.0518 -6.3704 -0.1434 2.2696 -0.9330 1.1510 8.3071 0.3504 0.2916 0.1765 1.7072 0.0275 1.5494 0.0490
+#&gt; 86: 93.1344 -6.3566 -0.1424 2.2595 -0.9512 1.0934 9.2972 0.3520 0.2869 0.1677 1.6609 0.0253 1.5022 0.0508
+#&gt; 87: 93.2468 -6.3860 -0.1449 2.2505 -0.9601 1.0387 8.8323 0.3474 0.3046 0.1593 1.6326 0.0262 1.3048 0.0626
+#&gt; 88: 93.2286 -6.3886 -0.1466 2.2452 -0.9870 0.9868 8.3907 0.3474 0.2894 0.1513 1.6554 0.0245 1.6330 0.0376
+#&gt; 89: 93.2892 -6.0277 -0.1469 2.2403 -0.9694 0.9375 7.9712 0.3451 0.2904 0.1438 1.6795 0.0251 1.6691 0.0365
+#&gt; 90: 93.1766 -6.1076 -0.1460 2.2502 -0.9729 0.8906 7.5726 0.3458 0.2932 0.1481 1.6182 0.0331 1.5854 0.0401
+#&gt; 91: 93.3300 -6.0932 -0.1559 2.2356 -0.9551 0.8461 7.1940 0.3771 0.2883 0.1512 1.6728 0.0272 1.6098 0.0401
+#&gt; 92: 93.2470 -6.4839 -0.1592 2.2265 -1.0016 0.8038 6.8343 0.3813 0.2923 0.1597 1.7017 0.0300 1.6084 0.0423
+#&gt; 93: 93.2272 -6.2819 -0.1612 2.2356 -1.0073 0.7636 6.4926 0.3849 0.2816 0.1722 1.5422 0.0420 1.4772 0.0493
+#&gt; 94: 93.1441 -6.1805 -0.1571 2.2274 -1.0106 0.7254 6.1680 0.3878 0.2811 0.1636 1.5998 0.0403 1.4386 0.0535
+#&gt; 95: 92.7747 -6.2274 -0.1709 2.2191 -1.0042 0.6891 5.8596 0.3909 0.2905 0.1591 1.7184 0.0282 1.6086 0.0519
+#&gt; 96: 92.9830 -6.3291 -0.1603 2.2297 -1.0053 0.6547 5.5666 0.3774 0.2850 0.1512 1.7427 0.0284 1.7548 0.0384
+#&gt; 97: 92.9302 -6.3943 -0.1608 2.2211 -0.9643 0.6219 5.2882 0.3817 0.2828 0.1589 1.7080 0.0295 1.7102 0.0398
+#&gt; 98: 92.7704 -6.3554 -0.1679 2.1894 -0.9736 0.5908 5.4196 0.3864 0.2813 0.1560 1.7234 0.0240 1.2269 0.0685
+#&gt; 99: 92.7596 -6.2138 -0.1687 2.2088 -0.9744 0.5613 5.1486 0.3939 0.2983 0.1482 1.6732 0.0250 1.5718 0.0497
+#&gt; 100: 92.6608 -6.2662 -0.1687 2.2180 -1.0107 0.5332 5.1471 0.3939 0.2927 0.1408 1.8434 0.0232 1.7316 0.0413
+#&gt; 101: 92.7024 -6.1288 -0.1643 2.2096 -1.0032 0.5066 4.8898 0.3934 0.2807 0.1349 1.7055 0.0253 1.5883 0.0439
+#&gt; 102: 92.8885 -6.3175 -0.1697 2.2208 -0.9967 0.4812 4.9699 0.3888 0.2912 0.1371 1.7311 0.0284 1.6455 0.0402
+#&gt; 103: 92.9487 -6.2493 -0.1677 2.1861 -0.9874 0.4572 4.9605 0.3907 0.2844 0.1626 1.6898 0.0279 1.6252 0.0409
+#&gt; 104: 92.9633 -6.2534 -0.1731 2.1797 -0.9790 0.4343 4.8675 0.4015 0.2784 0.1758 1.6516 0.0268 1.6901 0.0360
+#&gt; 105: 93.0513 -6.0656 -0.1748 2.1802 -0.9876 0.4126 4.6241 0.4041 0.2801 0.1670 1.6863 0.0269 1.6208 0.0366
+#&gt; 106: 93.0600 -6.2162 -0.1860 2.1783 -0.9702 0.4570 4.5504 0.4451 0.2761 0.1586 1.6859 0.0274 1.5273 0.0437
+#&gt; 107: 93.1856 -6.1826 -0.1801 2.1796 -0.9813 0.4341 4.7286 0.4517 0.2807 0.1575 1.6268 0.0341 1.2548 0.0630
+#&gt; 108: 93.2401 -6.2943 -0.1783 2.1808 -0.9806 0.4124 5.3114 0.4502 0.2786 0.1496 1.6676 0.0291 1.4627 0.0484
+#&gt; 109: 93.0988 -6.1669 -0.1655 2.2018 -0.9682 0.4036 5.0458 0.4302 0.3195 0.1435 1.6524 0.0295 1.5759 0.0447
+#&gt; 110: 93.2129 -6.3104 -0.1748 2.1876 -0.9837 0.4825 5.6408 0.4430 0.3306 0.1595 1.6068 0.0326 1.6295 0.0388
+#&gt; 111: 93.1292 -5.9096 -0.1740 2.1932 -0.9674 0.5262 5.3587 0.4444 0.3233 0.1646 1.5777 0.0334 1.6590 0.0374
+#&gt; 112: 93.2723 -5.8153 -0.1706 2.1920 -0.9761 0.5109 5.0908 0.4486 0.3180 0.1634 1.6128 0.0321 1.6551 0.0396
+#&gt; 113: 93.3171 -6.0458 -0.1666 2.1879 -0.9740 0.5530 4.8362 0.4508 0.3303 0.1607 1.5862 0.0325 1.2705 0.0643
+#&gt; 114: 93.1717 -5.9615 -0.1655 2.1638 -0.9773 0.5254 4.5944 0.4472 0.3283 0.1657 1.6307 0.0287 1.2995 0.0677
+#&gt; 115: 93.1917 -6.0856 -0.1592 2.1576 -1.0269 0.4991 4.3647 0.4349 0.3464 0.1574 1.6430 0.0354 1.2812 0.0714
+#&gt; 116: 93.1287 -5.9635 -0.1609 2.1640 -0.9985 0.4741 4.1465 0.4237 0.3408 0.1495 1.6910 0.0269 1.2338 0.0738
+#&gt; 117: 93.1184 -5.8768 -0.1603 2.1842 -0.9557 0.4504 3.9392 0.4211 0.3293 0.1420 1.6447 0.0257 1.2680 0.0705
+#&gt; 118: 93.2207 -5.7436 -0.1654 2.1709 -0.9816 0.4279 3.7422 0.4158 0.3298 0.1349 1.6860 0.0238 1.1436 0.0780
+#&gt; 119: 93.3064 -5.8397 -0.1713 2.1722 -1.0093 0.4065 3.5551 0.4100 0.3429 0.1384 1.6612 0.0262 1.6491 0.0458
+#&gt; 120: 93.2749 -5.8221 -0.1737 2.1643 -1.0166 0.3862 3.3773 0.4044 0.3305 0.1527 1.6516 0.0232 1.7832 0.0410
+#&gt; 121: 93.1620 -5.9756 -0.1579 2.2018 -1.0007 0.3818 3.2992 0.3841 0.3433 0.1620 1.6648 0.0251 1.3408 0.0665
+#&gt; 122: 93.2070 -6.0164 -0.1540 2.2154 -1.0196 0.4217 3.5598 0.3649 0.3436 0.1539 1.6757 0.0287 1.3019 0.0652
+#&gt; 123: 93.1588 -5.7424 -0.1581 2.2142 -0.9985 0.5270 3.3818 0.3491 0.3584 0.1655 1.6321 0.0237 1.3494 0.0644
+#&gt; 124: 93.1496 -5.6257 -0.1463 2.2264 -0.9767 0.5914 3.2127 0.3347 0.3738 0.1573 1.6553 0.0226 1.5964 0.0544
+#&gt; 125: 93.0224 -5.8536 -0.1742 2.1859 -0.9939 0.6381 3.0521 0.3840 0.3692 0.1664 1.6009 0.0246 1.4169 0.0652
+#&gt; 126: 93.0788 -5.6973 -0.1778 2.1772 -0.9574 0.6062 2.8995 0.3710 0.3630 0.1839 1.5256 0.0312 1.5566 0.0518
+#&gt; 127: 93.1613 -5.5833 -0.1729 2.1806 -0.9588 0.5759 2.7545 0.3532 0.3464 0.1878 1.5708 0.0307 1.6405 0.0476
+#&gt; 128: 93.2043 -5.6742 -0.1746 2.1919 -0.9814 0.7099 2.6168 0.3569 0.3422 0.1848 1.6236 0.0312 1.5066 0.0517
+#&gt; 129: 93.1963 -5.7026 -0.1770 2.1853 -0.9814 0.6744 2.4859 0.3544 0.3390 0.1774 1.6150 0.0293 1.5712 0.0479
+#&gt; 130: 93.1669 -5.7260 -0.1826 2.1565 -0.9959 0.6407 2.3616 0.3750 0.3249 0.1685 1.6347 0.0215 1.5556 0.0535
+#&gt; 131: 93.0792 -5.7201 -0.1971 2.1339 -1.0057 0.7376 2.2436 0.3901 0.3086 0.1616 1.7653 0.0206 1.6640 0.0458
+#&gt; 132: 92.8580 -5.8266 -0.1877 2.1512 -0.9940 0.7008 2.3272 0.3895 0.3161 0.1863 1.6050 0.0231 1.5123 0.0558
+#&gt; 133: 92.8479 -5.8397 -0.1834 2.1637 -0.9815 0.7195 2.4732 0.3875 0.3060 0.1877 1.6197 0.0217 1.4131 0.0617
+#&gt; 134: 92.9218 -5.8317 -0.1903 2.1709 -0.9903 0.6835 2.5070 0.3808 0.3147 0.1857 1.7298 0.0225 1.5493 0.0521
+#&gt; 135: 92.7533 -5.7287 -0.1909 2.1670 -0.9674 0.6493 2.3817 0.3792 0.3156 0.1981 1.7074 0.0222 1.2776 0.0718
+#&gt; 136: 92.7255 -5.9071 -0.1787 2.1826 -0.9826 0.6169 2.8147 0.3603 0.3172 0.1882 1.6242 0.0288 1.2313 0.0682
+#&gt; 137: 92.7882 -5.9574 -0.1847 2.1549 -0.9848 0.5860 3.0538 0.3651 0.3206 0.1787 1.5640 0.0277 1.1609 0.0716
+#&gt; 138: 92.8155 -5.9445 -0.1719 2.1750 -0.9838 0.5567 3.3525 0.3568 0.3390 0.1698 1.5507 0.0259 1.0634 0.0816
+#&gt; 139: 92.9393 -6.0638 -0.1726 2.1840 -0.9888 0.5289 4.1627 0.3562 0.3453 0.1613 1.5792 0.0259 1.5189 0.0533
+#&gt; 140: 93.0330 -6.1823 -0.1726 2.1984 -0.9850 0.5024 4.3153 0.3562 0.3506 0.1533 1.6467 0.0248 1.5734 0.0459
+#&gt; 141: 93.0651 -6.1847 -0.1702 2.2183 -0.9749 0.4773 4.1656 0.3604 0.3626 0.1527 1.5887 0.0272 1.5613 0.0433
+#&gt; 142: 93.0350 -5.9581 -0.1641 2.2133 -0.9707 0.4535 3.9574 0.3642 0.3541 0.1662 1.5904 0.0246 1.4665 0.0556
+#&gt; 143: 92.9215 -5.7798 -0.1642 2.2269 -0.9665 0.5015 3.7595 0.3665 0.3626 0.1667 1.6019 0.0275 1.3379 0.0563
+#&gt; 144: 93.0132 -5.6752 -0.1629 2.2273 -0.9468 0.4764 3.5715 0.3648 0.3555 0.1648 1.5218 0.0320 1.1736 0.0695
+#&gt; 145: 92.9596 -5.8104 -0.1449 2.2498 -0.9730 0.4526 3.3929 0.3465 0.3524 0.1670 1.5918 0.0284 1.3067 0.0630
+#&gt; 146: 92.7925 -5.7223 -0.1458 2.2463 -0.9569 0.5591 3.2233 0.3443 0.3492 0.1587 1.6175 0.0260 1.0691 0.0729
+#&gt; 147: 92.8399 -5.8322 -0.1478 2.2485 -0.9474 0.5312 3.2015 0.3422 0.3536 0.1507 1.6257 0.0255 1.2184 0.0622
+#&gt; 148: 92.8390 -5.9554 -0.1498 2.2490 -0.9550 0.5046 3.6305 0.3387 0.3597 0.1615 1.5994 0.0263 1.2274 0.0638
+#&gt; 149: 92.8158 -5.9697 -0.1511 2.2337 -0.9812 0.4794 3.8244 0.3386 0.3894 0.1559 1.5723 0.0255 1.0661 0.0760
+#&gt; 150: 92.8379 -6.0841 -0.1532 2.2323 -0.9832 0.4554 4.3416 0.3340 0.3840 0.1575 1.5375 0.0272 1.1589 0.0677
+#&gt; 151: 92.6741 -6.3268 -0.1572 2.2252 -0.9782 0.4327 5.9395 0.3389 0.3859 0.1584 1.5384 0.0252 1.2809 0.0638
+#&gt; 152: 92.7165 -6.3594 -0.1527 2.2233 -1.0007 0.4210 5.8433 0.3384 0.3915 0.1324 1.5861 0.0254 1.0728 0.0756
+#&gt; 153: 92.6823 -6.2114 -0.1640 2.2160 -0.9861 0.5285 5.4117 0.3473 0.3878 0.1376 1.6150 0.0255 1.2105 0.0659
+#&gt; 154: 92.4787 -6.1829 -0.1622 2.2055 -0.9571 0.5031 5.7087 0.3490 0.3748 0.1345 1.5749 0.0250 1.0579 0.0741
+#&gt; 155: 92.4780 -6.4925 -0.1675 2.2190 -0.9301 0.4020 7.4764 0.3587 0.3785 0.1287 1.5959 0.0258 1.1342 0.0709
+#&gt; 156: 92.5151 -6.2825 -0.1673 2.2194 -0.9174 0.3603 5.6463 0.3589 0.3848 0.1202 1.5413 0.0301 1.1866 0.0674
+#&gt; 157: 92.5140 -6.0058 -0.1644 2.2312 -0.9298 0.3857 4.2481 0.3610 0.3706 0.1281 1.5944 0.0292 1.2712 0.0631
+#&gt; 158: 92.5669 -5.8692 -0.1673 2.2493 -0.9413 0.4751 3.7632 0.3600 0.3572 0.1383 1.6202 0.0323 1.4797 0.0499
+#&gt; 159: 92.4844 -6.0078 -0.1540 2.2464 -0.9423 0.4626 4.6774 0.3587 0.3603 0.1450 1.6404 0.0280 1.3577 0.0587
+#&gt; 160: 92.5182 -6.1231 -0.1504 2.2518 -0.9274 0.4153 5.0466 0.3616 0.3633 0.1373 1.5891 0.0297 1.2392 0.0653
+#&gt; 161: 92.5665 -5.9062 -0.1569 2.2563 -0.9412 0.3989 4.3594 0.3541 0.3719 0.1433 1.6242 0.0314 1.2822 0.0627
+#&gt; 162: 92.5749 -6.0936 -0.1507 2.2752 -0.9474 0.3140 4.4065 0.3438 0.3921 0.1320 1.5013 0.0378 1.1647 0.0662
+#&gt; 163: 92.6248 -6.1392 -0.1565 2.2499 -0.9499 0.2129 4.6022 0.3512 0.3890 0.1425 1.4936 0.0336 1.4339 0.0494
+#&gt; 164: 92.6486 -6.3898 -0.1590 2.2519 -0.9574 0.1948 5.7817 0.3564 0.3925 0.1308 1.5218 0.0326 1.2197 0.0630
+#&gt; 165: 92.6600 -6.3261 -0.1606 2.2464 -0.9815 0.3054 5.9162 0.3611 0.3979 0.1433 1.5747 0.0316 1.2062 0.0632
+#&gt; 166: 92.7951 -6.3068 -0.1630 2.2428 -0.9542 0.3144 5.7041 0.3597 0.3766 0.1612 1.5464 0.0317 1.2649 0.0617
+#&gt; 167: 92.8541 -6.4919 -0.1642 2.2275 -0.9505 0.3509 6.3858 0.3639 0.3713 0.1581 1.5543 0.0315 1.3546 0.0574
+#&gt; 168: 92.6848 -6.3299 -0.1618 2.2329 -0.9494 0.4645 5.7127 0.3700 0.3698 0.1544 1.5058 0.0340 1.1747 0.0685
+#&gt; 169: 92.5817 -6.0236 -0.1572 2.2583 -0.9510 0.6725 3.9864 0.3672 0.3812 0.1763 1.4445 0.0386 1.3230 0.0583
+#&gt; 170: 92.7223 -5.9170 -0.1609 2.2456 -0.9485 0.5137 3.7991 0.3712 0.3714 0.1601 1.5502 0.0385 1.3393 0.0547
+#&gt; 171: 92.6532 -5.9417 -0.1544 2.2294 -0.9448 0.6206 3.9052 0.3789 0.3634 0.1487 1.5809 0.0314 1.1226 0.0711
+#&gt; 172: 92.4803 -5.7302 -0.1414 2.2679 -0.9255 0.7853 2.7901 0.3598 0.3666 0.1508 1.5531 0.0341 1.1785 0.0667
+#&gt; 173: 92.3172 -5.7462 -0.1405 2.2823 -0.9193 1.2505 2.9155 0.3579 0.3678 0.1480 1.4894 0.0434 1.2288 0.0618
+#&gt; 174: 92.4674 -5.6638 -0.1415 2.2775 -0.9054 1.0653 2.8138 0.3623 0.3740 0.1371 1.5301 0.0393 1.0790 0.0669
+#&gt; 175: 92.5581 -5.6388 -0.1338 2.2878 -0.9154 0.6617 2.5216 0.3471 0.3719 0.1546 1.5231 0.0361 1.0672 0.0723
+#&gt; 176: 92.7218 -5.7548 -0.1249 2.3099 -0.9203 0.4464 2.8226 0.3570 0.3978 0.1570 1.4938 0.0354 1.1125 0.0655
+#&gt; 177: 92.7655 -5.6769 -0.1232 2.3114 -0.9257 0.5291 2.5249 0.3571 0.4023 0.1657 1.4392 0.0386 1.1149 0.0663
+#&gt; 178: 92.7966 -5.6766 -0.1219 2.3202 -0.9142 0.4897 2.3359 0.3605 0.3944 0.1720 1.4792 0.0401 1.1665 0.0637
+#&gt; 179: 92.8304 -5.7678 -0.1133 2.3352 -0.9262 0.5428 2.8512 0.3552 0.4191 0.1716 1.4994 0.0410 1.0651 0.0701
+#&gt; 180: 92.8413 -5.7485 -0.1124 2.3452 -0.9494 0.5179 2.6552 0.3555 0.4025 0.1778 1.5102 0.0383 1.1541 0.0670
+#&gt; 181: 92.7078 -5.7437 -0.1145 2.3257 -0.9482 0.6237 2.5673 0.3564 0.3851 0.1897 1.5373 0.0335 1.1413 0.0698
+#&gt; 182: 92.6278 -5.7965 -0.1115 2.3341 -0.9763 0.7558 2.7421 0.3541 0.3850 0.1625 1.5720 0.0309 1.1164 0.0758
+#&gt; 183: 92.4359 -5.7826 -0.1211 2.3204 -0.9481 1.2089 3.0954 0.3598 0.3813 0.1384 1.6391 0.0333 1.2142 0.0646
+#&gt; 184: 92.4840 -5.9143 -0.1218 2.2965 -0.9330 1.2610 4.0248 0.3752 0.3549 0.1597 1.6019 0.0292 1.0945 0.0767
+#&gt; 185: 92.5659 -5.8333 -0.1223 2.2914 -0.9090 1.0578 3.9752 0.3706 0.3640 0.1769 1.5858 0.0287 1.7070 0.0404
+#&gt; 186: 92.5157 -5.9540 -0.1274 2.2967 -0.9678 1.0199 3.7413 0.3625 0.3766 0.1354 1.5905 0.0321 1.2521 0.0660
+#&gt; 187: 92.6988 -5.8607 -0.1193 2.2922 -0.9685 1.1721 2.9764 0.3511 0.3823 0.1347 1.5790 0.0352 1.1477 0.0746
+#&gt; 188: 92.7427 -5.9073 -0.1166 2.3166 -0.9529 1.3606 2.9747 0.3487 0.3981 0.1322 1.5315 0.0344 1.3014 0.0594
+#&gt; 189: 92.6288 -5.8326 -0.1075 2.3268 -0.9543 1.3459 3.2341 0.3388 0.3983 0.1622 1.5374 0.0334 1.5390 0.0504
+#&gt; 190: 92.8047 -5.6198 -0.1064 2.3212 -0.9148 1.6280 2.5774 0.3319 0.4086 0.1656 1.5159 0.0321 1.5423 0.0515
+#&gt; 191: 92.7642 -5.5780 -0.1105 2.3041 -0.9414 1.5723 2.6038 0.3402 0.4111 0.1612 1.5254 0.0321 1.1206 0.0792
+#&gt; 192: 92.7137 -5.5650 -0.1087 2.3014 -0.9399 1.1968 2.0552 0.3412 0.4267 0.1418 1.4910 0.0332 0.9683 0.0834
+#&gt; 193: 93.0503 -5.6414 -0.1060 2.3050 -0.9563 1.0067 2.2362 0.3434 0.4179 0.1371 1.5947 0.0279 1.0349 0.0813
+#&gt; 194: 93.1071 -5.6349 -0.1048 2.3170 -0.9613 1.1495 2.6224 0.3451 0.4086 0.1419 1.6235 0.0276 1.0558 0.0792
+#&gt; 195: 93.0741 -5.7863 -0.1052 2.3293 -0.9605 1.1597 3.0814 0.3440 0.4342 0.1394 1.5248 0.0348 1.0554 0.0771
+#&gt; 196: 93.0768 -5.6986 -0.0911 2.3395 -0.9537 1.1388 2.7165 0.3463 0.4303 0.1467 1.5960 0.0324 1.1195 0.0755
+#&gt; 197: 92.8638 -5.7840 -0.1009 2.3420 -0.9699 1.0231 2.8293 0.3625 0.4272 0.1849 1.5366 0.0360 1.3691 0.0602
+#&gt; 198: 92.8979 -5.8328 -0.0905 2.3497 -0.9668 0.8847 2.7469 0.3509 0.4357 0.1842 1.5501 0.0361 1.1744 0.0715
+#&gt; 199: 92.7817 -6.0173 -0.0946 2.3477 -0.9729 0.8131 3.4886 0.3517 0.4471 0.1906 1.4350 0.0393 1.2311 0.0693
+#&gt; 200: 92.6353 -6.0362 -0.0924 2.3396 -0.9621 0.8259 3.3916 0.3556 0.4569 0.1867 1.4397 0.0350 1.0910 0.0793
+#&gt; 201: 92.6908 -6.0423 -0.0917 2.3400 -0.9564 0.6766 3.6159 0.3552 0.4565 0.1735 1.4506 0.0362 1.0646 0.0794
+#&gt; 202: 92.6302 -6.0238 -0.0919 2.3443 -0.9546 0.5824 3.6723 0.3555 0.4576 0.1716 1.4800 0.0363 1.0519 0.0791
+#&gt; 203: 92.6040 -6.0387 -0.0944 2.3405 -0.9579 0.5710 3.9080 0.3583 0.4476 0.1752 1.4934 0.0373 1.0842 0.0762
+#&gt; 204: 92.6042 -6.0088 -0.0965 2.3351 -0.9580 0.6145 3.8412 0.3608 0.4413 0.1720 1.5047 0.0374 1.0694 0.0760
+#&gt; 205: 92.5887 -6.0107 -0.0968 2.3362 -0.9576 0.6432 3.8854 0.3606 0.4405 0.1711 1.4896 0.0380 1.0615 0.0750
+#&gt; 206: 92.6452 -5.9990 -0.0992 2.3311 -0.9581 0.6728 3.8231 0.3636 0.4339 0.1683 1.4904 0.0379 1.0630 0.0747
+#&gt; 207: 92.6867 -5.9760 -0.1012 2.3283 -0.9606 0.6907 3.6867 0.3665 0.4303 0.1665 1.4908 0.0376 1.0656 0.0739
+#&gt; 208: 92.6867 -5.9652 -0.1033 2.3252 -0.9611 0.6656 3.6185 0.3680 0.4271 0.1656 1.4972 0.0369 1.0944 0.0724
+#&gt; 209: 92.6807 -5.9535 -0.1051 2.3225 -0.9621 0.6532 3.5653 0.3669 0.4249 0.1641 1.4992 0.0366 1.1029 0.0721
+#&gt; 210: 92.6772 -5.9392 -0.1067 2.3185 -0.9611 0.6492 3.4774 0.3661 0.4220 0.1620 1.5034 0.0360 1.0982 0.0723
+#&gt; 211: 92.6803 -5.9099 -0.1089 2.3129 -0.9619 0.6462 3.3783 0.3656 0.4218 0.1622 1.5094 0.0354 1.1060 0.0725
+#&gt; 212: 92.7033 -5.9046 -0.1110 2.3085 -0.9606 0.6467 3.3879 0.3653 0.4222 0.1602 1.5099 0.0350 1.1004 0.0726
+#&gt; 213: 92.7143 -5.9026 -0.1135 2.3046 -0.9594 0.6326 3.3887 0.3646 0.4214 0.1585 1.5139 0.0347 1.1050 0.0722
+#&gt; 214: 92.7156 -5.9151 -0.1157 2.3011 -0.9590 0.6186 3.4587 0.3637 0.4205 0.1571 1.5149 0.0344 1.1060 0.0720
+#&gt; 215: 92.7185 -5.9240 -0.1177 2.2984 -0.9585 0.6226 3.5192 0.3630 0.4190 0.1564 1.5155 0.0342 1.1159 0.0713
+#&gt; 216: 92.7133 -5.9331 -0.1197 2.2953 -0.9575 0.6253 3.5505 0.3630 0.4179 0.1552 1.5199 0.0338 1.1276 0.0708
+#&gt; 217: 92.7111 -5.9341 -0.1215 2.2924 -0.9579 0.6200 3.5565 0.3627 0.4170 0.1542 1.5238 0.0337 1.1409 0.0702
+#&gt; 218: 92.7142 -5.9390 -0.1226 2.2901 -0.9588 0.6110 3.5792 0.3623 0.4162 0.1541 1.5236 0.0335 1.1378 0.0704
+#&gt; 219: 92.7121 -5.9351 -0.1233 2.2891 -0.9587 0.6083 3.5562 0.3617 0.4154 0.1535 1.5280 0.0335 1.1518 0.0697
+#&gt; 220: 92.7133 -5.9467 -0.1244 2.2876 -0.9591 0.6158 3.6036 0.3614 0.4147 0.1542 1.5273 0.0334 1.1572 0.0693
+#&gt; 221: 92.7206 -5.9543 -0.1253 2.2856 -0.9602 0.6252 3.6357 0.3610 0.4131 0.1540 1.5272 0.0335 1.1591 0.0692
+#&gt; 222: 92.7267 -5.9436 -0.1262 2.2840 -0.9608 0.6377 3.5725 0.3608 0.4118 0.1540 1.5302 0.0334 1.1735 0.0683
+#&gt; 223: 92.7364 -5.9346 -0.1268 2.2825 -0.9619 0.6430 3.5288 0.3606 0.4117 0.1542 1.5327 0.0332 1.1883 0.0676
+#&gt; 224: 92.7464 -5.9269 -0.1274 2.2822 -0.9621 0.6394 3.4906 0.3604 0.4107 0.1541 1.5342 0.0334 1.2022 0.0667
+#&gt; 225: 92.7572 -5.9244 -0.1278 2.2813 -0.9616 0.6340 3.4677 0.3603 0.4100 0.1535 1.5345 0.0334 1.2129 0.0661
+#&gt; 226: 92.7662 -5.9237 -0.1282 2.2803 -0.9615 0.6336 3.4532 0.3603 0.4101 0.1532 1.5326 0.0334 1.2151 0.0661
+#&gt; 227: 92.7778 -5.9193 -0.1286 2.2792 -0.9628 0.6280 3.4339 0.3604 0.4096 0.1527 1.5323 0.0334 1.2217 0.0658
+#&gt; 228: 92.7824 -5.9112 -0.1289 2.2782 -0.9636 0.6217 3.3964 0.3607 0.4091 0.1525 1.5316 0.0335 1.2255 0.0658
+#&gt; 229: 92.7895 -5.9077 -0.1291 2.2770 -0.9646 0.6178 3.3717 0.3607 0.4096 0.1521 1.5326 0.0334 1.2247 0.0660
+#&gt; 230: 92.7987 -5.9153 -0.1297 2.2758 -0.9648 0.6177 3.4004 0.3603 0.4098 0.1517 1.5333 0.0334 1.2321 0.0656
+#&gt; 231: 92.8081 -5.9176 -0.1308 2.2735 -0.9654 0.6185 3.4195 0.3596 0.4086 0.1513 1.5361 0.0331 1.2359 0.0656
+#&gt; 232: 92.8119 -5.9161 -0.1318 2.2715 -0.9658 0.6140 3.4221 0.3590 0.4075 0.1513 1.5387 0.0330 1.2434 0.0653
+#&gt; 233: 92.8117 -5.9111 -0.1329 2.2694 -0.9662 0.6096 3.4008 0.3586 0.4065 0.1511 1.5410 0.0328 1.2426 0.0654
+#&gt; 234: 92.8132 -5.9040 -0.1339 2.2672 -0.9660 0.6097 3.3787 0.3583 0.4059 0.1506 1.5425 0.0325 1.2463 0.0654
+#&gt; 235: 92.8117 -5.8978 -0.1347 2.2653 -0.9661 0.6020 3.3558 0.3579 0.4051 0.1502 1.5443 0.0324 1.2439 0.0657
+#&gt; 236: 92.8050 -5.8967 -0.1355 2.2638 -0.9663 0.5963 3.3466 0.3575 0.4046 0.1495 1.5453 0.0322 1.2377 0.0661
+#&gt; 237: 92.7975 -5.9004 -0.1362 2.2625 -0.9668 0.5891 3.3624 0.3571 0.4043 0.1491 1.5460 0.0321 1.2334 0.0664
+#&gt; 238: 92.7965 -5.9036 -0.1371 2.2613 -0.9670 0.5828 3.3683 0.3569 0.4037 0.1488 1.5486 0.0320 1.2405 0.0662
+#&gt; 239: 92.8006 -5.9067 -0.1376 2.2607 -0.9677 0.5767 3.3801 0.3568 0.4027 0.1490 1.5487 0.0319 1.2478 0.0658
+#&gt; 240: 92.8061 -5.9102 -0.1382 2.2597 -0.9678 0.5697 3.3876 0.3566 0.4014 0.1489 1.5499 0.0319 1.2545 0.0654
+#&gt; 241: 92.8111 -5.9132 -0.1388 2.2589 -0.9684 0.5647 3.3986 0.3567 0.4004 0.1489 1.5507 0.0319 1.2607 0.0651
+#&gt; 242: 92.8157 -5.9119 -0.1395 2.2577 -0.9686 0.5610 3.3902 0.3568 0.3995 0.1490 1.5524 0.0319 1.2673 0.0647
+#&gt; 243: 92.8204 -5.9142 -0.1401 2.2567 -0.9689 0.5597 3.3991 0.3570 0.3983 0.1492 1.5526 0.0319 1.2728 0.0646
+#&gt; 244: 92.8272 -5.9129 -0.1408 2.2558 -0.9689 0.5598 3.3989 0.3574 0.3972 0.1493 1.5542 0.0319 1.2805 0.0642
+#&gt; 245: 92.8361 -5.9152 -0.1414 2.2548 -0.9693 0.5617 3.4133 0.3580 0.3959 0.1500 1.5541 0.0318 1.2876 0.0638
+#&gt; 246: 92.8432 -5.9122 -0.1420 2.2536 -0.9695 0.5627 3.4039 0.3584 0.3946 0.1507 1.5546 0.0318 1.2944 0.0633
+#&gt; 247: 92.8481 -5.9125 -0.1426 2.2524 -0.9695 0.5574 3.4087 0.3588 0.3931 0.1515 1.5556 0.0318 1.3003 0.0629
+#&gt; 248: 92.8486 -5.9123 -0.1433 2.2515 -0.9693 0.5545 3.4095 0.3594 0.3916 0.1519 1.5583 0.0317 1.3043 0.0626
+#&gt; 249: 92.8515 -5.9123 -0.1439 2.2505 -0.9694 0.5547 3.4088 0.3600 0.3904 0.1523 1.5605 0.0316 1.3087 0.0623
+#&gt; 250: 92.8521 -5.9139 -0.1443 2.2493 -0.9691 0.5589 3.4212 0.3604 0.3894 0.1525 1.5617 0.0316 1.3081 0.0624
+#&gt; 251: 92.8530 -5.9118 -0.1450 2.2484 -0.9683 0.5562 3.4138 0.3612 0.3884 0.1528 1.5615 0.0316 1.3066 0.0625
+#&gt; 252: 92.8568 -5.9075 -0.1457 2.2474 -0.9681 0.5506 3.3889 0.3619 0.3875 0.1531 1.5620 0.0315 1.3067 0.0625
+#&gt; 253: 92.8603 -5.9070 -0.1464 2.2467 -0.9682 0.5476 3.3746 0.3622 0.3867 0.1539 1.5640 0.0314 1.3122 0.0622
+#&gt; 254: 92.8653 -5.9077 -0.1470 2.2457 -0.9688 0.5448 3.3656 0.3626 0.3858 0.1546 1.5641 0.0314 1.3147 0.0620
+#&gt; 255: 92.8686 -5.9059 -0.1477 2.2445 -0.9688 0.5406 3.3533 0.3630 0.3850 0.1549 1.5637 0.0314 1.3155 0.0619
+#&gt; 256: 92.8706 -5.9011 -0.1483 2.2435 -0.9685 0.5384 3.3300 0.3634 0.3841 0.1550 1.5644 0.0313 1.3161 0.0617
+#&gt; 257: 92.8721 -5.8957 -0.1488 2.2426 -0.9683 0.5398 3.3084 0.3638 0.3833 0.1552 1.5647 0.0313 1.3158 0.0617
+#&gt; 258: 92.8725 -5.8928 -0.1493 2.2419 -0.9680 0.5392 3.2921 0.3641 0.3822 0.1552 1.5665 0.0312 1.3184 0.0614
+#&gt; 259: 92.8718 -5.8915 -0.1498 2.2411 -0.9680 0.5367 3.2850 0.3644 0.3815 0.1553 1.5668 0.0312 1.3202 0.0613
+#&gt; 260: 92.8701 -5.8928 -0.1499 2.2409 -0.9679 0.5339 3.2888 0.3652 0.3802 0.1552 1.5675 0.0312 1.3215 0.0612
+#&gt; 261: 92.8700 -5.8961 -0.1499 2.2407 -0.9679 0.5302 3.2976 0.3659 0.3789 0.1551 1.5677 0.0312 1.3197 0.0613
+#&gt; 262: 92.8683 -5.9013 -0.1500 2.2407 -0.9678 0.5282 3.3236 0.3666 0.3778 0.1549 1.5684 0.0312 1.3184 0.0613
+#&gt; 263: 92.8662 -5.9021 -0.1498 2.2407 -0.9677 0.5271 3.3285 0.3670 0.3767 0.1547 1.5682 0.0313 1.3156 0.0615
+#&gt; 264: 92.8631 -5.9059 -0.1495 2.2409 -0.9675 0.5244 3.3527 0.3673 0.3755 0.1547 1.5677 0.0313 1.3139 0.0616
+#&gt; 265: 92.8635 -5.9042 -0.1492 2.2411 -0.9675 0.5220 3.3541 0.3675 0.3745 0.1545 1.5676 0.0313 1.3098 0.0618
+#&gt; 266: 92.8636 -5.9033 -0.1490 2.2411 -0.9673 0.5208 3.3523 0.3680 0.3735 0.1546 1.5679 0.0312 1.3087 0.0619
+#&gt; 267: 92.8639 -5.9035 -0.1489 2.2413 -0.9673 0.5208 3.3566 0.3685 0.3726 0.1546 1.5676 0.0312 1.3072 0.0621
+#&gt; 268: 92.8620 -5.9065 -0.1487 2.2413 -0.9674 0.5191 3.3797 0.3689 0.3717 0.1545 1.5676 0.0312 1.3103 0.0620
+#&gt; 269: 92.8593 -5.9073 -0.1486 2.2416 -0.9672 0.5192 3.3885 0.3693 0.3710 0.1545 1.5685 0.0312 1.3136 0.0618
+#&gt; 270: 92.8549 -5.9087 -0.1487 2.2418 -0.9672 0.5209 3.4007 0.3695 0.3703 0.1544 1.5703 0.0312 1.3177 0.0615
+#&gt; 271: 92.8519 -5.9089 -0.1487 2.2416 -0.9671 0.5227 3.4043 0.3696 0.3697 0.1545 1.5705 0.0312 1.3216 0.0613
+#&gt; 272: 92.8493 -5.9084 -0.1488 2.2416 -0.9669 0.5223 3.3999 0.3698 0.3693 0.1543 1.5707 0.0311 1.3206 0.0614
+#&gt; 273: 92.8479 -5.9090 -0.1486 2.2416 -0.9667 0.5230 3.3980 0.3701 0.3689 0.1544 1.5699 0.0311 1.3192 0.0615
+#&gt; 274: 92.8456 -5.9108 -0.1485 2.2417 -0.9667 0.5249 3.4024 0.3705 0.3684 0.1544 1.5688 0.0311 1.3169 0.0617
+#&gt; 275: 92.8440 -5.9131 -0.1483 2.2422 -0.9666 0.5253 3.4117 0.3707 0.3677 0.1542 1.5690 0.0311 1.3166 0.0616
+#&gt; 276: 92.8425 -5.9132 -0.1482 2.2426 -0.9662 0.5241 3.4171 0.3709 0.3670 0.1540 1.5689 0.0311 1.3142 0.0617
+#&gt; 277: 92.8412 -5.9139 -0.1481 2.2430 -0.9660 0.5214 3.4228 0.3711 0.3663 0.1540 1.5687 0.0311 1.3173 0.0615
+#&gt; 278: 92.8398 -5.9139 -0.1479 2.2432 -0.9659 0.5184 3.4254 0.3712 0.3654 0.1540 1.5684 0.0311 1.3148 0.0617
+#&gt; 279: 92.8386 -5.9156 -0.1478 2.2433 -0.9661 0.5157 3.4338 0.3713 0.3649 0.1539 1.5682 0.0311 1.3136 0.0618
+#&gt; 280: 92.8378 -5.9173 -0.1478 2.2428 -0.9663 0.5127 3.4381 0.3714 0.3643 0.1537 1.5679 0.0311 1.3104 0.0621
+#&gt; 281: 92.8364 -5.9188 -0.1479 2.2423 -0.9666 0.5089 3.4418 0.3716 0.3634 0.1533 1.5674 0.0311 1.3071 0.0623
+#&gt; 282: 92.8377 -5.9179 -0.1481 2.2418 -0.9668 0.5045 3.4355 0.3717 0.3626 0.1530 1.5686 0.0311 1.3055 0.0624
+#&gt; 283: 92.8385 -5.9157 -0.1485 2.2410 -0.9667 0.5014 3.4260 0.3720 0.3616 0.1527 1.5699 0.0311 1.3072 0.0622
+#&gt; 284: 92.8388 -5.9156 -0.1489 2.2403 -0.9666 0.4977 3.4274 0.3723 0.3605 0.1525 1.5705 0.0310 1.3081 0.0621
+#&gt; 285: 92.8374 -5.9156 -0.1492 2.2395 -0.9668 0.4944 3.4215 0.3727 0.3594 0.1525 1.5716 0.0310 1.3103 0.0619
+#&gt; 286: 92.8376 -5.9168 -0.1496 2.2388 -0.9672 0.4915 3.4197 0.3731 0.3583 0.1526 1.5724 0.0310 1.3141 0.0617
+#&gt; 287: 92.8393 -5.9176 -0.1498 2.2380 -0.9673 0.4886 3.4177 0.3735 0.3572 0.1523 1.5737 0.0309 1.3155 0.0615
+#&gt; 288: 92.8400 -5.9206 -0.1502 2.2372 -0.9675 0.4873 3.4259 0.3739 0.3562 0.1523 1.5739 0.0309 1.3160 0.0614
+#&gt; 289: 92.8404 -5.9217 -0.1506 2.2362 -0.9678 0.4845 3.4269 0.3744 0.3552 0.1524 1.5735 0.0309 1.3165 0.0614
+#&gt; 290: 92.8395 -5.9255 -0.1510 2.2354 -0.9680 0.4830 3.4395 0.3748 0.3543 0.1521 1.5737 0.0308 1.3159 0.0615
+#&gt; 291: 92.8384 -5.9274 -0.1513 2.2345 -0.9680 0.4841 3.4460 0.3752 0.3533 0.1518 1.5742 0.0309 1.3173 0.0613
+#&gt; 292: 92.8384 -5.9276 -0.1515 2.2342 -0.9681 0.4865 3.4437 0.3755 0.3525 0.1516 1.5738 0.0309 1.3163 0.0614
+#&gt; 293: 92.8385 -5.9281 -0.1517 2.2338 -0.9681 0.4882 3.4446 0.3757 0.3516 0.1513 1.5738 0.0308 1.3143 0.0614
+#&gt; 294: 92.8400 -5.9277 -0.1519 2.2335 -0.9680 0.4871 3.4449 0.3758 0.3508 0.1512 1.5736 0.0308 1.3149 0.0614
+#&gt; 295: 92.8414 -5.9279 -0.1520 2.2331 -0.9680 0.4842 3.4523 0.3760 0.3502 0.1510 1.5740 0.0308 1.3153 0.0614
+#&gt; 296: 92.8424 -5.9282 -0.1521 2.2329 -0.9681 0.4835 3.4589 0.3760 0.3496 0.1509 1.5743 0.0307 1.3180 0.0613
+#&gt; 297: 92.8409 -5.9281 -0.1522 2.2325 -0.9683 0.4827 3.4636 0.3760 0.3491 0.1509 1.5745 0.0307 1.3216 0.0611
+#&gt; 298: 92.8395 -5.9276 -0.1522 2.2322 -0.9684 0.4819 3.4641 0.3761 0.3486 0.1508 1.5744 0.0307 1.3226 0.0612
+#&gt; 299: 92.8388 -5.9305 -0.1524 2.2321 -0.9686 0.4800 3.4829 0.3761 0.3481 0.1507 1.5745 0.0307 1.3218 0.0612
+#&gt; 300: 92.8375 -5.9329 -0.1524 2.2321 -0.9683 0.4792 3.4982 0.3761 0.3477 0.1505 1.5745 0.0307 1.3205 0.0613
+#&gt; 301: 92.8359 -5.9337 -0.1524 2.2321 -0.9680 0.4788 3.5056 0.3762 0.3473 0.1503 1.5746 0.0306 1.3182 0.0614
+#&gt; 302: 92.8346 -5.9360 -0.1524 2.2322 -0.9678 0.4800 3.5237 0.3763 0.3470 0.1500 1.5744 0.0306 1.3174 0.0614
+#&gt; 303: 92.8338 -5.9387 -0.1524 2.2324 -0.9674 0.4795 3.5444 0.3764 0.3467 0.1501 1.5738 0.0307 1.3181 0.0613
+#&gt; 304: 92.8318 -5.9436 -0.1524 2.2327 -0.9673 0.4787 3.5819 0.3766 0.3464 0.1502 1.5735 0.0307 1.3191 0.0612
+#&gt; 305: 92.8300 -5.9486 -0.1524 2.2327 -0.9673 0.4794 3.6200 0.3766 0.3460 0.1502 1.5726 0.0308 1.3198 0.0611
+#&gt; 306: 92.8294 -5.9540 -0.1524 2.2328 -0.9673 0.4788 3.6681 0.3766 0.3456 0.1502 1.5723 0.0309 1.3214 0.0610
+#&gt; 307: 92.8287 -5.9579 -0.1525 2.2330 -0.9669 0.4779 3.7052 0.3766 0.3452 0.1498 1.5735 0.0309 1.3235 0.0609
+#&gt; 308: 92.8290 -5.9624 -0.1524 2.2332 -0.9669 0.4775 3.7470 0.3766 0.3448 0.1500 1.5737 0.0309 1.3265 0.0607
+#&gt; 309: 92.8293 -5.9653 -0.1524 2.2333 -0.9668 0.4774 3.7756 0.3766 0.3443 0.1499 1.5736 0.0309 1.3290 0.0605
+#&gt; 310: 92.8289 -5.9672 -0.1523 2.2335 -0.9669 0.4762 3.7957 0.3767 0.3438 0.1499 1.5736 0.0309 1.3316 0.0603
+#&gt; 311: 92.8301 -5.9702 -0.1521 2.2337 -0.9670 0.4755 3.8172 0.3767 0.3432 0.1498 1.5737 0.0309 1.3324 0.0603
+#&gt; 312: 92.8322 -5.9715 -0.1520 2.2341 -0.9670 0.4742 3.8229 0.3767 0.3427 0.1496 1.5734 0.0309 1.3309 0.0603
+#&gt; 313: 92.8338 -5.9713 -0.1517 2.2342 -0.9672 0.4737 3.8202 0.3766 0.3422 0.1494 1.5733 0.0309 1.3306 0.0604
+#&gt; 314: 92.8360 -5.9711 -0.1515 2.2343 -0.9675 0.4725 3.8154 0.3767 0.3417 0.1493 1.5733 0.0309 1.3322 0.0603
+#&gt; 315: 92.8378 -5.9694 -0.1514 2.2343 -0.9680 0.4714 3.8051 0.3767 0.3414 0.1494 1.5734 0.0309 1.3352 0.0601
+#&gt; 316: 92.8400 -5.9683 -0.1514 2.2343 -0.9682 0.4705 3.7984 0.3767 0.3410 0.1495 1.5735 0.0309 1.3354 0.0602
+#&gt; 317: 92.8422 -5.9689 -0.1513 2.2344 -0.9686 0.4695 3.7961 0.3768 0.3406 0.1497 1.5735 0.0309 1.3362 0.0602
+#&gt; 318: 92.8440 -5.9696 -0.1510 2.2347 -0.9689 0.4681 3.7934 0.3769 0.3403 0.1499 1.5731 0.0309 1.3381 0.0601
+#&gt; 319: 92.8458 -5.9710 -0.1508 2.2350 -0.9692 0.4668 3.7913 0.3769 0.3401 0.1500 1.5723 0.0309 1.3403 0.0599
+#&gt; 320: 92.8474 -5.9719 -0.1506 2.2353 -0.9695 0.4667 3.7876 0.3769 0.3400 0.1502 1.5714 0.0309 1.3423 0.0598
+#&gt; 321: 92.8494 -5.9710 -0.1503 2.2355 -0.9696 0.4673 3.7790 0.3769 0.3397 0.1503 1.5709 0.0309 1.3439 0.0597
+#&gt; 322: 92.8511 -5.9693 -0.1501 2.2359 -0.9698 0.4690 3.7674 0.3769 0.3395 0.1503 1.5708 0.0309 1.3451 0.0596
+#&gt; 323: 92.8528 -5.9700 -0.1498 2.2364 -0.9699 0.4696 3.7641 0.3768 0.3394 0.1504 1.5701 0.0310 1.3470 0.0594
+#&gt; 324: 92.8547 -5.9695 -0.1495 2.2369 -0.9699 0.4703 3.7567 0.3767 0.3392 0.1505 1.5698 0.0310 1.3485 0.0593
+#&gt; 325: 92.8563 -5.9678 -0.1490 2.2376 -0.9702 0.4701 3.7473 0.3769 0.3395 0.1505 1.5702 0.0311 1.3494 0.0592
+#&gt; 326: 92.8582 -5.9676 -0.1486 2.2382 -0.9703 0.4709 3.7434 0.3771 0.3397 0.1506 1.5700 0.0311 1.3479 0.0593
+#&gt; 327: 92.8603 -5.9665 -0.1481 2.2389 -0.9704 0.4716 3.7361 0.3769 0.3399 0.1507 1.5699 0.0311 1.3471 0.0594
+#&gt; 328: 92.8622 -5.9671 -0.1477 2.2397 -0.9704 0.4726 3.7379 0.3767 0.3398 0.1507 1.5698 0.0311 1.3481 0.0593
+#&gt; 329: 92.8639 -5.9667 -0.1473 2.2405 -0.9707 0.4735 3.7366 0.3766 0.3398 0.1506 1.5696 0.0311 1.3482 0.0593
+#&gt; 330: 92.8663 -5.9673 -0.1469 2.2413 -0.9708 0.4736 3.7382 0.3765 0.3397 0.1506 1.5691 0.0312 1.3492 0.0592
+#&gt; 331: 92.8674 -5.9670 -0.1464 2.2420 -0.9710 0.4740 3.7350 0.3763 0.3397 0.1507 1.5689 0.0312 1.3512 0.0591
+#&gt; 332: 92.8681 -5.9664 -0.1460 2.2428 -0.9710 0.4737 3.7311 0.3762 0.3396 0.1509 1.5687 0.0312 1.3527 0.0590
+#&gt; 333: 92.8683 -5.9649 -0.1456 2.2436 -0.9708 0.4727 3.7232 0.3760 0.3397 0.1509 1.5686 0.0312 1.3505 0.0591
+#&gt; 334: 92.8690 -5.9642 -0.1452 2.2444 -0.9707 0.4723 3.7194 0.3758 0.3399 0.1511 1.5682 0.0312 1.3490 0.0592
+#&gt; 335: 92.8698 -5.9656 -0.1447 2.2454 -0.9707 0.4722 3.7289 0.3756 0.3400 0.1512 1.5674 0.0313 1.3476 0.0592
+#&gt; 336: 92.8691 -5.9664 -0.1443 2.2463 -0.9706 0.4724 3.7333 0.3753 0.3401 0.1511 1.5669 0.0313 1.3455 0.0593
+#&gt; 337: 92.8687 -5.9670 -0.1440 2.2471 -0.9705 0.4742 3.7378 0.3749 0.3402 0.1510 1.5665 0.0314 1.3433 0.0594
+#&gt; 338: 92.8683 -5.9663 -0.1435 2.2480 -0.9703 0.4747 3.7370 0.3746 0.3405 0.1510 1.5663 0.0313 1.3402 0.0595
+#&gt; 339: 92.8682 -5.9650 -0.1431 2.2488 -0.9701 0.4760 3.7332 0.3743 0.3408 0.1509 1.5661 0.0313 1.3374 0.0597
+#&gt; 340: 92.8684 -5.9639 -0.1427 2.2496 -0.9699 0.4774 3.7283 0.3739 0.3411 0.1510 1.5658 0.0313 1.3358 0.0597
+#&gt; 341: 92.8685 -5.9610 -0.1423 2.2504 -0.9696 0.4782 3.7169 0.3735 0.3413 0.1510 1.5661 0.0313 1.3338 0.0598
+#&gt; 342: 92.8681 -5.9581 -0.1419 2.2512 -0.9696 0.4802 3.7060 0.3731 0.3416 0.1511 1.5661 0.0313 1.3316 0.0599
+#&gt; 343: 92.8671 -5.9557 -0.1414 2.2521 -0.9697 0.4821 3.6971 0.3726 0.3419 0.1510 1.5667 0.0313 1.3292 0.0601
+#&gt; 344: 92.8662 -5.9550 -0.1409 2.2531 -0.9696 0.4825 3.6931 0.3722 0.3424 0.1509 1.5660 0.0314 1.3269 0.0602
+#&gt; 345: 92.8651 -5.9542 -0.1405 2.2542 -0.9696 0.4825 3.6886 0.3717 0.3429 0.1511 1.5645 0.0315 1.3252 0.0602
+#&gt; 346: 92.8636 -5.9534 -0.1401 2.2549 -0.9696 0.4822 3.6821 0.3714 0.3432 0.1510 1.5638 0.0315 1.3231 0.0603
+#&gt; 347: 92.8622 -5.9532 -0.1397 2.2557 -0.9696 0.4815 3.6782 0.3712 0.3435 0.1509 1.5636 0.0315 1.3220 0.0604
+#&gt; 348: 92.8593 -5.9538 -0.1394 2.2566 -0.9697 0.4813 3.6787 0.3709 0.3438 0.1508 1.5634 0.0315 1.3202 0.0605
+#&gt; 349: 92.8574 -5.9532 -0.1389 2.2574 -0.9697 0.4808 3.6739 0.3706 0.3440 0.1506 1.5630 0.0316 1.3179 0.0606
+#&gt; 350: 92.8561 -5.9528 -0.1385 2.2583 -0.9697 0.4801 3.6705 0.3703 0.3443 0.1505 1.5625 0.0316 1.3161 0.0607
+#&gt; 351: 92.8541 -5.9518 -0.1381 2.2591 -0.9697 0.4804 3.6650 0.3700 0.3446 0.1505 1.5619 0.0316 1.3141 0.0608
+#&gt; 352: 92.8528 -5.9516 -0.1377 2.2599 -0.9700 0.4818 3.6626 0.3698 0.3449 0.1504 1.5614 0.0316 1.3122 0.0609
+#&gt; 353: 92.8506 -5.9518 -0.1373 2.2607 -0.9700 0.4836 3.6601 0.3697 0.3451 0.1506 1.5604 0.0317 1.3116 0.0610
+#&gt; 354: 92.8482 -5.9507 -0.1369 2.2615 -0.9700 0.4852 3.6520 0.3696 0.3451 0.1506 1.5595 0.0317 1.3099 0.0611
+#&gt; 355: 92.8459 -5.9500 -0.1365 2.2624 -0.9699 0.4873 3.6467 0.3695 0.3454 0.1505 1.5589 0.0318 1.3090 0.0611
+#&gt; 356: 92.8441 -5.9494 -0.1361 2.2632 -0.9700 0.4893 3.6407 0.3696 0.3456 0.1505 1.5581 0.0319 1.3083 0.0612
+#&gt; 357: 92.8425 -5.9492 -0.1356 2.2641 -0.9700 0.4906 3.6359 0.3696 0.3459 0.1506 1.5568 0.0320 1.3082 0.0612
+#&gt; 358: 92.8414 -5.9487 -0.1351 2.2649 -0.9700 0.4914 3.6300 0.3697 0.3460 0.1506 1.5559 0.0321 1.3064 0.0613
+#&gt; 359: 92.8395 -5.9487 -0.1346 2.2657 -0.9700 0.4923 3.6262 0.3699 0.3462 0.1507 1.5558 0.0321 1.3050 0.0614
+#&gt; 360: 92.8373 -5.9478 -0.1341 2.2666 -0.9700 0.4922 3.6206 0.3700 0.3465 0.1509 1.5553 0.0322 1.3061 0.0614
+#&gt; 361: 92.8353 -5.9475 -0.1337 2.2673 -0.9699 0.4912 3.6183 0.3700 0.3469 0.1510 1.5549 0.0322 1.3051 0.0614
+#&gt; 362: 92.8339 -5.9474 -0.1333 2.2681 -0.9699 0.4896 3.6164 0.3700 0.3472 0.1510 1.5549 0.0322 1.3041 0.0616
+#&gt; 363: 92.8318 -5.9470 -0.1328 2.2690 -0.9696 0.4882 3.6136 0.3700 0.3476 0.1510 1.5541 0.0323 1.3035 0.0616
+#&gt; 364: 92.8305 -5.9460 -0.1325 2.2697 -0.9695 0.4863 3.6099 0.3701 0.3477 0.1510 1.5533 0.0324 1.3028 0.0616
+#&gt; 365: 92.8300 -5.9451 -0.1320 2.2705 -0.9693 0.4851 3.6083 0.3703 0.3479 0.1511 1.5535 0.0324 1.3017 0.0617
+#&gt; 366: 92.8290 -5.9444 -0.1317 2.2710 -0.9691 0.4841 3.6062 0.3707 0.3476 0.1512 1.5534 0.0325 1.3013 0.0617
+#&gt; 367: 92.8279 -5.9438 -0.1313 2.2715 -0.9688 0.4829 3.6026 0.3711 0.3473 0.1513 1.5537 0.0325 1.2996 0.0618
+#&gt; 368: 92.8270 -5.9437 -0.1310 2.2721 -0.9687 0.4824 3.6015 0.3715 0.3471 0.1513 1.5535 0.0325 1.2984 0.0619
+#&gt; 369: 92.8268 -5.9444 -0.1306 2.2726 -0.9686 0.4829 3.6042 0.3718 0.3469 0.1514 1.5530 0.0325 1.2983 0.0619
+#&gt; 370: 92.8268 -5.9455 -0.1303 2.2732 -0.9686 0.4833 3.6099 0.3721 0.3466 0.1513 1.5526 0.0326 1.2971 0.0619
+#&gt; 371: 92.8269 -5.9462 -0.1300 2.2737 -0.9686 0.4842 3.6169 0.3723 0.3465 0.1512 1.5516 0.0326 1.2961 0.0619
+#&gt; 372: 92.8272 -5.9465 -0.1297 2.2741 -0.9685 0.4852 3.6242 0.3726 0.3463 0.1512 1.5507 0.0327 1.2950 0.0620
+#&gt; 373: 92.8275 -5.9456 -0.1294 2.2746 -0.9686 0.4861 3.6219 0.3729 0.3461 0.1511 1.5501 0.0328 1.2946 0.0620
+#&gt; 374: 92.8278 -5.9445 -0.1291 2.2750 -0.9687 0.4867 3.6175 0.3730 0.3461 0.1509 1.5496 0.0328 1.2942 0.0620
+#&gt; 375: 92.8285 -5.9438 -0.1289 2.2753 -0.9689 0.4874 3.6118 0.3731 0.3459 0.1509 1.5491 0.0329 1.2938 0.0620
+#&gt; 376: 92.8286 -5.9439 -0.1287 2.2755 -0.9689 0.4876 3.6100 0.3733 0.3458 0.1508 1.5488 0.0329 1.2930 0.0621
+#&gt; 377: 92.8289 -5.9431 -0.1285 2.2758 -0.9690 0.4870 3.6054 0.3735 0.3456 0.1508 1.5487 0.0329 1.2921 0.0621
+#&gt; 378: 92.8293 -5.9428 -0.1284 2.2760 -0.9689 0.4865 3.6019 0.3737 0.3454 0.1508 1.5484 0.0329 1.2910 0.0622
+#&gt; 379: 92.8294 -5.9441 -0.1282 2.2763 -0.9688 0.4857 3.6077 0.3739 0.3451 0.1507 1.5480 0.0329 1.2907 0.0622
+#&gt; 380: 92.8296 -5.9448 -0.1281 2.2766 -0.9688 0.4844 3.6104 0.3741 0.3448 0.1506 1.5475 0.0329 1.2901 0.0622
+#&gt; 381: 92.8301 -5.9461 -0.1280 2.2767 -0.9689 0.4833 3.6194 0.3743 0.3444 0.1505 1.5476 0.0329 1.2893 0.0622
+#&gt; 382: 92.8312 -5.9464 -0.1278 2.2768 -0.9689 0.4823 3.6237 0.3745 0.3441 0.1505 1.5476 0.0329 1.2881 0.0622
+#&gt; 383: 92.8317 -5.9459 -0.1277 2.2770 -0.9687 0.4817 3.6282 0.3747 0.3438 0.1504 1.5479 0.0329 1.2875 0.0622
+#&gt; 384: 92.8325 -5.9458 -0.1276 2.2772 -0.9686 0.4818 3.6293 0.3749 0.3434 0.1503 1.5481 0.0329 1.2863 0.0623
+#&gt; 385: 92.8337 -5.9449 -0.1275 2.2773 -0.9685 0.4832 3.6263 0.3751 0.3431 0.1503 1.5481 0.0330 1.2860 0.0622
+#&gt; 386: 92.8346 -5.9455 -0.1274 2.2773 -0.9682 0.4834 3.6283 0.3754 0.3427 0.1501 1.5483 0.0330 1.2851 0.0623
+#&gt; 387: 92.8353 -5.9460 -0.1273 2.2775 -0.9681 0.4831 3.6303 0.3756 0.3424 0.1499 1.5486 0.0330 1.2836 0.0623
+#&gt; 388: 92.8365 -5.9462 -0.1272 2.2777 -0.9680 0.4831 3.6294 0.3759 0.3420 0.1498 1.5486 0.0330 1.2830 0.0624
+#&gt; 389: 92.8378 -5.9456 -0.1271 2.2779 -0.9678 0.4830 3.6260 0.3762 0.3416 0.1497 1.5486 0.0330 1.2816 0.0624
+#&gt; 390: 92.8397 -5.9454 -0.1270 2.2779 -0.9678 0.4835 3.6245 0.3765 0.3413 0.1496 1.5488 0.0330 1.2805 0.0625
+#&gt; 391: 92.8416 -5.9461 -0.1269 2.2780 -0.9679 0.4841 3.6273 0.3768 0.3409 0.1497 1.5486 0.0330 1.2816 0.0624
+#&gt; 392: 92.8430 -5.9471 -0.1269 2.2779 -0.9679 0.4844 3.6293 0.3771 0.3408 0.1498 1.5483 0.0330 1.2830 0.0623
+#&gt; 393: 92.8444 -5.9478 -0.1269 2.2779 -0.9680 0.4841 3.6310 0.3774 0.3407 0.1500 1.5485 0.0330 1.2842 0.0623
+#&gt; 394: 92.8458 -5.9492 -0.1268 2.2779 -0.9680 0.4839 3.6370 0.3775 0.3407 0.1502 1.5484 0.0330 1.2847 0.0622
+#&gt; 395: 92.8474 -5.9501 -0.1268 2.2780 -0.9681 0.4830 3.6391 0.3777 0.3406 0.1503 1.5485 0.0330 1.2849 0.0622
+#&gt; 396: 92.8484 -5.9500 -0.1267 2.2781 -0.9682 0.4820 3.6369 0.3778 0.3406 0.1504 1.5490 0.0330 1.2850 0.0622
+#&gt; 397: 92.8497 -5.9490 -0.1267 2.2782 -0.9680 0.4813 3.6308 0.3779 0.3407 0.1504 1.5494 0.0330 1.2848 0.0622
+#&gt; 398: 92.8511 -5.9478 -0.1267 2.2782 -0.9679 0.4811 3.6256 0.3780 0.3407 0.1505 1.5498 0.0330 1.2844 0.0622
+#&gt; 399: 92.8531 -5.9467 -0.1266 2.2782 -0.9680 0.4804 3.6208 0.3781 0.3407 0.1505 1.5505 0.0330 1.2842 0.0623
+#&gt; 400: 92.8545 -5.9465 -0.1266 2.2782 -0.9679 0.4793 3.6175 0.3783 0.3406 0.1505 1.5506 0.0329 1.2833 0.0623
+#&gt; 401: 92.8558 -5.9458 -0.1266 2.2781 -0.9679 0.4787 3.6135 0.3784 0.3406 0.1506 1.5506 0.0329 1.2836 0.0623
+#&gt; 402: 92.8571 -5.9454 -0.1266 2.2780 -0.9678 0.4788 3.6122 0.3786 0.3405 0.1506 1.5508 0.0329 1.2841 0.0623
+#&gt; 403: 92.8583 -5.9454 -0.1267 2.2778 -0.9679 0.4794 3.6115 0.3790 0.3402 0.1507 1.5508 0.0330 1.2859 0.0622
+#&gt; 404: 92.8593 -5.9466 -0.1268 2.2776 -0.9681 0.4787 3.6149 0.3793 0.3401 0.1508 1.5507 0.0330 1.2875 0.0621
+#&gt; 405: 92.8598 -5.9475 -0.1269 2.2774 -0.9681 0.4781 3.6208 0.3796 0.3399 0.1509 1.5507 0.0330 1.2888 0.0620
+#&gt; 406: 92.8596 -5.9480 -0.1269 2.2773 -0.9680 0.4776 3.6238 0.3798 0.3397 0.1509 1.5508 0.0330 1.2895 0.0619
+#&gt; 407: 92.8588 -5.9487 -0.1270 2.2773 -0.9679 0.4773 3.6289 0.3801 0.3395 0.1508 1.5510 0.0331 1.2887 0.0619
+#&gt; 408: 92.8587 -5.9489 -0.1271 2.2771 -0.9677 0.4777 3.6323 0.3804 0.3391 0.1508 1.5513 0.0331 1.2878 0.0620
+#&gt; 409: 92.8585 -5.9498 -0.1272 2.2770 -0.9677 0.4791 3.6383 0.3806 0.3389 0.1506 1.5512 0.0331 1.2865 0.0621
+#&gt; 410: 92.8574 -5.9522 -0.1272 2.2769 -0.9676 0.4810 3.6538 0.3809 0.3387 0.1507 1.5509 0.0331 1.2855 0.0621
+#&gt; 411: 92.8568 -5.9532 -0.1272 2.2767 -0.9675 0.4817 3.6651 0.3811 0.3385 0.1507 1.5508 0.0332 1.2842 0.0622
+#&gt; 412: 92.8562 -5.9535 -0.1273 2.2767 -0.9674 0.4819 3.6756 0.3812 0.3383 0.1507 1.5509 0.0332 1.2851 0.0621
+#&gt; 413: 92.8559 -5.9542 -0.1274 2.2766 -0.9672 0.4824 3.6881 0.3814 0.3381 0.1507 1.5514 0.0332 1.2848 0.0621
+#&gt; 414: 92.8556 -5.9550 -0.1274 2.2765 -0.9670 0.4835 3.6990 0.3815 0.3379 0.1507 1.5519 0.0332 1.2838 0.0622
+#&gt; 415: 92.8551 -5.9566 -0.1274 2.2764 -0.9669 0.4838 3.7133 0.3816 0.3377 0.1506 1.5522 0.0332 1.2828 0.0623
+#&gt; 416: 92.8547 -5.9581 -0.1275 2.2764 -0.9668 0.4848 3.7276 0.3818 0.3374 0.1504 1.5526 0.0332 1.2814 0.0623
+#&gt; 417: 92.8538 -5.9581 -0.1274 2.2764 -0.9667 0.4856 3.7321 0.3818 0.3372 0.1503 1.5532 0.0332 1.2800 0.0624
+#&gt; 418: 92.8527 -5.9590 -0.1273 2.2766 -0.9665 0.4869 3.7398 0.3817 0.3372 0.1502 1.5532 0.0332 1.2787 0.0625
+#&gt; 419: 92.8524 -5.9596 -0.1272 2.2768 -0.9663 0.4869 3.7467 0.3817 0.3372 0.1501 1.5531 0.0332 1.2779 0.0625
+#&gt; 420: 92.8520 -5.9598 -0.1271 2.2771 -0.9662 0.4863 3.7494 0.3817 0.3372 0.1501 1.5528 0.0332 1.2774 0.0625
+#&gt; 421: 92.8516 -5.9601 -0.1270 2.2772 -0.9661 0.4855 3.7541 0.3817 0.3372 0.1500 1.5527 0.0333 1.2763 0.0625
+#&gt; 422: 92.8509 -5.9602 -0.1270 2.2775 -0.9659 0.4855 3.7554 0.3818 0.3371 0.1499 1.5525 0.0333 1.2753 0.0626
+#&gt; 423: 92.8497 -5.9608 -0.1269 2.2777 -0.9658 0.4855 3.7590 0.3819 0.3371 0.1499 1.5524 0.0334 1.2746 0.0626
+#&gt; 424: 92.8490 -5.9620 -0.1269 2.2779 -0.9658 0.4852 3.7657 0.3820 0.3370 0.1498 1.5521 0.0334 1.2740 0.0626
+#&gt; 425: 92.8481 -5.9615 -0.1268 2.2780 -0.9657 0.4852 3.7639 0.3819 0.3369 0.1497 1.5520 0.0334 1.2741 0.0625
+#&gt; 426: 92.8471 -5.9611 -0.1267 2.2783 -0.9656 0.4859 3.7632 0.3819 0.3369 0.1495 1.5520 0.0335 1.2744 0.0625
+#&gt; 427: 92.8470 -5.9605 -0.1266 2.2784 -0.9655 0.4856 3.7616 0.3819 0.3368 0.1494 1.5522 0.0335 1.2739 0.0625
+#&gt; 428: 92.8464 -5.9602 -0.1266 2.2786 -0.9653 0.4851 3.7603 0.3820 0.3367 0.1493 1.5522 0.0335 1.2731 0.0625
+#&gt; 429: 92.8450 -5.9593 -0.1265 2.2788 -0.9652 0.4852 3.7573 0.3820 0.3366 0.1493 1.5525 0.0335 1.2720 0.0626
+#&gt; 430: 92.8440 -5.9590 -0.1264 2.2789 -0.9651 0.4862 3.7586 0.3821 0.3365 0.1493 1.5524 0.0335 1.2710 0.0627
+#&gt; 431: 92.8428 -5.9583 -0.1263 2.2791 -0.9649 0.4868 3.7575 0.3821 0.3365 0.1493 1.5522 0.0335 1.2698 0.0627
+#&gt; 432: 92.8417 -5.9583 -0.1262 2.2793 -0.9649 0.4881 3.7580 0.3821 0.3365 0.1493 1.5518 0.0335 1.2683 0.0628
+#&gt; 433: 92.8404 -5.9589 -0.1261 2.2796 -0.9648 0.4888 3.7614 0.3821 0.3364 0.1494 1.5513 0.0335 1.2681 0.0628
+#&gt; 434: 92.8392 -5.9585 -0.1260 2.2798 -0.9646 0.4900 3.7602 0.3821 0.3363 0.1494 1.5509 0.0336 1.2686 0.0627
+#&gt; 435: 92.8376 -5.9587 -0.1260 2.2801 -0.9645 0.4913 3.7622 0.3822 0.3362 0.1494 1.5506 0.0336 1.2677 0.0627
+#&gt; 436: 92.8367 -5.9581 -0.1259 2.2802 -0.9646 0.4912 3.7594 0.3821 0.3361 0.1494 1.5504 0.0336 1.2684 0.0627
+#&gt; 437: 92.8352 -5.9588 -0.1259 2.2803 -0.9647 0.4910 3.7634 0.3821 0.3360 0.1494 1.5501 0.0337 1.2695 0.0626
+#&gt; 438: 92.8332 -5.9592 -0.1259 2.2804 -0.9648 0.4913 3.7649 0.3821 0.3358 0.1494 1.5498 0.0337 1.2705 0.0625
+#&gt; 439: 92.8310 -5.9589 -0.1258 2.2805 -0.9648 0.4916 3.7630 0.3821 0.3357 0.1494 1.5497 0.0337 1.2713 0.0625
+#&gt; 440: 92.8292 -5.9590 -0.1258 2.2806 -0.9649 0.4915 3.7620 0.3821 0.3355 0.1493 1.5494 0.0338 1.2712 0.0625
+#&gt; 441: 92.8276 -5.9590 -0.1258 2.2808 -0.9650 0.4915 3.7619 0.3822 0.3353 0.1493 1.5493 0.0338 1.2712 0.0625
+#&gt; 442: 92.8258 -5.9587 -0.1257 2.2809 -0.9650 0.4927 3.7592 0.3822 0.3351 0.1493 1.5493 0.0338 1.2707 0.0625
+#&gt; 443: 92.8241 -5.9586 -0.1256 2.2811 -0.9651 0.4941 3.7563 0.3822 0.3350 0.1493 1.5491 0.0338 1.2704 0.0625
+#&gt; 444: 92.8228 -5.9591 -0.1256 2.2812 -0.9651 0.4954 3.7566 0.3822 0.3349 0.1493 1.5488 0.0339 1.2703 0.0625
+#&gt; 445: 92.8210 -5.9596 -0.1256 2.2813 -0.9652 0.4972 3.7573 0.3821 0.3348 0.1493 1.5484 0.0339 1.2702 0.0625
+#&gt; 446: 92.8193 -5.9595 -0.1255 2.2815 -0.9652 0.4989 3.7551 0.3821 0.3348 0.1494 1.5482 0.0339 1.2708 0.0624
+#&gt; 447: 92.8183 -5.9598 -0.1255 2.2817 -0.9652 0.5002 3.7548 0.3820 0.3347 0.1494 1.5478 0.0339 1.2710 0.0624
+#&gt; 448: 92.8177 -5.9607 -0.1255 2.2818 -0.9653 0.5019 3.7585 0.3819 0.3347 0.1495 1.5475 0.0340 1.2711 0.0624
+#&gt; 449: 92.8171 -5.9613 -0.1254 2.2819 -0.9654 0.5040 3.7592 0.3819 0.3347 0.1495 1.5474 0.0340 1.2711 0.0624
+#&gt; 450: 92.8164 -5.9621 -0.1253 2.2821 -0.9655 0.5060 3.7632 0.3818 0.3346 0.1495 1.5470 0.0340 1.2704 0.0624
+#&gt; 451: 92.8157 -5.9628 -0.1253 2.2822 -0.9655 0.5082 3.7655 0.3816 0.3346 0.1495 1.5469 0.0340 1.2699 0.0625
+#&gt; 452: 92.8157 -5.9633 -0.1252 2.2824 -0.9656 0.5092 3.7657 0.3815 0.3346 0.1495 1.5468 0.0340 1.2691 0.0625
+#&gt; 453: 92.8155 -5.9631 -0.1252 2.2823 -0.9657 0.5099 3.7646 0.3815 0.3347 0.1494 1.5470 0.0340 1.2684 0.0625
+#&gt; 454: 92.8149 -5.9627 -0.1252 2.2823 -0.9656 0.5110 3.7623 0.3815 0.3347 0.1495 1.5470 0.0340 1.2678 0.0626
+#&gt; 455: 92.8147 -5.9626 -0.1253 2.2822 -0.9656 0.5118 3.7610 0.3816 0.3347 0.1495 1.5471 0.0340 1.2675 0.0626
+#&gt; 456: 92.8146 -5.9631 -0.1253 2.2821 -0.9657 0.5124 3.7612 0.3817 0.3348 0.1495 1.5473 0.0340 1.2684 0.0625
+#&gt; 457: 92.8146 -5.9639 -0.1253 2.2820 -0.9658 0.5131 3.7636 0.3817 0.3347 0.1494 1.5471 0.0340 1.2683 0.0625
+#&gt; 458: 92.8142 -5.9641 -0.1254 2.2818 -0.9658 0.5143 3.7637 0.3817 0.3347 0.1493 1.5472 0.0340 1.2679 0.0626
+#&gt; 459: 92.8129 -5.9636 -0.1254 2.2818 -0.9660 0.5155 3.7609 0.3817 0.3347 0.1493 1.5474 0.0340 1.2692 0.0625
+#&gt; 460: 92.8118 -5.9630 -0.1254 2.2817 -0.9660 0.5155 3.7563 0.3818 0.3347 0.1493 1.5476 0.0340 1.2703 0.0624
+#&gt; 461: 92.8102 -5.9625 -0.1255 2.2816 -0.9661 0.5159 3.7525 0.3818 0.3347 0.1493 1.5478 0.0340 1.2711 0.0624
+#&gt; 462: 92.8090 -5.9628 -0.1255 2.2814 -0.9661 0.5163 3.7520 0.3819 0.3347 0.1492 1.5481 0.0340 1.2708 0.0624
+#&gt; 463: 92.8075 -5.9633 -0.1256 2.2813 -0.9660 0.5180 3.7534 0.3819 0.3347 0.1491 1.5484 0.0340 1.2705 0.0624
+#&gt; 464: 92.8066 -5.9628 -0.1256 2.2812 -0.9659 0.5194 3.7507 0.3820 0.3347 0.1490 1.5485 0.0340 1.2702 0.0624
+#&gt; 465: 92.8058 -5.9627 -0.1257 2.2811 -0.9658 0.5212 3.7506 0.3820 0.3347 0.1490 1.5484 0.0340 1.2696 0.0625
+#&gt; 466: 92.8055 -5.9624 -0.1258 2.2808 -0.9656 0.5227 3.7510 0.3821 0.3347 0.1489 1.5487 0.0340 1.2704 0.0624
+#&gt; 467: 92.8052 -5.9624 -0.1260 2.2805 -0.9656 0.5242 3.7518 0.3822 0.3346 0.1488 1.5488 0.0340 1.2715 0.0623
+#&gt; 468: 92.8054 -5.9623 -0.1261 2.2803 -0.9654 0.5260 3.7545 0.3823 0.3346 0.1487 1.5493 0.0340 1.2730 0.0623
+#&gt; 469: 92.8052 -5.9629 -0.1262 2.2803 -0.9654 0.5278 3.7617 0.3824 0.3346 0.1486 1.5495 0.0340 1.2737 0.0622
+#&gt; 470: 92.8055 -5.9638 -0.1263 2.2802 -0.9653 0.5290 3.7667 0.3825 0.3347 0.1486 1.5494 0.0341 1.2729 0.0623
+#&gt; 471: 92.8061 -5.9645 -0.1263 2.2801 -0.9653 0.5293 3.7702 0.3825 0.3347 0.1485 1.5494 0.0341 1.2724 0.0623
+#&gt; 472: 92.8057 -5.9645 -0.1264 2.2800 -0.9653 0.5288 3.7699 0.3826 0.3347 0.1484 1.5495 0.0341 1.2728 0.0623
+#&gt; 473: 92.8053 -5.9643 -0.1265 2.2799 -0.9652 0.5282 3.7701 0.3827 0.3347 0.1483 1.5494 0.0341 1.2721 0.0623
+#&gt; 474: 92.8049 -5.9638 -0.1266 2.2798 -0.9653 0.5273 3.7676 0.3828 0.3347 0.1483 1.5495 0.0341 1.2722 0.0623
+#&gt; 475: 92.8041 -5.9639 -0.1267 2.2796 -0.9654 0.5269 3.7668 0.3829 0.3347 0.1482 1.5495 0.0341 1.2721 0.0623
+#&gt; 476: 92.8032 -5.9641 -0.1269 2.2794 -0.9653 0.5260 3.7681 0.3830 0.3347 0.1481 1.5496 0.0341 1.2716 0.0623
+#&gt; 477: 92.8026 -5.9634 -0.1270 2.2792 -0.9653 0.5249 3.7647 0.3831 0.3347 0.1480 1.5500 0.0341 1.2716 0.0623
+#&gt; 478: 92.8021 -5.9627 -0.1271 2.2789 -0.9653 0.5241 3.7606 0.3832 0.3346 0.1480 1.5500 0.0341 1.2718 0.0623
+#&gt; 479: 92.8019 -5.9623 -0.1272 2.2787 -0.9654 0.5241 3.7581 0.3833 0.3345 0.1480 1.5502 0.0342 1.2714 0.0624
+#&gt; 480: 92.8017 -5.9631 -0.1274 2.2784 -0.9654 0.5241 3.7606 0.3835 0.3344 0.1479 1.5503 0.0342 1.2711 0.0624
+#&gt; 481: 92.8020 -5.9638 -0.1275 2.2781 -0.9654 0.5237 3.7659 0.3837 0.3343 0.1478 1.5508 0.0342 1.2720 0.0624
+#&gt; 482: 92.8024 -5.9640 -0.1278 2.2777 -0.9654 0.5228 3.7668 0.3838 0.3342 0.1478 1.5512 0.0342 1.2729 0.0623
+#&gt; 483: 92.8017 -5.9645 -0.1280 2.2773 -0.9654 0.5224 3.7676 0.3840 0.3341 0.1478 1.5515 0.0342 1.2741 0.0622
+#&gt; 484: 92.8012 -5.9642 -0.1281 2.2771 -0.9653 0.5221 3.7649 0.3841 0.3340 0.1478 1.5521 0.0341 1.2747 0.0622
+#&gt; 485: 92.8009 -5.9642 -0.1283 2.2769 -0.9653 0.5214 3.7635 0.3842 0.3339 0.1479 1.5523 0.0341 1.2752 0.0622
+#&gt; 486: 92.8002 -5.9639 -0.1284 2.2767 -0.9652 0.5213 3.7609 0.3842 0.3339 0.1480 1.5523 0.0341 1.2760 0.0621
+#&gt; 487: 92.7998 -5.9636 -0.1285 2.2767 -0.9652 0.5212 3.7603 0.3842 0.3339 0.1480 1.5525 0.0341 1.2762 0.0621
+#&gt; 488: 92.7995 -5.9634 -0.1285 2.2766 -0.9652 0.5218 3.7592 0.3841 0.3339 0.1480 1.5530 0.0341 1.2773 0.0621
+#&gt; 489: 92.7996 -5.9630 -0.1286 2.2765 -0.9653 0.5220 3.7578 0.3841 0.3339 0.1480 1.5532 0.0341 1.2778 0.0621
+#&gt; 490: 92.8001 -5.9629 -0.1287 2.2764 -0.9652 0.5226 3.7573 0.3841 0.3339 0.1479 1.5533 0.0341 1.2788 0.0620
+#&gt; 491: 92.8001 -5.9629 -0.1287 2.2762 -0.9651 0.5225 3.7568 0.3841 0.3338 0.1479 1.5533 0.0341 1.2790 0.0620
+#&gt; 492: 92.8005 -5.9625 -0.1288 2.2761 -0.9651 0.5228 3.7544 0.3840 0.3339 0.1479 1.5536 0.0341 1.2797 0.0619
+#&gt; 493: 92.8010 -5.9626 -0.1289 2.2759 -0.9651 0.5228 3.7544 0.3840 0.3339 0.1479 1.5537 0.0340 1.2795 0.0620
+#&gt; 494: 92.8014 -5.9623 -0.1290 2.2757 -0.9651 0.5239 3.7523 0.3839 0.3340 0.1479 1.5540 0.0340 1.2790 0.0620
+#&gt; 495: 92.8017 -5.9617 -0.1291 2.2755 -0.9652 0.5244 3.7491 0.3838 0.3341 0.1480 1.5540 0.0340 1.2787 0.0621
+#&gt; 496: 92.8019 -5.9613 -0.1291 2.2754 -0.9652 0.5246 3.7459 0.3837 0.3341 0.1481 1.5539 0.0340 1.2802 0.0620
+#&gt; 497: 92.8023 -5.9611 -0.1292 2.2753 -0.9653 0.5252 3.7447 0.3836 0.3340 0.1482 1.5539 0.0340 1.2814 0.0620
+#&gt; 498: 92.8025 -5.9615 -0.1292 2.2752 -0.9653 0.5254 3.7446 0.3836 0.3339 0.1483 1.5539 0.0340 1.2825 0.0619
+#&gt; 499: 92.8033 -5.9616 -0.1292 2.2751 -0.9654 0.5254 3.7447 0.3836 0.3338 0.1483 1.5538 0.0340 1.2834 0.0619
+#&gt; 500: 92.8041 -5.9630 -0.1292 2.2752 -0.9655 0.5248 3.7529 0.3836 0.3337 0.1484 1.5538 0.0340 1.2841 0.0619</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
-#&gt; <span class='message'>cmt(A1);</span>
-#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
-#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
-#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
-#&gt; <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span>
-#&gt; <span class='message'>rx_expr_12~exp(-(rx_expr_8));</span>
-#&gt; <span class='message'>rx_expr_14~t*rx_expr_12;</span>
-#&gt; <span class='message'>rx_expr_15~1+rx_expr_14;</span>
-#&gt; <span class='message'>rx_expr_17~rx_expr_7-(rx_expr_8);</span>
-#&gt; <span class='message'>rx_expr_19~exp(rx_expr_17);</span>
-#&gt; <span class='message'>d/dt(parent)=-rx_expr_19*parent/(rx_expr_15);</span>
-#&gt; <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span>
-#&gt; <span class='message'>rx_expr_11~exp(rx_expr_9);</span>
-#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_19*parent*f_parent_to_A1/(rx_expr_15);</span>
-#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
-#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
-#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
-#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_13~rx_expr_5*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_lambda_~rx_expr_13+rx_expr_3;</span>
-#&gt; <span class='message'>rx_hi_~rx_expr_13+rx_expr_3;</span>
-#&gt; <span class='message'>rx_low_~0;</span>
-#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_10~parent*(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_16~rx_expr_10*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1)),2)*Rx_pow_di(THETA[9],2)+Rx_pow_di(THETA[8],2))*(rx_expr_0)+(Rx_pow_di(THETA[7],2)*Rx_pow_di(((rx_expr_4+rx_expr_16)*(rx_expr_1)),2)+Rx_pow_di(THETA[6],2))*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>parent_0=THETA[1];</span>
-#&gt; <span class='message'>log_k_A1=THETA[2];</span>
-#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
-#&gt; <span class='message'>log_alpha=THETA[4];</span>
-#&gt; <span class='message'>log_beta=THETA[5];</span>
-#&gt; <span class='message'>sigma_low_parent=THETA[6];</span>
-#&gt; <span class='message'>rsd_high_parent=THETA[7];</span>
-#&gt; <span class='message'>sigma_low_A1=THETA[8];</span>
-#&gt; <span class='message'>rsd_high_A1=THETA[9];</span>
-#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
-#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
-#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
-#&gt; <span class='message'>eta.log_alpha=ETA[4];</span>
-#&gt; <span class='message'>eta.log_beta=ETA[5];</span>
-#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
-#&gt; <span class='message'>k_A1=rx_expr_11;</span>
-#&gt; <span class='message'>alpha=exp(rx_expr_7);</span>
-#&gt; <span class='message'>beta=exp(rx_expr_8);</span>
-#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
-#&gt; <span class='message'>tad=tad();</span>
-#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 8.173 0.386 8.556</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#&gt; |.....................| log_beta |sigma_low_parent |rsd_high_parent |sigma_low_A1 |
+#&gt; |.....................|rsd_high_A1 | o1 | o2 | o3 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o4 | o5 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 504.82714 | 1.000 | -1.000 | -0.9114 | -0.8944 |
+#&gt; |.....................| -0.8457 | -0.8687 | -0.8916 | -0.8687 |
+#&gt; |.....................| -0.8916 | -0.8768 | -0.8745 | -0.8676 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8705 | -0.8704 |...........|...........|</span>
+#&gt; | U| 504.82714 | 93.12 | -5.303 | -0.9442 | -0.1065 |
+#&gt; |.....................| 2.291 | 1.160 | 0.03005 | 1.160 |
+#&gt; |.....................| 0.03005 | 0.7578 | 0.8738 | 1.213 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.069 | 1.072 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 504.82714</span> | 93.12 | 0.004975 | 0.2801 | 0.8989 |
+#&gt; |.....................| 9.884 | 1.160 | 0.03005 | 1.160 |
+#&gt; |.....................| 0.03005 | 0.7578 | 0.8738 | 1.213 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.069 | 1.072 |...........|...........|</span>
+#&gt; | G| Gill Diff. | 73.79 | 2.406 | 0.05615 | 0.2285 |
+#&gt; |.....................| 0.009051 | -73.50 | -23.10 | 0.2441 |
+#&gt; |.....................| -2.663 | 1.201 | 11.89 | -10.88 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.982 | -10.81 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 4109.9562 | 0.3228 | -1.022 | -0.9119 | -0.8965 |
+#&gt; |.....................| -0.8458 | -0.1941 | -0.6796 | -0.8709 |
+#&gt; |.....................| -0.8672 | -0.8879 | -0.9836 | -0.7677 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7789 | -0.7712 |...........|...........|</span>
+#&gt; | U| 4109.9562 | 30.05 | -5.326 | -0.9447 | -0.1086 |
+#&gt; |.....................| 2.291 | 1.551 | 0.03324 | 1.158 |
+#&gt; |.....................| 0.03042 | 0.7495 | 0.7784 | 1.335 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.167 | 1.178 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 4109.9562</span> | 30.05 | 0.004866 | 0.2800 | 0.8971 |
+#&gt; |.....................| 9.883 | 1.551 | 0.03324 | 1.158 |
+#&gt; |.....................| 0.03042 | 0.7495 | 0.7784 | 1.335 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.167 | 1.178 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 527.72868 | 0.9323 | -1.002 | -0.9115 | -0.8946 |
+#&gt; |.....................| -0.8457 | -0.8012 | -0.8704 | -0.8689 |
+#&gt; |.....................| -0.8892 | -0.8779 | -0.8854 | -0.8576 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8613 | -0.8605 |...........|...........|</span>
+#&gt; | U| 527.72868 | 86.81 | -5.306 | -0.9442 | -0.1067 |
+#&gt; |.....................| 2.291 | 1.199 | 0.03037 | 1.159 |
+#&gt; |.....................| 0.03009 | 0.7570 | 0.8642 | 1.226 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.079 | 1.083 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 527.72868</span> | 86.81 | 0.004964 | 0.2800 | 0.8988 |
+#&gt; |.....................| 9.884 | 1.199 | 0.03037 | 1.159 |
+#&gt; |.....................| 0.03009 | 0.7570 | 0.8642 | 1.226 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.079 | 1.083 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 503.94655 | 0.9891 | -1.000 | -0.9114 | -0.8944 |
+#&gt; |.....................| -0.8457 | -0.8578 | -0.8882 | -0.8687 |
+#&gt; |.....................| -0.8912 | -0.8770 | -0.8762 | -0.8660 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8690 | -0.8688 |...........|...........|</span>
+#&gt; | U| 503.94655 | 92.10 | -5.304 | -0.9442 | -0.1066 |
+#&gt; |.....................| 2.291 | 1.166 | 0.03011 | 1.160 |
+#&gt; |.....................| 0.03006 | 0.7577 | 0.8722 | 1.215 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.070 | 1.074 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 503.94655</span> | 92.10 | 0.004973 | 0.2801 | 0.8989 |
+#&gt; |.....................| 9.884 | 1.166 | 0.03011 | 1.160 |
+#&gt; |.....................| 0.03006 | 0.7577 | 0.8722 | 1.215 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.070 | 1.074 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -83.20 | 2.270 | -0.2572 | 0.1460 |
+#&gt; |.....................| -0.3233 | -71.29 | -24.25 | 0.7297 |
+#&gt; |.....................| -2.130 | 1.329 | 9.332 | -11.82 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.604 | -10.42 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 503.03407 | 1.000 | -1.001 | -0.9114 | -0.8944 |
+#&gt; |.....................| -0.8456 | -0.8473 | -0.8847 | -0.8688 |
+#&gt; |.....................| -0.8909 | -0.8772 | -0.8776 | -0.8642 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8676 | -0.8673 |...........|...........|</span>
+#&gt; | U| 503.03407 | 93.15 | -5.304 | -0.9442 | -0.1066 |
+#&gt; |.....................| 2.291 | 1.172 | 0.03016 | 1.159 |
+#&gt; |.....................| 0.03007 | 0.7575 | 0.8710 | 1.217 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.072 | 1.075 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 503.03407</span> | 93.15 | 0.004971 | 0.2801 | 0.8989 |
+#&gt; |.....................| 9.884 | 1.172 | 0.03016 | 1.159 |
+#&gt; |.....................| 0.03007 | 0.7575 | 0.8710 | 1.217 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.072 | 1.075 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 79.23 | 2.386 | 0.06830 | 0.2424 |
+#&gt; |.....................| 0.02121 | -70.84 | -22.28 | -0.5289 |
+#&gt; |.....................| -2.713 | 1.149 | 11.82 | -11.86 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.567 | -10.47 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 502.12413 | 0.9895 | -1.001 | -0.9114 | -0.8945 |
+#&gt; |.....................| -0.8456 | -0.8365 | -0.8812 | -0.8687 |
+#&gt; |.....................| -0.8905 | -0.8774 | -0.8794 | -0.8624 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8662 | -0.8657 |...........|...........|</span>
+#&gt; | U| 502.12413 | 92.14 | -5.304 | -0.9442 | -0.1066 |
+#&gt; |.....................| 2.291 | 1.178 | 0.03021 | 1.160 |
+#&gt; |.....................| 0.03007 | 0.7574 | 0.8695 | 1.220 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.073 | 1.077 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 502.12413</span> | 92.14 | 0.004969 | 0.2801 | 0.8989 |
+#&gt; |.....................| 9.884 | 1.178 | 0.03021 | 1.160 |
+#&gt; |.....................| 0.03007 | 0.7574 | 0.8695 | 1.220 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.073 | 1.077 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -77.28 | 2.252 | -0.2503 | 0.1427 |
+#&gt; |.....................| -0.3238 | -69.21 | -23.25 | 0.3943 |
+#&gt; |.....................| -2.493 | 1.092 | 10.79 | -11.67 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.485 | -10.25 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 501.24651 | 1.000 | -1.001 | -0.9114 | -0.8945 |
+#&gt; |.....................| -0.8456 | -0.8257 | -0.8776 | -0.8688 |
+#&gt; |.....................| -0.8901 | -0.8775 | -0.8811 | -0.8606 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8647 | -0.8641 |...........|...........|</span>
+#&gt; | U| 501.24651 | 93.15 | -5.305 | -0.9441 | -0.1067 |
+#&gt; |.....................| 2.291 | 1.184 | 0.03026 | 1.160 |
+#&gt; |.....................| 0.03008 | 0.7573 | 0.8680 | 1.222 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.075 | 1.079 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 501.24651</span> | 93.15 | 0.004968 | 0.2801 | 0.8988 |
+#&gt; |.....................| 9.885 | 1.184 | 0.03026 | 1.160 |
+#&gt; |.....................| 0.03008 | 0.7573 | 0.8680 | 1.222 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.075 | 1.079 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 78.96 | 2.363 | 0.07229 | 0.2390 |
+#&gt; |.....................| 0.02239 | -67.81 | -20.97 | 0.1381 |
+#&gt; |.....................| -2.125 | 1.379 | 9.797 | -11.70 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.438 | -10.29 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 500.35160 | 0.9896 | -1.002 | -0.9114 | -0.8945 |
+#&gt; |.....................| -0.8456 | -0.8148 | -0.8742 | -0.8688 |
+#&gt; |.....................| -0.8898 | -0.8778 | -0.8827 | -0.8587 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8632 | -0.8625 |...........|...........|</span>
+#&gt; | U| 500.3516 | 92.15 | -5.305 | -0.9441 | -0.1067 |
+#&gt; |.....................| 2.291 | 1.191 | 0.03032 | 1.159 |
+#&gt; |.....................| 0.03008 | 0.7571 | 0.8666 | 1.224 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.077 | 1.081 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 500.3516</span> | 92.15 | 0.004966 | 0.2801 | 0.8988 |
+#&gt; |.....................| 9.885 | 1.191 | 0.03032 | 1.159 |
+#&gt; |.....................| 0.03008 | 0.7571 | 0.8666 | 1.224 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.077 | 1.081 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -75.23 | 2.232 | -0.2459 | 0.1501 |
+#&gt; |.....................| -0.3253 | -66.87 | -22.19 | 0.4436 |
+#&gt; |.....................| -2.150 | 0.9434 | 9.182 | -11.49 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.350 | -10.07 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 499.45361 | 1.000 | -1.002 | -0.9113 | -0.8946 |
+#&gt; |.....................| -0.8455 | -0.8036 | -0.8705 | -0.8689 |
+#&gt; |.....................| -0.8894 | -0.8779 | -0.8842 | -0.8568 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8616 | -0.8608 |...........|...........|</span>
+#&gt; | U| 499.45361 | 93.12 | -5.306 | -0.9441 | -0.1067 |
+#&gt; |.....................| 2.291 | 1.197 | 0.03037 | 1.159 |
+#&gt; |.....................| 0.03009 | 0.7570 | 0.8653 | 1.226 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.078 | 1.082 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 499.45361</span> | 93.12 | 0.004964 | 0.2801 | 0.8988 |
+#&gt; |.....................| 9.885 | 1.197 | 0.03037 | 1.159 |
+#&gt; |.....................| 0.03009 | 0.7570 | 0.8653 | 1.226 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.078 | 1.082 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 73.21 | 2.337 | 0.06584 | 0.2472 |
+#&gt; |.....................| 0.008903 | -65.96 | -20.21 | -0.3457 |
+#&gt; |.....................| -2.677 | 1.048 | 11.29 | -11.53 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.311 | -10.11 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 498.59105 | 0.9896 | -1.003 | -0.9113 | -0.8946 |
+#&gt; |.....................| -0.8455 | -0.7924 | -0.8671 | -0.8688 |
+#&gt; |.....................| -0.8890 | -0.8781 | -0.8861 | -0.8548 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8600 | -0.8591 |...........|...........|</span>
+#&gt; | U| 498.59105 | 92.15 | -5.306 | -0.9441 | -0.1068 |
+#&gt; |.....................| 2.291 | 1.204 | 0.03042 | 1.159 |
+#&gt; |.....................| 0.03009 | 0.7568 | 0.8636 | 1.229 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.080 | 1.084 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 498.59105</span> | 92.15 | 0.004962 | 0.2801 | 0.8987 |
+#&gt; |.....................| 9.885 | 1.204 | 0.03042 | 1.159 |
+#&gt; |.....................| 0.03009 | 0.7568 | 0.8636 | 1.229 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.080 | 1.084 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -74.43 | 2.211 | -0.2431 | 0.1502 |
+#&gt; |.....................| -0.3305 | -64.40 | -21.08 | 0.5329 |
+#&gt; |.....................| -2.487 | 0.9319 | 8.926 | -11.33 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.217 | -9.888 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 497.71590 | 1.000 | -1.003 | -0.9113 | -0.8946 |
+#&gt; |.....................| -0.8455 | -0.7811 | -0.8634 | -0.8689 |
+#&gt; |.....................| -0.8885 | -0.8783 | -0.8877 | -0.8529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8584 | -0.8573 |...........|...........|</span>
+#&gt; | U| 497.7159 | 93.11 | -5.306 | -0.9441 | -0.1068 |
+#&gt; |.....................| 2.291 | 1.210 | 0.03048 | 1.159 |
+#&gt; |.....................| 0.03010 | 0.7567 | 0.8622 | 1.231 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.082 | 1.086 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 497.7159</span> | 93.11 | 0.004960 | 0.2801 | 0.8987 |
+#&gt; |.....................| 9.886 | 1.210 | 0.03048 | 1.159 |
+#&gt; |.....................| 0.03010 | 0.7567 | 0.8622 | 1.231 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.082 | 1.086 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 71.79 | 2.312 | 0.07434 | 0.2557 |
+#&gt; |.....................| 0.006614 | -63.04 | -18.95 | 0.3164 |
+#&gt; |.....................| -2.117 | 1.342 | 9.274 | -11.35 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.172 | -9.924 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 496.86264 | 0.9898 | -1.003 | -0.9113 | -0.8947 |
+#&gt; |.....................| -0.8455 | -0.7696 | -0.8599 | -0.8690 |
+#&gt; |.....................| -0.8881 | -0.8785 | -0.8894 | -0.8508 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8567 | -0.8555 |...........|...........|</span>
+#&gt; | U| 496.86264 | 92.17 | -5.307 | -0.9441 | -0.1068 |
+#&gt; |.....................| 2.291 | 1.217 | 0.03053 | 1.159 |
+#&gt; |.....................| 0.03011 | 0.7565 | 0.8607 | 1.234 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.084 | 1.088 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 496.86264</span> | 92.17 | 0.004958 | 0.2801 | 0.8987 |
+#&gt; |.....................| 9.886 | 1.217 | 0.03053 | 1.159 |
+#&gt; |.....................| 0.03011 | 0.7565 | 0.8607 | 1.234 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.084 | 1.088 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -71.54 | 2.190 | -0.2371 | 0.1482 |
+#&gt; |.....................| -0.3369 | -61.67 | -19.90 | 0.9419 |
+#&gt; |.....................| -2.139 | 1.041 | 7.036 | -11.13 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.064 | -9.692 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 495.99097 | 0.9997 | -1.004 | -0.9113 | -0.8947 |
+#&gt; |.....................| -0.8454 | -0.7580 | -0.8562 | -0.8692 |
+#&gt; |.....................| -0.8877 | -0.8787 | -0.8907 | -0.8487 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8550 | -0.8537 |...........|...........|</span>
+#&gt; | U| 495.99097 | 93.09 | -5.307 | -0.9441 | -0.1069 |
+#&gt; |.....................| 2.291 | 1.224 | 0.03059 | 1.159 |
+#&gt; |.....................| 0.03011 | 0.7564 | 0.8596 | 1.236 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.085 | 1.090 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 495.99097</span> | 93.09 | 0.004956 | 0.2801 | 0.8987 |
+#&gt; |.....................| 9.886 | 1.224 | 0.03059 | 1.159 |
+#&gt; |.....................| 0.03011 | 0.7564 | 0.8596 | 1.236 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.085 | 1.090 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 67.48 | 2.282 | 0.05510 | 0.2442 |
+#&gt; |.....................| -0.01700 | -60.62 | -17.93 | 0.4372 |
+#&gt; |.....................| -2.100 | 1.212 | 9.042 | -11.17 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.025 | -9.723 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 495.15472 | 0.9899 | -1.004 | -0.9113 | -0.8948 |
+#&gt; |.....................| -0.8454 | -0.7463 | -0.8527 | -0.8693 |
+#&gt; |.....................| -0.8873 | -0.8789 | -0.8924 | -0.8465 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8533 | -0.8518 |...........|...........|</span>
+#&gt; | U| 495.15472 | 92.18 | -5.308 | -0.9441 | -0.1069 |
+#&gt; |.....................| 2.291 | 1.231 | 0.03064 | 1.159 |
+#&gt; |.....................| 0.03012 | 0.7562 | 0.8581 | 1.239 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.087 | 1.092 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 495.15472</span> | 92.18 | 0.004954 | 0.2801 | 0.8986 |
+#&gt; |.....................| 9.886 | 1.231 | 0.03064 | 1.159 |
+#&gt; |.....................| 0.03012 | 0.7562 | 0.8581 | 1.239 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.087 | 1.092 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -68.93 | 2.171 | -0.2257 | 0.1488 |
+#&gt; |.....................| -0.3348 | -59.34 | -18.81 | 1.070 |
+#&gt; |.....................| -2.082 | 1.016 | 8.208 | -10.96 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.930 | -9.498 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 494.30065 | 0.9995 | -1.005 | -0.9112 | -0.8948 |
+#&gt; |.....................| -0.8453 | -0.7344 | -0.8490 | -0.8695 |
+#&gt; |.....................| -0.8869 | -0.8792 | -0.8941 | -0.8443 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8515 | -0.8499 |...........|...........|</span>
+#&gt; | U| 494.30065 | 93.07 | -5.308 | -0.9440 | -0.1069 |
+#&gt; |.....................| 2.291 | 1.237 | 0.03069 | 1.159 |
+#&gt; |.....................| 0.03013 | 0.7561 | 0.8567 | 1.242 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.089 | 1.094 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.30065</span> | 93.07 | 0.004951 | 0.2801 | 0.8986 |
+#&gt; |.....................| 9.887 | 1.237 | 0.03069 | 1.159 |
+#&gt; |.....................| 0.03013 | 0.7561 | 0.8567 | 1.242 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.089 | 1.094 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 65.20 | 2.260 | 0.06851 | 0.2416 |
+#&gt; |.....................| -0.02143 | -58.42 | -17.03 | 0.3665 |
+#&gt; |.....................| -2.202 | 1.112 | 7.377 | -10.96 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.866 | -9.510 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 493.48608 | 0.9901 | -1.005 | -0.9112 | -0.8948 |
+#&gt; |.....................| -0.8453 | -0.7225 | -0.8455 | -0.8696 |
+#&gt; |.....................| -0.8865 | -0.8794 | -0.8956 | -0.8421 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8496 | -0.8479 |...........|...........|</span>
+#&gt; | U| 493.48608 | 92.19 | -5.309 | -0.9440 | -0.1070 |
+#&gt; |.....................| 2.291 | 1.244 | 0.03075 | 1.159 |
+#&gt; |.....................| 0.03013 | 0.7559 | 0.8553 | 1.244 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.091 | 1.096 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 493.48608</span> | 92.19 | 0.004949 | 0.2801 | 0.8985 |
+#&gt; |.....................| 9.887 | 1.244 | 0.03075 | 1.159 |
+#&gt; |.....................| 0.03013 | 0.7559 | 0.8553 | 1.244 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.091 | 1.096 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -66.94 | 2.152 | -0.2367 | 0.1452 |
+#&gt; |.....................| -0.3412 | -57.13 | -17.84 | 1.057 |
+#&gt; |.....................| -2.129 | 0.9540 | 6.557 | -10.77 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.770 | -9.285 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 492.64670 | 0.9993 | -1.006 | -0.9112 | -0.8949 |
+#&gt; |.....................| -0.8453 | -0.7105 | -0.8419 | -0.8698 |
+#&gt; |.....................| -0.8860 | -0.8796 | -0.8969 | -0.8398 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8478 | -0.8460 |...........|...........|</span>
+#&gt; | U| 492.6467 | 93.06 | -5.309 | -0.9440 | -0.1070 |
+#&gt; |.....................| 2.291 | 1.251 | 0.03080 | 1.159 |
+#&gt; |.....................| 0.03014 | 0.7557 | 0.8542 | 1.247 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.093 | 1.098 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 492.6467</span> | 93.06 | 0.004947 | 0.2801 | 0.8985 |
+#&gt; |.....................| 9.888 | 1.251 | 0.03080 | 1.159 |
+#&gt; |.....................| 0.03014 | 0.7557 | 0.8542 | 1.247 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.093 | 1.098 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 62.51 | 2.244 | 0.07930 | 0.2506 |
+#&gt; |.....................| -0.02305 | -56.21 | -16.10 | 0.4420 |
+#&gt; |.....................| -2.202 | 1.071 | 7.160 | -10.75 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.705 | -9.292 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 18</span>| 491.85024 | 0.9902 | -1.006 | -0.9112 | -0.8949 |
+#&gt; |.....................| -0.8453 | -0.6983 | -0.8384 | -0.8699 |
+#&gt; |.....................| -0.8855 | -0.8798 | -0.8984 | -0.8374 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8459 | -0.8439 |...........|...........|</span>
+#&gt; | U| 491.85024 | 92.21 | -5.310 | -0.9440 | -0.1071 |
+#&gt; |.....................| 2.291 | 1.258 | 0.03085 | 1.159 |
+#&gt; |.....................| 0.03015 | 0.7556 | 0.8529 | 1.250 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.095 | 1.100 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 491.85024</span> | 92.21 | 0.004944 | 0.2801 | 0.8985 |
+#&gt; |.....................| 9.888 | 1.258 | 0.03085 | 1.159 |
+#&gt; |.....................| 0.03015 | 0.7556 | 0.8529 | 1.250 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.095 | 1.100 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -64.39 | 2.132 | -0.2231 | 0.1507 |
+#&gt; |.....................| -0.3455 | -54.91 | -16.84 | 1.107 |
+#&gt; |.....................| -2.130 | 0.9153 | 6.361 | -10.56 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.604 | -9.065 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 19</span>| 491.03181 | 0.9992 | -1.007 | -0.9112 | -0.8950 |
+#&gt; |.....................| -0.8452 | -0.6860 | -0.8347 | -0.8702 |
+#&gt; |.....................| -0.8850 | -0.8800 | -0.8997 | -0.8350 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8439 | -0.8419 |...........|...........|</span>
+#&gt; | U| 491.03181 | 93.04 | -5.310 | -0.9440 | -0.1071 |
+#&gt; |.....................| 2.291 | 1.265 | 0.03091 | 1.159 |
+#&gt; |.....................| 0.03015 | 0.7554 | 0.8517 | 1.253 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.097 | 1.103 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 491.03181</span> | 93.04 | 0.004942 | 0.2801 | 0.8984 |
+#&gt; |.....................| 9.888 | 1.265 | 0.03091 | 1.159 |
+#&gt; |.....................| 0.03015 | 0.7554 | 0.8517 | 1.253 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.097 | 1.103 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 59.97 | 2.217 | 0.06954 | 0.2512 |
+#&gt; |.....................| -0.03854 | -54.10 | -15.21 | 0.3955 |
+#&gt; |.....................| -2.336 | 1.047 | 8.162 | -10.81 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.706 | -9.233 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 20</span>| 490.24998 | 0.9904 | -1.007 | -0.9112 | -0.8950 |
+#&gt; |.....................| -0.8452 | -0.6737 | -0.8313 | -0.8703 |
+#&gt; |.....................| -0.8845 | -0.8803 | -0.9015 | -0.8325 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8419 | -0.8397 |...........|...........|</span>
+#&gt; | U| 490.24998 | 92.22 | -5.311 | -0.9440 | -0.1072 |
+#&gt; |.....................| 2.291 | 1.273 | 0.03096 | 1.159 |
+#&gt; |.....................| 0.03016 | 0.7552 | 0.8502 | 1.256 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.099 | 1.105 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 490.24998</span> | 92.22 | 0.004939 | 0.2801 | 0.8984 |
+#&gt; |.....................| 9.889 | 1.273 | 0.03096 | 1.159 |
+#&gt; |.....................| 0.03016 | 0.7552 | 0.8502 | 1.256 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.099 | 1.105 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -61.40 | 2.114 | -0.2172 | 0.1580 |
+#&gt; |.....................| -0.3477 | -53.15 | -16.02 | 0.7982 |
+#&gt; |.....................| -2.483 | 0.7215 | 9.240 | -10.34 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.435 | -8.843 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 21</span>| 489.45580 | 0.9991 | -1.008 | -0.9111 | -0.8951 |
+#&gt; |.....................| -0.8451 | -0.6614 | -0.8278 | -0.8705 |
+#&gt; |.....................| -0.8839 | -0.8804 | -0.9038 | -0.8300 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8398 | -0.8376 |...........|...........|</span>
+#&gt; | U| 489.4558 | 93.03 | -5.311 | -0.9439 | -0.1072 |
+#&gt; |.....................| 2.291 | 1.280 | 0.03101 | 1.159 |
+#&gt; |.....................| 0.03017 | 0.7551 | 0.8482 | 1.259 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.102 | 1.107 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 489.4558</span> | 93.03 | 0.004937 | 0.2801 | 0.8983 |
+#&gt; |.....................| 9.889 | 1.280 | 0.03101 | 1.159 |
+#&gt; |.....................| 0.03017 | 0.7551 | 0.8482 | 1.259 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.102 | 1.107 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 58.20 | 2.191 | 0.07193 | 0.2543 |
+#&gt; |.....................| -0.04201 | -51.69 | -14.22 | 0.6968 |
+#&gt; |.....................| -2.088 | 1.024 | 8.024 | -10.34 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.364 | -8.845 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 22</span>| 488.71859 | 0.9903 | -1.008 | -0.9111 | -0.8951 |
+#&gt; |.....................| -0.8451 | -0.6491 | -0.8245 | -0.8707 |
+#&gt; |.....................| -0.8833 | -0.8807 | -0.9059 | -0.8275 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8378 | -0.8354 |...........|...........|</span>
+#&gt; | U| 488.71859 | 92.21 | -5.312 | -0.9439 | -0.1073 |
+#&gt; |.....................| 2.291 | 1.287 | 0.03106 | 1.158 |
+#&gt; |.....................| 0.03018 | 0.7549 | 0.8463 | 1.262 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.104 | 1.110 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 488.71859</span> | 92.21 | 0.004934 | 0.2801 | 0.8983 |
+#&gt; |.....................| 9.890 | 1.287 | 0.03106 | 1.158 |
+#&gt; |.....................| 0.03018 | 0.7549 | 0.8463 | 1.262 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.104 | 1.110 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -62.72 | 2.087 | -0.2158 | 0.1536 |
+#&gt; |.....................| -0.3560 | -50.59 | -14.96 | 1.289 |
+#&gt; |.....................| -2.066 | 0.8753 | 7.259 | -10.12 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.247 | -8.604 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 23</span>| 487.91801 | 0.9987 | -1.009 | -0.9111 | -0.8952 |
+#&gt; |.....................| -0.8450 | -0.6366 | -0.8210 | -0.8711 |
+#&gt; |.....................| -0.8828 | -0.8809 | -0.9078 | -0.8248 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8356 | -0.8332 |...........|...........|</span>
+#&gt; | U| 487.91801 | 93.00 | -5.312 | -0.9439 | -0.1073 |
+#&gt; |.....................| 2.292 | 1.294 | 0.03112 | 1.158 |
+#&gt; |.....................| 0.03019 | 0.7547 | 0.8446 | 1.265 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.106 | 1.112 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 487.91801</span> | 93.00 | 0.004931 | 0.2801 | 0.8982 |
+#&gt; |.....................| 9.890 | 1.294 | 0.03112 | 1.158 |
+#&gt; |.....................| 0.03019 | 0.7547 | 0.8446 | 1.265 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.106 | 1.112 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 52.73 | 2.162 | 0.07610 | 0.2481 |
+#&gt; |.....................| -0.05835 | -50.28 | -13.63 | 0.1991 |
+#&gt; |.....................| -2.681 | 0.6961 | 9.479 | -10.12 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.180 | -8.607 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 24</span>| 487.19380 | 0.9906 | -1.009 | -0.9111 | -0.8952 |
+#&gt; |.....................| -0.8450 | -0.6240 | -0.8177 | -0.8712 |
+#&gt; |.....................| -0.8820 | -0.8811 | -0.9103 | -0.8222 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8335 | -0.8310 |...........|...........|</span>
+#&gt; | U| 487.1938 | 92.24 | -5.313 | -0.9439 | -0.1074 |
+#&gt; |.....................| 2.292 | 1.301 | 0.03116 | 1.158 |
+#&gt; |.....................| 0.03020 | 0.7546 | 0.8424 | 1.269 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.108 | 1.114 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 487.1938</span> | 92.24 | 0.004929 | 0.2801 | 0.8982 |
+#&gt; |.....................| 9.891 | 1.301 | 0.03116 | 1.158 |
+#&gt; |.....................| 0.03020 | 0.7546 | 0.8424 | 1.269 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.108 | 1.114 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -58.70 | 2.065 | -0.2024 | 0.1592 |
+#&gt; |.....................| -0.3563 | -48.58 | -14.05 | 1.280 |
+#&gt; |.....................| -2.114 | 0.8980 | 5.535 | -9.882 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.046 | -8.364 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 25</span>| 486.45861 | 0.9990 | -1.010 | -0.9111 | -0.8953 |
+#&gt; |.....................| -0.8449 | -0.6115 | -0.8144 | -0.8715 |
+#&gt; |.....................| -0.8813 | -0.8813 | -0.9121 | -0.8195 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8313 | -0.8287 |...........|...........|</span>
+#&gt; | U| 486.45861 | 93.03 | -5.313 | -0.9439 | -0.1074 |
+#&gt; |.....................| 2.292 | 1.309 | 0.03121 | 1.158 |
+#&gt; |.....................| 0.03021 | 0.7545 | 0.8409 | 1.272 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.111 | 1.117 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 486.45861</span> | 93.03 | 0.004926 | 0.2801 | 0.8981 |
+#&gt; |.....................| 9.892 | 1.309 | 0.03121 | 1.158 |
+#&gt; |.....................| 0.03021 | 0.7545 | 0.8409 | 1.272 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.111 | 1.117 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 56.64 | 2.141 | 0.09518 | 0.2574 |
+#&gt; |.....................| -0.04938 | -48.45 | -12.81 | 0.1110 |
+#&gt; |.....................| -2.819 | 0.7463 | 7.804 | -9.858 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.976 | -8.366 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 26</span>| 485.70463 | 0.9912 | -1.011 | -0.9111 | -0.8954 |
+#&gt; |.....................| -0.8448 | -0.5987 | -0.8113 | -0.8717 |
+#&gt; |.....................| -0.8805 | -0.8815 | -0.9139 | -0.8166 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8290 | -0.8264 |...........|...........|</span>
+#&gt; | U| 485.70463 | 92.30 | -5.314 | -0.9439 | -0.1075 |
+#&gt; |.....................| 2.292 | 1.316 | 0.03126 | 1.158 |
+#&gt; |.....................| 0.03022 | 0.7543 | 0.8393 | 1.275 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.113 | 1.119 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 485.70463</span> | 92.30 | 0.004923 | 0.2801 | 0.8981 |
+#&gt; |.....................| 9.892 | 1.316 | 0.03126 | 1.158 |
+#&gt; |.....................| 0.03022 | 0.7543 | 0.8393 | 1.275 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.113 | 1.119 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -49.75 | 2.049 | -0.1896 | 0.1657 |
+#&gt; |.....................| -0.3394 | -47.06 | -13.27 | 0.8968 |
+#&gt; |.....................| -2.558 | 0.5259 | 7.006 | -9.655 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.860 | -8.128 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 27</span>| 485.03383 | 0.9993 | -1.011 | -0.9111 | -0.8954 |
+#&gt; |.....................| -0.8447 | -0.5860 | -0.8081 | -0.8719 |
+#&gt; |.....................| -0.8796 | -0.8816 | -0.9160 | -0.8138 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8267 | -0.8240 |...........|...........|</span>
+#&gt; | U| 485.03383 | 93.05 | -5.315 | -0.9439 | -0.1076 |
+#&gt; |.....................| 2.292 | 1.323 | 0.03131 | 1.158 |
+#&gt; |.....................| 0.03024 | 0.7542 | 0.8375 | 1.279 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.116 | 1.122 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 485.03383</span> | 93.05 | 0.004920 | 0.2801 | 0.8980 |
+#&gt; |.....................| 9.893 | 1.323 | 0.03131 | 1.158 |
+#&gt; |.....................| 0.03024 | 0.7542 | 0.8375 | 1.279 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.116 | 1.122 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 59.36 | 2.117 | 0.1128 | 0.2587 |
+#&gt; |.....................| -0.03694 | -45.49 | -11.65 | 0.8714 |
+#&gt; |.....................| -2.196 | 0.9711 | 7.208 | -9.629 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.785 | -8.123 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 28</span>| 484.30050 | 0.9913 | -1.012 | -0.9111 | -0.8955 |
+#&gt; |.....................| -0.8447 | -0.5733 | -0.8052 | -0.8723 |
+#&gt; |.....................| -0.8788 | -0.8818 | -0.9181 | -0.8109 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8243 | -0.8216 |...........|...........|</span>
+#&gt; | U| 484.3005 | 92.30 | -5.315 | -0.9439 | -0.1077 |
+#&gt; |.....................| 2.292 | 1.331 | 0.03135 | 1.157 |
+#&gt; |.....................| 0.03025 | 0.7541 | 0.8357 | 1.282 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.118 | 1.124 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 484.3005</span> | 92.30 | 0.004916 | 0.2801 | 0.8979 |
+#&gt; |.....................| 9.894 | 1.331 | 0.03135 | 1.157 |
+#&gt; |.....................| 0.03025 | 0.7541 | 0.8357 | 1.282 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.118 | 1.124 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -49.13 | 2.024 | -0.1788 | 0.1668 |
+#&gt; |.....................| -0.3408 | -44.74 | -12.30 | 1.348 |
+#&gt; |.....................| -2.137 | 0.7757 | 5.010 | -9.393 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.651 | -7.866 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 29</span>| 483.61888 | 0.9988 | -1.013 | -0.9110 | -0.8956 |
+#&gt; |.....................| -0.8446 | -0.5603 | -0.8022 | -0.8729 |
+#&gt; |.....................| -0.8781 | -0.8821 | -0.9194 | -0.8078 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8218 | -0.8191 |...........|...........|</span>
+#&gt; | U| 483.61888 | 93.00 | -5.316 | -0.9438 | -0.1077 |
+#&gt; |.....................| 2.292 | 1.338 | 0.03140 | 1.157 |
+#&gt; |.....................| 0.03026 | 0.7539 | 0.8345 | 1.286 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.121 | 1.127 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 483.61888</span> | 93.00 | 0.004913 | 0.2801 | 0.8979 |
+#&gt; |.....................| 9.895 | 1.338 | 0.03140 | 1.157 |
+#&gt; |.....................| 0.03026 | 0.7539 | 0.8345 | 1.286 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.121 | 1.127 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 51.77 | 2.082 | 0.08733 | 0.2462 |
+#&gt; |.....................| -0.07383 | -44.60 | -11.22 | 0.3023 |
+#&gt; |.....................| -2.722 | 0.5489 | 8.672 | -9.371 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.562 | -7.848 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 30</span>| 482.91165 | 0.9915 | -1.013 | -0.9110 | -0.8957 |
+#&gt; |.....................| -0.8445 | -0.5473 | -0.7995 | -0.8732 |
+#&gt; |.....................| -0.8770 | -0.8822 | -0.9219 | -0.8047 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8192 | -0.8165 |...........|...........|</span>
+#&gt; | U| 482.91165 | 92.33 | -5.317 | -0.9438 | -0.1078 |
+#&gt; |.....................| 2.292 | 1.346 | 0.03144 | 1.157 |
+#&gt; |.....................| 0.03027 | 0.7538 | 0.8323 | 1.290 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.124 | 1.130 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 482.91165</span> | 92.33 | 0.004909 | 0.2801 | 0.8978 |
+#&gt; |.....................| 9.895 | 1.346 | 0.03144 | 1.157 |
+#&gt; |.....................| 0.03027 | 0.7538 | 0.8323 | 1.290 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.124 | 1.130 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -45.50 | 2.003 | -0.1660 | 0.1702 |
+#&gt; |.....................| -0.3374 | -43.33 | -11.63 | 0.9930 |
+#&gt; |.....................| -2.511 | 0.4656 | 7.949 | -9.128 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.427 | -7.608 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 31</span>| 482.28997 | 0.9991 | -1.014 | -0.9110 | -0.8957 |
+#&gt; |.....................| -0.8444 | -0.5346 | -0.7968 | -0.8735 |
+#&gt; |.....................| -0.8759 | -0.8822 | -0.9253 | -0.8017 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8168 | -0.8141 |...........|...........|</span>
+#&gt; | U| 482.28997 | 93.03 | -5.317 | -0.9438 | -0.1079 |
+#&gt; |.....................| 2.292 | 1.353 | 0.03148 | 1.157 |
+#&gt; |.....................| 0.03029 | 0.7538 | 0.8294 | 1.293 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.126 | 1.132 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 482.28997</span> | 93.03 | 0.004906 | 0.2801 | 0.8977 |
+#&gt; |.....................| 9.896 | 1.353 | 0.03148 | 1.157 |
+#&gt; |.....................| 0.03029 | 0.7538 | 0.8294 | 1.293 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.126 | 1.132 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 55.95 | 2.054 | 0.1106 | 0.2465 |
+#&gt; |.....................| -0.05340 | -42.18 | -10.21 | 0.8261 |
+#&gt; |.....................| -2.234 | 0.9104 | 5.096 | -9.114 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.334 | -7.590 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 32</span>| 481.60550 | 0.9915 | -1.015 | -0.9110 | -0.8958 |
+#&gt; |.....................| -0.8443 | -0.5217 | -0.7945 | -0.8740 |
+#&gt; |.....................| -0.8749 | -0.8824 | -0.9274 | -0.7984 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8142 | -0.8115 |...........|...........|</span>
+#&gt; | U| 481.6055 | 92.33 | -5.318 | -0.9438 | -0.1080 |
+#&gt; |.....................| 2.292 | 1.361 | 0.03151 | 1.156 |
+#&gt; |.....................| 0.03031 | 0.7536 | 0.8276 | 1.297 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.129 | 1.135 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 481.6055</span> | 92.33 | 0.004902 | 0.2801 | 0.8977 |
+#&gt; |.....................| 9.897 | 1.361 | 0.03151 | 1.156 |
+#&gt; |.....................| 0.03031 | 0.7536 | 0.8276 | 1.297 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.129 | 1.135 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -45.82 | 1.973 | -0.1624 | 0.1674 |
+#&gt; |.....................| -0.3387 | -41.15 | -10.74 | 1.410 |
+#&gt; |.....................| -2.130 | 0.6088 | 4.422 | -8.852 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.186 | -7.335 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 33</span>| 480.97343 | 0.9986 | -1.016 | -0.9110 | -0.8959 |
+#&gt; |.....................| -0.8442 | -0.5084 | -0.7922 | -0.8748 |
+#&gt; |.....................| -0.8740 | -0.8826 | -0.9278 | -0.7950 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8114 | -0.8088 |...........|...........|</span>
+#&gt; | U| 480.97343 | 92.98 | -5.319 | -0.9438 | -0.1081 |
+#&gt; |.....................| 2.292 | 1.368 | 0.03155 | 1.156 |
+#&gt; |.....................| 0.03032 | 0.7534 | 0.8272 | 1.301 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.132 | 1.138 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 480.97343</span> | 92.98 | 0.004897 | 0.2801 | 0.8976 |
+#&gt; |.....................| 9.898 | 1.368 | 0.03155 | 1.156 |
+#&gt; |.....................| 0.03032 | 0.7534 | 0.8272 | 1.301 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.132 | 1.138 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 47.76 | 2.024 | 0.09167 | 0.2404 |
+#&gt; |.....................| -0.07393 | -40.22 | -9.470 | 1.031 |
+#&gt; |.....................| -2.098 | 0.8752 | 6.346 | -8.797 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.089 | -7.296 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 34</span>| 480.33235 | 0.9916 | -1.017 | -0.9110 | -0.8960 |
+#&gt; |.....................| -0.8441 | -0.4952 | -0.7903 | -0.8757 |
+#&gt; |.....................| -0.8731 | -0.8830 | -0.9294 | -0.7914 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8086 | -0.8060 |...........|...........|</span>
+#&gt; | U| 480.33235 | 92.33 | -5.320 | -0.9438 | -0.1082 |
+#&gt; |.....................| 2.292 | 1.376 | 0.03158 | 1.155 |
+#&gt; |.....................| 0.03033 | 0.7532 | 0.8258 | 1.306 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.135 | 1.141 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 480.33235</span> | 92.33 | 0.004893 | 0.2801 | 0.8975 |
+#&gt; |.....................| 9.899 | 1.376 | 0.03158 | 1.155 |
+#&gt; |.....................| 0.03033 | 0.7532 | 0.8258 | 1.306 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.135 | 1.141 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -44.82 | 1.956 | -0.1640 | 0.1653 |
+#&gt; |.....................| -0.3374 | -39.36 | -9.982 | 1.432 |
+#&gt; |.....................| -2.136 | 0.6770 | 5.747 | -8.552 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.943 | -7.038 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 35</span>| 479.71253 | 0.9984 | -1.018 | -0.9110 | -0.8961 |
+#&gt; |.....................| -0.8439 | -0.4821 | -0.7885 | -0.8768 |
+#&gt; |.....................| -0.8721 | -0.8833 | -0.9319 | -0.7879 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8057 | -0.8033 |...........|...........|</span>
+#&gt; | U| 479.71253 | 92.97 | -5.321 | -0.9438 | -0.1083 |
+#&gt; |.....................| 2.293 | 1.384 | 0.03160 | 1.155 |
+#&gt; |.....................| 0.03035 | 0.7529 | 0.8236 | 1.310 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.138 | 1.144 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.71253</span> | 92.97 | 0.004888 | 0.2801 | 0.8974 |
+#&gt; |.....................| 9.901 | 1.384 | 0.03160 | 1.155 |
+#&gt; |.....................| 0.03035 | 0.7529 | 0.8236 | 1.310 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.138 | 1.144 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 45.27 | 2.001 | 0.09802 | 0.2411 |
+#&gt; |.....................| -0.07361 | -39.48 | -9.147 | 0.2467 |
+#&gt; |.....................| -2.886 | 0.4583 | 7.836 | -8.475 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.831 | -7.001 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 36</span>| 479.08241 | 0.9920 | -1.019 | -0.9110 | -0.8962 |
+#&gt; |.....................| -0.8438 | -0.4691 | -0.7871 | -0.8771 |
+#&gt; |.....................| -0.8704 | -0.8833 | -0.9359 | -0.7844 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8029 | -0.8006 |...........|...........|</span>
+#&gt; | U| 479.08241 | 92.37 | -5.322 | -0.9438 | -0.1084 |
+#&gt; |.....................| 2.293 | 1.391 | 0.03163 | 1.155 |
+#&gt; |.....................| 0.03037 | 0.7529 | 0.8201 | 1.314 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.141 | 1.147 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.08241</span> | 92.37 | 0.004883 | 0.2801 | 0.8973 |
+#&gt; |.....................| 9.902 | 1.391 | 0.03163 | 1.155 |
+#&gt; |.....................| 0.03037 | 0.7529 | 0.8201 | 1.314 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.141 | 1.147 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -39.48 | 1.926 | -0.1378 | 0.1752 |
+#&gt; |.....................| -0.3206 | -38.45 | -9.498 | 0.8453 |
+#&gt; |.....................| -2.699 | 0.3871 | 5.589 | -8.242 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.674 | -6.762 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 37</span>| 478.53604 | 0.9990 | -1.019 | -0.9110 | -0.8964 |
+#&gt; |.....................| -0.8437 | -0.4561 | -0.7854 | -0.8772 |
+#&gt; |.....................| -0.8684 | -0.8832 | -0.9392 | -0.7811 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8002 | -0.7981 |...........|...........|</span>
+#&gt; | U| 478.53604 | 93.02 | -5.323 | -0.9438 | -0.1085 |
+#&gt; |.....................| 2.293 | 1.399 | 0.03165 | 1.155 |
+#&gt; |.....................| 0.03040 | 0.7530 | 0.8172 | 1.318 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.144 | 1.150 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.53604</span> | 93.02 | 0.004879 | 0.2801 | 0.8972 |
+#&gt; |.....................| 9.903 | 1.399 | 0.03165 | 1.155 |
+#&gt; |.....................| 0.03040 | 0.7530 | 0.8172 | 1.318 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.144 | 1.150 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 52.06 | 1.969 | 0.1359 | 0.2508 |
+#&gt; |.....................| -0.04337 | -37.95 | -8.435 | 0.2680 |
+#&gt; |.....................| -2.930 | 0.5186 | 5.955 | -8.188 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.576 | -6.741 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 38</span>| 477.90297 | 0.9924 | -1.021 | -0.9111 | -0.8965 |
+#&gt; |.....................| -0.8436 | -0.4428 | -0.7846 | -0.8771 |
+#&gt; |.....................| -0.8659 | -0.8830 | -0.9416 | -0.7776 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7975 | -0.7955 |...........|...........|</span>
+#&gt; | U| 477.90297 | 92.41 | -5.324 | -0.9439 | -0.1086 |
+#&gt; |.....................| 2.293 | 1.406 | 0.03166 | 1.155 |
+#&gt; |.....................| 0.03044 | 0.7531 | 0.8151 | 1.323 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.147 | 1.152 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 477.90297</span> | 92.41 | 0.004873 | 0.2801 | 0.8971 |
+#&gt; |.....................| 9.904 | 1.406 | 0.03166 | 1.155 |
+#&gt; |.....................| 0.03044 | 0.7531 | 0.8151 | 1.323 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.147 | 1.152 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -35.48 | 1.900 | -0.1171 | 0.1805 |
+#&gt; |.....................| -0.3013 | -36.12 | -8.554 | 1.521 |
+#&gt; |.....................| -2.082 | 0.5139 | 5.057 | -7.934 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.421 | -6.501 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 39</span>| 477.39487 | 0.9991 | -1.022 | -0.9111 | -0.8966 |
+#&gt; |.....................| -0.8434 | -0.4296 | -0.7836 | -0.8780 |
+#&gt; |.....................| -0.8642 | -0.8831 | -0.9436 | -0.7740 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7946 | -0.7928 |...........|...........|</span>
+#&gt; | U| 477.39487 | 93.04 | -5.325 | -0.9439 | -0.1088 |
+#&gt; |.....................| 2.293 | 1.414 | 0.03168 | 1.154 |
+#&gt; |.....................| 0.03047 | 0.7531 | 0.8134 | 1.327 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.150 | 1.155 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 477.39487</span> | 93.04 | 0.004868 | 0.2801 | 0.8969 |
+#&gt; |.....................| 9.906 | 1.414 | 0.03168 | 1.154 |
+#&gt; |.....................| 0.03047 | 0.7531 | 0.8134 | 1.327 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.150 | 1.155 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 53.22 | 1.947 | 0.1564 | 0.2562 |
+#&gt; |.....................| -0.02756 | -35.38 | -7.440 | 1.129 |
+#&gt; |.....................| -2.109 | 0.8531 | 5.389 | -7.888 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.311 | -6.462 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 40</span>| 476.77835 | 0.9927 | -1.023 | -0.9112 | -0.8968 |
+#&gt; |.....................| -0.8433 | -0.4165 | -0.7840 | -0.8801 |
+#&gt; |.....................| -0.8630 | -0.8835 | -0.9455 | -0.7699 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7913 | -0.7897 |...........|...........|</span>
+#&gt; | U| 476.77835 | 92.44 | -5.326 | -0.9439 | -0.1090 |
+#&gt; |.....................| 2.293 | 1.422 | 0.03167 | 1.153 |
+#&gt; |.....................| 0.03048 | 0.7527 | 0.8117 | 1.332 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.153 | 1.159 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 476.77835</span> | 92.44 | 0.004861 | 0.2801 | 0.8968 |
+#&gt; |.....................| 9.907 | 1.422 | 0.03167 | 1.153 |
+#&gt; |.....................| 0.03048 | 0.7527 | 0.8117 | 1.332 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.153 | 1.159 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -31.48 | 1.878 | -0.09989 | 0.1868 |
+#&gt; |.....................| -0.2862 | -34.69 | -7.934 | 1.303 |
+#&gt; |.....................| -2.230 | 0.5238 | 3.299 | -7.623 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.137 | -6.207 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 41</span>| 476.29140 | 0.9988 | -1.024 | -0.9112 | -0.8970 |
+#&gt; |.....................| -0.8432 | -0.4030 | -0.7837 | -0.8817 |
+#&gt; |.....................| -0.8615 | -0.8839 | -0.9453 | -0.7660 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7883 | -0.7869 |...........|...........|</span>
+#&gt; | U| 476.2914 | 93.01 | -5.328 | -0.9440 | -0.1091 |
+#&gt; |.....................| 2.293 | 1.430 | 0.03168 | 1.152 |
+#&gt; |.....................| 0.03051 | 0.7524 | 0.8119 | 1.337 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.157 | 1.162 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 476.2914</span> | 93.01 | 0.004855 | 0.2801 | 0.8966 |
+#&gt; |.....................| 9.909 | 1.430 | 0.03168 | 1.152 |
+#&gt; |.....................| 0.03051 | 0.7524 | 0.8119 | 1.337 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.157 | 1.162 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 48.73 | 1.930 | 0.1514 | 0.2545 |
+#&gt; |.....................| -0.03521 | -34.01 | -6.934 | 1.004 |
+#&gt; |.....................| -2.133 | 0.7968 | 5.252 | -7.528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.021 | -6.137 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 42</span>| 475.72593 | 0.9927 | -1.026 | -0.9113 | -0.8972 |
+#&gt; |.....................| -0.8430 | -0.3897 | -0.7848 | -0.8834 |
+#&gt; |.....................| -0.8598 | -0.8844 | -0.9451 | -0.7619 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7851 | -0.7840 |...........|...........|</span>
+#&gt; | U| 475.72593 | 92.44 | -5.329 | -0.9441 | -0.1094 |
+#&gt; |.....................| 2.294 | 1.437 | 0.03166 | 1.151 |
+#&gt; |.....................| 0.03053 | 0.7521 | 0.8121 | 1.342 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 | 1.165 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 475.72593</span> | 92.44 | 0.004847 | 0.2801 | 0.8964 |
+#&gt; |.....................| 9.910 | 1.437 | 0.03166 | 1.151 |
+#&gt; |.....................| 0.03053 | 0.7521 | 0.8121 | 1.342 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 | 1.165 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -31.62 | 1.868 | -0.1026 | 0.1833 |
+#&gt; |.....................| -0.2884 | -33.06 | -7.282 | 1.547 |
+#&gt; |.....................| -2.194 | 0.5347 | 3.320 | -7.249 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.852 | -5.889 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 43</span>| 475.25217 | 0.9986 | -1.027 | -0.9113 | -0.8974 |
+#&gt; |.....................| -0.8428 | -0.3762 | -0.7856 | -0.8854 |
+#&gt; |.....................| -0.8580 | -0.8849 | -0.9453 | -0.7580 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7821 | -0.7812 |...........|...........|</span>
+#&gt; | U| 475.25217 | 92.99 | -5.331 | -0.9441 | -0.1096 |
+#&gt; |.....................| 2.294 | 1.445 | 0.03165 | 1.150 |
+#&gt; |.....................| 0.03056 | 0.7517 | 0.8119 | 1.346 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.163 | 1.168 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 475.25217</span> | 92.99 | 0.004840 | 0.2801 | 0.8962 |
+#&gt; |.....................| 9.912 | 1.445 | 0.03165 | 1.150 |
+#&gt; |.....................| 0.03056 | 0.7517 | 0.8119 | 1.346 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.163 | 1.168 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 45.01 | 1.918 | 0.1424 | 0.2472 |
+#&gt; |.....................| -0.04139 | -32.61 | -6.424 | 0.9161 |
+#&gt; |.....................| -2.151 | 0.6354 | 5.209 | -7.174 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.746 | -5.822 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 44</span>| 474.72079 | 0.9929 | -1.029 | -0.9114 | -0.8977 |
+#&gt; |.....................| -0.8427 | -0.3629 | -0.7879 | -0.8876 |
+#&gt; |.....................| -0.8559 | -0.8852 | -0.9458 | -0.7541 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7790 | -0.7785 |...........|...........|</span>
+#&gt; | U| 474.72079 | 92.46 | -5.333 | -0.9442 | -0.1098 |
+#&gt; |.....................| 2.294 | 1.453 | 0.03161 | 1.149 |
+#&gt; |.....................| 0.03059 | 0.7515 | 0.8114 | 1.351 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.167 | 1.171 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 474.72079</span> | 92.46 | 0.004831 | 0.2800 | 0.8960 |
+#&gt; |.....................| 9.913 | 1.453 | 0.03161 | 1.149 |
+#&gt; |.....................| 0.03059 | 0.7515 | 0.8114 | 1.351 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.167 | 1.171 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -29.98 | 1.856 | -0.09377 | 0.1852 |
+#&gt; |.....................| -0.2753 | -32.15 | -6.889 | 1.072 |
+#&gt; |.....................| -2.266 | 0.4091 | 3.274 | -6.876 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.564 | -5.585 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 45</span>| 474.26379 | 0.9985 | -1.031 | -0.9115 | -0.8979 |
+#&gt; |.....................| -0.8425 | -0.3491 | -0.7895 | -0.8887 |
+#&gt; |.....................| -0.8536 | -0.8852 | -0.9464 | -0.7506 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7762 | -0.7761 |...........|...........|</span>
+#&gt; | U| 474.26379 | 92.98 | -5.335 | -0.9443 | -0.1101 |
+#&gt; |.....................| 2.294 | 1.461 | 0.03159 | 1.148 |
+#&gt; |.....................| 0.03063 | 0.7515 | 0.8109 | 1.355 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.170 | 1.173 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 474.26379</span> | 92.98 | 0.004822 | 0.2800 | 0.8958 |
+#&gt; |.....................| 9.915 | 1.461 | 0.03159 | 1.148 |
+#&gt; |.....................| 0.03063 | 0.7515 | 0.8109 | 1.355 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.170 | 1.173 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 42.78 | 1.902 | 0.1464 | 0.2388 |
+#&gt; |.....................| -0.03417 | -31.28 | -5.931 | 0.8375 |
+#&gt; |.....................| -2.202 | 0.7305 | 5.128 | -6.841 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.479 | -5.554 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 46</span>| 473.76810 | 0.9929 | -1.033 | -0.9117 | -0.8982 |
+#&gt; |.....................| -0.8424 | -0.3358 | -0.7928 | -0.8897 |
+#&gt; |.....................| -0.8508 | -0.8855 | -0.9473 | -0.7471 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7734 | -0.7737 |...........|...........|</span>
+#&gt; | U| 473.7681 | 92.46 | -5.337 | -0.9444 | -0.1104 |
+#&gt; |.....................| 2.294 | 1.469 | 0.03154 | 1.147 |
+#&gt; |.....................| 0.03067 | 0.7512 | 0.8101 | 1.360 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.173 | 1.176 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 473.7681</span> | 92.46 | 0.004812 | 0.2800 | 0.8955 |
+#&gt; |.....................| 9.917 | 1.469 | 0.03154 | 1.147 |
+#&gt; |.....................| 0.03067 | 0.7512 | 0.8101 | 1.360 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.173 | 1.176 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -30.83 | 1.832 | -0.1003 | 0.1743 |
+#&gt; |.....................| -0.2686 | -30.77 | -6.362 | 1.107 |
+#&gt; |.....................| -2.234 | 0.4249 | 4.678 | -6.593 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.329 | -5.340 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 47</span>| 473.32508 | 0.9983 | -1.035 | -0.9117 | -0.8984 |
+#&gt; |.....................| -0.8422 | -0.3229 | -0.7959 | -0.8909 |
+#&gt; |.....................| -0.8482 | -0.8859 | -0.9520 | -0.7438 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7708 | -0.7715 |...........|...........|</span>
+#&gt; | U| 473.32508 | 92.96 | -5.339 | -0.9445 | -0.1106 |
+#&gt; |.....................| 2.294 | 1.476 | 0.03149 | 1.147 |
+#&gt; |.....................| 0.03071 | 0.7509 | 0.8061 | 1.364 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.175 | 1.178 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 473.32508</span> | 92.96 | 0.004802 | 0.2800 | 0.8953 |
+#&gt; |.....................| 9.918 | 1.476 | 0.03149 | 1.147 |
+#&gt; |.....................| 0.03071 | 0.7509 | 0.8061 | 1.364 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.175 | 1.178 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 38.19 | 1.865 | 0.1554 | 0.2504 |
+#&gt; |.....................| -0.02116 | -30.15 | -5.522 | 0.8218 |
+#&gt; |.....................| -2.215 | 0.6878 | 4.772 | -6.537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.232 | -5.315 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 48</span>| 472.87290 | 0.9930 | -1.038 | -0.9119 | -0.8988 |
+#&gt; |.....................| -0.8421 | -0.3103 | -0.8002 | -0.8921 |
+#&gt; |.....................| -0.8451 | -0.8864 | -0.9564 | -0.7407 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7684 | -0.7695 |...........|...........|</span>
+#&gt; | U| 472.8729 | 92.47 | -5.341 | -0.9447 | -0.1109 |
+#&gt; |.....................| 2.294 | 1.483 | 0.03143 | 1.146 |
+#&gt; |.....................| 0.03075 | 0.7506 | 0.8022 | 1.367 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.178 | 1.180 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 472.8729</span> | 92.47 | 0.004791 | 0.2800 | 0.8950 |
+#&gt; |.....................| 9.919 | 1.483 | 0.03143 | 1.146 |
+#&gt; |.....................| 0.03075 | 0.7506 | 0.8022 | 1.367 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.178 | 1.180 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -31.43 | 1.786 | -0.07853 | 0.1828 |
+#&gt; |.....................| -0.2451 | -29.69 | -5.937 | 1.129 |
+#&gt; |.....................| -2.237 | 0.5225 | 4.143 | -6.356 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.097 | -5.139 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 49</span>| 472.45068 | 0.9981 | -1.040 | -0.9121 | -0.8991 |
+#&gt; |.....................| -0.8421 | -0.2974 | -0.8046 | -0.8935 |
+#&gt; |.....................| -0.8420 | -0.8871 | -0.9597 | -0.7375 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7660 | -0.7674 |...........|...........|</span>
+#&gt; | U| 472.45068 | 92.94 | -5.343 | -0.9449 | -0.1112 |
+#&gt; |.....................| 2.294 | 1.491 | 0.03136 | 1.145 |
+#&gt; |.....................| 0.03080 | 0.7500 | 0.7993 | 1.371 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.180 | 1.183 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 472.45068</span> | 92.94 | 0.004780 | 0.2799 | 0.8947 |
+#&gt; |.....................| 9.919 | 1.491 | 0.03136 | 1.145 |
+#&gt; |.....................| 0.03080 | 0.7500 | 0.7993 | 1.371 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.180 | 1.183 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 34.69 | 1.825 | 0.1712 | 0.2558 |
+#&gt; |.....................| 0.0008262 | -30.15 | -5.461 | 0.02383 |
+#&gt; |.....................| -3.011 | 0.3236 | 4.609 | -6.242 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.997 | -5.107 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 50</span>| 472.02915 | 0.9936 | -1.042 | -0.9125 | -0.8995 |
+#&gt; |.....................| -0.8422 | -0.2847 | -0.8092 | -0.8923 |
+#&gt; |.....................| -0.8364 | -0.8868 | -0.9626 | -0.7353 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7644 | -0.7660 |...........|...........|</span>
+#&gt; | U| 472.02915 | 92.52 | -5.345 | -0.9452 | -0.1116 |
+#&gt; |.....................| 2.294 | 1.498 | 0.03129 | 1.146 |
+#&gt; |.....................| 0.03088 | 0.7503 | 0.7968 | 1.374 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.182 | 1.184 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 472.02915</span> | 92.52 | 0.004770 | 0.2799 | 0.8944 |
+#&gt; |.....................| 9.918 | 1.498 | 0.03129 | 1.146 |
+#&gt; |.....................| 0.03088 | 0.7503 | 0.7968 | 1.374 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.182 | 1.184 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -26.29 | 1.758 | -0.04843 | 0.1910 |
+#&gt; |.....................| -0.1997 | -28.69 | -5.506 | 1.097 |
+#&gt; |.....................| -2.285 | 0.4947 | 2.297 | -6.079 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.892 | -4.970 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 51</span>| 471.69520 | 0.9992 | -1.044 | -0.9127 | -0.8998 |
+#&gt; |.....................| -0.8423 | -0.2715 | -0.8127 | -0.8918 |
+#&gt; |.....................| -0.8317 | -0.8866 | -0.9606 | -0.7330 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7627 | -0.7642 |...........|...........|</span>
+#&gt; | U| 471.6952 | 93.04 | -5.347 | -0.9454 | -0.1120 |
+#&gt; |.....................| 2.294 | 1.506 | 0.03124 | 1.146 |
+#&gt; |.....................| 0.03096 | 0.7504 | 0.7985 | 1.377 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.184 | 1.186 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 471.6952</span> | 93.04 | 0.004761 | 0.2798 | 0.8941 |
+#&gt; |.....................| 9.917 | 1.506 | 0.03124 | 1.146 |
+#&gt; |.....................| 0.03096 | 0.7504 | 0.7985 | 1.377 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.184 | 1.186 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 46.70 | 1.815 | 0.2108 | 0.2607 |
+#&gt; |.....................| 0.05766 | -27.95 | -4.639 | 0.9041 |
+#&gt; |.....................| -2.201 | 0.7590 | 4.326 | -6.078 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.851 | -4.972 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 52</span>| 471.30240 | 0.9939 | -1.046 | -0.9131 | -0.9002 |
+#&gt; |.....................| -0.8425 | -0.2596 | -0.8187 | -0.8939 |
+#&gt; |.....................| -0.8280 | -0.8876 | -0.9571 | -0.7302 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7606 | -0.7622 |...........|...........|</span>
+#&gt; | U| 471.3024 | 92.55 | -5.350 | -0.9458 | -0.1124 |
+#&gt; |.....................| 2.294 | 1.513 | 0.03115 | 1.145 |
+#&gt; |.....................| 0.03101 | 0.7497 | 0.8016 | 1.380 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.186 | 1.188 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 471.3024</span> | 92.55 | 0.004750 | 0.2797 | 0.8937 |
+#&gt; |.....................| 9.915 | 1.513 | 0.03115 | 1.145 |
+#&gt; |.....................| 0.03101 | 0.7497 | 0.8016 | 1.380 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.186 | 1.188 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -23.61 | 1.763 | -0.06060 | 0.1836 |
+#&gt; |.....................| -0.1912 | -28.31 | -5.279 | 0.6597 |
+#&gt; |.....................| -2.739 | 0.2048 | 5.941 | -5.864 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.747 | -4.787 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 53</span>| 470.94339 | 0.9985 | -1.048 | -0.9133 | -0.9006 |
+#&gt; |.....................| -0.8426 | -0.2476 | -0.8235 | -0.8946 |
+#&gt; |.....................| -0.8237 | -0.8877 | -0.9629 | -0.7278 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7587 | -0.7604 |...........|...........|</span>
+#&gt; | U| 470.94339 | 92.98 | -5.352 | -0.9460 | -0.1127 |
+#&gt; |.....................| 2.294 | 1.520 | 0.03108 | 1.145 |
+#&gt; |.....................| 0.03108 | 0.7496 | 0.7965 | 1.383 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.188 | 1.190 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 470.94339</span> | 92.98 | 0.004740 | 0.2797 | 0.8934 |
+#&gt; |.....................| 9.914 | 1.520 | 0.03108 | 1.145 |
+#&gt; |.....................| 0.03108 | 0.7496 | 0.7965 | 1.383 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.188 | 1.190 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 36.04 | 1.791 | 0.1836 | 0.2544 |
+#&gt; |.....................| 0.04274 | -27.03 | -4.370 | 0.9159 |
+#&gt; |.....................| -2.217 | 0.6791 | 4.141 | -5.840 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.667 | -4.764 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 54</span>| 470.60274 | 0.9931 | -1.051 | -0.9136 | -0.9010 |
+#&gt; |.....................| -0.8428 | -0.2366 | -0.8300 | -0.8957 |
+#&gt; |.....................| -0.8190 | -0.8879 | -0.9681 | -0.7257 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7570 | -0.7588 |...........|...........|</span>
+#&gt; | U| 470.60274 | 92.48 | -5.354 | -0.9463 | -0.1131 |
+#&gt; |.....................| 2.294 | 1.526 | 0.03098 | 1.144 |
+#&gt; |.....................| 0.03115 | 0.7494 | 0.7919 | 1.386 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.190 | 1.192 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 470.60274</span> | 92.48 | 0.004728 | 0.2796 | 0.8930 |
+#&gt; |.....................| 9.912 | 1.526 | 0.03098 | 1.144 |
+#&gt; |.....................| 0.03115 | 0.7494 | 0.7919 | 1.386 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.190 | 1.192 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -35.91 | 1.718 | -0.07847 | 0.1786 |
+#&gt; |.....................| -0.1996 | -26.69 | -4.843 | 1.231 |
+#&gt; |.....................| -2.229 | 0.5625 | 3.489 | -5.662 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.557 | -4.604 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 55</span>| 470.25392 | 0.9977 | -1.054 | -0.9140 | -0.9015 |
+#&gt; |.....................| -0.8431 | -0.2250 | -0.8375 | -0.8987 |
+#&gt; |.....................| -0.8153 | -0.8894 | -0.9673 | -0.7229 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7550 | -0.7569 |...........|...........|</span>
+#&gt; | U| 470.25392 | 92.90 | -5.357 | -0.9467 | -0.1136 |
+#&gt; |.....................| 2.293 | 1.533 | 0.03087 | 1.142 |
+#&gt; |.....................| 0.03120 | 0.7483 | 0.7927 | 1.389 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.192 | 1.194 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 470.25392</span> | 92.90 | 0.004715 | 0.2796 | 0.8926 |
+#&gt; |.....................| 9.909 | 1.533 | 0.03087 | 1.142 |
+#&gt; |.....................| 0.03120 | 0.7483 | 0.7927 | 1.389 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.192 | 1.194 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 23.42 | 1.753 | 0.1414 | 0.2393 |
+#&gt; |.....................| 0.01691 | -26.51 | -4.262 | 0.6993 |
+#&gt; |.....................| -2.408 | 0.5525 | 2.318 | -5.573 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.475 | -4.572 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 56</span>| 469.96066 | 0.9934 | -1.056 | -0.9144 | -0.9019 |
+#&gt; |.....................| -0.8434 | -0.2128 | -0.8432 | -0.9002 |
+#&gt; |.....................| -0.8113 | -0.8903 | -0.9627 | -0.7205 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7531 | -0.7551 |...........|...........|</span>
+#&gt; | U| 469.96066 | 92.50 | -5.359 | -0.9470 | -0.1140 |
+#&gt; |.....................| 2.293 | 1.540 | 0.03078 | 1.141 |
+#&gt; |.....................| 0.03126 | 0.7476 | 0.7967 | 1.392 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.194 | 1.196 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 469.96066</span> | 92.50 | 0.004704 | 0.2795 | 0.8922 |
+#&gt; |.....................| 9.906 | 1.540 | 0.03078 | 1.141 |
+#&gt; |.....................| 0.03126 | 0.7476 | 0.7967 | 1.392 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.194 | 1.196 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -33.10 | 1.713 | -0.09549 | 0.1710 |
+#&gt; |.....................| -0.1943 | -25.89 | -4.557 | 1.045 |
+#&gt; |.....................| -2.243 | 0.5648 | 3.834 | -5.392 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.399 | -4.402 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 57</span>| 469.66426 | 0.9983 | -1.059 | -0.9147 | -0.9023 |
+#&gt; |.....................| -0.8437 | -0.2012 | -0.8503 | -0.9014 |
+#&gt; |.....................| -0.8068 | -0.8914 | -0.9589 | -0.7186 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7515 | -0.7537 |...........|...........|</span>
+#&gt; | U| 469.66426 | 92.95 | -5.362 | -0.9473 | -0.1144 |
+#&gt; |.....................| 2.293 | 1.547 | 0.03068 | 1.141 |
+#&gt; |.....................| 0.03133 | 0.7468 | 0.8000 | 1.394 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.196 | 1.197 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 469.66426</span> | 92.95 | 0.004691 | 0.2794 | 0.8919 |
+#&gt; |.....................| 9.903 | 1.547 | 0.03068 | 1.141 |
+#&gt; |.....................| 0.03133 | 0.7468 | 0.8000 | 1.394 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.196 | 1.197 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 29.48 | 1.769 | 0.1441 | 0.2362 |
+#&gt; |.....................| 0.03493 | -25.40 | -3.876 | 0.7581 |
+#&gt; |.....................| -2.246 | 0.6653 | 4.370 | -5.362 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.340 | -4.389 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 58</span>| 469.35361 | 0.9940 | -1.062 | -0.9149 | -0.9027 |
+#&gt; |.....................| -0.8440 | -0.1900 | -0.8585 | -0.9032 |
+#&gt; |.....................| -0.8026 | -0.8931 | -0.9615 | -0.7168 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7497 | -0.7523 |...........|...........|</span>
+#&gt; | U| 469.35361 | 92.56 | -5.365 | -0.9475 | -0.1149 |
+#&gt; |.....................| 2.293 | 1.553 | 0.03055 | 1.140 |
+#&gt; |.....................| 0.03139 | 0.7454 | 0.7977 | 1.396 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.198 | 1.199 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 469.35361</span> | 92.56 | 0.004677 | 0.2794 | 0.8915 |
+#&gt; |.....................| 9.900 | 1.553 | 0.03055 | 1.140 |
+#&gt; |.....................| 0.03139 | 0.7454 | 0.7977 | 1.396 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.198 | 1.199 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -26.71 | 1.702 | -0.07338 | 0.1729 |
+#&gt; |.....................| -0.1601 | -26.00 | -4.465 | 0.4354 |
+#&gt; |.....................| -2.821 | 0.3110 | 5.728 | -5.228 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.240 | -4.266 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 59</span>| 469.04262 | 0.9978 | -1.064 | -0.9151 | -0.9031 |
+#&gt; |.....................| -0.8443 | -0.1798 | -0.8657 | -0.9030 |
+#&gt; |.....................| -0.7971 | -0.8938 | -0.9685 | -0.7157 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7487 | -0.7515 |...........|...........|</span>
+#&gt; | U| 469.04262 | 92.91 | -5.368 | -0.9477 | -0.1152 |
+#&gt; |.....................| 2.292 | 1.559 | 0.03044 | 1.140 |
+#&gt; |.....................| 0.03147 | 0.7450 | 0.7916 | 1.398 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.199 | 1.200 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 469.04262</span> | 92.91 | 0.004665 | 0.2794 | 0.8912 |
+#&gt; |.....................| 9.897 | 1.559 | 0.03044 | 1.140 |
+#&gt; |.....................| 0.03147 | 0.7450 | 0.7916 | 1.398 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.199 | 1.200 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 60</span>| 468.78438 | 0.9975 | -1.068 | -0.9154 | -0.9036 |
+#&gt; |.....................| -0.8447 | -0.1709 | -0.8764 | -0.9025 |
+#&gt; |.....................| -0.7900 | -0.8946 | -0.9771 | -0.7153 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7482 | -0.7514 |...........|...........|</span>
+#&gt; | U| 468.78438 | 92.88 | -5.371 | -0.9479 | -0.1157 |
+#&gt; |.....................| 2.292 | 1.564 | 0.03028 | 1.140 |
+#&gt; |.....................| 0.03158 | 0.7443 | 0.7841 | 1.398 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.200 | 1.200 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 468.78438</span> | 92.88 | 0.004649 | 0.2793 | 0.8907 |
+#&gt; |.....................| 9.893 | 1.564 | 0.03028 | 1.140 |
+#&gt; |.....................| 0.03158 | 0.7443 | 0.7841 | 1.398 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.200 | 1.200 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 61</span>| 467.65199 | 0.9960 | -1.083 | -0.9167 | -0.9058 |
+#&gt; |.....................| -0.8469 | -0.1283 | -0.9284 | -0.9002 |
+#&gt; |.....................| -0.7560 | -0.8987 | -1.018 | -0.7133 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7456 | -0.7506 |...........|...........|</span>
+#&gt; | U| 467.65199 | 92.74 | -5.387 | -0.9492 | -0.1179 |
+#&gt; |.....................| 2.290 | 1.589 | 0.02950 | 1.141 |
+#&gt; |.....................| 0.03209 | 0.7413 | 0.7481 | 1.401 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.202 | 1.201 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 467.65199</span> | 92.74 | 0.004577 | 0.2791 | 0.8887 |
+#&gt; |.....................| 9.872 | 1.589 | 0.02950 | 1.141 |
+#&gt; |.....................| 0.03209 | 0.7413 | 0.7481 | 1.401 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.202 | 1.201 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 62</span>| 464.96560 | 0.9898 | -1.148 | -0.9222 | -0.9151 |
+#&gt; |.....................| -0.8556 | 0.04847 | -1.144 | -0.8910 |
+#&gt; |.....................| -0.6148 | -0.9154 | -1.189 | -0.7051 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7350 | -0.7474 |...........|...........|</span>
+#&gt; | U| 464.9656 | 92.17 | -5.451 | -0.9543 | -0.1273 |
+#&gt; |.....................| 2.281 | 1.691 | 0.02626 | 1.147 |
+#&gt; |.....................| 0.03421 | 0.7285 | 0.5986 | 1.411 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.214 | 1.204 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 464.9656</span> | 92.17 | 0.004291 | 0.2780 | 0.8805 |
+#&gt; |.....................| 9.786 | 1.691 | 0.02626 | 1.147 |
+#&gt; |.....................| 0.03421 | 0.7285 | 0.5986 | 1.411 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.214 | 1.204 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -134.9 | 0.8693 | 0.2607 | 0.2086 |
+#&gt; |.....................| 0.2111 | -19.53 | -3.427 | 3.399 |
+#&gt; |.....................| -2.172 | 1.526 | -11.79 | -4.993 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.321 | -4.659 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 63</span>| 458.88877 | 1.003 | -1.235 | -0.9465 | -0.9328 |
+#&gt; |.....................| -0.8841 | 0.3192 | -1.460 | -0.9475 |
+#&gt; |.....................| -0.4237 | -0.9768 | -1.134 | -0.6574 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7075 | -0.6995 |...........|...........|</span>
+#&gt; | U| 458.88877 | 93.40 | -5.538 | -0.9774 | -0.1450 |
+#&gt; |.....................| 2.252 | 1.848 | 0.02152 | 1.114 |
+#&gt; |.....................| 0.03709 | 0.6820 | 0.6469 | 1.468 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.243 | 1.255 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 458.88877</span> | 93.40 | 0.003933 | 0.2734 | 0.8651 |
+#&gt; |.....................| 9.511 | 1.848 | 0.02152 | 1.114 |
+#&gt; |.....................| 0.03709 | 0.6820 | 0.6469 | 1.468 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.243 | 1.255 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 64</span>| 455.19412 | 1.006 | -1.330 | -0.9732 | -0.9522 |
+#&gt; |.....................| -0.9154 | 0.6143 | -1.806 | -1.009 |
+#&gt; |.....................| -0.2144 | -1.044 | -1.075 | -0.6056 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6776 | -0.6473 |...........|...........|</span>
+#&gt; | U| 455.19412 | 93.67 | -5.634 | -1.003 | -0.1644 |
+#&gt; |.....................| 2.221 | 2.019 | 0.01631 | 1.078 |
+#&gt; |.....................| 0.04023 | 0.6311 | 0.6989 | 1.531 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.275 | 1.311 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 455.19412</span> | 93.67 | 0.003576 | 0.2684 | 0.8484 |
+#&gt; |.....................| 9.218 | 2.019 | 0.01631 | 1.078 |
+#&gt; |.....................| 0.04023 | 0.6311 | 0.6989 | 1.531 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.275 | 1.311 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 18.82 | 0.9889 | -1.032 | -0.1489 |
+#&gt; |.....................| 0.2009 | -8.117 | -0.5123 | 0.1656 |
+#&gt; |.....................| -2.314 | -3.473 | -0.8284 | 0.3432 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8357 | 0.04588 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 65</span>| 458.62552 | 1.004 | -1.494 | -0.8145 | -0.9319 |
+#&gt; |.....................| -0.9630 | 1.033 | -2.192 | -1.036 |
+#&gt; |.....................| 0.2529 | -0.5036 | -0.8838 | -0.8679 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7178 | -0.8209 |...........|...........|</span>
+#&gt; | U| 458.62552 | 93.52 | -5.797 | -0.8527 | -0.1440 |
+#&gt; |.....................| 2.174 | 2.262 | 0.01051 | 1.062 |
+#&gt; |.....................| 0.04725 | 1.041 | 0.8656 | 1.213 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.232 | 1.125 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 458.62552</span> | 93.52 | 0.003036 | 0.2989 | 0.8659 |
+#&gt; |.....................| 8.789 | 2.262 | 0.01051 | 1.062 |
+#&gt; |.....................| 0.04725 | 1.041 | 0.8656 | 1.213 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.232 | 1.125 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 66</span>| 454.48694 | 1.003 | -1.384 | -0.9206 | -0.9455 |
+#&gt; |.....................| -0.9312 | 0.7538 | -1.934 | -1.018 |
+#&gt; |.....................| -0.05956 | -0.8649 | -1.011 | -0.6924 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6908 | -0.7048 |...........|...........|</span>
+#&gt; | U| 454.48694 | 93.41 | -5.688 | -0.9529 | -0.1576 |
+#&gt; |.....................| 2.205 | 2.100 | 0.01439 | 1.073 |
+#&gt; |.....................| 0.04256 | 0.7669 | 0.7542 | 1.426 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.261 | 1.250 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 454.48694</span> | 93.41 | 0.003387 | 0.2783 | 0.8542 |
+#&gt; |.....................| 9.074 | 2.100 | 0.01439 | 1.073 |
+#&gt; |.....................| 0.04256 | 0.7669 | 0.7542 | 1.426 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.261 | 1.250 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -11.88 | 0.8805 | 1.030 | 0.0001663 |
+#&gt; |.....................| -0.3119 | -6.748 | -1.151 | 0.2517 |
+#&gt; |.....................| -3.379 | 3.981 | 5.317 | -4.395 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.890 | -2.785 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 67</span>| 453.47854 | 1.004 | -1.455 | -0.9097 | -0.9308 |
+#&gt; |.....................| -0.9364 | 0.8078 | -2.047 | -1.046 |
+#&gt; |.....................| 0.2383 | -0.8443 | -0.9977 | -0.6524 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6789 | -0.6970 |...........|...........|</span>
+#&gt; | U| 453.47854 | 93.48 | -5.759 | -0.9426 | -0.1429 |
+#&gt; |.....................| 2.200 | 2.132 | 0.01270 | 1.056 |
+#&gt; |.....................| 0.04703 | 0.7825 | 0.7661 | 1.474 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.274 | 1.258 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 453.47854</span> | 93.48 | 0.003156 | 0.2804 | 0.8668 |
+#&gt; |.....................| 9.026 | 2.132 | 0.01270 | 1.056 |
+#&gt; |.....................| 0.04703 | 0.7825 | 0.7661 | 1.474 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.274 | 1.258 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -7.580 | 0.7096 | 1.748 | 0.4450 |
+#&gt; |.....................| -0.3063 | -5.686 | -1.090 | 2.089 |
+#&gt; |.....................| -1.806 | 4.661 | 3.477 | -2.550 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.063 | -2.646 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 68</span>| 452.65869 | 1.010 | -1.604 | -0.9910 | -0.9601 |
+#&gt; |.....................| -0.9321 | 0.9548 | -2.236 | -1.333 |
+#&gt; |.....................| 0.7427 | -0.9083 | -1.017 | -0.7899 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7453 | -0.6781 |...........|...........|</span>
+#&gt; | U| 452.65869 | 94.06 | -5.907 | -1.019 | -0.1723 |
+#&gt; |.....................| 2.204 | 2.217 | 0.009851 | 0.8906 |
+#&gt; |.....................| 0.05461 | 0.7340 | 0.7490 | 1.308 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.203 | 1.278 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.65869</span> | 94.06 | 0.002719 | 0.2652 | 0.8418 |
+#&gt; |.....................| 9.065 | 2.217 | 0.009851 | 0.8906 |
+#&gt; |.....................| 0.05461 | 0.7340 | 0.7490 | 1.308 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.203 | 1.278 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 87.74 | 0.4343 | -0.7887 | -0.2527 |
+#&gt; |.....................| -0.1232 | -3.287 | -0.3715 | -5.728 |
+#&gt; |.....................| -3.469 | 4.620 | 5.104 | -8.863 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.024 | -1.180 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 69</span>| 455.46876 | 1.000 | -1.721 | -0.9929 | -1.109 |
+#&gt; |.....................| -0.8905 | 1.109 | -2.343 | -1.386 |
+#&gt; |.....................| 1.193 | -1.162 | -0.9750 | -0.9277 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5804 | -0.9245 |...........|...........|</span>
+#&gt; | U| 455.46876 | 93.13 | -6.025 | -1.021 | -0.3216 |
+#&gt; |.....................| 2.246 | 2.306 | 0.008241 | 0.8595 |
+#&gt; |.....................| 0.06138 | 0.5417 | 0.7859 | 1.140 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.379 | 1.014 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 455.46876</span> | 93.13 | 0.002419 | 0.2648 | 0.7250 |
+#&gt; |.....................| 9.450 | 2.306 | 0.008241 | 0.8595 |
+#&gt; |.....................| 0.06138 | 0.5417 | 0.7859 | 1.140 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.379 | 1.014 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 70</span>| 453.13548 | 0.9926 | -1.633 | -0.9913 | -0.9976 |
+#&gt; |.....................| -0.9216 | 0.9941 | -2.263 | -1.345 |
+#&gt; |.....................| 0.8563 | -0.9728 | -1.008 | -0.8230 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7030 | -0.7398 |...........|...........|</span>
+#&gt; | U| 453.13548 | 92.43 | -5.937 | -1.020 | -0.2097 |
+#&gt; |.....................| 2.215 | 2.240 | 0.009448 | 0.8833 |
+#&gt; |.....................| 0.05632 | 0.6851 | 0.7575 | 1.268 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.248 | 1.212 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 453.13548</span> | 92.43 | 0.002640 | 0.2651 | 0.8108 |
+#&gt; |.....................| 9.161 | 2.240 | 0.009448 | 0.8833 |
+#&gt; |.....................| 0.05632 | 0.6851 | 0.7575 | 1.268 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.248 | 1.212 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 71</span>| 453.54485 | 0.9910 | -1.615 | -0.9910 | -0.9747 |
+#&gt; |.....................| -0.9280 | 0.9706 | -2.247 | -1.337 |
+#&gt; |.....................| 0.7875 | -0.9341 | -1.014 | -0.8015 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7281 | -0.7020 |...........|...........|</span>
+#&gt; | U| 453.54485 | 92.28 | -5.919 | -1.019 | -0.1868 |
+#&gt; |.....................| 2.209 | 2.226 | 0.009694 | 0.8882 |
+#&gt; |.....................| 0.05529 | 0.7144 | 0.7517 | 1.294 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.221 | 1.253 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 453.54485</span> | 92.28 | 0.002688 | 0.2651 | 0.8296 |
+#&gt; |.....................| 9.103 | 2.226 | 0.009694 | 0.8882 |
+#&gt; |.....................| 0.05529 | 0.7144 | 0.7517 | 1.294 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.221 | 1.253 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 72</span>| 453.87696 | 0.9902 | -1.606 | -0.9909 | -0.9627 |
+#&gt; |.....................| -0.9313 | 0.9582 | -2.238 | -1.332 |
+#&gt; |.....................| 0.7513 | -0.9138 | -1.018 | -0.7903 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7413 | -0.6822 |...........|...........|</span>
+#&gt; | U| 453.87696 | 92.21 | -5.909 | -1.019 | -0.1748 |
+#&gt; |.....................| 2.205 | 2.219 | 0.009824 | 0.8908 |
+#&gt; |.....................| 0.05474 | 0.7298 | 0.7487 | 1.307 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.207 | 1.274 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 453.87696</span> | 92.21 | 0.002714 | 0.2652 | 0.8396 |
+#&gt; |.....................| 9.072 | 2.219 | 0.009824 | 0.8908 |
+#&gt; |.....................| 0.05474 | 0.7298 | 0.7487 | 1.307 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.207 | 1.274 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 73</span>| 452.40810 | 1.003 | -1.604 | -0.9910 | -0.9601 |
+#&gt; |.....................| -0.9321 | 0.9550 | -2.236 | -1.332 |
+#&gt; |.....................| 0.7430 | -0.9087 | -1.018 | -0.7892 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7449 | -0.6781 |...........|...........|</span>
+#&gt; | U| 452.4081 | 93.41 | -5.907 | -1.019 | -0.1722 |
+#&gt; |.....................| 2.204 | 2.217 | 0.009851 | 0.8908 |
+#&gt; |.....................| 0.05462 | 0.7337 | 0.7487 | 1.309 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.203 | 1.278 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.4081</span> | 93.41 | 0.002719 | 0.2652 | 0.8418 |
+#&gt; |.....................| 9.065 | 2.217 | 0.009851 | 0.8908 |
+#&gt; |.....................| 0.05462 | 0.7337 | 0.7487 | 1.309 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.203 | 1.278 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -20.28 | 0.3985 | -0.9900 | -0.3302 |
+#&gt; |.....................| -0.4580 | -3.509 | -0.7634 | -5.125 |
+#&gt; |.....................| -3.224 | 3.921 | 4.784 | -8.607 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.910 | -1.049 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 74</span>| 452.35774 | 1.005 | -1.605 | -0.9906 | -0.9617 |
+#&gt; |.....................| -0.9314 | 0.9567 | -2.238 | -1.332 |
+#&gt; |.....................| 0.7462 | -0.9112 | -1.018 | -0.7890 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7417 | -0.6810 |...........|...........|</span>
+#&gt; | U| 452.35774 | 93.58 | -5.909 | -1.019 | -0.1738 |
+#&gt; |.....................| 2.205 | 2.218 | 0.009828 | 0.8908 |
+#&gt; |.....................| 0.05467 | 0.7317 | 0.7485 | 1.309 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.207 | 1.275 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.35774</span> | 93.58 | 0.002715 | 0.2652 | 0.8405 |
+#&gt; |.....................| 9.072 | 2.218 | 0.009828 | 0.8908 |
+#&gt; |.....................| 0.05467 | 0.7317 | 0.7485 | 1.309 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.207 | 1.275 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 9.319 | 0.4042 | -0.9262 | -0.3428 |
+#&gt; |.....................| -0.3413 | -3.482 | -0.6441 | -5.151 |
+#&gt; |.....................| -3.223 | 3.864 | 4.863 | -8.623 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.770 | -1.217 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 75</span>| 452.31017 | 1.003 | -1.607 | -0.9902 | -0.9631 |
+#&gt; |.....................| -0.9307 | 0.9586 | -2.239 | -1.332 |
+#&gt; |.....................| 0.7493 | -0.9137 | -1.019 | -0.7876 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7383 | -0.6834 |...........|...........|</span>
+#&gt; | U| 452.31017 | 93.41 | -5.910 | -1.019 | -0.1752 |
+#&gt; |.....................| 2.206 | 2.219 | 0.009807 | 0.8910 |
+#&gt; |.....................| 0.05471 | 0.7298 | 0.7478 | 1.310 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.210 | 1.273 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.31017</span> | 93.41 | 0.002711 | 0.2653 | 0.8393 |
+#&gt; |.....................| 9.078 | 2.219 | 0.009807 | 0.8910 |
+#&gt; |.....................| 0.05471 | 0.7298 | 0.7478 | 1.310 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.210 | 1.273 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -20.20 | 0.3903 | -0.9767 | -0.3983 |
+#&gt; |.....................| -0.4106 | -3.495 | -0.7375 | -5.052 |
+#&gt; |.....................| -3.297 | 3.718 | 4.704 | -8.538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.606 | -1.295 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 76</span>| 452.25868 | 1.005 | -1.609 | -0.9898 | -0.9648 |
+#&gt; |.....................| -0.9300 | 0.9604 | -2.241 | -1.332 |
+#&gt; |.....................| 0.7529 | -0.9160 | -1.019 | -0.7870 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7354 | -0.6858 |...........|...........|</span>
+#&gt; | U| 452.25868 | 93.58 | -5.912 | -1.018 | -0.1770 |
+#&gt; |.....................| 2.207 | 2.220 | 0.009778 | 0.8908 |
+#&gt; |.....................| 0.05477 | 0.7281 | 0.7476 | 1.311 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.213 | 1.270 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.25868</span> | 93.58 | 0.002707 | 0.2654 | 0.8378 |
+#&gt; |.....................| 9.084 | 2.220 | 0.009778 | 0.8908 |
+#&gt; |.....................| 0.05477 | 0.7281 | 0.7476 | 1.311 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.213 | 1.270 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 8.768 | 0.3959 | -0.9108 | -0.4152 |
+#&gt; |.....................| -0.2985 | -3.789 | -0.7277 | -5.480 |
+#&gt; |.....................| -3.800 | 3.463 | 7.165 | -8.525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.480 | -1.429 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 77</span>| 452.20380 | 1.003 | -1.610 | -0.9896 | -0.9665 |
+#&gt; |.....................| -0.9299 | 0.9625 | -2.243 | -1.331 |
+#&gt; |.....................| 0.7574 | -0.9182 | -1.020 | -0.7855 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7330 | -0.6868 |...........|...........|</span>
+#&gt; | U| 452.2038 | 93.42 | -5.913 | -1.018 | -0.1787 |
+#&gt; |.....................| 2.207 | 2.221 | 0.009753 | 0.8912 |
+#&gt; |.....................| 0.05483 | 0.7265 | 0.7464 | 1.313 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.216 | 1.269 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.2038</span> | 93.42 | 0.002704 | 0.2654 | 0.8364 |
+#&gt; |.....................| 9.085 | 2.221 | 0.009753 | 0.8912 |
+#&gt; |.....................| 0.05483 | 0.7265 | 0.7464 | 1.313 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.216 | 1.269 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -17.51 | 0.3875 | -0.9566 | -0.4713 |
+#&gt; |.....................| -0.3666 | -3.384 | -0.7134 | -4.862 |
+#&gt; |.....................| -3.257 | 3.566 | 3.539 | -8.382 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.308 | -1.428 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 78</span>| 452.15674 | 1.006 | -1.611 | -0.9895 | -0.9681 |
+#&gt; |.....................| -0.9296 | 0.9646 | -2.244 | -1.331 |
+#&gt; |.....................| 0.7624 | -0.9204 | -1.020 | -0.7847 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7317 | -0.6876 |...........|...........|</span>
+#&gt; | U| 452.15674 | 93.63 | -5.915 | -1.018 | -0.1803 |
+#&gt; |.....................| 2.207 | 2.222 | 0.009729 | 0.8915 |
+#&gt; |.....................| 0.05491 | 0.7248 | 0.7463 | 1.314 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.217 | 1.268 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.15674</span> | 93.63 | 0.002700 | 0.2654 | 0.8350 |
+#&gt; |.....................| 9.088 | 2.222 | 0.009729 | 0.8915 |
+#&gt; |.....................| 0.05491 | 0.7248 | 0.7463 | 1.314 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.217 | 1.268 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 16.34 | 0.3942 | -0.8917 | -0.4820 |
+#&gt; |.....................| -0.2498 | -3.403 | -0.6022 | -5.023 |
+#&gt; |.....................| -3.383 | 3.482 | 3.627 | -8.397 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.266 | -1.517 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 79</span>| 452.11013 | 1.004 | -1.613 | -0.9892 | -0.9692 |
+#&gt; |.....................| -0.9285 | 0.9667 | -2.245 | -1.330 |
+#&gt; |.....................| 0.7674 | -0.9230 | -1.020 | -0.7840 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7312 | -0.6887 |...........|...........|</span>
+#&gt; | U| 452.11013 | 93.48 | -5.917 | -1.018 | -0.1814 |
+#&gt; |.....................| 2.208 | 2.224 | 0.009710 | 0.8921 |
+#&gt; |.....................| 0.05499 | 0.7229 | 0.7466 | 1.315 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.218 | 1.267 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.11013</span> | 93.48 | 0.002694 | 0.2655 | 0.8341 |
+#&gt; |.....................| 9.098 | 2.224 | 0.009710 | 0.8921 |
+#&gt; |.....................| 0.05499 | 0.7229 | 0.7466 | 1.315 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.218 | 1.267 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -8.858 | 0.3784 | -0.9339 | -0.5242 |
+#&gt; |.....................| -0.2958 | -3.274 | -0.6451 | -4.716 |
+#&gt; |.....................| -3.235 | 3.524 | 3.578 | -8.323 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.226 | -1.527 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 80</span>| 452.06081 | 1.006 | -1.615 | -0.9885 | -0.9698 |
+#&gt; |.....................| -0.9277 | 0.9688 | -2.247 | -1.329 |
+#&gt; |.....................| 0.7723 | -0.9255 | -1.020 | -0.7822 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7302 | -0.6891 |...........|...........|</span>
+#&gt; | U| 452.06081 | 93.65 | -5.919 | -1.017 | -0.1820 |
+#&gt; |.....................| 2.209 | 2.225 | 0.009693 | 0.8927 |
+#&gt; |.....................| 0.05506 | 0.7209 | 0.7465 | 1.317 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.219 | 1.266 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.06081</span> | 93.65 | 0.002689 | 0.2656 | 0.8336 |
+#&gt; |.....................| 9.105 | 2.225 | 0.009693 | 0.8927 |
+#&gt; |.....................| 0.05506 | 0.7209 | 0.7465 | 1.317 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.219 | 1.266 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 18.08 | 0.3814 | -0.8701 | -0.5179 |
+#&gt; |.....................| -0.1901 | -3.027 | -0.4828 | -4.583 |
+#&gt; |.....................| -3.046 | 3.385 | 4.724 | -8.292 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.215 | -1.583 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 81</span>| 452.00089 | 1.004 | -1.618 | -0.9864 | -0.9698 |
+#&gt; |.....................| -0.9276 | 0.9701 | -2.249 | -1.331 |
+#&gt; |.....................| 0.7751 | -0.9261 | -1.021 | -0.7787 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7281 | -0.6889 |...........|...........|</span>
+#&gt; | U| 452.00089 | 93.48 | -5.921 | -1.015 | -0.1820 |
+#&gt; |.....................| 2.209 | 2.226 | 0.009656 | 0.8916 |
+#&gt; |.....................| 0.05510 | 0.7205 | 0.7459 | 1.321 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.221 | 1.267 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 452.00089</span> | 93.48 | 0.002683 | 0.2660 | 0.8336 |
+#&gt; |.....................| 9.107 | 2.226 | 0.009656 | 0.8916 |
+#&gt; |.....................| 0.05510 | 0.7205 | 0.7459 | 1.321 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.221 | 1.267 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -8.141 | 0.3688 | -0.8752 | -0.5418 |
+#&gt; |.....................| -0.2687 | -3.191 | -0.6153 | -4.612 |
+#&gt; |.....................| -3.168 | 3.248 | 4.602 | -8.159 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.118 | -1.545 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 82</span>| 451.94404 | 1.006 | -1.619 | -0.9850 | -0.9696 |
+#&gt; |.....................| -0.9279 | 0.9711 | -2.251 | -1.332 |
+#&gt; |.....................| 0.7767 | -0.9258 | -1.022 | -0.7739 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7256 | -0.6877 |...........|...........|</span>
+#&gt; | U| 451.94404 | 93.65 | -5.922 | -1.014 | -0.1817 |
+#&gt; |.....................| 2.209 | 2.226 | 0.009627 | 0.8908 |
+#&gt; |.....................| 0.05512 | 0.7207 | 0.7445 | 1.327 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.224 | 1.268 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 451.94404</span> | 93.65 | 0.002679 | 0.2663 | 0.8338 |
+#&gt; |.....................| 9.104 | 2.226 | 0.009627 | 0.8908 |
+#&gt; |.....................| 0.05512 | 0.7207 | 0.7445 | 1.327 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.224 | 1.268 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 83</span>| 451.90577 | 1.006 | -1.621 | -0.9832 | -0.9693 |
+#&gt; |.....................| -0.9284 | 0.9716 | -2.254 | -1.336 |
+#&gt; |.....................| 0.7778 | -0.9242 | -1.023 | -0.7696 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7233 | -0.6864 |...........|...........|</span>
+#&gt; | U| 451.90577 | 93.65 | -5.925 | -1.012 | -0.1815 |
+#&gt; |.....................| 2.208 | 2.227 | 0.009581 | 0.8887 |
+#&gt; |.....................| 0.05514 | 0.7219 | 0.7437 | 1.332 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.226 | 1.269 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 451.90577</span> | 93.65 | 0.002673 | 0.2666 | 0.8340 |
+#&gt; |.....................| 9.099 | 2.227 | 0.009581 | 0.8887 |
+#&gt; |.....................| 0.05514 | 0.7219 | 0.7437 | 1.332 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.226 | 1.269 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 84</span>| 451.74017 | 1.006 | -1.632 | -0.9740 | -0.9682 |
+#&gt; |.....................| -0.9311 | 0.9738 | -2.270 | -1.354 |
+#&gt; |.....................| 0.7839 | -0.9163 | -1.028 | -0.7474 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7117 | -0.6796 |...........|...........|</span>
+#&gt; | U| 451.74017 | 93.64 | -5.935 | -1.003 | -0.1804 |
+#&gt; |.....................| 2.205 | 2.228 | 0.009348 | 0.8780 |
+#&gt; |.....................| 0.05523 | 0.7279 | 0.7400 | 1.359 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.239 | 1.277 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 451.74017</span> | 93.64 | 0.002645 | 0.2683 | 0.8350 |
+#&gt; |.....................| 9.074 | 2.228 | 0.009348 | 0.8780 |
+#&gt; |.....................| 0.05523 | 0.7279 | 0.7400 | 1.359 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.239 | 1.277 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 85</span>| 451.58673 | 1.005 | -1.675 | -0.9364 | -0.9637 |
+#&gt; |.....................| -0.9422 | 0.9828 | -2.333 | -1.429 |
+#&gt; |.....................| 0.8084 | -0.8841 | -1.045 | -0.6570 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6645 | -0.6522 |...........|...........|</span>
+#&gt; | U| 451.58673 | 93.57 | -5.978 | -0.9678 | -0.1758 |
+#&gt; |.....................| 2.194 | 2.233 | 0.008399 | 0.8346 |
+#&gt; |.....................| 0.05560 | 0.7523 | 0.7245 | 1.469 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.289 | 1.306 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 451.58673</span> | 93.57 | 0.002533 | 0.2753 | 0.8388 |
+#&gt; |.....................| 8.974 | 2.233 | 0.008399 | 0.8346 |
+#&gt; |.....................| 0.05560 | 0.7523 | 0.7245 | 1.469 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.289 | 1.306 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 7.829 | 0.3494 | 0.8366 | -0.4922 |
+#&gt; |.....................| -0.7083 | -3.782 | -0.9020 | -9.523 |
+#&gt; |.....................| -4.571 | 4.733 | 3.935 | -3.194 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.280 | 0.5510 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 86</span>| 450.56328 | 1.003 | -1.760 | -0.9418 | -0.9563 |
+#&gt; |.....................| -0.9480 | 1.050 | -2.445 | -1.421 |
+#&gt; |.....................| 0.9402 | -0.9310 | -1.041 | -0.6107 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6547 | -0.6413 |...........|...........|</span>
+#&gt; | U| 450.56328 | 93.41 | -6.064 | -0.9728 | -0.1684 |
+#&gt; |.....................| 2.189 | 2.272 | 0.006706 | 0.8396 |
+#&gt; |.....................| 0.05758 | 0.7168 | 0.7280 | 1.525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.300 | 1.318 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 450.56328</span> | 93.41 | 0.002326 | 0.2743 | 0.8450 |
+#&gt; |.....................| 8.923 | 2.272 | 0.006706 | 0.8396 |
+#&gt; |.....................| 0.05758 | 0.7168 | 0.7280 | 1.525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.300 | 1.318 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 87</span>| 449.70344 | 1.004 | -1.916 | -0.9511 | -0.9429 |
+#&gt; |.....................| -0.9589 | 1.170 | -2.653 | -1.409 |
+#&gt; |.....................| 1.180 | -1.015 | -1.032 | -0.5274 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6372 | -0.6210 |...........|...........|</span>
+#&gt; | U| 449.70344 | 93.47 | -6.220 | -0.9817 | -0.1550 |
+#&gt; |.....................| 2.178 | 2.342 | 0.003591 | 0.8462 |
+#&gt; |.....................| 0.06119 | 0.6534 | 0.7360 | 1.626 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.318 | 1.340 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.70344</span> | 93.47 | 0.001990 | 0.2726 | 0.8564 |
+#&gt; |.....................| 8.826 | 2.342 | 0.003591 | 0.8462 |
+#&gt; |.....................| 0.06119 | 0.6534 | 0.7360 | 1.626 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.318 | 1.340 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -19.90 | -0.3168 | 0.4549 | 0.1875 |
+#&gt; |.....................| -1.116 | -0.4934 | -0.07687 | -3.113 |
+#&gt; |.....................| -2.715 | -1.586 | 5.430 | 3.365 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.3009 | 1.974 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 88</span>| 451.98935 | 1.002 | -1.890 | -1.062 | -1.052 |
+#&gt; |.....................| -0.7983 | 1.243 | -2.828 | -1.513 |
+#&gt; |.....................| 1.600 | -1.043 | -1.029 | -0.6268 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3463 | -0.6648 |...........|...........|</span>
+#&gt; | U| 451.98935 | 93.35 | -6.193 | -1.087 | -0.2643 |
+#&gt; |.....................| 2.338 | 2.384 | 0.0009551 | 0.7857 |
+#&gt; |.....................| 0.06749 | 0.6319 | 0.7389 | 1.506 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.629 | 1.293 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 451.98935</span> | 93.35 | 0.002043 | 0.2523 | 0.7677 |
+#&gt; |.....................| 10.36 | 2.384 | 0.0009551 | 0.7857 |
+#&gt; |.....................| 0.06749 | 0.6319 | 0.7389 | 1.506 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.629 | 1.293 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 89</span>| 449.56377 | 1.005 | -1.911 | -0.9716 | -0.9631 |
+#&gt; |.....................| -0.9292 | 1.184 | -2.685 | -1.428 |
+#&gt; |.....................| 1.258 | -1.020 | -1.032 | -0.5459 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5835 | -0.6292 |...........|...........|</span>
+#&gt; | U| 449.56377 | 93.56 | -6.215 | -1.001 | -0.1752 |
+#&gt; |.....................| 2.207 | 2.350 | 0.003105 | 0.8351 |
+#&gt; |.....................| 0.06235 | 0.6495 | 0.7362 | 1.604 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.376 | 1.331 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.56377</span> | 93.56 | 0.002000 | 0.2687 | 0.8393 |
+#&gt; |.....................| 9.092 | 2.350 | 0.003105 | 0.8351 |
+#&gt; |.....................| 0.06235 | 0.6495 | 0.7362 | 1.604 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.376 | 1.331 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -8.503 | -0.3085 | -0.7128 | -0.4858 |
+#&gt; |.....................| -0.1462 | -0.3349 | -0.04630 | -2.615 |
+#&gt; |.....................| -2.539 | -1.761 | 5.421 | 2.664 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 3.069 | 1.771 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 90</span>| 449.37295 | 1.008 | -1.883 | -0.9569 | -0.9753 |
+#&gt; |.....................| -0.9112 | 1.201 | -2.710 | -1.458 |
+#&gt; |.....................| 1.352 | -1.030 | -1.036 | -0.5467 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5933 | -0.6460 |...........|...........|</span>
+#&gt; | U| 449.37295 | 93.89 | -6.186 | -0.9871 | -0.1875 |
+#&gt; |.....................| 2.225 | 2.360 | 0.002726 | 0.8181 |
+#&gt; |.....................| 0.06377 | 0.6417 | 0.7326 | 1.603 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.365 | 1.313 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.37295</span> | 93.89 | 0.002058 | 0.2715 | 0.8291 |
+#&gt; |.....................| 9.256 | 2.360 | 0.002726 | 0.8181 |
+#&gt; |.....................| 0.06377 | 0.6417 | 0.7326 | 1.603 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.365 | 1.313 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 31.95 | -0.2055 | 0.2861 | -0.8772 |
+#&gt; |.....................| 0.4589 | 0.008909 | 0.01409 | -2.994 |
+#&gt; |.....................| -2.511 | -2.129 | 5.021 | 2.567 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 2.446 | 1.004 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 91</span>| 449.07232 | 1.007 | -1.848 | -0.9883 | -0.9607 |
+#&gt; |.....................| -0.9269 | 1.208 | -2.721 | -1.473 |
+#&gt; |.....................| 1.446 | -1.013 | -1.041 | -0.5472 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6000 | -0.6251 |...........|...........|</span>
+#&gt; | U| 449.07232 | 93.73 | -6.151 | -1.017 | -0.1729 |
+#&gt; |.....................| 2.210 | 2.364 | 0.002568 | 0.8093 |
+#&gt; |.....................| 0.06518 | 0.6543 | 0.7283 | 1.602 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.358 | 1.335 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.07232</span> | 93.73 | 0.002130 | 0.2656 | 0.8412 |
+#&gt; |.....................| 9.113 | 2.364 | 0.002568 | 0.8093 |
+#&gt; |.....................| 0.06518 | 0.6543 | 0.7283 | 1.602 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.358 | 1.335 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 92</span>| 449.34581 | 1.013 | -1.744 | -1.083 | -0.9172 |
+#&gt; |.....................| -0.9739 | 1.229 | -2.752 | -1.520 |
+#&gt; |.....................| 1.728 | -0.9642 | -1.054 | -0.5478 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6192 | -0.5619 |...........|...........|</span>
+#&gt; | U| 449.34581 | 94.33 | -6.047 | -1.106 | -0.1294 |
+#&gt; |.....................| 2.163 | 2.376 | 0.002092 | 0.7821 |
+#&gt; |.....................| 0.06942 | 0.6916 | 0.7169 | 1.601 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.337 | 1.403 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.34581</span> | 94.33 | 0.002364 | 0.2486 | 0.8787 |
+#&gt; |.....................| 8.694 | 2.376 | 0.002092 | 0.7821 |
+#&gt; |.....................| 0.06942 | 0.6916 | 0.7169 | 1.601 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.337 | 1.403 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 11.36 | -0.08356 | -1.544 | -0.3785 |
+#&gt; |.....................| -0.02879 | 0.1985 | 0.04898 | -2.532 |
+#&gt; |.....................| -2.210 | -1.428 | 5.624 | 2.440 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 2.104 | 1.894 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 93</span>| 449.83746 | 0.9966 | -1.806 | -0.8436 | -0.9213 |
+#&gt; |.....................| -1.016 | 1.236 | -2.752 | -1.567 |
+#&gt; |.....................| 1.816 | -1.085 | -1.056 | -0.6567 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5363 | -0.5852 |...........|...........|</span>
+#&gt; | U| 449.83746 | 92.80 | -6.109 | -0.8802 | -0.1335 |
+#&gt; |.....................| 2.121 | 2.380 | 0.002093 | 0.7548 |
+#&gt; |.....................| 0.07074 | 0.5997 | 0.7149 | 1.469 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.426 | 1.378 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.83746</span> | 92.80 | 0.002222 | 0.2931 | 0.8750 |
+#&gt; |.....................| 8.340 | 2.380 | 0.002093 | 0.7548 |
+#&gt; |.....................| 0.07074 | 0.5997 | 0.7149 | 1.469 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.426 | 1.378 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 94</span>| 449.05525 | 1.000 | -1.836 | -0.9477 | -0.9497 |
+#&gt; |.....................| -0.9515 | 1.216 | -2.730 | -1.498 |
+#&gt; |.....................| 1.549 | -1.033 | -1.047 | -0.5784 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5830 | -0.6146 |...........|...........|</span>
+#&gt; | U| 449.05525 | 93.13 | -6.140 | -0.9784 | -0.1618 |
+#&gt; |.....................| 2.185 | 2.368 | 0.002436 | 0.7946 |
+#&gt; |.....................| 0.06673 | 0.6395 | 0.7230 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.376 | 1.346 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.05525</span> | 93.13 | 0.002156 | 0.2732 | 0.8506 |
+#&gt; |.....................| 8.891 | 2.368 | 0.002436 | 0.7946 |
+#&gt; |.....................| 0.06673 | 0.6395 | 0.7230 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.376 | 1.346 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -56.82 | -0.05113 | 0.4930 | -0.04031 |
+#&gt; |.....................| -1.049 | 0.03445 | -0.05944 | -2.319 |
+#&gt; |.....................| -2.208 | -2.328 | 3.545 | 0.3775 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 2.643 | 2.387 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 95</span>| 448.75128 | 1.006 | -1.837 | -0.9543 | -0.9497 |
+#&gt; |.....................| -0.9537 | 1.219 | -2.732 | -1.514 |
+#&gt; |.....................| 1.608 | -1.030 | -1.050 | -0.5750 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5860 | -0.6263 |...........|...........|</span>
+#&gt; | U| 448.75128 | 93.69 | -6.140 | -0.9847 | -0.1618 |
+#&gt; |.....................| 2.183 | 2.370 | 0.002396 | 0.7854 |
+#&gt; |.....................| 0.06761 | 0.6415 | 0.7208 | 1.568 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.373 | 1.334 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 448.75128</span> | 93.69 | 0.002154 | 0.2720 | 0.8506 |
+#&gt; |.....................| 8.872 | 2.370 | 0.002396 | 0.7854 |
+#&gt; |.....................| 0.06761 | 0.6415 | 0.7208 | 1.568 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.373 | 1.334 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 6.795 | -0.02569 | 0.3964 | 0.03329 |
+#&gt; |.....................| -0.8574 | 0.1774 | 0.01390 | -2.462 |
+#&gt; |.....................| -2.149 | -2.476 | 3.910 | 1.045 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 2.743 | 2.014 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 96</span>| 448.60805 | 1.005 | -1.844 | -0.9658 | -0.9658 |
+#&gt; |.....................| -0.9330 | 1.222 | -2.731 | -1.528 |
+#&gt; |.....................| 1.652 | -1.023 | -1.051 | -0.5597 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5993 | -0.6478 |...........|...........|</span>
+#&gt; | U| 448.60805 | 93.55 | -6.147 | -0.9955 | -0.1780 |
+#&gt; |.....................| 2.204 | 2.372 | 0.002406 | 0.7773 |
+#&gt; |.....................| 0.06828 | 0.6470 | 0.7198 | 1.587 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.359 | 1.311 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 448.60805</span> | 93.55 | 0.002140 | 0.2698 | 0.8370 |
+#&gt; |.....................| 9.057 | 2.372 | 0.002406 | 0.7773 |
+#&gt; |.....................| 0.06828 | 0.6470 | 0.7198 | 1.587 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.359 | 1.311 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 97</span>| 448.54893 | 1.004 | -1.854 | -0.9831 | -0.9905 |
+#&gt; |.....................| -0.9018 | 1.226 | -2.730 | -1.550 |
+#&gt; |.....................| 1.719 | -1.013 | -1.051 | -0.5361 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6188 | -0.6800 |...........|...........|</span>
+#&gt; | U| 448.54893 | 93.53 | -6.157 | -1.012 | -0.2026 |
+#&gt; |.....................| 2.235 | 2.374 | 0.002422 | 0.7645 |
+#&gt; |.....................| 0.06928 | 0.6548 | 0.7192 | 1.616 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.338 | 1.276 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 448.54893</span> | 93.53 | 0.002118 | 0.2666 | 0.8166 |
+#&gt; |.....................| 9.344 | 2.374 | 0.002422 | 0.7645 |
+#&gt; |.....................| 0.06928 | 0.6548 | 0.7192 | 1.616 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.338 | 1.276 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -11.31 | -0.05480 | -1.344 | -1.332 |
+#&gt; |.....................| 0.5363 | 0.1616 | -0.02955 | -2.282 |
+#&gt; |.....................| -1.949 | -1.541 | 5.051 | 2.875 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.005 | -0.6800 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 98</span>| 448.23423 | 1.005 | -1.862 | -0.9802 | -0.9885 |
+#&gt; |.....................| -0.8649 | 1.225 | -2.731 | -1.570 |
+#&gt; |.....................| 1.863 | -0.9934 | -1.058 | -0.5422 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6330 | -0.6404 |...........|...........|</span>
+#&gt; | U| 448.23423 | 93.60 | -6.165 | -1.009 | -0.2007 |
+#&gt; |.....................| 2.272 | 2.374 | 0.002415 | 0.7529 |
+#&gt; |.....................| 0.07145 | 0.6695 | 0.7131 | 1.608 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.323 | 1.319 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 448.23423</span> | 93.60 | 0.002101 | 0.2671 | 0.8182 |
+#&gt; |.....................| 9.695 | 2.374 | 0.002415 | 0.7529 |
+#&gt; |.....................| 0.07145 | 0.6695 | 0.7131 | 1.608 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.323 | 1.319 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 99</span>| 448.52797 | 1.003 | -1.887 | -0.9721 | -0.9832 |
+#&gt; |.....................| -0.7539 | 1.222 | -2.732 | -1.631 |
+#&gt; |.....................| 2.296 | -0.9358 | -1.078 | -0.5592 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6753 | -0.5215 |...........|...........|</span>
+#&gt; | U| 448.52797 | 93.41 | -6.190 | -1.001 | -0.1954 |
+#&gt; |.....................| 2.383 | 2.371 | 0.002396 | 0.7173 |
+#&gt; |.....................| 0.07796 | 0.7131 | 0.6963 | 1.588 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.277 | 1.446 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 448.52797</span> | 93.41 | 0.002050 | 0.2687 | 0.8225 |
+#&gt; |.....................| 10.83 | 2.371 | 0.002396 | 0.7173 |
+#&gt; |.....................| 0.07796 | 0.7131 | 0.6963 | 1.588 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.277 | 1.446 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.417 | -0.03842 | -1.058 | -1.257 |
+#&gt; |.....................| 1.697 | 0.2446 | 0.02601 | -1.725 |
+#&gt; |.....................| -1.728 | -0.7541 | 3.822 | 2.423 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.4552 | 1.132 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 100</span>| 447.48636 | 1.010 | -1.889 | -1.018 | -0.9136 |
+#&gt; |.....................| -0.9465 | 1.241 | -2.741 | -1.706 |
+#&gt; |.....................| 2.465 | -0.9635 | -1.095 | -0.5705 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6276 | -0.6598 |...........|...........|</span>
+#&gt; | U| 447.48636 | 94.00 | -6.193 | -1.045 | -0.1257 |
+#&gt; |.....................| 2.190 | 2.383 | 0.002265 | 0.6743 |
+#&gt; |.....................| 0.08050 | 0.6921 | 0.6807 | 1.574 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.298 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.48636</span> | 94.00 | 0.002044 | 0.2602 | 0.8818 |
+#&gt; |.....................| 8.935 | 2.383 | 0.002265 | 0.6743 |
+#&gt; |.....................| 0.08050 | 0.6921 | 0.6807 | 1.574 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.298 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 49.18 | 0.06228 | -2.520 | 1.219 |
+#&gt; |.....................| -0.3402 | 0.5332 | 0.01803 | -1.013 |
+#&gt; |.....................| -0.7363 | 0.9697 | 2.720 | 0.6118 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.4882 | -0.1519 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 101</span>| 448.59314 | 1.009 | -1.906 | -0.9798 | -1.202 |
+#&gt; |.....................| -1.107 | 1.243 | -2.730 | -1.791 |
+#&gt; |.....................| 2.989 | -0.9474 | -1.110 | -0.5914 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6423 | -0.5882 |...........|...........|</span>
+#&gt; | U| 448.59314 | 93.96 | -6.209 | -1.009 | -0.4139 |
+#&gt; |.....................| 2.029 | 2.384 | 0.002422 | 0.6247 |
+#&gt; |.....................| 0.08837 | 0.7043 | 0.6679 | 1.549 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.313 | 1.375 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 448.59314</span> | 93.96 | 0.002010 | 0.2672 | 0.6611 |
+#&gt; |.....................| 7.610 | 2.384 | 0.002422 | 0.6247 |
+#&gt; |.....................| 0.08837 | 0.7043 | 0.6679 | 1.549 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.313 | 1.375 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 102</span>| 447.34338 | 1.004 | -1.893 | -1.010 | -0.9727 |
+#&gt; |.....................| -0.9794 | 1.241 | -2.739 | -1.723 |
+#&gt; |.....................| 2.572 | -0.9603 | -1.099 | -0.5748 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6307 | -0.6452 |...........|...........|</span>
+#&gt; | U| 447.34338 | 93.48 | -6.196 | -1.037 | -0.1848 |
+#&gt; |.....................| 2.157 | 2.383 | 0.002297 | 0.6642 |
+#&gt; |.....................| 0.08211 | 0.6946 | 0.6778 | 1.569 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.325 | 1.314 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.34338</span> | 93.48 | 0.002037 | 0.2617 | 0.8313 |
+#&gt; |.....................| 8.647 | 2.383 | 0.002297 | 0.6642 |
+#&gt; |.....................| 0.08211 | 0.6946 | 0.6778 | 1.569 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.325 | 1.314 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -27.99 | 0.05620 | -2.283 | -0.5861 |
+#&gt; |.....................| -1.399 | 0.3409 | -0.05316 | -0.7185 |
+#&gt; |.....................| -0.6589 | 0.7167 | 1.472 | 0.2167 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2339 | 0.7351 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 103</span>| 447.24116 | 1.004 | -1.898 | -0.9880 | -0.9438 |
+#&gt; |.....................| -0.9421 | 1.243 | -2.723 | -1.759 |
+#&gt; |.....................| 2.683 | -0.9737 | -1.096 | -0.5790 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6284 | -0.6557 |...........|...........|</span>
+#&gt; | U| 447.24116 | 93.50 | -6.201 | -1.017 | -0.1559 |
+#&gt; |.....................| 2.195 | 2.384 | 0.002530 | 0.6435 |
+#&gt; |.....................| 0.08377 | 0.6844 | 0.6802 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.302 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.24116</span> | 93.50 | 0.002027 | 0.2657 | 0.8556 |
+#&gt; |.....................| 8.976 | 2.384 | 0.002530 | 0.6435 |
+#&gt; |.....................| 0.08377 | 0.6844 | 0.6802 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.302 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -22.25 | 0.02611 | -1.124 | 0.2366 |
+#&gt; |.....................| -0.4078 | 0.2597 | -0.06938 | -0.8187 |
+#&gt; |.....................| -0.5375 | 0.002218 | 1.533 | -0.1306 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2372 | 0.1318 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 104</span>| 447.36545 | 1.010 | -1.910 | -0.9563 | -1.018 |
+#&gt; |.....................| -0.9640 | 1.238 | -2.696 | -1.806 |
+#&gt; |.....................| 2.921 | -0.9760 | -1.100 | -0.5866 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6320 | -0.6434 |...........|...........|</span>
+#&gt; | U| 447.36545 | 94.05 | -6.214 | -0.9866 | -0.2304 |
+#&gt; |.....................| 2.173 | 2.381 | 0.002941 | 0.6159 |
+#&gt; |.....................| 0.08734 | 0.6827 | 0.6770 | 1.554 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.324 | 1.315 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.36545</span> | 94.05 | 0.002002 | 0.2716 | 0.7942 |
+#&gt; |.....................| 8.780 | 2.381 | 0.002941 | 0.6159 |
+#&gt; |.....................| 0.08734 | 0.6827 | 0.6770 | 1.554 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.324 | 1.315 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 105</span>| 447.25244 | 1.009 | -1.902 | -0.9770 | -0.9694 |
+#&gt; |.....................| -0.9495 | 1.241 | -2.714 | -1.775 |
+#&gt; |.....................| 2.765 | -0.9745 | -1.097 | -0.5816 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6297 | -0.6515 |...........|...........|</span>
+#&gt; | U| 447.25244 | 93.94 | -6.205 | -1.006 | -0.1815 |
+#&gt; |.....................| 2.187 | 2.383 | 0.002671 | 0.6341 |
+#&gt; |.....................| 0.08500 | 0.6838 | 0.6790 | 1.560 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.326 | 1.307 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.25244</span> | 93.94 | 0.002018 | 0.2677 | 0.8340 |
+#&gt; |.....................| 8.909 | 2.383 | 0.002671 | 0.6341 |
+#&gt; |.....................| 0.08500 | 0.6838 | 0.6790 | 1.560 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.326 | 1.307 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 106</span>| 447.24908 | 1.008 | -1.900 | -0.9828 | -0.9557 |
+#&gt; |.....................| -0.9455 | 1.242 | -2.719 | -1.766 |
+#&gt; |.....................| 2.721 | -0.9741 | -1.097 | -0.5802 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6290 | -0.6537 |...........|...........|</span>
+#&gt; | U| 447.24908 | 93.91 | -6.203 | -1.012 | -0.1678 |
+#&gt; |.....................| 2.191 | 2.383 | 0.002596 | 0.6392 |
+#&gt; |.....................| 0.08434 | 0.6841 | 0.6795 | 1.562 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.304 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.24908</span> | 93.91 | 0.002023 | 0.2667 | 0.8455 |
+#&gt; |.....................| 8.945 | 2.383 | 0.002596 | 0.6392 |
+#&gt; |.....................| 0.08434 | 0.6841 | 0.6795 | 1.562 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.304 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 107</span>| 447.25180 | 1.008 | -1.899 | -0.9855 | -0.9493 |
+#&gt; |.....................| -0.9436 | 1.242 | -2.721 | -1.762 |
+#&gt; |.....................| 2.700 | -0.9739 | -1.097 | -0.5796 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6287 | -0.6548 |...........|...........|</span>
+#&gt; | U| 447.2518 | 93.89 | -6.202 | -1.014 | -0.1614 |
+#&gt; |.....................| 2.193 | 2.383 | 0.002560 | 0.6416 |
+#&gt; |.....................| 0.08403 | 0.6843 | 0.6798 | 1.563 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.303 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.2518</span> | 93.89 | 0.002025 | 0.2662 | 0.8509 |
+#&gt; |.....................| 8.962 | 2.383 | 0.002560 | 0.6416 |
+#&gt; |.....................| 0.08403 | 0.6843 | 0.6798 | 1.563 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.303 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 108</span>| 447.25421 | 1.008 | -1.898 | -0.9869 | -0.9460 |
+#&gt; |.....................| -0.9426 | 1.242 | -2.722 | -1.760 |
+#&gt; |.....................| 2.690 | -0.9738 | -1.096 | -0.5792 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6286 | -0.6553 |...........|...........|</span>
+#&gt; | U| 447.25421 | 93.88 | -6.202 | -1.015 | -0.1582 |
+#&gt; |.....................| 2.194 | 2.384 | 0.002542 | 0.6428 |
+#&gt; |.....................| 0.08388 | 0.6843 | 0.6799 | 1.563 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.303 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.25421</span> | 93.88 | 0.002026 | 0.2659 | 0.8537 |
+#&gt; |.....................| 8.970 | 2.384 | 0.002542 | 0.6428 |
+#&gt; |.....................| 0.08388 | 0.6843 | 0.6799 | 1.563 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.303 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 109</span>| 447.24978 | 1.008 | -1.898 | -0.9878 | -0.9438 |
+#&gt; |.....................| -0.9420 | 1.242 | -2.723 | -1.759 |
+#&gt; |.....................| 2.683 | -0.9737 | -1.096 | -0.5790 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6285 | -0.6557 |...........|...........|</span>
+#&gt; | U| 447.24978 | 93.86 | -6.201 | -1.016 | -0.1560 |
+#&gt; |.....................| 2.195 | 2.384 | 0.002530 | 0.6436 |
+#&gt; |.....................| 0.08377 | 0.6844 | 0.6800 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.302 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.24978</span> | 93.86 | 0.002027 | 0.2657 | 0.8556 |
+#&gt; |.....................| 8.976 | 2.384 | 0.002530 | 0.6436 |
+#&gt; |.....................| 0.08377 | 0.6844 | 0.6800 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.302 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 110</span>| 447.22094 | 1.006 | -1.898 | -0.9879 | -0.9438 |
+#&gt; |.....................| -0.9420 | 1.243 | -2.723 | -1.759 |
+#&gt; |.....................| 2.683 | -0.9737 | -1.096 | -0.5790 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6284 | -0.6557 |...........|...........|</span>
+#&gt; | U| 447.22094 | 93.66 | -6.201 | -1.016 | -0.1560 |
+#&gt; |.....................| 2.195 | 2.384 | 0.002530 | 0.6435 |
+#&gt; |.....................| 0.08377 | 0.6844 | 0.6801 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.302 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.22094</span> | 93.66 | 0.002027 | 0.2657 | 0.8556 |
+#&gt; |.....................| 8.976 | 2.384 | 0.002530 | 0.6435 |
+#&gt; |.....................| 0.08377 | 0.6844 | 0.6801 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.302 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 0.7136 | 0.03206 | -1.028 | 0.2620 |
+#&gt; |.....................| -0.3312 | 0.3050 | -0.05505 | -0.8960 |
+#&gt; |.....................| -0.4549 | 0.03409 | 2.494 | -0.1555 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2265 | 0.1085 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 111</span>| 447.21344 | 1.005 | -1.898 | -0.9873 | -0.9440 |
+#&gt; |.....................| -0.9418 | 1.242 | -2.723 | -1.758 |
+#&gt; |.....................| 2.683 | -0.9737 | -1.098 | -0.5789 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6286 | -0.6557 |...........|...........|</span>
+#&gt; | U| 447.21344 | 93.62 | -6.201 | -1.016 | -0.1561 |
+#&gt; |.....................| 2.195 | 2.384 | 0.002531 | 0.6439 |
+#&gt; |.....................| 0.08377 | 0.6844 | 0.6789 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.302 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.21344</span> | 93.62 | 0.002027 | 0.2658 | 0.8555 |
+#&gt; |.....................| 8.978 | 2.384 | 0.002531 | 0.6439 |
+#&gt; |.....................| 0.08377 | 0.6844 | 0.6789 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.302 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.689 | 0.03686 | -1.013 | 0.2539 |
+#&gt; |.....................| -0.3408 | 0.6592 | 0.03740 | -0.5502 |
+#&gt; |.....................| -0.2201 | 0.3219 | 2.382 | -0.1778 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2028 | 0.08770 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 112</span>| 447.19216 | 1.006 | -1.899 | -0.9854 | -0.9463 |
+#&gt; |.....................| -0.9420 | 1.239 | -2.724 | -1.756 |
+#&gt; |.....................| 2.680 | -0.9744 | -1.101 | -0.5784 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6293 | -0.6560 |...........|...........|</span>
+#&gt; | U| 447.19216 | 93.64 | -6.203 | -1.014 | -0.1585 |
+#&gt; |.....................| 2.195 | 2.382 | 0.002523 | 0.6453 |
+#&gt; |.....................| 0.08373 | 0.6839 | 0.6759 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.302 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.19216</span> | 93.64 | 0.002024 | 0.2662 | 0.8535 |
+#&gt; |.....................| 8.976 | 2.382 | 0.002523 | 0.6453 |
+#&gt; |.....................| 0.08373 | 0.6839 | 0.6759 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.327 | 1.302 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 113</span>| 447.14896 | 1.005 | -1.904 | -0.9796 | -0.9535 |
+#&gt; |.....................| -0.9426 | 1.230 | -2.725 | -1.748 |
+#&gt; |.....................| 2.670 | -0.9764 | -1.111 | -0.5767 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6315 | -0.6570 |...........|...........|</span>
+#&gt; | U| 447.14896 | 93.56 | -6.208 | -1.009 | -0.1657 |
+#&gt; |.....................| 2.194 | 2.376 | 0.002500 | 0.6498 |
+#&gt; |.....................| 0.08358 | 0.6823 | 0.6675 | 1.566 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.324 | 1.301 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.14896</span> | 93.56 | 0.002014 | 0.2673 | 0.8473 |
+#&gt; |.....................| 8.971 | 2.376 | 0.002500 | 0.6498 |
+#&gt; |.....................| 0.08358 | 0.6823 | 0.6675 | 1.566 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.324 | 1.301 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 114</span>| 447.12523 | 1.003 | -1.923 | -0.9566 | -0.9821 |
+#&gt; |.....................| -0.9448 | 1.194 | -2.731 | -1.717 |
+#&gt; |.....................| 2.632 | -0.9846 | -1.149 | -0.5701 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6401 | -0.6607 |...........|...........|</span>
+#&gt; | U| 447.12523 | 93.36 | -6.227 | -0.9868 | -0.1943 |
+#&gt; |.....................| 2.192 | 2.355 | 0.002410 | 0.6677 |
+#&gt; |.....................| 0.08300 | 0.6762 | 0.6336 | 1.574 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.315 | 1.297 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.12523</span> | 93.36 | 0.001976 | 0.2715 | 0.8234 |
+#&gt; |.....................| 8.951 | 2.355 | 0.002410 | 0.6677 |
+#&gt; |.....................| 0.08300 | 0.6762 | 0.6336 | 1.574 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.315 | 1.297 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -42.78 | 0.1470 | 0.5793 | -0.8455 |
+#&gt; |.....................| -0.3546 | -0.4331 | -0.1071 | -0.02049 |
+#&gt; |.....................| -0.3358 | -0.3904 | -2.177 | 0.2043 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1377 | -0.3207 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 115</span>| 447.09924 | 1.007 | -1.940 | -0.9416 | -1.018 |
+#&gt; |.....................| -0.9550 | 1.181 | -2.719 | -1.734 |
+#&gt; |.....................| 2.734 | -0.9861 | -1.153 | -0.5706 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6433 | -0.6564 |...........|...........|</span>
+#&gt; | U| 447.09924 | 93.80 | -6.243 | -0.9727 | -0.2297 |
+#&gt; |.....................| 2.182 | 2.348 | 0.002591 | 0.6578 |
+#&gt; |.....................| 0.08453 | 0.6750 | 0.6303 | 1.574 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.312 | 1.301 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.09924</span> | 93.80 | 0.001943 | 0.2743 | 0.7947 |
+#&gt; |.....................| 8.860 | 2.348 | 0.002591 | 0.6578 |
+#&gt; |.....................| 0.08453 | 0.6750 | 0.6303 | 1.574 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.312 | 1.301 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 15.04 | 0.1387 | 1.646 | -1.777 |
+#&gt; |.....................| -0.3749 | -0.5049 | -0.07528 | 0.1505 |
+#&gt; |.....................| -0.2071 | -0.6675 | -2.129 | 0.2735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.05533 | -0.2849 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 116</span>| 447.06926 | 1.008 | -1.968 | -0.9759 | -0.9363 |
+#&gt; |.....................| -0.9300 | 1.192 | -2.714 | -1.733 |
+#&gt; |.....................| 2.676 | -0.9757 | -1.142 | -0.5672 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6383 | -0.6598 |...........|...........|</span>
+#&gt; | U| 447.06926 | 93.90 | -6.272 | -1.005 | -0.1484 |
+#&gt; |.....................| 2.207 | 2.354 | 0.002664 | 0.6586 |
+#&gt; |.....................| 0.08367 | 0.6829 | 0.6398 | 1.578 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.317 | 1.298 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.06926</span> | 93.90 | 0.001889 | 0.2679 | 0.8621 |
+#&gt; |.....................| 9.084 | 2.354 | 0.002664 | 0.6586 |
+#&gt; |.....................| 0.08367 | 0.6829 | 0.6398 | 1.578 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.317 | 1.298 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 31.57 | 0.06960 | -0.1881 | 0.5445 |
+#&gt; |.....................| 0.2088 | -0.3879 | -0.06801 | -0.3419 |
+#&gt; |.....................| -0.4021 | 0.02711 | -1.273 | 0.2199 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1004 | -0.4182 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 117</span>| 447.12806 | 1.006 | -2.047 | -0.9734 | -0.9587 |
+#&gt; |.....................| -0.9336 | 1.189 | -2.704 | -1.764 |
+#&gt; |.....................| 2.737 | -0.9879 | -1.112 | -0.5826 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6349 | -0.6438 |...........|...........|</span>
+#&gt; | U| 447.12806 | 93.67 | -6.350 | -1.003 | -0.1708 |
+#&gt; |.....................| 2.203 | 2.352 | 0.002825 | 0.6405 |
+#&gt; |.....................| 0.08458 | 0.6737 | 0.6664 | 1.559 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.321 | 1.315 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.12806</span> | 93.67 | 0.001747 | 0.2684 | 0.8430 |
+#&gt; |.....................| 9.052 | 2.352 | 0.002825 | 0.6405 |
+#&gt; |.....................| 0.08458 | 0.6737 | 0.6664 | 1.559 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.321 | 1.315 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 118</span>| 447.05003 | 1.006 | -1.997 | -0.9750 | -0.9445 |
+#&gt; |.....................| -0.9313 | 1.191 | -2.710 | -1.744 |
+#&gt; |.....................| 2.698 | -0.9801 | -1.131 | -0.5728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6370 | -0.6539 |...........|...........|</span>
+#&gt; | U| 447.05003 | 93.71 | -6.300 | -1.004 | -0.1566 |
+#&gt; |.....................| 2.205 | 2.354 | 0.002723 | 0.6520 |
+#&gt; |.....................| 0.08400 | 0.6796 | 0.6495 | 1.571 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.318 | 1.304 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.05003</span> | 93.71 | 0.001836 | 0.2681 | 0.8551 |
+#&gt; |.....................| 9.073 | 2.354 | 0.002723 | 0.6520 |
+#&gt; |.....................| 0.08400 | 0.6796 | 0.6495 | 1.571 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.318 | 1.304 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.860 | -0.01375 | -0.2473 | 0.2780 |
+#&gt; |.....................| 0.08862 | -0.4372 | -0.08802 | -0.3404 |
+#&gt; |.....................| -0.3654 | -0.2345 | -0.3468 | 0.08396 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.01035 | -0.06837 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 119</span>| 447.04716 | 1.006 | -1.989 | -0.9725 | -0.9518 |
+#&gt; |.....................| -0.9334 | 1.193 | -2.718 | -1.756 |
+#&gt; |.....................| 2.735 | -0.9825 | -1.129 | -0.5738 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6372 | -0.6523 |...........|...........|</span>
+#&gt; | U| 447.04716 | 93.69 | -6.292 | -1.002 | -0.1639 |
+#&gt; |.....................| 2.203 | 2.355 | 0.002610 | 0.6452 |
+#&gt; |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.318 | 1.306 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.04716</span> | 93.69 | 0.001850 | 0.2686 | 0.8488 |
+#&gt; |.....................| 9.053 | 2.355 | 0.002610 | 0.6452 |
+#&gt; |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.318 | 1.306 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.456 | -0.007589 | -0.1181 | 0.06051 |
+#&gt; |.....................| 0.03158 | -0.4028 | -0.08358 | -0.4018 |
+#&gt; |.....................| -0.3358 | -0.3459 | -0.2609 | 0.03632 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.03277 | 0.02331 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 120</span>| 447.04716 | 1.006 | -1.989 | -0.9725 | -0.9518 |
+#&gt; |.....................| -0.9334 | 1.193 | -2.718 | -1.756 |
+#&gt; |.....................| 2.735 | -0.9825 | -1.129 | -0.5738 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6372 | -0.6523 |...........|...........|</span>
+#&gt; | U| 447.04716 | 93.69 | -6.292 | -1.002 | -0.1639 |
+#&gt; |.....................| 2.203 | 2.355 | 0.002610 | 0.6452 |
+#&gt; |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.318 | 1.306 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.04716</span> | 93.69 | 0.001850 | 0.2686 | 0.8488 |
+#&gt; |.....................| 9.053 | 2.355 | 0.002610 | 0.6452 |
+#&gt; |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.318 | 1.306 |...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 0.799 0.044 0.842</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; 1: 9.1294e+01 -5.0486e+00 -1.7441e+00 -3.5640e+00 -2.1387e+00 4.8639e-01 5.5948e+00 1.4680e+00 1.1057e+00 2.3810e+00 4.8150e-01 4.3452e-01 1.0359e+01 2.3790e-05 7.8082e+00 5.1813e-01
+#&gt; 2: 9.1224e+01 -5.2308e+00 -1.9743e+00 -4.0115e+00 -1.8311e+00 9.8058e-02 5.3151e+00 1.3946e+00 1.0504e+00 2.8908e+00 4.5742e-01 5.2252e-01 5.9132e+00 5.7000e-04 6.5362e+00 1.8571e-07
+#&gt; 3: 9.1371e+01 -5.5075e+00 -2.1136e+00 -4.0542e+00 -1.4871e+00 -4.1222e-02 5.0493e+00 1.3249e+00 9.9785e-01 3.4546e+00 4.3455e-01 6.3380e-01 4.0626e+00 1.0302e-05 4.6845e+00 5.0378e-04
+#&gt; 4: 91.3391 -5.7912 -2.1450 -3.9623 -1.3302 -0.1356 4.7969 1.2586 0.9480 3.2819 0.4128 0.6021 3.3624 0.0249 3.6770 0.0248
+#&gt; 5: 91.5018 -6.0214 -2.1492 -3.9323 -1.2118 -0.0647 4.5570 1.1957 0.9006 3.1178 0.3922 0.5720 2.9393 0.0349 3.1610 0.0371
+#&gt; 6: 91.4496 -5.8734 -2.0974 -3.9977 -1.0936 -0.0608 4.3292 1.3347 0.8695 3.1231 0.3726 0.5434 2.5921 0.0366 2.7534 0.0396
+#&gt; 7: 91.6540 -5.8545 -2.1019 -3.9268 -0.9717 -0.1622 4.1127 1.8221 0.8771 2.9670 0.3539 0.5162 2.3468 0.0466 2.4323 0.0474
+#&gt; 8: 91.7226 -5.8139 -2.0764 -4.0030 -0.9804 -0.1283 3.9071 2.3972 0.9978 2.9945 0.3362 0.4904 2.0001 0.0405 2.0620 0.0557
+#&gt; 9: 91.9975 -5.6339 -2.0812 -3.9379 -0.9156 -0.0654 4.4265 2.2773 0.9479 3.0945 0.3194 0.4659 1.8817 0.0397 1.4473 0.0845
+#&gt; 10: 91.9477 -5.6101 -2.0459 -3.8821 -0.9368 -0.0428 4.9868 2.2787 0.9297 3.2162 0.3035 0.4426 1.6910 0.0397 1.3759 0.0892
+#&gt; 11: 92.1798 -5.5425 -2.0676 -3.9349 -0.9248 -0.0339 5.0312 2.1648 0.8832 3.0554 0.2883 0.4205 1.6613 0.0375 1.3387 0.0823
+#&gt; 12: 92.1456 -5.6294 -2.1011 -3.8899 -0.9195 -0.0410 4.7796 2.0565 0.9077 3.1066 0.3013 0.3995 1.6018 0.0393 1.5496 0.0691
+#&gt; 13: 91.6764 -5.5607 -2.0911 -3.8832 -0.9268 -0.0367 4.5407 1.9537 0.9246 3.0425 0.2862 0.3795 1.6900 0.0350 1.4050 0.0712
+#&gt; 14: 91.4832 -5.5007 -2.1133 -3.8869 -0.9208 -0.0202 4.3136 1.8560 0.8795 3.0389 0.2719 0.3605 1.5526 0.0389 1.7056 0.0502
+#&gt; 15: 91.7854 -5.4454 -2.1124 -3.8750 -0.8842 -0.0608 4.0979 1.7632 0.9004 3.0463 0.2583 0.3425 1.6201 0.0384 1.2463 0.0747
+#&gt; 16: 91.7608 -5.4097 -2.1449 -3.8750 -0.8797 -0.0532 3.8930 1.6751 0.9666 3.0463 0.2454 0.3254 1.6086 0.0384 1.0840 0.0850
+#&gt; 17: 91.6692 -5.5401 -2.1688 -3.8762 -0.9022 -0.0101 3.6984 1.8405 1.0323 2.9672 0.2331 0.3091 1.4625 0.0371 1.1135 0.0841
+#&gt; 18: 91.3169 -5.5720 -2.1777 -3.8851 -0.9396 0.0040 3.5135 1.8186 1.0419 3.0783 0.2215 0.2936 1.4778 0.0396 1.3403 0.0732
+#&gt; 19: 91.4384 -5.6696 -2.1469 -3.8892 -0.9318 -0.0103 3.3378 2.2700 1.0489 3.0592 0.2128 0.2790 1.3854 0.0379 1.1760 0.0858
+#&gt; 20: 91.3273 -5.7800 -2.1388 -3.9004 -0.9536 -0.0159 3.1709 2.7506 1.0297 3.0477 0.2021 0.2650 1.4542 0.0419 1.1576 0.0856
+#&gt; 21: 91.7477 -5.7952 -2.1436 -3.9164 -0.9263 -0.0184 3.0124 3.0737 1.0414 3.0435 0.1948 0.2518 1.5026 0.0398 1.1833 0.0791
+#&gt; 22: 91.6492 -6.0575 -2.1196 -3.9168 -0.9471 -0.0153 2.8617 4.1317 1.0322 3.0494 0.1850 0.2392 1.4351 0.0409 1.0739 0.0873
+#&gt; 23: 91.8536 -6.2824 -2.1596 -3.9174 -0.9405 0.0031 2.7187 5.3935 1.0143 3.1085 0.1758 0.2272 1.4534 0.0404 1.0651 0.0805
+#&gt; 24: 92.1616 -6.2246 -2.0912 -3.9224 -0.9338 0.0118 2.5827 5.7533 0.9636 3.0780 0.1741 0.2158 1.5863 0.0336 1.0915 0.0804
+#&gt; 25: 92.2576 -6.2746 -2.1058 -3.9587 -0.9355 0.0189 2.4536 5.4656 0.9706 3.3477 0.1780 0.2051 1.4555 0.0365 1.0838 0.0782
+#&gt; 26: 92.3314 -6.1739 -2.1211 -3.9676 -0.9474 0.0525 2.4934 5.5785 0.9981 3.3705 0.1835 0.1948 1.4433 0.0379 1.1300 0.0783
+#&gt; 27: 92.8206 -6.1111 -2.0900 -3.9787 -0.9472 0.0058 2.5201 5.4329 1.0145 3.5013 0.1856 0.1851 1.4484 0.0391 1.1809 0.0723
+#&gt; 28: 92.8685 -6.0934 -2.0963 -3.9872 -0.9693 0.0053 2.9812 5.1612 0.9925 3.5416 0.1816 0.1758 1.4713 0.0389 1.1766 0.0704
+#&gt; 29: 92.6774 -5.8779 -2.0833 -3.9954 -0.9546 -0.0099 4.3751 4.9032 1.0762 3.5483 0.1755 0.1670 1.4844 0.0378 1.3435 0.0599
+#&gt; 30: 92.6704 -5.9657 -2.0746 -3.9920 -0.9342 -0.0329 4.1563 4.6580 1.0571 3.5382 0.1667 0.1587 1.4510 0.0427 1.2218 0.0678
+#&gt; 31: 92.4139 -5.7428 -2.0922 -3.9765 -0.9178 -0.0302 3.9485 4.4251 1.0210 3.5601 0.1596 0.1507 1.5981 0.0349 1.3086 0.0619
+#&gt; 32: 92.8243 -5.8072 -2.1154 -3.9699 -0.9130 0.0065 3.7511 4.2039 1.0622 3.4768 0.1667 0.1432 1.5321 0.0333 1.3779 0.0611
+#&gt; 33: 92.8737 -5.6655 -2.1132 -3.9763 -0.9155 0.0183 3.5635 3.9937 1.1068 3.5075 0.1583 0.1360 1.5351 0.0341 1.2700 0.0673
+#&gt; 34: 93.0233 -5.7429 -2.1022 -3.9648 -0.9057 0.0202 3.3853 3.7940 1.0830 3.4532 0.1504 0.1292 1.5128 0.0368 1.1942 0.0702
+#&gt; 35: 93.1333 -5.7707 -2.1003 -4.0004 -0.9031 0.0201 3.2161 3.6043 1.1161 3.4701 0.1429 0.1228 1.6003 0.0307 1.1387 0.0734
+#&gt; 36: 93.1398 -5.7700 -2.1168 -3.9678 -0.9038 0.0107 3.0553 3.4241 1.1209 3.4126 0.1358 0.1166 1.4919 0.0331 1.0642 0.0755
+#&gt; 37: 92.8847 -5.6651 -2.1538 -3.9634 -0.9176 0.0364 2.9995 3.2529 1.1108 3.3776 0.1402 0.1173 1.5093 0.0396 1.1550 0.0693
+#&gt; 38: 93.2326 -5.5244 -2.1571 -3.9909 -0.9231 0.0179 2.8832 3.0902 1.0763 3.5170 0.1332 0.1205 1.4962 0.0472 1.1657 0.0679
+#&gt; 39: 92.9946 -5.4516 -2.1475 -3.9365 -0.9067 0.0309 3.0986 2.9357 1.0562 3.4194 0.1265 0.1251 1.4786 0.0464 1.1183 0.0721
+#&gt; 40: 93.2028 -5.6148 -2.1367 -3.9235 -0.9048 0.0099 2.9436 2.7889 1.1256 3.3460 0.1241 0.1288 1.4515 0.0459 1.0449 0.0753
+#&gt; 41: 93.1297 -5.4665 -2.0545 -4.0108 -0.9136 -0.0216 2.7964 2.6495 1.1471 3.4754 0.1281 0.1223 1.7359 0.0321 1.0876 0.0780
+#&gt; 42: 93.0469 -5.3767 -2.0820 -4.0213 -0.9361 -0.0264 2.6566 2.5170 1.0897 3.5120 0.1411 0.1162 1.7070 0.0276 1.2377 0.0691
+#&gt; 43: 93.3305 -5.4943 -2.0910 -4.0226 -0.9414 -0.0201 2.5238 2.3912 1.0896 3.4589 0.1621 0.1126 1.5584 0.0393 1.1485 0.0705
+#&gt; 44: 93.2566 -5.4919 -2.1016 -4.0718 -0.9373 0.0024 2.3976 2.2716 1.0451 3.8959 0.1612 0.1162 1.5769 0.0286 1.2778 0.0693
+#&gt; 45: 93.0284 -5.4885 -2.1012 -4.0740 -0.9202 -0.0197 2.2777 2.1580 1.0268 3.9297 0.1553 0.1104 1.5589 0.0289 1.1388 0.0778
+#&gt; 46: 92.7188 -5.5807 -2.1102 -4.0875 -0.9465 0.0076 2.1638 2.2084 0.9840 4.0322 0.1475 0.1048 1.6729 0.0295 1.2763 0.0735
+#&gt; 47: 92.6718 -5.5108 -2.1268 -4.0638 -0.9220 0.0131 2.0556 2.0980 1.0064 3.8306 0.1475 0.0996 1.6527 0.0271 1.3190 0.0659
+#&gt; 48: 92.6727 -5.5268 -2.1326 -4.0693 -0.8999 0.0259 1.9529 2.2445 1.0387 3.8064 0.1459 0.0946 1.6587 0.0283 1.3555 0.0604
+#&gt; 49: 92.5230 -5.5592 -2.1701 -4.0595 -0.9087 0.0350 1.8552 2.5181 1.0238 3.7514 0.1552 0.0899 1.5473 0.0307 1.2437 0.0662
+#&gt; 50: 92.4920 -5.5778 -2.1309 -4.0711 -0.9317 0.0383 1.7625 2.6771 1.0203 3.7435 0.1587 0.0854 1.5727 0.0330 1.2555 0.0611
+#&gt; 51: 92.4606 -5.5485 -2.1346 -4.0687 -0.9148 0.0638 1.6743 2.8079 1.0402 3.6978 0.1513 0.0811 1.5476 0.0335 1.2744 0.0658
+#&gt; 52: 92.6305 -5.6829 -2.1658 -4.0697 -0.9298 0.0848 1.5906 2.8530 1.0565 3.6998 0.1644 0.0798 1.4751 0.0296 1.1351 0.0747
+#&gt; 53: 92.6412 -5.5519 -2.1984 -4.1605 -0.9472 0.0803 1.8328 2.7103 1.0501 4.4111 0.1626 0.0758 1.5735 0.0343 1.2247 0.0643
+#&gt; 54: 92.7616 -5.5718 -2.1826 -4.2028 -0.9382 0.0939 1.9108 2.5748 1.0708 4.7287 0.1775 0.0720 1.4860 0.0299 1.2190 0.0638
+#&gt; 55: 92.8466 -5.6434 -2.1590 -4.0501 -0.9219 0.0660 2.3709 2.4461 1.0399 4.4922 0.1686 0.0684 1.5899 0.0297 1.2586 0.0598
+#&gt; 56: 92.8839 -5.6503 -2.1758 -4.0467 -0.9265 0.0765 2.2523 2.3238 1.0755 4.2676 0.1698 0.0666 1.5357 0.0319 1.1854 0.0633
+#&gt; 57: 92.8882 -5.3950 -2.1926 -4.0282 -0.9455 0.0600 2.4994 2.2076 1.0411 4.0542 0.1684 0.0633 1.5839 0.0342 1.2789 0.0612
+#&gt; 58: 92.9510 -5.4362 -2.1993 -4.0402 -0.9349 0.0576 2.3744 2.0972 1.0184 3.8515 0.1757 0.0604 1.5796 0.0328 1.3027 0.0570
+#&gt; 59: 92.8806 -5.4605 -2.2176 -4.2201 -0.9360 0.0998 2.2557 1.9923 1.0248 5.1421 0.1904 0.0573 1.6469 0.0325 1.4177 0.0534
+#&gt; 60: 92.8606 -5.4697 -2.2016 -4.1707 -0.9218 0.0747 2.1429 1.8927 1.0489 4.8850 0.1809 0.0545 1.5984 0.0318 1.2879 0.0589
+#&gt; 61: 92.8939 -5.5167 -2.2169 -4.1567 -0.9434 0.0680 2.1067 1.9160 1.0677 4.6408 0.1775 0.0517 1.5223 0.0404 1.2033 0.0623
+#&gt; 62: 93.1569 -5.6121 -2.2073 -4.1427 -0.9431 0.0717 2.5977 2.0627 1.0518 4.5133 0.1758 0.0494 1.4644 0.0364 1.1857 0.0621
+#&gt; 63: 93.2362 -5.5056 -2.1832 -4.0832 -0.9433 0.0754 3.4639 1.9596 1.0905 4.2877 0.1851 0.0536 1.5500 0.0320 1.2533 0.0610
+#&gt; 64: 93.3935 -5.4320 -2.1735 -4.0754 -0.9601 0.0719 5.0337 1.8616 1.0723 4.0733 0.1907 0.0649 1.5436 0.0270 1.4154 0.0546
+#&gt; 65: 93.1102 -5.5419 -2.1870 -4.0496 -0.9481 0.0753 5.0250 1.9760 1.1263 3.8696 0.1902 0.0617 1.4779 0.0262 1.1326 0.0712
+#&gt; 66: 92.9832 -5.7640 -2.1941 -4.0532 -0.9444 0.0635 5.2049 2.6553 1.1258 3.7699 0.1915 0.0586 1.4926 0.0307 1.0960 0.0645
+#&gt; 67: 92.6674 -5.6976 -2.1858 -4.0855 -0.9209 0.0562 4.9447 2.5225 1.1285 4.0204 0.1948 0.0556 1.4667 0.0315 1.1023 0.0650
+#&gt; 68: 92.7718 -5.7724 -2.1760 -4.0242 -0.9354 0.0441 4.6975 2.8536 1.1471 3.8194 0.1922 0.0529 1.4283 0.0329 1.1174 0.0664
+#&gt; 69: 92.8377 -5.7554 -2.1833 -4.0670 -0.9412 0.0834 4.4626 2.7404 1.1565 3.7904 0.1826 0.0502 1.4628 0.0318 1.0793 0.0747
+#&gt; 70: 92.6830 -5.9071 -2.2266 -4.0604 -0.9399 0.0730 4.2394 3.5629 1.1459 3.7282 0.1734 0.0477 1.4892 0.0331 1.1526 0.0683
+#&gt; 71: 92.5729 -5.8185 -2.2009 -4.0623 -0.9401 0.0878 4.0275 3.3847 1.0886 3.7348 0.1648 0.0453 1.4739 0.0373 1.0902 0.0678
+#&gt; 72: 92.1755 -6.0270 -2.2108 -4.1507 -0.9564 0.0665 3.8261 3.9851 1.1200 4.1726 0.1617 0.0431 1.4478 0.0348 1.1400 0.0673
+#&gt; 73: 91.8986 -6.0175 -2.1916 -4.1416 -0.9347 0.0243 3.6348 4.0607 1.1553 4.0576 0.1802 0.0409 1.4330 0.0406 1.0914 0.0712
+#&gt; 74: 91.7729 -5.8767 -2.1898 -4.0934 -0.9122 0.0184 3.4531 3.8577 1.1254 3.8547 0.1827 0.0389 1.3372 0.0524 1.0717 0.0687
+#&gt; 75: 91.3098 -5.9950 -2.1572 -4.1349 -0.9427 0.0190 3.4756 3.8000 1.1626 3.8402 0.1969 0.0369 1.3378 0.0501 1.1602 0.0685
+#&gt; 76: 91.3766 -5.8701 -2.2042 -4.1128 -0.9081 0.0539 3.9350 3.6100 1.2348 3.7994 0.1891 0.0369 1.3400 0.0495 1.0656 0.0738
+#&gt; 77: 91.6057 -5.7437 -2.1988 -4.1241 -0.8890 0.0500 5.0868 3.4295 1.1971 3.8470 0.1950 0.0469 1.4928 0.0397 1.1129 0.0700
+#&gt; 78: 91.7868 -5.7832 -2.1844 -4.1102 -0.9104 0.0698 4.8325 3.2580 1.1670 3.6547 0.1993 0.0502 1.4336 0.0340 0.9512 0.0805
+#&gt; 79: 91.7221 -5.7881 -2.2166 -4.1137 -0.9160 0.0672 4.5909 3.0951 1.1582 3.5765 0.1928 0.0486 1.4632 0.0352 1.0210 0.0728
+#&gt; 80: 91.8608 -5.8064 -2.2006 -4.0971 -0.9209 0.0642 4.3613 3.2163 1.1481 3.4758 0.1832 0.0462 1.4368 0.0356 1.0605 0.0710
+#&gt; 81: 91.6423 -5.8749 -2.2037 -4.0893 -0.9187 0.0503 4.1432 3.5329 1.0907 3.5148 0.2011 0.0451 1.4719 0.0346 1.1684 0.0646
+#&gt; 82: 91.8319 -6.0898 -2.2251 -4.0826 -0.9368 0.0842 4.1509 4.4964 1.0606 3.4836 0.1910 0.0428 1.4468 0.0387 1.1605 0.0637
+#&gt; 83: 91.9794 -6.0417 -2.1947 -4.1042 -0.9114 0.0741 6.5949 4.5668 1.1113 3.6409 0.1815 0.0407 1.4780 0.0346 1.1277 0.0634
+#&gt; 84: 91.8669 -6.1877 -2.1979 -4.1052 -0.9300 0.0807 6.2651 5.1958 1.1750 3.6752 0.1724 0.0386 1.4931 0.0278 1.0401 0.0685
+#&gt; 85: 91.6789 -6.0634 -2.1896 -4.1357 -0.9371 0.0933 5.9519 4.9360 1.1259 3.8493 0.1732 0.0367 1.5058 0.0275 1.1356 0.0670
+#&gt; 86: 91.6989 -6.2114 -2.2056 -4.1542 -0.9646 0.0882 5.6543 5.0411 1.1091 3.9411 0.1988 0.0349 1.4099 0.0338 1.1811 0.0636
+#&gt; 87: 92.3758 -6.3779 -2.2062 -4.1739 -0.9385 0.0916 5.3716 6.2290 1.1213 4.0290 0.1889 0.0331 1.4809 0.0306 1.1443 0.0626
+#&gt; 88: 92.2757 -6.2016 -2.2215 -4.1389 -0.9582 0.0942 5.1030 5.9176 1.0797 4.0768 0.1990 0.0315 1.4282 0.0386 1.2235 0.0629
+#&gt; 89: 92.1970 -6.3356 -2.2081 -4.1412 -0.9555 0.1057 4.8478 5.9597 1.1474 4.0677 0.1890 0.0299 1.3856 0.0377 1.1807 0.0640
+#&gt; 90: 92.0813 -6.4550 -2.2045 -4.1524 -0.9553 0.0885 4.6054 6.9999 1.1542 3.9901 0.1880 0.0284 1.3416 0.0416 1.1379 0.0653
+#&gt; 91: 91.7111 -6.5289 -2.2203 -4.1763 -0.9288 0.0823 5.4933 6.9237 1.1601 4.0435 0.1839 0.0360 1.3387 0.0401 1.1768 0.0591
+#&gt; 92: 92.1217 -6.5567 -2.2232 -4.2082 -0.9411 0.0815 8.0692 6.7286 1.1684 3.9422 0.1763 0.0411 1.3740 0.0463 1.1538 0.0613
+#&gt; 93: 92.7497 -6.3512 -2.2463 -4.1806 -0.9633 0.0724 7.6657 6.3922 1.1870 3.8858 0.1796 0.0391 1.4232 0.0454 1.3749 0.0497
+#&gt; 94: 92.2679 -6.3542 -2.2473 -4.1873 -0.9382 0.0711 7.2824 6.0726 1.1940 3.8847 0.1956 0.0371 1.3812 0.0465 1.2897 0.0521
+#&gt; 95: 92.0257 -6.2448 -2.2624 -4.1681 -0.9624 0.0810 6.9183 5.7690 1.1345 3.8091 0.1858 0.0359 1.3026 0.0509 1.3000 0.0530
+#&gt; 96: 91.5166 -5.9442 -2.2924 -4.2449 -0.9238 0.1058 7.1159 5.4805 1.1231 4.2529 0.1953 0.0343 1.4063 0.0445 1.3479 0.0482
+#&gt; 97: 91.1606 -5.8541 -2.2912 -4.2398 -0.8875 0.1101 9.4515 5.2065 1.1256 4.3194 0.2081 0.0337 1.3436 0.0498 1.3317 0.0496
+#&gt; 98: 91.2787 -6.0967 -2.2703 -4.2641 -0.9260 0.0869 8.9789 4.9462 1.2070 4.2238 0.1977 0.0373 1.3124 0.0495 1.1362 0.0653
+#&gt; 99: 91.6449 -5.9441 -2.2562 -4.2355 -0.9312 0.1237 8.5300 4.6988 1.2343 4.0468 0.1878 0.0369 1.3508 0.0462 1.0542 0.0704
+#&gt; 100: 91.7795 -5.8857 -2.2516 -4.3381 -0.9344 0.1291 8.1035 4.4639 1.2355 4.6941 0.1968 0.0393 1.4327 0.0358 1.1170 0.0668
+#&gt; 101: 92.2537 -5.7930 -2.2345 -4.3477 -0.9272 0.1340 8.3402 4.2407 1.1961 4.7638 0.1933 0.0402 1.4683 0.0375 1.1216 0.0626
+#&gt; 102: 92.3920 -6.0193 -2.2332 -4.3487 -0.9155 0.1565 11.1006 4.2977 1.1700 4.8048 0.2260 0.0444 1.4443 0.0342 1.0888 0.0674
+#&gt; 103: 92.0043 -5.7825 -2.2376 -4.2616 -0.9043 0.1686 10.5455 4.0829 1.1587 4.5646 0.2147 0.0422 1.4198 0.0338 1.1639 0.0625
+#&gt; 104: 92.1575 -5.8497 -2.2470 -4.2456 -0.9128 0.1762 10.0183 3.8787 1.1405 4.3364 0.2040 0.0440 1.3919 0.0379 1.2040 0.0582
+#&gt; 105: 92.2784 -5.7971 -2.2582 -4.2100 -0.9128 0.1731 9.5173 3.6848 1.1351 4.1196 0.1938 0.0418 1.3982 0.0404 1.1069 0.0656
+#&gt; 106: 92.4336 -5.7752 -2.2690 -4.3771 -0.8925 0.1644 9.0415 3.5005 1.1547 5.0970 0.1841 0.0476 1.3670 0.0423 1.1716 0.0625
+#&gt; 107: 92.5128 -5.8328 -2.2549 -4.4193 -0.9403 0.2268 8.5894 3.3255 1.1160 5.2711 0.1749 0.0453 1.4023 0.0347 1.0279 0.0757
+#&gt; 108: 92.8926 -5.7266 -2.2606 -4.5037 -0.9392 0.2394 8.1599 3.1592 1.1293 5.9652 0.1661 0.0447 1.3837 0.0346 0.9545 0.0747
+#&gt; 109: 92.4657 -5.8687 -2.2884 -4.4108 -0.9043 0.2611 7.7519 4.0001 1.0729 5.6669 0.1578 0.0424 1.3441 0.0351 0.9758 0.0708
+#&gt; 110: 92.6620 -5.6900 -2.2825 -4.4337 -0.9003 0.2602 7.3643 3.8001 1.0843 5.3836 0.1499 0.0433 1.4652 0.0302 0.9950 0.0722
+#&gt; 111: 92.8949 -5.6946 -2.2661 -4.5240 -0.9233 0.2372 6.9961 3.6101 1.0845 5.8133 0.1551 0.0411 1.5005 0.0327 0.9284 0.0753
+#&gt; 112: 93.4237 -5.6562 -2.2474 -4.4809 -0.9441 0.2322 6.6463 3.4296 1.1498 5.5227 0.1474 0.0409 1.4612 0.0317 0.9336 0.0762
+#&gt; 113: 93.1883 -5.6891 -2.2846 -4.3984 -0.9416 0.2317 6.3140 3.2581 1.1062 5.2465 0.1596 0.0463 1.3924 0.0380 1.0268 0.0698
+#&gt; 114: 93.4464 -5.7087 -2.2902 -4.4274 -0.9401 0.2638 5.9983 3.0952 1.1170 5.0203 0.1516 0.0495 1.4108 0.0361 1.0355 0.0682
+#&gt; 115: 93.1873 -5.8732 -2.2668 -4.5086 -0.9636 0.2516 5.6984 3.3427 1.1141 5.7549 0.1440 0.0490 1.5010 0.0309 1.0443 0.0679
+#&gt; 116: 92.6878 -5.8520 -2.2903 -4.5349 -0.9663 0.2612 5.4135 3.2444 1.1048 5.8809 0.1471 0.0511 1.3910 0.0360 1.0423 0.0702
+#&gt; 117: 92.7775 -5.7892 -2.2897 -4.4572 -0.9544 0.2380 5.1428 3.0822 1.0731 5.5869 0.1397 0.0703 1.3493 0.0360 0.9831 0.0713
+#&gt; 118: 93.1533 -5.8045 -2.2859 -4.4787 -0.9667 0.2150 4.8857 3.0277 1.0872 5.6786 0.1439 0.0812 1.3838 0.0373 1.0547 0.0696
+#&gt; 119: 92.8370 -5.7208 -2.2738 -4.4627 -0.9462 0.2095 4.6414 2.8764 1.1172 5.6197 0.1643 0.0772 1.3394 0.0348 0.9180 0.0803
+#&gt; 120: 92.5430 -5.7795 -2.3004 -4.4203 -0.9479 0.2313 4.4093 2.8377 1.1312 5.3387 0.1655 0.0803 1.2967 0.0360 1.0699 0.0761
+#&gt; 121: 92.5318 -5.6550 -2.2866 -4.5065 -0.9166 0.2321 4.1888 2.6959 1.0994 6.0180 0.1686 0.0763 1.3882 0.0322 0.9895 0.0733
+#&gt; 122: 92.7380 -5.6688 -2.2968 -4.4523 -0.9279 0.2529 3.9794 2.5611 1.0642 5.7171 0.1601 0.0851 1.3786 0.0316 0.9358 0.0742
+#&gt; 123: 93.0753 -5.7451 -2.2896 -4.5423 -0.9371 0.2724 3.7804 2.9938 1.0758 5.9349 0.1521 0.0808 1.4275 0.0339 0.9652 0.0727
+#&gt; 124: 93.2708 -5.8004 -2.2782 -4.4951 -0.9451 0.2590 3.5914 3.0594 1.0875 5.6382 0.1607 0.0768 1.3628 0.0340 1.0577 0.0693
+#&gt; 125: 93.4025 -5.7710 -2.2990 -4.4498 -0.9661 0.2633 3.4118 2.9276 1.0809 5.3563 0.1527 0.0730 1.3816 0.0406 1.0295 0.0671
+#&gt; 126: 93.4928 -5.7054 -2.3002 -4.4087 -0.9394 0.2965 3.4732 2.7812 1.1275 5.0884 0.1481 0.0693 1.2949 0.0423 0.9084 0.0726
+#&gt; 127: 93.6449 -5.6593 -2.2683 -4.3418 -0.9194 0.2560 4.2986 2.6422 1.1070 4.8340 0.1449 0.0707 1.4258 0.0341 0.8802 0.0777
+#&gt; 128: 93.7430 -5.6359 -2.2686 -4.4174 -0.9500 0.2279 5.2477 2.5101 1.1046 5.5376 0.1512 0.0859 1.4523 0.0327 0.8659 0.0826
+#&gt; 129: 93.7432 -5.6851 -2.2849 -4.2019 -0.9660 0.1995 7.2497 2.8789 1.1315 5.2607 0.1762 0.0972 1.3901 0.0357 1.1264 0.0743
+#&gt; 130: 93.2409 -5.8965 -2.2946 -4.1880 -0.9774 0.1719 7.4467 3.2276 1.1464 4.9977 0.1720 0.0924 1.3517 0.0446 1.0461 0.0705
+#&gt; 131: 92.7780 -6.0551 -2.2647 -4.1894 -0.9579 0.1391 7.0744 3.7584 1.1291 4.7478 0.1714 0.0995 1.2542 0.0438 0.9139 0.0777
+#&gt; 132: 92.7157 -6.1161 -2.2501 -4.1784 -0.9651 0.1146 6.7207 3.9259 1.1674 4.5104 0.1712 0.0957 1.2549 0.0473 0.8964 0.0803
+#&gt; 133: 92.2696 -5.8545 -2.2717 -4.1907 -0.9782 0.0985 6.3846 3.7296 1.1652 4.2849 0.1626 0.1198 1.2208 0.0498 0.9730 0.0822
+#&gt; 134: 92.2067 -5.8603 -2.2743 -4.2095 -0.9754 0.1398 6.0654 3.5431 1.1551 4.0706 0.1695 0.1138 1.3022 0.0432 0.9960 0.0795
+#&gt; 135: 92.3979 -5.9500 -2.3053 -4.1938 -0.9425 0.1134 5.7621 3.3660 1.1771 3.8671 0.1610 0.1081 1.3373 0.0462 1.1323 0.0665
+#&gt; 136: 92.3749 -5.8701 -2.2979 -4.2493 -0.9386 0.1504 5.4740 3.3090 1.1638 3.9609 0.1724 0.1027 1.3578 0.0389 1.1943 0.0650
+#&gt; 137: 92.6942 -5.9020 -2.2755 -4.2318 -0.9464 0.1541 5.2003 3.5521 1.1704 3.8948 0.1685 0.0976 1.4170 0.0399 1.1472 0.0626
+#&gt; 138: 92.7234 -5.8085 -2.2653 -4.2164 -0.9662 0.1808 4.9403 3.3745 1.1977 3.8348 0.1694 0.0927 1.4229 0.0387 1.0934 0.0708
+#&gt; 139: 92.7341 -5.7737 -2.2685 -4.1759 -0.9334 0.1554 4.6933 3.2057 1.1971 3.6962 0.1917 0.0881 1.4324 0.0363 1.1669 0.0652
+#&gt; 140: 92.1593 -5.6287 -2.2576 -4.1977 -0.9232 0.1345 4.6967 3.0455 1.1676 3.8133 0.2060 0.0837 1.5032 0.0349 1.1418 0.0678
+#&gt; 141: 92.3199 -5.8323 -2.2451 -4.1948 -0.9447 0.1295 4.9624 3.3893 1.1408 3.8423 0.1957 0.0795 1.4470 0.0325 1.0892 0.0739
+#&gt; 142: 92.7246 -6.1252 -2.2304 -4.1984 -0.9160 0.0816 4.7143 4.6501 1.1420 3.8554 0.1901 0.0755 1.4847 0.0386 1.2815 0.0576
+#&gt; 143: 92.4130 -6.0231 -2.2261 -4.2205 -0.9495 0.1020 4.4786 4.4176 1.1454 4.0301 0.1929 0.0717 1.4103 0.0410 1.0418 0.0739
+#&gt; 144: 92.4006 -5.9898 -2.2232 -4.2429 -0.9553 0.1131 4.2547 4.1967 1.1579 4.2583 0.1904 0.0681 1.4272 0.0339 1.0591 0.0737
+#&gt; 145: 92.5011 -6.2340 -2.2232 -4.1872 -0.9560 0.1322 6.1775 4.8941 1.1594 4.0453 0.1811 0.0647 1.4059 0.0298 1.0219 0.0752
+#&gt; 146: 92.7460 -6.2989 -2.2417 -4.2501 -0.9650 0.1527 5.8686 5.6454 1.1154 4.0076 0.1720 0.0758 1.4027 0.0348 1.1220 0.0689
+#&gt; 147: 93.0630 -6.0839 -2.2217 -4.1822 -0.9661 0.1634 5.5752 5.3631 1.0596 3.8072 0.1743 0.0733 1.3682 0.0393 1.0992 0.0700
+#&gt; 148: 92.7639 -5.8682 -2.2550 -4.1926 -0.9440 0.1599 5.8048 5.0950 1.0858 3.6230 0.1749 0.0696 1.3364 0.0436 1.0967 0.0721
+#&gt; 149: 92.6183 -6.1270 -2.2379 -4.1103 -0.9643 0.1202 5.8027 4.8402 1.1089 3.4860 0.1661 0.0661 1.3061 0.0457 1.0014 0.0724
+#&gt; 150: 92.7472 -6.1515 -2.2199 -4.1027 -0.9611 0.1014 5.6767 4.5982 1.1061 3.6113 0.1578 0.0654 1.3543 0.0405 1.0847 0.0707
+#&gt; 151: 92.9566 -5.8911 -2.2174 -4.0722 -0.9516 0.0992 5.9638 4.3683 1.1057 3.5122 0.1767 0.0621 1.3619 0.0396 1.0158 0.0734
+#&gt; 152: 93.0035 -5.8395 -2.2559 -4.0650 -0.9389 0.0928 4.4799 3.2331 1.0387 3.4826 0.1713 0.0604 1.3425 0.0428 1.1101 0.0635
+#&gt; 153: 92.7242 -5.7832 -2.2538 -4.1288 -0.9159 0.1047 4.6102 3.0838 1.0527 3.8052 0.1718 0.0597 1.3905 0.0398 1.1371 0.0635
+#&gt; 154: 92.2125 -5.9077 -2.2400 -4.0922 -0.9106 0.1033 4.4732 3.8350 1.0261 3.6148 0.1955 0.0643 1.3176 0.0419 1.1130 0.0635
+#&gt; 155: 92.6226 -5.6271 -2.2239 -4.0122 -0.8948 0.0647 4.5553 2.5675 1.0412 3.0513 0.1845 0.0866 1.3266 0.0459 1.0244 0.0680
+#&gt; 156: 92.6532 -5.5576 -2.2251 -4.0066 -0.9006 0.0922 3.8517 2.3273 1.0455 3.0971 0.1928 0.0863 1.4000 0.0394 0.9203 0.0754
+#&gt; 157: 92.5192 -5.4834 -2.2356 -4.0069 -0.9321 0.0904 3.0410 1.8841 0.9867 3.1990 0.1905 0.0816 1.3927 0.0407 1.1517 0.0614
+#&gt; 158: 92.5628 -5.5318 -2.2044 -4.0269 -0.9319 0.0742 3.5124 1.9585 1.0692 3.1835 0.1958 0.0934 1.4038 0.0324 0.9680 0.0758
+#&gt; 159: 92.9690 -5.6416 -2.2134 -4.0156 -0.9556 0.0560 4.3830 2.2442 1.0543 3.2358 0.1873 0.0951 1.3624 0.0375 1.1207 0.0696
+#&gt; 160: 92.9861 -5.5872 -2.2207 -3.9908 -0.9190 0.0417 4.1202 2.1685 1.0711 3.1521 0.1766 0.0913 1.3760 0.0371 1.0970 0.0713
+#&gt; 161: 93.3139 -5.5349 -2.1972 -3.9860 -0.9365 0.0011 4.2865 1.8741 1.0759 3.0304 0.2007 0.0750 1.3650 0.0411 1.1220 0.0662
+#&gt; 162: 93.3324 -5.6135 -2.1579 -4.0151 -0.9507 -0.0091 4.6402 2.0208 1.0535 3.0349 0.1935 0.0764 1.4069 0.0383 1.2550 0.0598
+#&gt; 163: 93.0110 -5.5253 -2.1419 -4.0151 -0.9197 -0.0072 5.8946 1.9087 1.0965 3.0349 0.1833 0.0814 1.5095 0.0290 1.1314 0.0665
+#&gt; 164: 93.0848 -5.4980 -2.1670 -4.0213 -0.9345 0.0150 4.9128 1.8293 1.0379 3.0653 0.1728 0.0835 1.4913 0.0343 1.0589 0.0687
+#&gt; 165: 92.9407 -5.3978 -2.1707 -4.0090 -0.9480 0.0126 3.4620 1.3870 1.0594 3.0115 0.1702 0.0982 1.5550 0.0296 1.0978 0.0694
+#&gt; 166: 93.1504 -5.4880 -2.1890 -3.9958 -0.9511 0.0316 2.7859 1.8457 1.0294 3.0739 0.1738 0.1031 1.5109 0.0308 1.1800 0.0651
+#&gt; 167: 92.8442 -5.4673 -2.1984 -4.0259 -0.9262 0.0243 2.0497 1.6348 1.0469 3.1258 0.1650 0.0981 1.6185 0.0291 1.1733 0.0655
+#&gt; 168: 92.9484 -5.6255 -2.2012 -4.0136 -0.9309 0.0199 1.8121 2.0784 1.0415 3.1795 0.1816 0.0929 1.5727 0.0268 1.4222 0.0543
+#&gt; 169: 93.0266 -5.6135 -2.1677 -4.0179 -0.9279 0.0375 1.7553 2.1663 1.0298 3.1675 0.2013 0.0926 1.5356 0.0274 1.2960 0.0596
+#&gt; 170: 92.9844 -5.6286 -2.1839 -4.0509 -0.9471 0.0414 1.9485 2.4078 1.0656 3.2787 0.2112 0.0950 1.5210 0.0265 1.3069 0.0616
+#&gt; 171: 92.6832 -5.6238 -2.2059 -4.0710 -0.9175 0.0383 1.5941 2.2918 1.1095 3.3435 0.1921 0.0895 1.4678 0.0345 1.2189 0.0618
+#&gt; 172: 92.5302 -5.5653 -2.2086 -4.0429 -0.9412 0.0773 1.5302 2.2565 1.1293 3.2157 0.1924 0.0680 1.4438 0.0367 1.2084 0.0661
+#&gt; 173: 92.3877 -5.5357 -2.2141 -4.0246 -0.9268 0.0866 1.2153 2.0588 1.0844 3.2941 0.2060 0.0726 1.4686 0.0359 1.3683 0.0596
+#&gt; 174: 92.4410 -5.4921 -2.1955 -4.0398 -0.9269 0.0645 1.6903 2.0042 1.1236 3.3646 0.1847 0.0804 1.5533 0.0310 1.2320 0.0675
+#&gt; 175: 92.4192 -5.4726 -2.1945 -4.0271 -0.9222 0.0728 1.1344 1.9292 1.1085 3.3173 0.1875 0.0912 1.5350 0.0302 1.2461 0.0679
+#&gt; 176: 92.3581 -5.5256 -2.2055 -3.9958 -0.9211 0.0720 1.1140 1.8097 1.0898 3.1459 0.2018 0.1104 1.4391 0.0323 1.2240 0.0677
+#&gt; 177: 92.2144 -5.6699 -2.2357 -4.0017 -0.9402 0.0785 1.1932 2.6190 1.0355 3.1852 0.2266 0.1125 1.4705 0.0327 1.2866 0.0621
+#&gt; 178: 92.3608 -5.7040 -2.2245 -4.0242 -0.9642 0.0596 0.7932 2.6061 0.9408 3.1080 0.1958 0.1180 1.5158 0.0365 1.3571 0.0600
+#&gt; 179: 92.4358 -5.6877 -2.2243 -4.0166 -0.9486 0.0595 0.7591 2.3791 0.9241 3.0638 0.1900 0.1257 1.4317 0.0363 1.2359 0.0686
+#&gt; 180: 92.5146 -5.7856 -2.2343 -4.0098 -0.9522 0.0522 0.4573 2.6882 0.9636 3.0406 0.1835 0.1270 1.4631 0.0361 1.2192 0.0701
+#&gt; 181: 92.5469 -5.7684 -2.2220 -4.0549 -0.9488 0.0901 0.4189 2.4963 0.9873 3.1470 0.1744 0.1268 1.5165 0.0336 1.1359 0.0760
+#&gt; 182: 92.5829 -5.7658 -2.2385 -4.0362 -0.9723 0.0572 0.3720 2.5387 0.9203 3.0397 0.1769 0.1636 1.4781 0.0375 1.2697 0.0677
+#&gt; 183: 92.5737 -5.9187 -2.2130 -4.0638 -0.9876 0.0797 0.3084 3.3137 0.9467 3.0532 0.1737 0.1599 1.4288 0.0309 1.3024 0.0617
+#&gt; 184: 92.4989 -5.9837 -2.1994 -4.0476 -0.9737 0.0594 0.2533 3.6658 0.9248 3.1230 0.1776 0.1552 1.3829 0.0316 1.2818 0.0621
+#&gt; 185: 92.5677 -6.0227 -2.2084 -4.0403 -0.9584 0.0609 0.2215 3.8810 0.9134 3.0961 0.1739 0.1473 1.4202 0.0319 1.2731 0.0579
+#&gt; 186: 92.7090 -5.9641 -2.2218 -4.0319 -0.9573 0.0575 0.2917 3.9574 0.9373 3.0666 0.1691 0.1703 1.4378 0.0296 1.2775 0.0601
+#&gt; 187: 92.7358 -6.2503 -2.2003 -4.0534 -0.9742 0.0691 0.3037 5.2011 0.9333 3.0796 0.1647 0.1553 1.4254 0.0293 1.1987 0.0629
+#&gt; 188: 92.6733 -6.1434 -2.1988 -4.0792 -0.9878 0.0860 0.3122 4.9451 0.9080 3.1891 0.1628 0.1558 1.4099 0.0317 1.3162 0.0593
+#&gt; 189: 92.7256 -6.0886 -2.1766 -4.0419 -0.9672 0.0550 0.3758 4.3461 0.9140 3.0795 0.1697 0.1649 1.5310 0.0301 1.3258 0.0566
+#&gt; 190: 92.5144 -6.1827 -2.2159 -4.0525 -0.9677 0.0728 0.3855 4.3370 0.9706 3.0518 0.1486 0.1841 1.4390 0.0295 1.1259 0.0740
+#&gt; 191: 92.6209 -6.1257 -2.2287 -4.1095 -0.9670 0.1034 0.3340 4.3051 0.9486 3.1970 0.1549 0.1776 1.4397 0.0296 1.2004 0.0684
+#&gt; 192: 92.6156 -6.1289 -2.2067 -4.1191 -0.9900 0.1090 0.3069 4.1314 0.9134 3.1476 0.1596 0.1912 1.4380 0.0301 1.1238 0.0720
+#&gt; 193: 92.5434 -5.9782 -2.1800 -4.0845 -0.9547 0.1173 0.2694 3.6834 0.9005 2.9479 0.1582 0.1733 1.4538 0.0294 0.8798 0.0866
+#&gt; 194: 92.5884 -5.7815 -2.2110 -4.0714 -0.9510 0.0928 0.2493 2.8236 0.9615 2.9852 0.1488 0.1730 1.4409 0.0297 1.1446 0.0677
+#&gt; 195: 92.6180 -5.9277 -2.2213 -4.0714 -0.9379 0.1177 0.1993 3.5172 0.8976 2.9852 0.1449 0.1735 1.5012 0.0299 1.2131 0.0618
+#&gt; 196: 92.5920 -5.7723 -2.2496 -4.0669 -0.9184 0.1262 0.2595 3.2454 0.9419 2.9697 0.1600 0.1881 1.4017 0.0338 0.9594 0.0790
+#&gt; 197: 92.6292 -5.8658 -2.2434 -4.0640 -0.9365 0.1216 0.2491 3.3540 0.9267 2.9523 0.1598 0.1749 1.3953 0.0383 1.0788 0.0702
+#&gt; 198: 92.6911 -5.8407 -2.2605 -4.0640 -0.9319 0.1264 0.1930 3.2321 0.8884 2.9523 0.1320 0.1940 1.4026 0.0358 1.0613 0.0704
+#&gt; 199: 92.6480 -5.6988 -2.2599 -4.0668 -0.9395 0.1328 0.1412 2.6535 0.8915 2.9610 0.1573 0.2052 1.4353 0.0360 0.9900 0.0742
+#&gt; 200: 92.7139 -5.6152 -2.2522 -4.0684 -0.9192 0.1589 0.1686 2.4362 0.9098 3.0185 0.1702 0.1705 1.4153 0.0338 1.1747 0.0705
+#&gt; 201: 92.7134 -5.7029 -2.2504 -4.0502 -0.9270 0.1453 0.1499 2.6851 0.8909 2.9484 0.1749 0.1772 1.3851 0.0363 1.1255 0.0714
+#&gt; 202: 92.7087 -5.7236 -2.2421 -4.0499 -0.9364 0.1238 0.1324 2.7215 0.8810 2.9507 0.1694 0.1913 1.3864 0.0365 1.1192 0.0705
+#&gt; 203: 92.7013 -5.7563 -2.2293 -4.0494 -0.9394 0.1134 0.1269 2.8279 0.8866 2.9501 0.1618 0.1915 1.3981 0.0356 1.0942 0.0710
+#&gt; 204: 92.6964 -5.8134 -2.2208 -4.0646 -0.9373 0.1144 0.1192 3.1058 0.8973 3.0279 0.1523 0.1983 1.4126 0.0345 1.0629 0.0723
+#&gt; 205: 92.6936 -5.8441 -2.2195 -4.0787 -0.9373 0.1144 0.1068 3.2553 0.9029 3.0962 0.1473 0.2001 1.4217 0.0344 1.0532 0.0719
+#&gt; 206: 92.6881 -5.8805 -2.2209 -4.0887 -0.9432 0.1187 0.1016 3.4269 0.9126 3.1477 0.1479 0.1957 1.4251 0.0348 1.0697 0.0712
+#&gt; 207: 92.6929 -5.9304 -2.2259 -4.0987 -0.9473 0.1234 0.1028 3.6444 0.9261 3.1982 0.1469 0.1910 1.4170 0.0348 1.0586 0.0717
+#&gt; 208: 92.6907 -5.9413 -2.2275 -4.1043 -0.9482 0.1267 0.1038 3.6864 0.9313 3.2244 0.1467 0.1889 1.4121 0.0343 1.0499 0.0718
+#&gt; 209: 92.6917 -5.9265 -2.2304 -4.1109 -0.9498 0.1289 0.1022 3.5975 0.9363 3.2487 0.1478 0.1863 1.4053 0.0344 1.0521 0.0716
+#&gt; 210: 92.6966 -5.9218 -2.2322 -4.1164 -0.9516 0.1337 0.0984 3.5650 0.9413 3.2688 0.1493 0.1874 1.3949 0.0342 1.0499 0.0719
+#&gt; 211: 92.7020 -5.9160 -2.2351 -4.1209 -0.9542 0.1385 0.0958 3.5091 0.9390 3.2968 0.1503 0.1873 1.3925 0.0345 1.0547 0.0718
+#&gt; 212: 92.7065 -5.9119 -2.2376 -4.1247 -0.9564 0.1432 0.0933 3.4520 0.9373 3.3205 0.1531 0.1901 1.3869 0.0346 1.0625 0.0717
+#&gt; 213: 92.7107 -5.9047 -2.2402 -4.1286 -0.9575 0.1455 0.0930 3.3990 0.9361 3.3369 0.1536 0.1932 1.3814 0.0349 1.0698 0.0712
+#&gt; 214: 92.7110 -5.9061 -2.2415 -4.1321 -0.9585 0.1483 0.0921 3.3864 0.9364 3.3517 0.1542 0.1963 1.3794 0.0348 1.0721 0.0712
+#&gt; 215: 92.7116 -5.9128 -2.2417 -4.1360 -0.9581 0.1510 0.0941 3.4201 0.9347 3.3646 0.1545 0.1988 1.3764 0.0350 1.0731 0.0712
+#&gt; 216: 92.7135 -5.9184 -2.2432 -4.1383 -0.9589 0.1540 0.0957 3.4623 0.9337 3.3698 0.1541 0.2016 1.3761 0.0353 1.0737 0.0714
+#&gt; 217: 92.7143 -5.9262 -2.2453 -4.1428 -0.9604 0.1568 0.0981 3.5202 0.9323 3.3854 0.1542 0.2053 1.3770 0.0352 1.0779 0.0716
+#&gt; 218: 92.7102 -5.9169 -2.2463 -4.1446 -0.9606 0.1604 0.1000 3.4823 0.9305 3.3851 0.1530 0.2083 1.3802 0.0353 1.0819 0.0716
+#&gt; 219: 92.7062 -5.9089 -2.2470 -4.1481 -0.9597 0.1636 0.1000 3.4465 0.9295 3.3874 0.1529 0.2125 1.3779 0.0352 1.0836 0.0716
+#&gt; 220: 92.7027 -5.9052 -2.2480 -4.1509 -0.9594 0.1668 0.1020 3.4302 0.9264 3.3877 0.1531 0.2168 1.3780 0.0352 1.0893 0.0713
+#&gt; 221: 92.7029 -5.8990 -2.2497 -4.1541 -0.9586 0.1696 0.1017 3.4007 0.9227 3.3916 0.1535 0.2208 1.3781 0.0354 1.0925 0.0709
+#&gt; 222: 92.7063 -5.8993 -2.2519 -4.1604 -0.9582 0.1732 0.1025 3.4099 0.9190 3.4135 0.1537 0.2268 1.3791 0.0355 1.1031 0.0702
+#&gt; 223: 92.7090 -5.8932 -2.2537 -4.1669 -0.9573 0.1757 0.1022 3.3946 0.9157 3.4424 0.1543 0.2319 1.3802 0.0356 1.1040 0.0701
+#&gt; 224: 92.7116 -5.8930 -2.2545 -4.1712 -0.9561 0.1774 0.1017 3.3964 0.9133 3.4673 0.1550 0.2355 1.3795 0.0356 1.1018 0.0701
+#&gt; 225: 92.7136 -5.8911 -2.2564 -4.1715 -0.9551 0.1788 0.1016 3.4013 0.9125 3.4628 0.1548 0.2380 1.3756 0.0359 1.1003 0.0700
+#&gt; 226: 92.7153 -5.8883 -2.2569 -4.1711 -0.9536 0.1793 0.1016 3.4046 0.9134 3.4575 0.1549 0.2398 1.3737 0.0360 1.1016 0.0699
+#&gt; 227: 92.7163 -5.8830 -2.2575 -4.1720 -0.9526 0.1796 0.1019 3.3952 0.9129 3.4575 0.1545 0.2407 1.3718 0.0363 1.1015 0.0698
+#&gt; 228: 92.7182 -5.8865 -2.2578 -4.1728 -0.9528 0.1804 0.1017 3.4198 0.9113 3.4576 0.1538 0.2433 1.3722 0.0363 1.1068 0.0695
+#&gt; 229: 92.7199 -5.8965 -2.2578 -4.1718 -0.9523 0.1812 0.1023 3.5030 0.9097 3.4503 0.1529 0.2463 1.3749 0.0363 1.1093 0.0694
+#&gt; 230: 92.7205 -5.8997 -2.2578 -4.1712 -0.9514 0.1825 0.1025 3.5337 0.9071 3.4446 0.1519 0.2497 1.3802 0.0362 1.1115 0.0693
+#&gt; 231: 92.7208 -5.9001 -2.2581 -4.1711 -0.9511 0.1838 0.1044 3.5537 0.9037 3.4423 0.1510 0.2533 1.3834 0.0361 1.1125 0.0693
+#&gt; 232: 92.7183 -5.9041 -2.2588 -4.1715 -0.9504 0.1855 0.1061 3.5958 0.9001 3.4391 0.1503 0.2572 1.3871 0.0362 1.1161 0.0690
+#&gt; 233: 92.7169 -5.9106 -2.2593 -4.1725 -0.9490 0.1866 0.1073 3.6433 0.8968 3.4367 0.1496 0.2609 1.3900 0.0362 1.1179 0.0688
+#&gt; 234: 92.7125 -5.9165 -2.2594 -4.1728 -0.9479 0.1873 0.1098 3.6870 0.8932 3.4321 0.1498 0.2641 1.3907 0.0363 1.1177 0.0687
+#&gt; 235: 92.7072 -5.9203 -2.2592 -4.1729 -0.9472 0.1876 0.1128 3.7229 0.8899 3.4269 0.1506 0.2676 1.3913 0.0364 1.1212 0.0686
+#&gt; 236: 92.7048 -5.9319 -2.2603 -4.1724 -0.9467 0.1879 0.1147 3.7863 0.8879 3.4175 0.1510 0.2705 1.3898 0.0365 1.1181 0.0688
+#&gt; 237: 92.7037 -5.9349 -2.2609 -4.1720 -0.9461 0.1881 0.1152 3.8047 0.8862 3.4096 0.1512 0.2731 1.3891 0.0367 1.1164 0.0688
+#&gt; 238: 92.7027 -5.9359 -2.2605 -4.1715 -0.9459 0.1884 0.1151 3.7997 0.8842 3.4023 0.1516 0.2755 1.3905 0.0366 1.1171 0.0688
+#&gt; 239: 92.7027 -5.9375 -2.2599 -4.1712 -0.9463 0.1881 0.1143 3.8187 0.8835 3.3954 0.1521 0.2780 1.3923 0.0366 1.1193 0.0688
+#&gt; 240: 92.7025 -5.9409 -2.2593 -4.1710 -0.9467 0.1884 0.1135 3.8437 0.8830 3.3888 0.1530 0.2797 1.3939 0.0366 1.1266 0.0685
+#&gt; 241: 92.7006 -5.9429 -2.2589 -4.1703 -0.9469 0.1887 0.1130 3.8580 0.8825 3.3820 0.1529 0.2815 1.3967 0.0364 1.1299 0.0685
+#&gt; 242: 92.6977 -5.9366 -2.2594 -4.1693 -0.9471 0.1887 0.1130 3.8245 0.8810 3.3742 0.1534 0.2833 1.3967 0.0364 1.1323 0.0685
+#&gt; 243: 92.6951 -5.9310 -2.2605 -4.1683 -0.9473 0.1891 0.1131 3.7904 0.8807 3.3666 0.1541 0.2853 1.3953 0.0364 1.1380 0.0683
+#&gt; 244: 92.6928 -5.9289 -2.2610 -4.1680 -0.9471 0.1899 0.1130 3.7709 0.8797 3.3604 0.1545 0.2880 1.3947 0.0364 1.1399 0.0683
+#&gt; 245: 92.6902 -5.9291 -2.2615 -4.1677 -0.9472 0.1914 0.1129 3.7637 0.8787 3.3538 0.1549 0.2898 1.3942 0.0364 1.1440 0.0681
+#&gt; 246: 92.6880 -5.9271 -2.2617 -4.1677 -0.9472 0.1926 0.1131 3.7457 0.8785 3.3500 0.1549 0.2916 1.3938 0.0364 1.1468 0.0681
+#&gt; 247: 92.6865 -5.9264 -2.2613 -4.1676 -0.9471 0.1930 0.1127 3.7331 0.8793 3.3487 0.1551 0.2918 1.3931 0.0364 1.1464 0.0683
+#&gt; 248: 92.6855 -5.9212 -2.2604 -4.1671 -0.9476 0.1935 0.1116 3.7055 0.8795 3.3451 0.1549 0.2923 1.3942 0.0363 1.1453 0.0684
+#&gt; 249: 92.6848 -5.9190 -2.2600 -4.1667 -0.9482 0.1939 0.1110 3.6857 0.8801 3.3428 0.1548 0.2923 1.3942 0.0363 1.1440 0.0685
+#&gt; 250: 92.6858 -5.9194 -2.2605 -4.1663 -0.9489 0.1945 0.1109 3.6821 0.8806 3.3397 0.1547 0.2920 1.3932 0.0363 1.1430 0.0686
+#&gt; 251: 92.6849 -5.9179 -2.2610 -4.1665 -0.9492 0.1950 0.1111 3.6795 0.8814 3.3392 0.1550 0.2919 1.3922 0.0364 1.1434 0.0685
+#&gt; 252: 92.6848 -5.9141 -2.2615 -4.1660 -0.9493 0.1957 0.1110 3.6611 0.8818 3.3363 0.1548 0.2918 1.3919 0.0364 1.1423 0.0686
+#&gt; 253: 92.6837 -5.9110 -2.2637 -4.1634 -0.9493 0.1952 0.1114 3.6462 0.8788 3.3481 0.1550 0.2920 1.3941 0.0363 1.1417 0.0688
+#&gt; 254: 92.6827 -5.9082 -2.2650 -4.1608 -0.9492 0.1944 0.1117 3.6309 0.8753 3.3595 0.1548 0.2921 1.3964 0.0361 1.1415 0.0688
+#&gt; 255: 92.6829 -5.9076 -2.2662 -4.1585 -0.9495 0.1934 0.1118 3.6221 0.8723 3.3737 0.1547 0.2923 1.3977 0.0359 1.1397 0.0689
+#&gt; 256: 92.6821 -5.9079 -2.2672 -4.1559 -0.9495 0.1923 0.1118 3.6279 0.8697 3.3865 0.1547 0.2925 1.3990 0.0357 1.1387 0.0691
+#&gt; 257: 92.6822 -5.9054 -2.2686 -4.1534 -0.9499 0.1914 0.1119 3.6202 0.8673 3.3988 0.1548 0.2923 1.4010 0.0356 1.1438 0.0690
+#&gt; 258: 92.6828 -5.9054 -2.2700 -4.1509 -0.9498 0.1900 0.1121 3.6166 0.8651 3.4085 0.1547 0.2926 1.4028 0.0356 1.1473 0.0688
+#&gt; 259: 92.6842 -5.9087 -2.2710 -4.1474 -0.9496 0.1890 0.1128 3.6314 0.8629 3.4154 0.1548 0.2923 1.4040 0.0355 1.1482 0.0689
+#&gt; 260: 92.6852 -5.9118 -2.2717 -4.1444 -0.9493 0.1885 0.1124 3.6485 0.8606 3.4227 0.1544 0.2919 1.4073 0.0354 1.1518 0.0688
+#&gt; 261: 92.6858 -5.9137 -2.2721 -4.1419 -0.9493 0.1882 0.1122 3.6641 0.8581 3.4314 0.1543 0.2913 1.4106 0.0353 1.1577 0.0684
+#&gt; 262: 92.6861 -5.9117 -2.2726 -4.1394 -0.9493 0.1881 0.1116 3.6572 0.8558 3.4391 0.1541 0.2908 1.4137 0.0352 1.1613 0.0682
+#&gt; 263: 92.6855 -5.9124 -2.2730 -4.1372 -0.9494 0.1875 0.1113 3.6626 0.8533 3.4465 0.1541 0.2905 1.4152 0.0351 1.1636 0.0681
+#&gt; 264: 92.6841 -5.9137 -2.2734 -4.1351 -0.9496 0.1871 0.1109 3.6703 0.8505 3.4529 0.1538 0.2903 1.4156 0.0350 1.1632 0.0681
+#&gt; 265: 92.6833 -5.9153 -2.2741 -4.1327 -0.9498 0.1867 0.1108 3.6816 0.8472 3.4581 0.1535 0.2899 1.4168 0.0350 1.1647 0.0679
+#&gt; 266: 92.6835 -5.9147 -2.2752 -4.1307 -0.9497 0.1865 0.1107 3.6768 0.8450 3.4641 0.1531 0.2896 1.4176 0.0349 1.1640 0.0679
+#&gt; 267: 92.6835 -5.9167 -2.2761 -4.1283 -0.9499 0.1862 0.1105 3.6851 0.8430 3.4700 0.1530 0.2892 1.4178 0.0348 1.1639 0.0679
+#&gt; 268: 92.6841 -5.9141 -2.2767 -4.1269 -0.9503 0.1860 0.1107 3.6718 0.8407 3.4775 0.1533 0.2891 1.4187 0.0348 1.1673 0.0677
+#&gt; 269: 92.6845 -5.9094 -2.2774 -4.1253 -0.9503 0.1855 0.1112 3.6520 0.8384 3.4840 0.1535 0.2890 1.4192 0.0348 1.1686 0.0675
+#&gt; 270: 92.6847 -5.9042 -2.2779 -4.1239 -0.9505 0.1853 0.1107 3.6288 0.8365 3.4895 0.1536 0.2889 1.4192 0.0347 1.1698 0.0675
+#&gt; 271: 92.6849 -5.9000 -2.2785 -4.1228 -0.9506 0.1853 0.1102 3.6083 0.8348 3.4956 0.1536 0.2889 1.4191 0.0346 1.1692 0.0676
+#&gt; 272: 92.6850 -5.8965 -2.2794 -4.1223 -0.9507 0.1853 0.1092 3.5892 0.8331 3.5071 0.1538 0.2889 1.4194 0.0345 1.1700 0.0676
+#&gt; 273: 92.6851 -5.8916 -2.2805 -4.1222 -0.9508 0.1850 0.1089 3.5697 0.8315 3.5211 0.1538 0.2889 1.4209 0.0345 1.1720 0.0675
+#&gt; 274: 92.6849 -5.8898 -2.2815 -4.1218 -0.9506 0.1852 0.1084 3.5607 0.8301 3.5339 0.1542 0.2886 1.4221 0.0344 1.1728 0.0675
+#&gt; 275: 92.6844 -5.8885 -2.2830 -4.1215 -0.9504 0.1855 0.1080 3.5514 0.8284 3.5491 0.1545 0.2883 1.4238 0.0343 1.1756 0.0673
+#&gt; 276: 92.6834 -5.8885 -2.2843 -4.1210 -0.9501 0.1859 0.1077 3.5477 0.8272 3.5648 0.1547 0.2878 1.4243 0.0343 1.1749 0.0674
+#&gt; 277: 92.6829 -5.8892 -2.2858 -4.1208 -0.9500 0.1862 0.1071 3.5505 0.8257 3.5807 0.1552 0.2872 1.4244 0.0343 1.1747 0.0674
+#&gt; 278: 92.6825 -5.8885 -2.2871 -4.1205 -0.9499 0.1862 0.1072 3.5463 0.8245 3.5960 0.1555 0.2866 1.4247 0.0343 1.1742 0.0675
+#&gt; 279: 92.6815 -5.8887 -2.2883 -4.1201 -0.9501 0.1864 0.1072 3.5433 0.8239 3.6088 0.1556 0.2860 1.4247 0.0343 1.1737 0.0676
+#&gt; 280: 92.6800 -5.8901 -2.2896 -4.1211 -0.9503 0.1865 0.1078 3.5481 0.8238 3.6285 0.1556 0.2848 1.4252 0.0344 1.1742 0.0676
+#&gt; 281: 92.6779 -5.8914 -2.2907 -4.1218 -0.9502 0.1865 0.1084 3.5491 0.8240 3.6471 0.1558 0.2838 1.4251 0.0343 1.1732 0.0677
+#&gt; 282: 92.6767 -5.8906 -2.2919 -4.1236 -0.9501 0.1862 0.1091 3.5462 0.8248 3.6747 0.1558 0.2825 1.4250 0.0344 1.1732 0.0677
+#&gt; 283: 92.6750 -5.8895 -2.2928 -4.1253 -0.9499 0.1857 0.1097 3.5418 0.8260 3.7025 0.1555 0.2814 1.4253 0.0344 1.1712 0.0678
+#&gt; 284: 92.6736 -5.8903 -2.2934 -4.1271 -0.9497 0.1854 0.1107 3.5438 0.8269 3.7297 0.1553 0.2800 1.4257 0.0343 1.1698 0.0678
+#&gt; 285: 92.6730 -5.8917 -2.2942 -4.1284 -0.9497 0.1852 0.1116 3.5481 0.8274 3.7528 0.1551 0.2787 1.4260 0.0343 1.1689 0.0678
+#&gt; 286: 92.6715 -5.8913 -2.2947 -4.1285 -0.9492 0.1849 0.1122 3.5473 0.8274 3.7660 0.1550 0.2775 1.4265 0.0342 1.1678 0.0679
+#&gt; 287: 92.6702 -5.8925 -2.2952 -4.1290 -0.9489 0.1846 0.1125 3.5531 0.8268 3.7818 0.1549 0.2764 1.4269 0.0342 1.1673 0.0678
+#&gt; 288: 92.6688 -5.8918 -2.2959 -4.1290 -0.9490 0.1843 0.1126 3.5495 0.8262 3.7946 0.1546 0.2756 1.4275 0.0341 1.1673 0.0678
+#&gt; 289: 92.6673 -5.8907 -2.2966 -4.1295 -0.9490 0.1841 0.1124 3.5445 0.8260 3.8067 0.1543 0.2750 1.4280 0.0342 1.1690 0.0677
+#&gt; 290: 92.6657 -5.8909 -2.2973 -4.1302 -0.9490 0.1838 0.1123 3.5433 0.8260 3.8201 0.1540 0.2744 1.4279 0.0342 1.1687 0.0676
+#&gt; 291: 92.6642 -5.8902 -2.2978 -4.1312 -0.9493 0.1835 0.1124 3.5399 0.8262 3.8365 0.1538 0.2738 1.4279 0.0342 1.1695 0.0676
+#&gt; 292: 92.6635 -5.8917 -2.2983 -4.1316 -0.9495 0.1831 0.1121 3.5453 0.8263 3.8517 0.1535 0.2733 1.4275 0.0342 1.1695 0.0675
+#&gt; 293: 92.6622 -5.8936 -2.2991 -4.1323 -0.9497 0.1830 0.1121 3.5526 0.8265 3.8692 0.1533 0.2728 1.4274 0.0342 1.1701 0.0675
+#&gt; 294: 92.6604 -5.8936 -2.2999 -4.1328 -0.9499 0.1826 0.1126 3.5505 0.8263 3.8838 0.1533 0.2723 1.4273 0.0342 1.1712 0.0675
+#&gt; 295: 92.6593 -5.8924 -2.3007 -4.1329 -0.9498 0.1823 0.1131 3.5443 0.8262 3.9004 0.1531 0.2717 1.4276 0.0342 1.1718 0.0674
+#&gt; 296: 92.6586 -5.8906 -2.3016 -4.1323 -0.9496 0.1822 0.1133 3.5374 0.8266 3.9103 0.1530 0.2707 1.4272 0.0343 1.1714 0.0674
+#&gt; 297: 92.6578 -5.8889 -2.3026 -4.1329 -0.9494 0.1819 0.1139 3.5315 0.8271 3.9280 0.1528 0.2697 1.4267 0.0343 1.1697 0.0675
+#&gt; 298: 92.6575 -5.8885 -2.3036 -4.1330 -0.9490 0.1814 0.1143 3.5303 0.8275 3.9410 0.1527 0.2689 1.4263 0.0344 1.1688 0.0675
+#&gt; 299: 92.6566 -5.8879 -2.3047 -4.1329 -0.9488 0.1807 0.1147 3.5286 0.8282 3.9507 0.1526 0.2679 1.4263 0.0345 1.1680 0.0674
+#&gt; 300: 92.6555 -5.8862 -2.3057 -4.1325 -0.9483 0.1802 0.1151 3.5225 0.8293 3.9582 0.1527 0.2671 1.4261 0.0345 1.1677 0.0674
+#&gt; 301: 92.6545 -5.8854 -2.3067 -4.1326 -0.9480 0.1795 0.1156 3.5191 0.8300 3.9691 0.1530 0.2665 1.4257 0.0346 1.1672 0.0674
+#&gt; 302: 92.6539 -5.8839 -2.3078 -4.1322 -0.9477 0.1788 0.1161 3.5154 0.8309 3.9769 0.1532 0.2657 1.4252 0.0346 1.1664 0.0675
+#&gt; 303: 92.6541 -5.8799 -2.3089 -4.1327 -0.9474 0.1782 0.1161 3.5012 0.8319 3.9913 0.1534 0.2649 1.4242 0.0347 1.1653 0.0675
+#&gt; 304: 92.6554 -5.8766 -2.3096 -4.1326 -0.9472 0.1774 0.1164 3.4879 0.8328 3.9978 0.1536 0.2641 1.4234 0.0348 1.1644 0.0675
+#&gt; 305: 92.6559 -5.8732 -2.3104 -4.1325 -0.9470 0.1764 0.1161 3.4740 0.8334 4.0037 0.1535 0.2633 1.4231 0.0348 1.1634 0.0676
+#&gt; 306: 92.6564 -5.8717 -2.3113 -4.1322 -0.9470 0.1758 0.1161 3.4705 0.8341 4.0097 0.1537 0.2622 1.4236 0.0348 1.1628 0.0676
+#&gt; 307: 92.6573 -5.8703 -2.3121 -4.1320 -0.9469 0.1748 0.1158 3.4630 0.8349 4.0154 0.1538 0.2614 1.4231 0.0348 1.1617 0.0677
+#&gt; 308: 92.6578 -5.8695 -2.3129 -4.1318 -0.9465 0.1738 0.1154 3.4585 0.8356 4.0210 0.1540 0.2607 1.4229 0.0348 1.1604 0.0677
+#&gt; 309: 92.6577 -5.8691 -2.3132 -4.1317 -0.9465 0.1732 0.1151 3.4548 0.8369 4.0270 0.1540 0.2596 1.4233 0.0348 1.1589 0.0678
+#&gt; 310: 92.6580 -5.8680 -2.3135 -4.1309 -0.9466 0.1727 0.1147 3.4472 0.8377 4.0280 0.1540 0.2587 1.4231 0.0348 1.1569 0.0679
+#&gt; 311: 92.6575 -5.8681 -2.3141 -4.1303 -0.9466 0.1722 0.1144 3.4477 0.8384 4.0303 0.1539 0.2577 1.4236 0.0348 1.1557 0.0679
+#&gt; 312: 92.6571 -5.8685 -2.3145 -4.1299 -0.9467 0.1720 0.1143 3.4498 0.8393 4.0328 0.1538 0.2566 1.4237 0.0348 1.1545 0.0680
+#&gt; 313: 92.6559 -5.8685 -2.3150 -4.1296 -0.9469 0.1718 0.1142 3.4483 0.8403 4.0358 0.1537 0.2555 1.4234 0.0348 1.1532 0.0681
+#&gt; 314: 92.6543 -5.8699 -2.3155 -4.1294 -0.9471 0.1715 0.1142 3.4526 0.8404 4.0401 0.1537 0.2546 1.4236 0.0347 1.1522 0.0681
+#&gt; 315: 92.6528 -5.8713 -2.3161 -4.1289 -0.9472 0.1712 0.1144 3.4584 0.8402 4.0427 0.1537 0.2538 1.4234 0.0347 1.1520 0.0682
+#&gt; 316: 92.6510 -5.8726 -2.3166 -4.1283 -0.9472 0.1705 0.1146 3.4647 0.8404 4.0443 0.1537 0.2528 1.4236 0.0347 1.1511 0.0682
+#&gt; 317: 92.6496 -5.8736 -2.3170 -4.1281 -0.9474 0.1699 0.1147 3.4701 0.8406 4.0497 0.1536 0.2520 1.4238 0.0347 1.1504 0.0683
+#&gt; 318: 92.6479 -5.8745 -2.3174 -4.1276 -0.9475 0.1695 0.1153 3.4729 0.8410 4.0511 0.1535 0.2510 1.4238 0.0347 1.1503 0.0683
+#&gt; 319: 92.6463 -5.8773 -2.3175 -4.1272 -0.9476 0.1690 0.1155 3.4868 0.8409 4.0527 0.1535 0.2502 1.4234 0.0347 1.1484 0.0685
+#&gt; 320: 92.6447 -5.8770 -2.3179 -4.1263 -0.9478 0.1684 0.1158 3.4849 0.8407 4.0516 0.1534 0.2493 1.4238 0.0347 1.1483 0.0685
+#&gt; 321: 92.6433 -5.8768 -2.3181 -4.1255 -0.9479 0.1679 0.1161 3.4850 0.8405 4.0511 0.1533 0.2485 1.4238 0.0346 1.1474 0.0686
+#&gt; 322: 92.6425 -5.8766 -2.3182 -4.1246 -0.9480 0.1673 0.1161 3.4839 0.8403 4.0505 0.1530 0.2474 1.4243 0.0346 1.1458 0.0687
+#&gt; 323: 92.6414 -5.8778 -2.3183 -4.1241 -0.9481 0.1669 0.1162 3.4888 0.8402 4.0517 0.1530 0.2466 1.4244 0.0346 1.1454 0.0687
+#&gt; 324: 92.6404 -5.8771 -2.3186 -4.1236 -0.9482 0.1666 0.1161 3.4855 0.8401 4.0525 0.1529 0.2459 1.4247 0.0345 1.1446 0.0687
+#&gt; 325: 92.6396 -5.8753 -2.3188 -4.1231 -0.9483 0.1664 0.1156 3.4767 0.8396 4.0533 0.1529 0.2454 1.4253 0.0345 1.1438 0.0689
+#&gt; 326: 92.6397 -5.8766 -2.3192 -4.1226 -0.9484 0.1663 0.1152 3.4798 0.8389 4.0542 0.1527 0.2449 1.4253 0.0345 1.1431 0.0690
+#&gt; 327: 92.6395 -5.8785 -2.3197 -4.1224 -0.9483 0.1660 0.1151 3.4880 0.8382 4.0557 0.1528 0.2445 1.4250 0.0345 1.1430 0.0690
+#&gt; 328: 92.6397 -5.8805 -2.3202 -4.1221 -0.9483 0.1657 0.1153 3.5011 0.8373 4.0568 0.1528 0.2442 1.4246 0.0345 1.1427 0.0690
+#&gt; 329: 92.6390 -5.8838 -2.3208 -4.1219 -0.9482 0.1655 0.1161 3.5176 0.8365 4.0580 0.1530 0.2439 1.4241 0.0345 1.1429 0.0690
+#&gt; 330: 92.6380 -5.8862 -2.3215 -4.1216 -0.9484 0.1653 0.1166 3.5286 0.8355 4.0584 0.1529 0.2437 1.4234 0.0346 1.1428 0.0690
+#&gt; 331: 92.6367 -5.8867 -2.3223 -4.1206 -0.9484 0.1651 0.1165 3.5288 0.8348 4.0577 0.1528 0.2435 1.4233 0.0346 1.1429 0.0690
+#&gt; 332: 92.6360 -5.8859 -2.3230 -4.1199 -0.9485 0.1650 0.1165 3.5235 0.8343 4.0572 0.1527 0.2433 1.4227 0.0346 1.1429 0.0689
+#&gt; 333: 92.6361 -5.8839 -2.3237 -4.1194 -0.9485 0.1649 0.1162 3.5142 0.8340 4.0564 0.1527 0.2430 1.4224 0.0347 1.1429 0.0689
+#&gt; 334: 92.6359 -5.8824 -2.3244 -4.1190 -0.9486 0.1649 0.1158 3.5070 0.8337 4.0567 0.1527 0.2424 1.4218 0.0347 1.1442 0.0689
+#&gt; 335: 92.6366 -5.8826 -2.3250 -4.1186 -0.9485 0.1645 0.1157 3.5069 0.8334 4.0574 0.1527 0.2419 1.4214 0.0347 1.1448 0.0688
+#&gt; 336: 92.6374 -5.8816 -2.3253 -4.1182 -0.9486 0.1644 0.1158 3.5034 0.8330 4.0580 0.1528 0.2415 1.4212 0.0347 1.1471 0.0687
+#&gt; 337: 92.6378 -5.8810 -2.3258 -4.1176 -0.9487 0.1642 0.1159 3.5023 0.8325 4.0582 0.1528 0.2410 1.4212 0.0347 1.1467 0.0688
+#&gt; 338: 92.6383 -5.8814 -2.3262 -4.1168 -0.9488 0.1637 0.1160 3.5028 0.8322 4.0571 0.1526 0.2409 1.4216 0.0346 1.1456 0.0689
+#&gt; 339: 92.6392 -5.8808 -2.3266 -4.1160 -0.9490 0.1631 0.1161 3.4989 0.8318 4.0566 0.1524 0.2408 1.4220 0.0346 1.1441 0.0690
+#&gt; 340: 92.6393 -5.8810 -2.3269 -4.1152 -0.9491 0.1626 0.1157 3.4997 0.8316 4.0564 0.1524 0.2407 1.4216 0.0346 1.1419 0.0692
+#&gt; 341: 92.6394 -5.8807 -2.3272 -4.1148 -0.9492 0.1619 0.1153 3.4966 0.8308 4.0552 0.1523 0.2405 1.4218 0.0346 1.1415 0.0692
+#&gt; 342: 92.6394 -5.8806 -2.3274 -4.1141 -0.9493 0.1612 0.1146 3.4936 0.8303 4.0537 0.1522 0.2405 1.4221 0.0346 1.1406 0.0692
+#&gt; 343: 92.6398 -5.8819 -2.3277 -4.1134 -0.9494 0.1606 0.1141 3.4961 0.8297 4.0519 0.1522 0.2402 1.4219 0.0347 1.1404 0.0692
+#&gt; 344: 92.6401 -5.8823 -2.3280 -4.1128 -0.9497 0.1599 0.1137 3.4963 0.8293 4.0504 0.1523 0.2400 1.4214 0.0346 1.1404 0.0692
+#&gt; 345: 92.6404 -5.8829 -2.3283 -4.1124 -0.9498 0.1593 0.1136 3.4958 0.8289 4.0494 0.1523 0.2396 1.4214 0.0346 1.1398 0.0692
+#&gt; 346: 92.6405 -5.8829 -2.3283 -4.1119 -0.9499 0.1587 0.1135 3.4953 0.8287 4.0484 0.1522 0.2394 1.4216 0.0346 1.1397 0.0692
+#&gt; 347: 92.6404 -5.8833 -2.3288 -4.1117 -0.9500 0.1582 0.1133 3.4965 0.8289 4.0480 0.1521 0.2391 1.4211 0.0346 1.1388 0.0692
+#&gt; 348: 92.6407 -5.8838 -2.3293 -4.1113 -0.9502 0.1578 0.1132 3.4978 0.8290 4.0471 0.1520 0.2388 1.4209 0.0346 1.1385 0.0692
+#&gt; 349: 92.6409 -5.8847 -2.3299 -4.1110 -0.9503 0.1571 0.1128 3.5024 0.8290 4.0474 0.1519 0.2386 1.4207 0.0347 1.1379 0.0692
+#&gt; 350: 92.6413 -5.8853 -2.3304 -4.1107 -0.9504 0.1567 0.1125 3.5037 0.8287 4.0478 0.1519 0.2383 1.4207 0.0347 1.1366 0.0693
+#&gt; 351: 92.6415 -5.8868 -2.3310 -4.1104 -0.9504 0.1562 0.1122 3.5109 0.8287 4.0490 0.1518 0.2378 1.4208 0.0347 1.1364 0.0693
+#&gt; 352: 92.6413 -5.8882 -2.3316 -4.1103 -0.9504 0.1557 0.1120 3.5196 0.8287 4.0517 0.1517 0.2375 1.4207 0.0346 1.1361 0.0693
+#&gt; 353: 92.6414 -5.8890 -2.3322 -4.1101 -0.9503 0.1553 0.1117 3.5237 0.8290 4.0533 0.1517 0.2371 1.4202 0.0346 1.1345 0.0693
+#&gt; 354: 92.6417 -5.8879 -2.3327 -4.1099 -0.9502 0.1548 0.1115 3.5206 0.8294 4.0546 0.1515 0.2368 1.4200 0.0346 1.1336 0.0694
+#&gt; 355: 92.6417 -5.8882 -2.3333 -4.1096 -0.9500 0.1541 0.1115 3.5265 0.8296 4.0548 0.1514 0.2364 1.4203 0.0346 1.1325 0.0694
+#&gt; 356: 92.6414 -5.8881 -2.3338 -4.1093 -0.9497 0.1535 0.1115 3.5339 0.8299 4.0553 0.1513 0.2362 1.4204 0.0346 1.1318 0.0694
+#&gt; 357: 92.6414 -5.8874 -2.3343 -4.1087 -0.9497 0.1529 0.1117 3.5320 0.8302 4.0548 0.1512 0.2358 1.4205 0.0346 1.1315 0.0694
+#&gt; 358: 92.6415 -5.8865 -2.3349 -4.1087 -0.9497 0.1523 0.1118 3.5274 0.8308 4.0583 0.1510 0.2354 1.4206 0.0346 1.1308 0.0695
+#&gt; 359: 92.6415 -5.8855 -2.3352 -4.1085 -0.9497 0.1518 0.1123 3.5208 0.8308 4.0597 0.1509 0.2349 1.4205 0.0346 1.1298 0.0695
+#&gt; 360: 92.6413 -5.8851 -2.3356 -4.1080 -0.9496 0.1513 0.1125 3.5176 0.8308 4.0606 0.1508 0.2344 1.4207 0.0346 1.1289 0.0695
+#&gt; 361: 92.6412 -5.8854 -2.3359 -4.1076 -0.9498 0.1508 0.1126 3.5187 0.8308 4.0618 0.1508 0.2338 1.4214 0.0345 1.1279 0.0695
+#&gt; 362: 92.6415 -5.8861 -2.3362 -4.1072 -0.9499 0.1503 0.1126 3.5210 0.8306 4.0636 0.1507 0.2333 1.4218 0.0345 1.1273 0.0695
+#&gt; 363: 92.6412 -5.8884 -2.3364 -4.1066 -0.9499 0.1498 0.1126 3.5327 0.8305 4.0646 0.1507 0.2328 1.4221 0.0345 1.1273 0.0695
+#&gt; 364: 92.6411 -5.8895 -2.3367 -4.1062 -0.9501 0.1494 0.1126 3.5366 0.8306 4.0659 0.1507 0.2322 1.4227 0.0345 1.1280 0.0695
+#&gt; 365: 92.6411 -5.8908 -2.3367 -4.1060 -0.9502 0.1489 0.1125 3.5405 0.8307 4.0690 0.1507 0.2317 1.4228 0.0344 1.1280 0.0695
+#&gt; 366: 92.6412 -5.8926 -2.3366 -4.1062 -0.9502 0.1484 0.1125 3.5483 0.8307 4.0724 0.1507 0.2311 1.4228 0.0344 1.1280 0.0695
+#&gt; 367: 92.6406 -5.8940 -2.3366 -4.1059 -0.9503 0.1483 0.1124 3.5557 0.8308 4.0738 0.1507 0.2305 1.4228 0.0344 1.1273 0.0695
+#&gt; 368: 92.6402 -5.8940 -2.3365 -4.1059 -0.9504 0.1483 0.1122 3.5538 0.8306 4.0773 0.1507 0.2299 1.4228 0.0344 1.1266 0.0696
+#&gt; 369: 92.6398 -5.8933 -2.3366 -4.1058 -0.9504 0.1482 0.1122 3.5489 0.8303 4.0796 0.1507 0.2295 1.4228 0.0343 1.1261 0.0696
+#&gt; 370: 92.6394 -5.8928 -2.3366 -4.1059 -0.9504 0.1481 0.1123 3.5445 0.8302 4.0819 0.1506 0.2291 1.4229 0.0343 1.1258 0.0696
+#&gt; 371: 92.6390 -5.8930 -2.3369 -4.1062 -0.9503 0.1481 0.1125 3.5446 0.8299 4.0854 0.1506 0.2285 1.4230 0.0343 1.1257 0.0696
+#&gt; 372: 92.6387 -5.8926 -2.3372 -4.1064 -0.9503 0.1482 0.1125 3.5424 0.8298 4.0887 0.1505 0.2281 1.4234 0.0343 1.1262 0.0696
+#&gt; 373: 92.6385 -5.8927 -2.3376 -4.1067 -0.9502 0.1483 0.1126 3.5447 0.8297 4.0919 0.1504 0.2275 1.4236 0.0343 1.1268 0.0696
+#&gt; 374: 92.6382 -5.8932 -2.3380 -4.1064 -0.9502 0.1481 0.1131 3.5490 0.8295 4.0929 0.1503 0.2272 1.4238 0.0343 1.1267 0.0696
+#&gt; 375: 92.6385 -5.8944 -2.3383 -4.1062 -0.9502 0.1481 0.1136 3.5562 0.8292 4.0936 0.1503 0.2269 1.4240 0.0343 1.1274 0.0695
+#&gt; 376: 92.6388 -5.8942 -2.3387 -4.1061 -0.9502 0.1481 0.1141 3.5575 0.8295 4.0942 0.1502 0.2267 1.4236 0.0343 1.1272 0.0695
+#&gt; 377: 92.6389 -5.8942 -2.3392 -4.1060 -0.9502 0.1482 0.1145 3.5579 0.8298 4.0950 0.1501 0.2264 1.4233 0.0344 1.1272 0.0695
+#&gt; 378: 92.6388 -5.8939 -2.3397 -4.1060 -0.9502 0.1481 0.1150 3.5558 0.8298 4.0959 0.1500 0.2261 1.4232 0.0344 1.1271 0.0695
+#&gt; 379: 92.6388 -5.8934 -2.3399 -4.1062 -0.9500 0.1483 0.1153 3.5521 0.8294 4.0980 0.1500 0.2257 1.4236 0.0344 1.1279 0.0694
+#&gt; 380: 92.6390 -5.8920 -2.3402 -4.1065 -0.9499 0.1484 0.1155 3.5446 0.8292 4.1007 0.1500 0.2254 1.4241 0.0344 1.1285 0.0694
+#&gt; 381: 92.6394 -5.8906 -2.3404 -4.1069 -0.9498 0.1485 0.1157 3.5378 0.8290 4.1040 0.1500 0.2250 1.4249 0.0343 1.1296 0.0694
+#&gt; 382: 92.6403 -5.8893 -2.3406 -4.1085 -0.9498 0.1487 0.1157 3.5319 0.8289 4.1195 0.1500 0.2246 1.4250 0.0343 1.1301 0.0694
+#&gt; 383: 92.6402 -5.8882 -2.3408 -4.1096 -0.9499 0.1488 0.1155 3.5269 0.8287 4.1290 0.1500 0.2243 1.4253 0.0343 1.1300 0.0694
+#&gt; 384: 92.6401 -5.8871 -2.3412 -4.1102 -0.9498 0.1490 0.1155 3.5219 0.8285 4.1340 0.1499 0.2241 1.4254 0.0343 1.1297 0.0694
+#&gt; 385: 92.6396 -5.8867 -2.3417 -4.1105 -0.9497 0.1493 0.1155 3.5195 0.8281 4.1364 0.1498 0.2238 1.4252 0.0343 1.1297 0.0695
+#&gt; 386: 92.6393 -5.8863 -2.3423 -4.1116 -0.9496 0.1497 0.1153 3.5190 0.8280 4.1452 0.1497 0.2235 1.4251 0.0343 1.1307 0.0694
+#&gt; 387: 92.6391 -5.8865 -2.3429 -4.1124 -0.9495 0.1498 0.1155 3.5219 0.8280 4.1502 0.1497 0.2234 1.4247 0.0343 1.1301 0.0695
+#&gt; 388: 92.6389 -5.8861 -2.3436 -4.1129 -0.9494 0.1501 0.1158 3.5228 0.8278 4.1540 0.1496 0.2233 1.4243 0.0343 1.1293 0.0695
+#&gt; 389: 92.6384 -5.8849 -2.3442 -4.1132 -0.9491 0.1504 0.1159 3.5195 0.8276 4.1571 0.1496 0.2231 1.4242 0.0343 1.1284 0.0696
+#&gt; 390: 92.6382 -5.8838 -2.3447 -4.1134 -0.9489 0.1506 0.1159 3.5172 0.8276 4.1603 0.1497 0.2230 1.4242 0.0343 1.1273 0.0697
+#&gt; 391: 92.6380 -5.8821 -2.3454 -4.1140 -0.9486 0.1509 0.1159 3.5134 0.8274 4.1661 0.1498 0.2228 1.4238 0.0343 1.1266 0.0697
+#&gt; 392: 92.6374 -5.8800 -2.3460 -4.1140 -0.9485 0.1513 0.1158 3.5069 0.8274 4.1673 0.1499 0.2226 1.4235 0.0343 1.1258 0.0698
+#&gt; 393: 92.6372 -5.8785 -2.3467 -4.1140 -0.9485 0.1514 0.1159 3.5019 0.8275 4.1684 0.1499 0.2223 1.4232 0.0343 1.1258 0.0698
+#&gt; 394: 92.6372 -5.8765 -2.3473 -4.1142 -0.9485 0.1515 0.1161 3.4955 0.8275 4.1710 0.1499 0.2221 1.4228 0.0344 1.1260 0.0697
+#&gt; 395: 92.6371 -5.8761 -2.3476 -4.1145 -0.9485 0.1515 0.1164 3.4940 0.8273 4.1739 0.1498 0.2220 1.4227 0.0344 1.1254 0.0698
+#&gt; 396: 92.6370 -5.8759 -2.3480 -4.1147 -0.9485 0.1516 0.1166 3.4942 0.8269 4.1764 0.1498 0.2217 1.4222 0.0344 1.1252 0.0698
+#&gt; 397: 92.6371 -5.8756 -2.3483 -4.1149 -0.9486 0.1516 0.1167 3.4914 0.8267 4.1796 0.1498 0.2214 1.4219 0.0344 1.1253 0.0697
+#&gt; 398: 92.6371 -5.8756 -2.3486 -4.1155 -0.9486 0.1518 0.1167 3.4909 0.8268 4.1840 0.1498 0.2210 1.4216 0.0344 1.1250 0.0697
+#&gt; 399: 92.6368 -5.8765 -2.3489 -4.1157 -0.9485 0.1519 0.1170 3.4958 0.8266 4.1866 0.1498 0.2205 1.4213 0.0344 1.1245 0.0698
+#&gt; 400: 92.6368 -5.8769 -2.3491 -4.1158 -0.9485 0.1522 0.1174 3.4972 0.8266 4.1888 0.1499 0.2200 1.4209 0.0344 1.1242 0.0698
+#&gt; 401: 92.6366 -5.8768 -2.3493 -4.1161 -0.9484 0.1524 0.1175 3.4964 0.8267 4.1913 0.1499 0.2196 1.4204 0.0344 1.1240 0.0698
+#&gt; 402: 92.6362 -5.8767 -2.3495 -4.1164 -0.9483 0.1525 0.1176 3.4961 0.8267 4.1937 0.1499 0.2192 1.4201 0.0344 1.1240 0.0698
+#&gt; 403: 92.6362 -5.8769 -2.3497 -4.1166 -0.9483 0.1526 0.1178 3.4981 0.8270 4.1960 0.1499 0.2187 1.4197 0.0345 1.1236 0.0698
+#&gt; 404: 92.6359 -5.8772 -2.3499 -4.1166 -0.9483 0.1527 0.1179 3.4997 0.8272 4.1968 0.1499 0.2183 1.4193 0.0345 1.1232 0.0698
+#&gt; 405: 92.6355 -5.8763 -2.3501 -4.1165 -0.9483 0.1527 0.1180 3.4946 0.8273 4.1976 0.1500 0.2180 1.4189 0.0345 1.1230 0.0698
+#&gt; 406: 92.6351 -5.8768 -2.3503 -4.1164 -0.9482 0.1528 0.1184 3.4953 0.8274 4.1979 0.1500 0.2176 1.4184 0.0345 1.1227 0.0698
+#&gt; 407: 92.6346 -5.8772 -2.3505 -4.1165 -0.9481 0.1527 0.1187 3.4965 0.8275 4.1999 0.1500 0.2173 1.4182 0.0344 1.1222 0.0698
+#&gt; 408: 92.6344 -5.8786 -2.3508 -4.1167 -0.9482 0.1528 0.1190 3.5025 0.8276 4.2020 0.1500 0.2171 1.4178 0.0344 1.1215 0.0699
+#&gt; 409: 92.6342 -5.8806 -2.3511 -4.1168 -0.9484 0.1529 0.1193 3.5134 0.8277 4.2037 0.1500 0.2167 1.4176 0.0344 1.1212 0.0699
+#&gt; 410: 92.6341 -5.8826 -2.3514 -4.1170 -0.9486 0.1531 0.1193 3.5229 0.8279 4.2061 0.1500 0.2163 1.4175 0.0344 1.1212 0.0699
+#&gt; 411: 92.6339 -5.8840 -2.3517 -4.1172 -0.9488 0.1532 0.1192 3.5280 0.8280 4.2087 0.1499 0.2159 1.4175 0.0345 1.1208 0.0699
+#&gt; 412: 92.6338 -5.8850 -2.3520 -4.1175 -0.9489 0.1534 0.1193 3.5311 0.8280 4.2121 0.1497 0.2155 1.4177 0.0345 1.1204 0.0699
+#&gt; 413: 92.6343 -5.8859 -2.3523 -4.1177 -0.9491 0.1536 0.1191 3.5337 0.8282 4.2156 0.1497 0.2151 1.4176 0.0345 1.1198 0.0699
+#&gt; 414: 92.6350 -5.8861 -2.3526 -4.1184 -0.9491 0.1540 0.1191 3.5350 0.8283 4.2209 0.1496 0.2147 1.4177 0.0345 1.1196 0.0699
+#&gt; 415: 92.6354 -5.8866 -2.3528 -4.1191 -0.9492 0.1543 0.1191 3.5373 0.8284 4.2258 0.1496 0.2142 1.4179 0.0345 1.1191 0.0699
+#&gt; 416: 92.6360 -5.8873 -2.3531 -4.1201 -0.9493 0.1548 0.1193 3.5431 0.8286 4.2328 0.1495 0.2137 1.4178 0.0345 1.1187 0.0699
+#&gt; 417: 92.6361 -5.8878 -2.3533 -4.1213 -0.9494 0.1551 0.1192 3.5465 0.8288 4.2415 0.1494 0.2131 1.4182 0.0345 1.1189 0.0699
+#&gt; 418: 92.6366 -5.8883 -2.3535 -4.1221 -0.9495 0.1555 0.1194 3.5499 0.8291 4.2477 0.1493 0.2127 1.4180 0.0345 1.1184 0.0699
+#&gt; 419: 92.6367 -5.8885 -2.3536 -4.1236 -0.9495 0.1560 0.1195 3.5517 0.8292 4.2588 0.1492 0.2123 1.4179 0.0345 1.1180 0.0700
+#&gt; 420: 92.6371 -5.8874 -2.3536 -4.1249 -0.9495 0.1564 0.1197 3.5474 0.8293 4.2666 0.1491 0.2118 1.4181 0.0345 1.1182 0.0700
+#&gt; 421: 92.6374 -5.8860 -2.3537 -4.1263 -0.9494 0.1569 0.1197 3.5416 0.8292 4.2759 0.1492 0.2114 1.4184 0.0345 1.1188 0.0699
+#&gt; 422: 92.6377 -5.8850 -2.3538 -4.1279 -0.9493 0.1572 0.1197 3.5365 0.8292 4.2865 0.1491 0.2110 1.4185 0.0345 1.1188 0.0700
+#&gt; 423: 92.6380 -5.8844 -2.3540 -4.1299 -0.9494 0.1576 0.1196 3.5323 0.8290 4.2999 0.1491 0.2106 1.4186 0.0345 1.1192 0.0699
+#&gt; 424: 92.6382 -5.8842 -2.3541 -4.1312 -0.9495 0.1581 0.1198 3.5309 0.8290 4.3092 0.1491 0.2103 1.4184 0.0345 1.1197 0.0699
+#&gt; 425: 92.6382 -5.8838 -2.3543 -4.1320 -0.9495 0.1584 0.1197 3.5281 0.8289 4.3140 0.1491 0.2099 1.4185 0.0346 1.1196 0.0699
+#&gt; 426: 92.6380 -5.8829 -2.3545 -4.1327 -0.9494 0.1587 0.1196 3.5234 0.8293 4.3183 0.1491 0.2096 1.4182 0.0346 1.1194 0.0699
+#&gt; 427: 92.6375 -5.8823 -2.3548 -4.1335 -0.9494 0.1589 0.1197 3.5189 0.8295 4.3233 0.1492 0.2092 1.4180 0.0346 1.1196 0.0699
+#&gt; 428: 92.6370 -5.8813 -2.3552 -4.1343 -0.9494 0.1592 0.1199 3.5140 0.8295 4.3286 0.1491 0.2088 1.4182 0.0346 1.1198 0.0699
+#&gt; 429: 92.6368 -5.8802 -2.3556 -4.1356 -0.9495 0.1597 0.1202 3.5093 0.8296 4.3372 0.1491 0.2086 1.4182 0.0346 1.1208 0.0699
+#&gt; 430: 92.6370 -5.8794 -2.3560 -4.1366 -0.9496 0.1602 0.1201 3.5058 0.8297 4.3439 0.1492 0.2084 1.4183 0.0346 1.1216 0.0698
+#&gt; 431: 92.6371 -5.8792 -2.3564 -4.1372 -0.9497 0.1606 0.1201 3.5029 0.8298 4.3473 0.1493 0.2082 1.4182 0.0346 1.1215 0.0698
+#&gt; 432: 92.6371 -5.8793 -2.3567 -4.1377 -0.9499 0.1609 0.1201 3.5008 0.8297 4.3499 0.1494 0.2080 1.4180 0.0346 1.1218 0.0698
+#&gt; 433: 92.6370 -5.8799 -2.3570 -4.1387 -0.9501 0.1612 0.1201 3.5014 0.8298 4.3560 0.1495 0.2078 1.4180 0.0346 1.1218 0.0699
+#&gt; 434: 92.6371 -5.8790 -2.3573 -4.1398 -0.9501 0.1615 0.1200 3.4982 0.8300 4.3624 0.1496 0.2076 1.4179 0.0346 1.1213 0.0699
+#&gt; 435: 92.6368 -5.8789 -2.3576 -4.1409 -0.9501 0.1619 0.1199 3.4979 0.8302 4.3697 0.1496 0.2074 1.4176 0.0346 1.1205 0.0699
+#&gt; 436: 92.6365 -5.8792 -2.3579 -4.1424 -0.9500 0.1623 0.1197 3.4987 0.8304 4.3798 0.1497 0.2073 1.4173 0.0346 1.1198 0.0699
+#&gt; 437: 92.6364 -5.8798 -2.3582 -4.1439 -0.9500 0.1627 0.1195 3.5017 0.8307 4.3905 0.1497 0.2071 1.4172 0.0346 1.1191 0.0700
+#&gt; 438: 92.6362 -5.8803 -2.3585 -4.1450 -0.9499 0.1631 0.1193 3.5053 0.8309 4.3973 0.1497 0.2070 1.4172 0.0346 1.1186 0.0700
+#&gt; 439: 92.6361 -5.8811 -2.3588 -4.1463 -0.9498 0.1634 0.1190 3.5101 0.8312 4.4052 0.1496 0.2069 1.4172 0.0346 1.1188 0.0700
+#&gt; 440: 92.6360 -5.8816 -2.3591 -4.1477 -0.9498 0.1637 0.1187 3.5127 0.8315 4.4145 0.1495 0.2068 1.4172 0.0346 1.1189 0.0700
+#&gt; 441: 92.6357 -5.8816 -2.3594 -4.1492 -0.9499 0.1640 0.1185 3.5136 0.8319 4.4252 0.1494 0.2069 1.4175 0.0346 1.1191 0.0700
+#&gt; 442: 92.6356 -5.8819 -2.3596 -4.1501 -0.9500 0.1642 0.1181 3.5151 0.8323 4.4310 0.1494 0.2070 1.4176 0.0346 1.1193 0.0700
+#&gt; 443: 92.6356 -5.8825 -2.3598 -4.1512 -0.9501 0.1643 0.1180 3.5178 0.8324 4.4379 0.1493 0.2071 1.4179 0.0346 1.1196 0.0700
+#&gt; 444: 92.6352 -5.8827 -2.3602 -4.1525 -0.9502 0.1644 0.1180 3.5169 0.8327 4.4458 0.1493 0.2073 1.4178 0.0346 1.1198 0.0700
+#&gt; 445: 92.6348 -5.8828 -2.3605 -4.1534 -0.9502 0.1643 0.1180 3.5178 0.8329 4.4505 0.1493 0.2074 1.4178 0.0346 1.1202 0.0700
+#&gt; 446: 92.6342 -5.8830 -2.3609 -4.1541 -0.9503 0.1643 0.1183 3.5182 0.8331 4.4539 0.1494 0.2077 1.4176 0.0346 1.1199 0.0700
+#&gt; 447: 92.6334 -5.8832 -2.3613 -4.1548 -0.9503 0.1643 0.1188 3.5188 0.8333 4.4571 0.1494 0.2079 1.4172 0.0346 1.1198 0.0700
+#&gt; 448: 92.6331 -5.8833 -2.3616 -4.1557 -0.9503 0.1643 0.1190 3.5190 0.8335 4.4613 0.1494 0.2080 1.4170 0.0346 1.1198 0.0700
+#&gt; 449: 92.6327 -5.8835 -2.3619 -4.1563 -0.9504 0.1641 0.1192 3.5191 0.8335 4.4636 0.1493 0.2081 1.4172 0.0346 1.1196 0.0700
+#&gt; 450: 92.6322 -5.8831 -2.3620 -4.1566 -0.9505 0.1639 0.1194 3.5152 0.8340 4.4647 0.1492 0.2083 1.4172 0.0346 1.1189 0.0700
+#&gt; 451: 92.6315 -5.8835 -2.3622 -4.1569 -0.9505 0.1635 0.1194 3.5192 0.8343 4.4648 0.1492 0.2084 1.4169 0.0346 1.1187 0.0700
+#&gt; 452: 92.6312 -5.8834 -2.3625 -4.1572 -0.9506 0.1632 0.1193 3.5173 0.8345 4.4654 0.1492 0.2086 1.4166 0.0346 1.1183 0.0700
+#&gt; 453: 92.6309 -5.8838 -2.3628 -4.1574 -0.9506 0.1629 0.1193 3.5175 0.8348 4.4660 0.1493 0.2087 1.4166 0.0346 1.1180 0.0700
+#&gt; 454: 92.6307 -5.8832 -2.3629 -4.1574 -0.9507 0.1625 0.1193 3.5128 0.8354 4.4658 0.1493 0.2087 1.4164 0.0346 1.1176 0.0700
+#&gt; 455: 92.6305 -5.8821 -2.3632 -4.1579 -0.9508 0.1624 0.1192 3.5071 0.8360 4.4678 0.1494 0.2089 1.4164 0.0346 1.1171 0.0701
+#&gt; 456: 92.6307 -5.8811 -2.3634 -4.1589 -0.9509 0.1623 0.1190 3.5014 0.8364 4.4730 0.1494 0.2088 1.4168 0.0346 1.1168 0.0701
+#&gt; 457: 92.6307 -5.8808 -2.3636 -4.1597 -0.9509 0.1621 0.1188 3.4980 0.8368 4.4772 0.1494 0.2089 1.4168 0.0347 1.1166 0.0701
+#&gt; 458: 92.6308 -5.8813 -2.3638 -4.1607 -0.9510 0.1621 0.1185 3.4994 0.8369 4.4823 0.1494 0.2088 1.4168 0.0347 1.1161 0.0701
+#&gt; 459: 92.6308 -5.8819 -2.3639 -4.1615 -0.9511 0.1620 0.1184 3.5008 0.8371 4.4861 0.1494 0.2086 1.4167 0.0347 1.1155 0.0701
+#&gt; 460: 92.6309 -5.8824 -2.3642 -4.1621 -0.9511 0.1621 0.1182 3.5024 0.8374 4.4886 0.1493 0.2085 1.4164 0.0347 1.1148 0.0702
+#&gt; 461: 92.6309 -5.8821 -2.3647 -4.1631 -0.9511 0.1621 0.1181 3.5000 0.8378 4.4937 0.1493 0.2084 1.4160 0.0347 1.1141 0.0702
+#&gt; 462: 92.6309 -5.8825 -2.3651 -4.1638 -0.9511 0.1623 0.1180 3.5006 0.8381 4.4975 0.1492 0.2082 1.4156 0.0348 1.1133 0.0702
+#&gt; 463: 92.6307 -5.8824 -2.3656 -4.1654 -0.9510 0.1624 0.1179 3.5000 0.8382 4.5074 0.1491 0.2081 1.4154 0.0348 1.1124 0.0702
+#&gt; 464: 92.6305 -5.8825 -2.3660 -4.1668 -0.9510 0.1625 0.1178 3.5001 0.8384 4.5171 0.1491 0.2080 1.4149 0.0348 1.1115 0.0703
+#&gt; 465: 92.6302 -5.8828 -2.3664 -4.1681 -0.9511 0.1626 0.1179 3.5012 0.8386 4.5247 0.1490 0.2079 1.4151 0.0348 1.1107 0.0703
+#&gt; 466: 92.6300 -5.8827 -2.3668 -4.1697 -0.9511 0.1626 0.1179 3.5005 0.8390 4.5370 0.1490 0.2079 1.4148 0.0349 1.1098 0.0704
+#&gt; 467: 92.6301 -5.8828 -2.3671 -4.1721 -0.9512 0.1628 0.1180 3.4991 0.8393 4.5562 0.1490 0.2078 1.4148 0.0349 1.1092 0.0704
+#&gt; 468: 92.6303 -5.8833 -2.3675 -4.1745 -0.9513 0.1630 0.1181 3.4996 0.8397 4.5756 0.1489 0.2078 1.4148 0.0349 1.1086 0.0704
+#&gt; 469: 92.6304 -5.8835 -2.3680 -4.1759 -0.9513 0.1630 0.1181 3.4991 0.8401 4.5829 0.1490 0.2080 1.4145 0.0349 1.1082 0.0704
+#&gt; 470: 92.6304 -5.8839 -2.3685 -4.1772 -0.9512 0.1630 0.1183 3.4993 0.8405 4.5904 0.1490 0.2081 1.4142 0.0349 1.1079 0.0704
+#&gt; 471: 92.6304 -5.8838 -2.3690 -4.1786 -0.9511 0.1631 0.1182 3.4992 0.8408 4.5981 0.1489 0.2082 1.4143 0.0350 1.1075 0.0704
+#&gt; 472: 92.6301 -5.8839 -2.3695 -4.1800 -0.9511 0.1631 0.1182 3.5005 0.8413 4.6063 0.1488 0.2083 1.4143 0.0350 1.1072 0.0704
+#&gt; 473: 92.6296 -5.8841 -2.3699 -4.1811 -0.9510 0.1630 0.1182 3.5019 0.8417 4.6119 0.1487 0.2085 1.4142 0.0350 1.1065 0.0704
+#&gt; 474: 92.6293 -5.8843 -2.3704 -4.1823 -0.9510 0.1629 0.1184 3.5038 0.8422 4.6182 0.1487 0.2087 1.4145 0.0350 1.1060 0.0704
+#&gt; 475: 92.6293 -5.8851 -2.3709 -4.1839 -0.9509 0.1628 0.1185 3.5084 0.8426 4.6277 0.1487 0.2089 1.4142 0.0351 1.1057 0.0704
+#&gt; 476: 92.6293 -5.8854 -2.3713 -4.1847 -0.9509 0.1627 0.1185 3.5137 0.8430 4.6318 0.1486 0.2092 1.4139 0.0351 1.1057 0.0704
+#&gt; 477: 92.6292 -5.8858 -2.3718 -4.1859 -0.9508 0.1627 0.1183 3.5201 0.8430 4.6397 0.1485 0.2095 1.4139 0.0351 1.1060 0.0704
+#&gt; 478: 92.6291 -5.8871 -2.3722 -4.1867 -0.9508 0.1625 0.1181 3.5291 0.8432 4.6449 0.1483 0.2098 1.4140 0.0351 1.1058 0.0704
+#&gt; 479: 92.6293 -5.8891 -2.3726 -4.1873 -0.9509 0.1623 0.1178 3.5422 0.8435 4.6486 0.1482 0.2100 1.4139 0.0352 1.1056 0.0704
+#&gt; 480: 92.6294 -5.8910 -2.3730 -4.1881 -0.9509 0.1622 0.1175 3.5568 0.8437 4.6535 0.1482 0.2102 1.4140 0.0352 1.1053 0.0705
+#&gt; 481: 92.6297 -5.8919 -2.3734 -4.1888 -0.9509 0.1621 0.1174 3.5650 0.8440 4.6572 0.1482 0.2104 1.4138 0.0353 1.1051 0.0705
+#&gt; 482: 92.6293 -5.8929 -2.3737 -4.1894 -0.9509 0.1619 0.1173 3.5745 0.8444 4.6620 0.1482 0.2107 1.4134 0.0353 1.1047 0.0705
+#&gt; 483: 92.6284 -5.8939 -2.3741 -4.1901 -0.9508 0.1616 0.1176 3.5832 0.8446 4.6672 0.1482 0.2109 1.4131 0.0353 1.1044 0.0705
+#&gt; 484: 92.6276 -5.8943 -2.3744 -4.1904 -0.9507 0.1615 0.1179 3.5877 0.8447 4.6692 0.1483 0.2113 1.4128 0.0353 1.1041 0.0705
+#&gt; 485: 92.6266 -5.8947 -2.3746 -4.1912 -0.9507 0.1616 0.1182 3.5903 0.8448 4.6751 0.1483 0.2115 1.4126 0.0354 1.1042 0.0705
+#&gt; 486: 92.6258 -5.8952 -2.3749 -4.1918 -0.9508 0.1615 0.1185 3.5929 0.8450 4.6799 0.1485 0.2115 1.4125 0.0354 1.1045 0.0704
+#&gt; 487: 92.6250 -5.8956 -2.3750 -4.1923 -0.9509 0.1614 0.1189 3.5922 0.8452 4.6835 0.1486 0.2115 1.4122 0.0354 1.1050 0.0704
+#&gt; 488: 92.6242 -5.8956 -2.3752 -4.1927 -0.9510 0.1613 0.1191 3.5898 0.8453 4.6866 0.1487 0.2115 1.4119 0.0354 1.1051 0.0704
+#&gt; 489: 92.6238 -5.8954 -2.3753 -4.1932 -0.9511 0.1611 0.1190 3.5871 0.8454 4.6905 0.1487 0.2115 1.4118 0.0354 1.1057 0.0704
+#&gt; 490: 92.6237 -5.8951 -2.3754 -4.1936 -0.9511 0.1611 0.1188 3.5839 0.8454 4.6945 0.1487 0.2114 1.4117 0.0354 1.1064 0.0703
+#&gt; 491: 92.6235 -5.8942 -2.3755 -4.1941 -0.9511 0.1610 0.1187 3.5790 0.8455 4.6981 0.1488 0.2115 1.4118 0.0354 1.1068 0.0703
+#&gt; 492: 92.6234 -5.8938 -2.3755 -4.1952 -0.9512 0.1609 0.1186 3.5760 0.8454 4.7074 0.1488 0.2115 1.4119 0.0354 1.1074 0.0703
+#&gt; 493: 92.6236 -5.8938 -2.3755 -4.1958 -0.9512 0.1608 0.1186 3.5747 0.8454 4.7121 0.1488 0.2114 1.4120 0.0354 1.1078 0.0702
+#&gt; 494: 92.6239 -5.8945 -2.3756 -4.1964 -0.9513 0.1607 0.1186 3.5772 0.8455 4.7167 0.1488 0.2115 1.4120 0.0354 1.1082 0.0702
+#&gt; 495: 92.6242 -5.8950 -2.3756 -4.1971 -0.9514 0.1605 0.1187 3.5798 0.8454 4.7227 0.1489 0.2117 1.4122 0.0354 1.1084 0.0702
+#&gt; 496: 92.6242 -5.8962 -2.3757 -4.1978 -0.9514 0.1603 0.1189 3.5870 0.8455 4.7283 0.1489 0.2119 1.4121 0.0354 1.1090 0.0702
+#&gt; 497: 92.6241 -5.8972 -2.3757 -4.1981 -0.9514 0.1602 0.1191 3.5934 0.8454 4.7298 0.1488 0.2120 1.4123 0.0354 1.1096 0.0701
+#&gt; 498: 92.6244 -5.8973 -2.3758 -4.1981 -0.9514 0.1601 0.1190 3.5947 0.8454 4.7296 0.1488 0.2121 1.4123 0.0354 1.1101 0.0701
+#&gt; 499: 92.6244 -5.8968 -2.3759 -4.1980 -0.9514 0.1600 0.1188 3.5935 0.8453 4.7290 0.1488 0.2124 1.4123 0.0354 1.1108 0.0701
+#&gt; 500: 92.6245 -5.8959 -2.3759 -4.1978 -0.9513 0.1597 0.1188 3.5912 0.8452 4.7282 0.1488 0.2126 1.4123 0.0354 1.1111 0.0701</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
-#&gt; <span class='message'>cmt(A1);</span>
-#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
-#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
-#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
-#&gt; <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span>
-#&gt; <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span>
-#&gt; <span class='message'>rx_expr_12~exp(rx_expr_7);</span>
-#&gt; <span class='message'>rx_expr_13~exp(rx_expr_9);</span>
-#&gt; <span class='message'>rx_expr_15~t*rx_expr_12;</span>
-#&gt; <span class='message'>rx_expr_16~t*rx_expr_13;</span>
-#&gt; <span class='message'>rx_expr_17~exp(-(rx_expr_8));</span>
-#&gt; <span class='message'>rx_expr_19~1+rx_expr_17;</span>
-#&gt; <span class='message'>rx_expr_24~1/(rx_expr_19);</span>
-#&gt; <span class='message'>rx_expr_26~(rx_expr_24);</span>
-#&gt; <span class='message'>rx_expr_27~1-rx_expr_26;</span>
-#&gt; <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span>
-#&gt; <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span>
-#&gt; <span class='message'>rx_expr_14~exp(rx_expr_10);</span>
-#&gt; <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span>
-#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
-#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
-#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
-#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_18~rx_expr_5*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_lambda_~rx_expr_18+rx_expr_3;</span>
-#&gt; <span class='message'>rx_hi_~rx_expr_18+rx_expr_3;</span>
-#&gt; <span class='message'>rx_low_~0;</span>
-#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
-#&gt; <span class='message'>rx_expr_11~parent*(rx_expr_2);</span>
-#&gt; <span class='message'>rx_expr_22~rx_expr_11*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>rx_r_=(rx_expr_0)*(Rx_pow_di(((rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1)),2)*Rx_pow_di(THETA[10],2)+Rx_pow_di(THETA[9],2))+(Rx_pow_di(THETA[8],2)*Rx_pow_di(((rx_expr_4+rx_expr_22)*(rx_expr_1)),2)+Rx_pow_di(THETA[7],2))*(rx_expr_2)*(rx_expr_1);</span>
-#&gt; <span class='message'>parent_0=THETA[1];</span>
-#&gt; <span class='message'>log_k_A1=THETA[2];</span>
-#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
-#&gt; <span class='message'>log_k1=THETA[4];</span>
-#&gt; <span class='message'>log_k2=THETA[5];</span>
-#&gt; <span class='message'>g_qlogis=THETA[6];</span>
-#&gt; <span class='message'>sigma_low_parent=THETA[7];</span>
-#&gt; <span class='message'>rsd_high_parent=THETA[8];</span>
-#&gt; <span class='message'>sigma_low_A1=THETA[9];</span>
-#&gt; <span class='message'>rsd_high_A1=THETA[10];</span>
-#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
-#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
-#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
-#&gt; <span class='message'>eta.log_k1=ETA[4];</span>
-#&gt; <span class='message'>eta.log_k2=ETA[5];</span>
-#&gt; <span class='message'>eta.g_qlogis=ETA[6];</span>
-#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
-#&gt; <span class='message'>k_A1=rx_expr_14;</span>
-#&gt; <span class='message'>k1=rx_expr_12;</span>
-#&gt; <span class='message'>k2=rx_expr_13;</span>
-#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
-#&gt; <span class='message'>g=1/(rx_expr_19);</span>
-#&gt; <span class='message'>tad=tad();</span>
-#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 17.5 0.646 18.15</span></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#&gt; |.....................| log_k2 | g_qlogis |sigma_low_parent |rsd_high_parent |
+#&gt; |.....................|sigma_low_A1 |rsd_high_A1 | o1 | o2 |
+#&gt; |.....................| o3 | o4 | o5 | o6 |
+#&gt; |<span style='font-weight: bold;'> 1</span>| 495.80376 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#&gt; |.....................| -0.8755 | -0.8915 | -0.8776 | -0.8741 |
+#&gt; |.....................| -0.8681 | -0.8727 | -0.8749 | -0.8675 |
+#&gt; | U| 495.80376 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.8280 | 0.05769 | 0.7296 | 0.8969 |
+#&gt; |.....................| 1.185 | 0.9628 | 0.8582 | 1.216 |
+#&gt; | X|<span style='font-weight: bold;'> 495.80376</span> | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#&gt; |.....................| 0.8280 | 0.05769 | 0.7296 | 0.8969 |
+#&gt; |.....................| 1.185 | 0.9628 | 0.8582 | 1.216 |
+#&gt; | G| Gill Diff. | 40.10 | 2.344 | -0.09792 | 0.01304 |
+#&gt; |.....................| -0.4854 | 0.6353 | -23.92 | -17.76 |
+#&gt; |.....................| -5.723 | -2.232 | 1.261 | 9.993 |
+#&gt; |.....................| -12.68 | -0.7774 | 8.106 | -12.55 |
+#&gt; |<span style='font-weight: bold;'> 2</span>| 3318.3701 | 0.2710 | -1.043 | -0.9092 | -0.9382 |
+#&gt; |.....................| -0.9796 | -0.8947 | -0.4406 | -0.5686 |
+#&gt; |.....................| -0.7715 | -0.8509 | -0.9005 | -1.056 |
+#&gt; |.....................| -0.6376 | -0.8586 | -1.022 | -0.6393 |
+#&gt; | U| 3318.3701 | 24.79 | -5.231 | -0.8859 | -2.190 |
+#&gt; |.....................| -4.622 | 0.4536 | 1.008 | 0.06701 |
+#&gt; |.....................| 0.8711 | 0.05887 | 0.7129 | 0.7340 |
+#&gt; |.....................| 1.458 | 0.9764 | 0.7317 | 1.493 |
+#&gt; | X|<span style='font-weight: bold;'> 3318.3701</span> | 24.79 | 0.005347 | 0.2920 | 0.1119 |
+#&gt; |.....................| 0.009837 | 0.6115 | 1.008 | 0.06701 |
+#&gt; |.....................| 0.8711 | 0.05887 | 0.7129 | 0.7340 |
+#&gt; |.....................| 1.458 | 0.9764 | 0.7317 | 1.493 |
+#&gt; |<span style='font-weight: bold;'> 3</span>| 512.37365 | 0.9271 | -1.004 | -0.9108 | -0.9380 |
+#&gt; |.....................| -0.9876 | -0.8843 | -0.8320 | -0.8592 |
+#&gt; |.....................| -0.8651 | -0.8874 | -0.8799 | -0.8923 |
+#&gt; |.....................| -0.8451 | -0.8713 | -0.8896 | -0.8447 |
+#&gt; | U| 512.37365 | 84.82 | -5.193 | -0.8873 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4584 | 0.8460 | 0.05863 |
+#&gt; |.....................| 0.8323 | 0.05781 | 0.7279 | 0.8806 |
+#&gt; |.....................| 1.212 | 0.9641 | 0.8455 | 1.244 |
+#&gt; | X|<span style='font-weight: bold;'> 512.37365</span> | 84.82 | 0.005556 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009759 | 0.6126 | 0.8460 | 0.05863 |
+#&gt; |.....................| 0.8323 | 0.05781 | 0.7279 | 0.8806 |
+#&gt; |.....................| 1.212 | 0.9641 | 0.8455 | 1.244 |
+#&gt; |<span style='font-weight: bold;'> 4</span>| 495.44913 | 0.9909 | -1.001 | -0.9110 | -0.9380 |
+#&gt; |.....................| -0.9883 | -0.8833 | -0.8701 | -0.8874 |
+#&gt; |.....................| -0.8742 | -0.8910 | -0.8778 | -0.8764 |
+#&gt; |.....................| -0.8653 | -0.8726 | -0.8767 | -0.8647 |
+#&gt; | U| 495.44913 | 90.65 | -5.189 | -0.8874 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4589 | 0.8303 | 0.05781 |
+#&gt; |.....................| 0.8286 | 0.05771 | 0.7294 | 0.8949 |
+#&gt; |.....................| 1.189 | 0.9629 | 0.8566 | 1.219 |
+#&gt; | X|<span style='font-weight: bold;'> 495.44913</span> | 90.65 | 0.005577 | 0.2916 | 0.1119 |
+#&gt; |.....................| 0.009751 | 0.6127 | 0.8303 | 0.05781 |
+#&gt; |.....................| 0.8286 | 0.05771 | 0.7294 | 0.8949 |
+#&gt; |.....................| 1.189 | 0.9629 | 0.8566 | 1.219 |
+#&gt; | F| Forward Diff. | -32.24 | 2.221 | -0.3999 | 0.1183 |
+#&gt; |.....................| -0.4367 | 0.6696 | -24.35 | -18.50 |
+#&gt; |.....................| -5.733 | -2.007 | 1.154 | 9.098 |
+#&gt; |.....................| -12.48 | -0.2426 | 8.051 | -12.28 |
+#&gt; |<span style='font-weight: bold;'> 5</span>| 495.09570 | 0.9990 | -1.001 | -0.9109 | -0.9380 |
+#&gt; |.....................| -0.9882 | -0.8835 | -0.8640 | -0.8828 |
+#&gt; |.....................| -0.8728 | -0.8905 | -0.8781 | -0.8786 |
+#&gt; |.....................| -0.8621 | -0.8725 | -0.8788 | -0.8616 |
+#&gt; | U| 495.0957 | 91.39 | -5.190 | -0.8874 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4588 | 0.8328 | 0.05794 |
+#&gt; |.....................| 0.8291 | 0.05772 | 0.7292 | 0.8928 |
+#&gt; |.....................| 1.192 | 0.9630 | 0.8549 | 1.223 |
+#&gt; | X|<span style='font-weight: bold;'> 495.0957</span> | 91.39 | 0.005574 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009752 | 0.6127 | 0.8328 | 0.05794 |
+#&gt; |.....................| 0.8291 | 0.05772 | 0.7292 | 0.8928 |
+#&gt; |.....................| 1.192 | 0.9630 | 0.8549 | 1.223 |
+#&gt; | F| Forward Diff. | 32.16 | 2.311 | -0.1335 | 0.03619 |
+#&gt; |.....................| -0.4432 | 0.6445 | -23.23 | -17.46 |
+#&gt; |.....................| -5.567 | -2.162 | 1.281 | 9.656 |
+#&gt; |.....................| -12.09 | -0.7018 | 7.779 | -12.29 |
+#&gt; |<span style='font-weight: bold;'> 6</span>| 494.75975 | 0.9908 | -1.002 | -0.9109 | -0.9380 |
+#&gt; |.....................| -0.9881 | -0.8836 | -0.8581 | -0.8783 |
+#&gt; |.....................| -0.8714 | -0.8899 | -0.8785 | -0.8811 |
+#&gt; |.....................| -0.8590 | -0.8723 | -0.8807 | -0.8584 |
+#&gt; | U| 494.75975 | 90.64 | -5.190 | -0.8873 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4587 | 0.8352 | 0.05807 |
+#&gt; |.....................| 0.8297 | 0.05774 | 0.7290 | 0.8906 |
+#&gt; |.....................| 1.196 | 0.9632 | 0.8532 | 1.227 |
+#&gt; | X|<span style='font-weight: bold;'> 494.75975</span> | 90.64 | 0.005570 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009754 | 0.6127 | 0.8352 | 0.05807 |
+#&gt; |.....................| 0.8297 | 0.05774 | 0.7290 | 0.8906 |
+#&gt; |.....................| 1.196 | 0.9632 | 0.8532 | 1.227 |
+#&gt; | F| Forward Diff. | -33.18 | 2.192 | -0.4095 | 0.1210 |
+#&gt; |.....................| -0.4089 | 0.6743 | -23.19 | -17.83 |
+#&gt; |.....................| -5.624 | -1.860 | 1.146 | 8.868 |
+#&gt; |.....................| -11.42 | -0.05808 | 7.519 | -12.11 |
+#&gt; |<span style='font-weight: bold;'> 7</span>| 494.42957 | 0.9992 | -1.002 | -0.9108 | -0.9380 |
+#&gt; |.....................| -0.9880 | -0.8838 | -0.8522 | -0.8738 |
+#&gt; |.....................| -0.8699 | -0.8894 | -0.8788 | -0.8834 |
+#&gt; |.....................| -0.8561 | -0.8723 | -0.8827 | -0.8554 |
+#&gt; | U| 494.42957 | 91.41 | -5.191 | -0.8872 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4586 | 0.8377 | 0.05820 |
+#&gt; |.....................| 0.8303 | 0.05775 | 0.7287 | 0.8886 |
+#&gt; |.....................| 1.199 | 0.9632 | 0.8515 | 1.231 |
+#&gt; | X|<span style='font-weight: bold;'> 494.42957</span> | 91.41 | 0.005567 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009755 | 0.6127 | 0.8377 | 0.05820 |
+#&gt; |.....................| 0.8303 | 0.05775 | 0.7287 | 0.8886 |
+#&gt; |.....................| 1.199 | 0.9632 | 0.8515 | 1.231 |
+#&gt; | F| Forward Diff. | 33.60 | 2.291 | -0.1177 | 0.03548 |
+#&gt; |.....................| -0.4327 | 0.6500 | -23.13 | -16.67 |
+#&gt; |.....................| -5.444 | -2.054 | 1.165 | 9.367 |
+#&gt; |.....................| -12.23 | 0.1305 | 7.522 | -12.12 |
+#&gt; |<span style='font-weight: bold;'> 8</span>| 494.10805 | 0.9907 | -1.003 | -0.9107 | -0.9380 |
+#&gt; |.....................| -0.9879 | -0.8840 | -0.8463 | -0.8696 |
+#&gt; |.....................| -0.8686 | -0.8889 | -0.8791 | -0.8857 |
+#&gt; |.....................| -0.8530 | -0.8723 | -0.8846 | -0.8523 |
+#&gt; | U| 494.10805 | 90.63 | -5.191 | -0.8872 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4586 | 0.8401 | 0.05833 |
+#&gt; |.....................| 0.8309 | 0.05777 | 0.7285 | 0.8865 |
+#&gt; |.....................| 1.203 | 0.9632 | 0.8499 | 1.234 |
+#&gt; | X|<span style='font-weight: bold;'> 494.10805</span> | 90.63 | 0.005564 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009756 | 0.6127 | 0.8401 | 0.05833 |
+#&gt; |.....................| 0.8309 | 0.05777 | 0.7285 | 0.8865 |
+#&gt; |.....................| 1.203 | 0.9632 | 0.8499 | 1.234 |
+#&gt; | F| Forward Diff. | -33.55 | 2.169 | -0.4095 | 0.1317 |
+#&gt; |.....................| -0.3875 | 0.6809 | -22.57 | -17.16 |
+#&gt; |.....................| -5.560 | -1.906 | 1.113 | 8.554 |
+#&gt; |.....................| -12.00 | -0.1191 | 7.606 | -11.94 |
+#&gt; |<span style='font-weight: bold;'> 9</span>| 493.79074 | 0.9992 | -1.003 | -0.9106 | -0.9381 |
+#&gt; |.....................| -0.9878 | -0.8841 | -0.8406 | -0.8652 |
+#&gt; |.....................| -0.8671 | -0.8884 | -0.8793 | -0.8879 |
+#&gt; |.....................| -0.8500 | -0.8723 | -0.8865 | -0.8493 |
+#&gt; | U| 493.79074 | 91.41 | -5.192 | -0.8871 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4585 | 0.8425 | 0.05845 |
+#&gt; |.....................| 0.8315 | 0.05778 | 0.7283 | 0.8845 |
+#&gt; |.....................| 1.207 | 0.9632 | 0.8482 | 1.238 |
+#&gt; | X|<span style='font-weight: bold;'> 493.79074</span> | 91.41 | 0.005561 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009757 | 0.6127 | 0.8425 | 0.05845 |
+#&gt; |.....................| 0.8315 | 0.05778 | 0.7283 | 0.8845 |
+#&gt; |.....................| 1.207 | 0.9632 | 0.8482 | 1.238 |
+#&gt; | F| Forward Diff. | 33.91 | 2.267 | -0.1078 | 0.03893 |
+#&gt; |.....................| -0.4090 | 0.6560 | -22.34 | -15.94 |
+#&gt; |.....................| -5.274 | -2.001 | 1.140 | 9.131 |
+#&gt; |.....................| -12.00 | -0.1724 | 7.294 | -11.95 |
+#&gt; |<span style='font-weight: bold;'> 10</span>| 493.48645 | 0.9905 | -1.004 | -0.9106 | -0.9381 |
+#&gt; |.....................| -0.9877 | -0.8843 | -0.8348 | -0.8611 |
+#&gt; |.....................| -0.8658 | -0.8879 | -0.8796 | -0.8903 |
+#&gt; |.....................| -0.8469 | -0.8723 | -0.8884 | -0.8462 |
+#&gt; | U| 493.48645 | 90.62 | -5.193 | -0.8871 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4584 | 0.8449 | 0.05857 |
+#&gt; |.....................| 0.8320 | 0.05780 | 0.7281 | 0.8824 |
+#&gt; |.....................| 1.210 | 0.9632 | 0.8466 | 1.242 |
+#&gt; | X|<span style='font-weight: bold;'> 493.48645</span> | 90.62 | 0.005558 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009758 | 0.6126 | 0.8449 | 0.05857 |
+#&gt; |.....................| 0.8320 | 0.05780 | 0.7281 | 0.8824 |
+#&gt; |.....................| 1.210 | 0.9632 | 0.8466 | 1.242 |
+#&gt; | F| Forward Diff. | -34.40 | 2.145 | -0.4154 | 0.1312 |
+#&gt; |.....................| -0.3648 | 0.6865 | -22.08 | -16.36 |
+#&gt; |.....................| -5.345 | -1.756 | 1.231 | 8.303 |
+#&gt; |.....................| -11.76 | -0.07864 | 7.355 | -11.77 |
+#&gt; |<span style='font-weight: bold;'> 11</span>| 493.18511 | 0.9993 | -1.004 | -0.9105 | -0.9381 |
+#&gt; |.....................| -0.9876 | -0.8845 | -0.8292 | -0.8570 |
+#&gt; |.....................| -0.8644 | -0.8875 | -0.8799 | -0.8924 |
+#&gt; |.....................| -0.8439 | -0.8722 | -0.8902 | -0.8432 |
+#&gt; | U| 493.18511 | 91.42 | -5.193 | -0.8870 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4583 | 0.8472 | 0.05869 |
+#&gt; |.....................| 0.8326 | 0.05781 | 0.7279 | 0.8805 |
+#&gt; |.....................| 1.214 | 0.9633 | 0.8450 | 1.246 |
+#&gt; | X|<span style='font-weight: bold;'> 493.18511</span> | 91.42 | 0.005555 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009759 | 0.6126 | 0.8472 | 0.05869 |
+#&gt; |.....................| 0.8326 | 0.05781 | 0.7279 | 0.8805 |
+#&gt; |.....................| 1.214 | 0.9633 | 0.8450 | 1.246 |
+#&gt; | F| Forward Diff. | 34.43 | 2.240 | -0.1040 | 0.04282 |
+#&gt; |.....................| -0.3912 | 0.6547 | -21.84 | -15.27 |
+#&gt; |.....................| -5.158 | -1.914 | 1.030 | 8.876 |
+#&gt; |.....................| -11.77 | -0.1415 | 7.047 | -11.78 |
+#&gt; |<span style='font-weight: bold;'> 12</span>| 492.89407 | 0.9905 | -1.005 | -0.9105 | -0.9381 |
+#&gt; |.....................| -0.9875 | -0.8847 | -0.8236 | -0.8530 |
+#&gt; |.....................| -0.8631 | -0.8870 | -0.8802 | -0.8947 |
+#&gt; |.....................| -0.8409 | -0.8722 | -0.8921 | -0.8401 |
+#&gt; | U| 492.89407 | 90.61 | -5.194 | -0.8870 | -2.190 |
+#&gt; |.....................| -4.630 | 0.4582 | 0.8495 | 0.05880 |
+#&gt; |.....................| 0.8332 | 0.05782 | 0.7277 | 0.8785 |
+#&gt; |.....................| 1.217 | 0.9633 | 0.8434 | 1.249 |
+#&gt; | X|<span style='font-weight: bold;'> 492.89407</span> | 90.61 | 0.005551 | 0.2917 | 0.1119 |
+#&gt; |.....................| 0.009760 | 0.6126 | 0.8495 | 0.05880 |
+#&gt; |.....................| 0.8332 | 0.05782 | 0.7277 | 0.8785 |
+#&gt; |.....................| 1.217 | 0.9633 | 0.8434 | 1.249 |
+#&gt; | F| Forward Diff. | -34.81 | 2.117 | -0.4182 | 0.1353 |
+#&gt; |.....................| -0.3428 | 0.6933 | -21.54 | -15.66 |
+#&gt; |.....................| -5.188 | -1.708 | 1.147 | 8.020 |
+#&gt; |.....................| -11.52 | -0.06705 | 7.151 | -11.60 |
+#&gt; |<span style='font-weight: bold;'> 13</span>| 492.59250 | 0.9992 | -1.006 | -0.9104 | -0.9382 |
+#&gt; |.....................| -0.9874 | -0.8848 | -0.8179 | -0.8489 |
+#&gt; |.....................| -0.8617 | -0.8865 | -0.8805 | -0.8968 |
+#&gt; |.....................| -0.8378 | -0.8722 | -0.8940 | -0.8371 |
+#&gt; | U| 492.5925 | 91.41 | -5.194 | -0.8869 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4582 | 0.8519 | 0.05892 |
+#&gt; |.....................| 0.8337 | 0.05784 | 0.7275 | 0.8766 |
+#&gt; |.....................| 1.221 | 0.9633 | 0.8418 | 1.253 |
+#&gt; | X|<span style='font-weight: bold;'> 492.5925</span> | 91.41 | 0.005548 | 0.2918 | 0.1119 |
+#&gt; |.....................| 0.009760 | 0.6126 | 0.8519 | 0.05892 |
+#&gt; |.....................| 0.8337 | 0.05784 | 0.7275 | 0.8766 |
+#&gt; |.....................| 1.221 | 0.9633 | 0.8418 | 1.253 |
+#&gt; | F| Forward Diff. | 33.40 | 2.217 | -0.09736 | 0.04377 |
+#&gt; |.....................| -0.3664 | 0.6618 | -21.29 | -14.62 |
+#&gt; |.....................| -5.018 | -1.838 | 0.9818 | 8.628 |
+#&gt; |.....................| -11.52 | -0.1307 | 6.857 | -11.62 |
+#&gt; |<span style='font-weight: bold;'> 14</span>| 492.30478 | 0.9905 | -1.006 | -0.9103 | -0.9382 |
+#&gt; |.....................| -0.9873 | -0.8850 | -0.8121 | -0.8449 |
+#&gt; |.....................| -0.8604 | -0.8860 | -0.8808 | -0.8991 |
+#&gt; |.....................| -0.8347 | -0.8722 | -0.8958 | -0.8339 |
+#&gt; | U| 492.30478 | 90.62 | -5.195 | -0.8868 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4581 | 0.8543 | 0.05904 |
+#&gt; |.....................| 0.8343 | 0.05785 | 0.7273 | 0.8745 |
+#&gt; |.....................| 1.225 | 0.9633 | 0.8402 | 1.257 |
+#&gt; | X|<span style='font-weight: bold;'> 492.30478</span> | 90.62 | 0.005545 | 0.2918 | 0.1119 |
+#&gt; |.....................| 0.009761 | 0.6126 | 0.8543 | 0.05904 |
+#&gt; |.....................| 0.8343 | 0.05785 | 0.7273 | 0.8745 |
+#&gt; |.....................| 1.225 | 0.9633 | 0.8402 | 1.257 |
+#&gt; | F| Forward Diff. | -34.08 | 2.096 | -0.4157 | 0.1370 |
+#&gt; |.....................| -0.3212 | 0.6979 | -20.95 | -14.99 |
+#&gt; |.....................| -5.046 | -1.607 | 1.055 | 8.026 |
+#&gt; |.....................| -11.31 | 0.3535 | 6.819 | -11.49 |
+#&gt; |<span style='font-weight: bold;'> 15</span>| 492.00325 | 0.9991 | -1.007 | -0.9102 | -0.9382 |
+#&gt; |.....................| -0.9872 | -0.8852 | -0.8063 | -0.8408 |
+#&gt; |.....................| -0.8590 | -0.8856 | -0.8811 | -0.9014 |
+#&gt; |.....................| -0.8316 | -0.8723 | -0.8977 | -0.8307 |
+#&gt; | U| 492.00325 | 91.40 | -5.195 | -0.8867 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4580 | 0.8567 | 0.05916 |
+#&gt; |.....................| 0.8349 | 0.05786 | 0.7271 | 0.8725 |
+#&gt; |.....................| 1.229 | 0.9632 | 0.8386 | 1.261 |
+#&gt; | X|<span style='font-weight: bold;'> 492.00325</span> | 91.40 | 0.005542 | 0.2918 | 0.1119 |
+#&gt; |.....................| 0.009762 | 0.6125 | 0.8567 | 0.05916 |
+#&gt; |.....................| 0.8349 | 0.05786 | 0.7271 | 0.8725 |
+#&gt; |.....................| 1.229 | 0.9632 | 0.8386 | 1.261 |
+#&gt; | F| Forward Diff. | 32.19 | 2.189 | -0.09620 | 0.04245 |
+#&gt; |.....................| -0.3450 | 0.6659 | -21.28 | -14.00 |
+#&gt; |.....................| -4.881 | -1.759 | 1.243 | 8.359 |
+#&gt; |.....................| -10.62 | -0.07477 | 6.614 | -11.44 |
+#&gt; |<span style='font-weight: bold;'> 16</span>| 491.72015 | 0.9906 | -1.007 | -0.9102 | -0.9382 |
+#&gt; |.....................| -0.9871 | -0.8854 | -0.8003 | -0.8368 |
+#&gt; |.....................| -0.8576 | -0.8851 | -0.8814 | -0.9037 |
+#&gt; |.....................| -0.8285 | -0.8722 | -0.8996 | -0.8275 |
+#&gt; | U| 491.72015 | 90.62 | -5.196 | -0.8867 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4579 | 0.8592 | 0.05927 |
+#&gt; |.....................| 0.8354 | 0.05788 | 0.7268 | 0.8703 |
+#&gt; |.....................| 1.232 | 0.9633 | 0.8370 | 1.265 |
+#&gt; | X|<span style='font-weight: bold;'> 491.72015</span> | 90.62 | 0.005538 | 0.2918 | 0.1119 |
+#&gt; |.....................| 0.009763 | 0.6125 | 0.8592 | 0.05927 |
+#&gt; |.....................| 0.8354 | 0.05788 | 0.7268 | 0.8703 |
+#&gt; |.....................| 1.232 | 0.9633 | 0.8370 | 1.265 |
+#&gt; | F| Forward Diff. | -33.41 | 2.074 | -0.4123 | 0.1389 |
+#&gt; |.....................| -0.2981 | 0.7039 | -20.39 | -14.31 |
+#&gt; |.....................| -4.887 | -1.550 | 0.9656 | 7.818 |
+#&gt; |.....................| -11.05 | -0.4282 | 6.582 | -11.31 |
+#&gt; |<span style='font-weight: bold;'> 17</span>| 491.42294 | 0.9990 | -1.008 | -0.9101 | -0.9383 |
+#&gt; |.....................| -0.9870 | -0.8856 | -0.7943 | -0.8327 |
+#&gt; |.....................| -0.8562 | -0.8846 | -0.8817 | -0.9060 |
+#&gt; |.....................| -0.8254 | -0.8721 | -0.9015 | -0.8242 |
+#&gt; | U| 491.42294 | 91.39 | -5.197 | -0.8866 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4578 | 0.8616 | 0.05939 |
+#&gt; |.....................| 0.8360 | 0.05789 | 0.7266 | 0.8683 |
+#&gt; |.....................| 1.236 | 0.9634 | 0.8354 | 1.269 |
+#&gt; | X|<span style='font-weight: bold;'> 491.42294</span> | 91.39 | 0.005535 | 0.2918 | 0.1119 |
+#&gt; |.....................| 0.009764 | 0.6125 | 0.8616 | 0.05939 |
+#&gt; |.....................| 0.8360 | 0.05789 | 0.7266 | 0.8683 |
+#&gt; |.....................| 1.236 | 0.9634 | 0.8354 | 1.269 |
+#&gt; | F| Forward Diff. | 31.50 | 2.165 | -0.08876 | 0.04676 |
+#&gt; |.....................| -0.3226 | 0.6753 | -20.70 | -13.34 |
+#&gt; |.....................| -4.747 | -1.707 | 0.9017 | 8.141 |
+#&gt; |.....................| -10.29 | -0.02981 | 6.402 | -11.28 |
+#&gt; |<span style='font-weight: bold;'> 18</span>| 491.14065 | 0.9907 | -1.009 | -0.9100 | -0.9383 |
+#&gt; |.....................| -0.9870 | -0.8858 | -0.7882 | -0.8287 |
+#&gt; |.....................| -0.8548 | -0.8841 | -0.8820 | -0.9084 |
+#&gt; |.....................| -0.8223 | -0.8721 | -0.9034 | -0.8208 |
+#&gt; | U| 491.14065 | 90.64 | -5.197 | -0.8866 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4577 | 0.8642 | 0.05950 |
+#&gt; |.....................| 0.8366 | 0.05791 | 0.7264 | 0.8661 |
+#&gt; |.....................| 1.240 | 0.9634 | 0.8337 | 1.273 |
+#&gt; | X|<span style='font-weight: bold;'> 491.14065</span> | 90.64 | 0.005531 | 0.2918 | 0.1119 |
+#&gt; |.....................| 0.009765 | 0.6125 | 0.8642 | 0.05950 |
+#&gt; |.....................| 0.8366 | 0.05791 | 0.7264 | 0.8661 |
+#&gt; |.....................| 1.240 | 0.9634 | 0.8337 | 1.273 |
+#&gt; | F| Forward Diff. | -32.29 | 2.052 | -0.4043 | 0.1403 |
+#&gt; |.....................| -0.2785 | 0.7107 | -20.12 | -13.83 |
+#&gt; |.....................| -4.879 | -1.515 | 0.4622 | 7.293 |
+#&gt; |.....................| -10.82 | -0.3681 | 6.384 | -11.14 |
+#&gt; |<span style='font-weight: bold;'> 19</span>| 490.84537 | 0.9989 | -1.009 | -0.9099 | -0.9383 |
+#&gt; |.....................| -0.9869 | -0.8860 | -0.7821 | -0.8246 |
+#&gt; |.....................| -0.8533 | -0.8837 | -0.8821 | -0.9106 |
+#&gt; |.....................| -0.8190 | -0.8720 | -0.9053 | -0.8174 |
+#&gt; | U| 490.84537 | 91.38 | -5.198 | -0.8865 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4576 | 0.8667 | 0.05962 |
+#&gt; |.....................| 0.8372 | 0.05792 | 0.7263 | 0.8641 |
+#&gt; |.....................| 1.243 | 0.9635 | 0.8321 | 1.277 |
+#&gt; | X|<span style='font-weight: bold;'> 490.84537</span> | 91.38 | 0.005528 | 0.2918 | 0.1119 |
+#&gt; |.....................| 0.009766 | 0.6124 | 0.8667 | 0.05962 |
+#&gt; |.....................| 0.8372 | 0.05792 | 0.7263 | 0.8641 |
+#&gt; |.....................| 1.243 | 0.9635 | 0.8321 | 1.277 |
+#&gt; | F| Forward Diff. | 30.35 | 2.134 | -0.08371 | 0.04933 |
+#&gt; |.....................| -0.3000 | 0.6785 | -20.24 | -12.73 |
+#&gt; |.....................| -4.623 | -1.604 | 1.054 | 8.092 |
+#&gt; |.....................| -10.77 | -0.4405 | 6.181 | -11.10 |
+#&gt; |<span style='font-weight: bold;'> 20</span>| 490.56963 | 0.9908 | -1.010 | -0.9099 | -0.9383 |
+#&gt; |.....................| -0.9868 | -0.8862 | -0.7758 | -0.8207 |
+#&gt; |.....................| -0.8519 | -0.8832 | -0.8824 | -0.9131 |
+#&gt; |.....................| -0.8157 | -0.8719 | -0.9072 | -0.8140 |
+#&gt; | U| 490.56963 | 90.64 | -5.199 | -0.8865 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4575 | 0.8693 | 0.05974 |
+#&gt; |.....................| 0.8378 | 0.05793 | 0.7261 | 0.8619 |
+#&gt; |.....................| 1.247 | 0.9636 | 0.8305 | 1.281 |
+#&gt; | X|<span style='font-weight: bold;'> 490.56963</span> | 90.64 | 0.005524 | 0.2918 | 0.1119 |
+#&gt; |.....................| 0.009767 | 0.6124 | 0.8693 | 0.05974 |
+#&gt; |.....................| 0.8378 | 0.05793 | 0.7261 | 0.8619 |
+#&gt; |.....................| 1.247 | 0.9636 | 0.8305 | 1.281 |
+#&gt; | F| Forward Diff. | -31.85 | 2.030 | -0.4014 | 0.1424 |
+#&gt; |.....................| -0.2574 | 0.7152 | -19.39 | -13.12 |
+#&gt; |.....................| -4.602 | -1.387 | 0.5883 | 7.042 |
+#&gt; |.....................| -10.56 | -0.3115 | 6.249 | -10.92 |
+#&gt; |<span style='font-weight: bold;'> 21</span>| 490.28521 | 0.9989 | -1.011 | -0.9098 | -0.9384 |
+#&gt; |.....................| -0.9867 | -0.8865 | -0.7697 | -0.8166 |
+#&gt; |.....................| -0.8504 | -0.8827 | -0.8826 | -0.9153 |
+#&gt; |.....................| -0.8124 | -0.8718 | -0.9092 | -0.8105 |
+#&gt; | U| 490.28521 | 91.39 | -5.199 | -0.8864 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4574 | 0.8718 | 0.05985 |
+#&gt; |.....................| 0.8384 | 0.05795 | 0.7259 | 0.8599 |
+#&gt; |.....................| 1.251 | 0.9637 | 0.8288 | 1.285 |
+#&gt; | X|<span style='font-weight: bold;'> 490.28521</span> | 91.39 | 0.005521 | 0.2919 | 0.1119 |
+#&gt; |.....................| 0.009767 | 0.6124 | 0.8718 | 0.05985 |
+#&gt; |.....................| 0.8384 | 0.05795 | 0.7259 | 0.8599 |
+#&gt; |.....................| 1.251 | 0.9637 | 0.8288 | 1.285 |
+#&gt; | F| Forward Diff. | 30.53 | 2.112 | -0.07114 | 0.05276 |
+#&gt; |.....................| -0.2779 | 0.6845 | -19.81 | -12.13 |
+#&gt; |.....................| -4.498 | -1.539 | 0.6449 | 7.769 |
+#&gt; |.....................| -10.55 | -0.3696 | 5.980 | -10.93 |
+#&gt; |<span style='font-weight: bold;'> 22</span>| 489.99923 | 0.9911 | -1.011 | -0.9097 | -0.9384 |
+#&gt; |.....................| -0.9866 | -0.8867 | -0.7633 | -0.8127 |
+#&gt; |.....................| -0.8489 | -0.8823 | -0.8828 | -0.9178 |
+#&gt; |.....................| -0.8089 | -0.8716 | -0.9111 | -0.8070 |
+#&gt; | U| 489.99923 | 90.67 | -5.200 | -0.8863 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4573 | 0.8745 | 0.05997 |
+#&gt; |.....................| 0.8390 | 0.05796 | 0.7258 | 0.8577 |
+#&gt; |.....................| 1.255 | 0.9638 | 0.8271 | 1.290 |
+#&gt; | X|<span style='font-weight: bold;'> 489.99923</span> | 90.67 | 0.005517 | 0.2919 | 0.1119 |
+#&gt; |.....................| 0.009768 | 0.6124 | 0.8745 | 0.05997 |
+#&gt; |.....................| 0.8390 | 0.05796 | 0.7258 | 0.8577 |
+#&gt; |.....................| 1.255 | 0.9638 | 0.8271 | 1.290 |
+#&gt; | F| Forward Diff. | -29.14 | 2.012 | -0.3844 | 0.1417 |
+#&gt; |.....................| -0.2358 | 0.7218 | -18.90 | -12.37 |
+#&gt; |.....................| -4.517 | -1.329 | 0.4904 | 6.799 |
+#&gt; |.....................| -10.31 | -0.2514 | 6.013 | -10.75 |
+#&gt; |<span style='font-weight: bold;'> 23</span>| 489.73483 | 0.9991 | -1.012 | -0.9096 | -0.9384 |
+#&gt; |.....................| -0.9865 | -0.8869 | -0.7571 | -0.8087 |
+#&gt; |.....................| -0.8475 | -0.8818 | -0.8829 | -0.9201 |
+#&gt; |.....................| -0.8055 | -0.8715 | -0.9131 | -0.8034 |
+#&gt; | U| 489.73483 | 91.40 | -5.201 | -0.8862 | -2.190 |
+#&gt; |.....................| -4.629 | 0.4572 | 0.8771 | 0.06008 |
+#&gt; |.....................| 0.8396 | 0.05797 | 0.7257 | 0.8557 |
+#&gt; |.....................| 1.259 | 0.9639 | 0.8254 | 1.294 |
+#&gt; | X|<span style='font-weight: bold;'> 489.73483</span> | 91.40 | 0.005513 | 0.2919 | 0.1119 |
+#&gt; |.....................| 0.009769 | 0.6123 | 0.8771 | 0.06008 |
+#&gt; |.....................| 0.8396 | 0.05797 | 0.7257 | 0.8557 |
+#&gt; |.....................| 1.259 | 0.9639 | 0.8254 | 1.294 |
+#&gt; | F| Forward Diff. | 31.68 | 2.089 | -0.05219 | 0.05312 |
+#&gt; |.....................| -0.2568 | 0.6912 | -19.25 | -11.50 |
+#&gt; |.....................| -4.291 | -1.478 | 0.6044 | 7.316 |
+#&gt; |.....................| -10.30 | -0.3159 | 5.756 | -10.75 |
+#&gt; |<span style='font-weight: bold;'> 24</span>| 489.43925 | 0.9914 | -1.013 | -0.9096 | -0.9385 |
+#&gt; |.....................| -0.9865 | -0.8872 | -0.7505 | -0.8049 |
+#&gt; |.....................| -0.8460 | -0.8813 | -0.8831 | -0.9225 |
+#&gt; |.....................| -0.8020 | -0.8714 | -0.9150 | -0.7997 |
+#&gt; | U| 489.43925 | 90.70 | -5.201 | -0.8862 | -2.190 |
+#&gt; |.....................| -4.628 | 0.4571 | 0.8798 | 0.06019 |
+#&gt; |.....................| 0.8402 | 0.05799 | 0.7256 | 0.8535 |
+#&gt; |.....................| 1.264 | 0.9640 | 0.8238 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 489.43925</span> | 90.70 | 0.005509 | 0.2919 | 0.1119 |
+#&gt; |.....................| 0.009770 | 0.6123 | 0.8798 | 0.06019 |
+#&gt; |.....................| 0.8402 | 0.05799 | 0.7256 | 0.8535 |
+#&gt; |.....................| 1.264 | 0.9640 | 0.8238 | 1.298 |
+#&gt; | F| Forward Diff. | -26.48 | 1.993 | -0.3684 | 0.1403 |
+#&gt; |.....................| -0.2166 | 0.7270 | -18.36 | -11.77 |
+#&gt; |.....................| -4.393 | -1.275 | 0.4390 | 6.578 |
+#&gt; |.....................| -10.04 | -0.2187 | 5.799 | -10.58 |
+#&gt; |<span style='font-weight: bold;'> 25</span>| 489.19181 | 0.9992 | -1.013 | -0.9095 | -0.9385 |
+#&gt; |.....................| -0.9864 | -0.8874 | -0.7441 | -0.8009 |
+#&gt; |.....................| -0.8445 | -0.8809 | -0.8833 | -0.9248 |
+#&gt; |.....................| -0.7985 | -0.8714 | -0.9170 | -0.7960 |
+#&gt; | U| 489.19181 | 91.41 | -5.202 | -0.8861 | -2.190 |
+#&gt; |.....................| -4.628 | 0.4570 | 0.8824 | 0.06031 |
+#&gt; |.....................| 0.8409 | 0.05800 | 0.7255 | 0.8514 |
+#&gt; |.....................| 1.268 | 0.9641 | 0.8221 | 1.303 |
+#&gt; | X|<span style='font-weight: bold;'> 489.19181</span> | 91.41 | 0.005505 | 0.2919 | 0.1119 |
+#&gt; |.....................| 0.009770 | 0.6123 | 0.8824 | 0.06031 |
+#&gt; |.....................| 0.8409 | 0.05800 | 0.7255 | 0.8514 |
+#&gt; |.....................| 1.268 | 0.9641 | 0.8221 | 1.303 |
+#&gt; | F| Forward Diff. | 32.48 | 2.067 | -0.03453 | 0.05414 |
+#&gt; |.....................| -0.2360 | 0.6938 | -18.67 | -10.89 |
+#&gt; |.....................| -4.178 | -1.425 | 0.5548 | 7.078 |
+#&gt; |.....................| -10.01 | -0.2144 | 5.548 | -10.57 |
+#&gt; |<span style='font-weight: bold;'> 26</span>| 488.89118 | 0.9917 | -1.014 | -0.9094 | -0.9385 |
+#&gt; |.....................| -0.9863 | -0.8877 | -0.7375 | -0.7972 |
+#&gt; |.....................| -0.8430 | -0.8804 | -0.8834 | -0.9272 |
+#&gt; |.....................| -0.7949 | -0.8713 | -0.9189 | -0.7921 |
+#&gt; | U| 488.89118 | 90.73 | -5.203 | -0.8860 | -2.190 |
+#&gt; |.....................| -4.628 | 0.4568 | 0.8852 | 0.06041 |
+#&gt; |.....................| 0.8415 | 0.05801 | 0.7253 | 0.8493 |
+#&gt; |.....................| 1.272 | 0.9642 | 0.8204 | 1.308 |
+#&gt; | X|<span style='font-weight: bold;'> 488.89118</span> | 90.73 | 0.005501 | 0.2919 | 0.1119 |
+#&gt; |.....................| 0.009771 | 0.6123 | 0.8852 | 0.06041 |
+#&gt; |.....................| 0.8415 | 0.05801 | 0.7253 | 0.8493 |
+#&gt; |.....................| 1.272 | 0.9642 | 0.8204 | 1.308 |
+#&gt; | F| Forward Diff. | -24.34 | 1.974 | -0.3522 | 0.1400 |
+#&gt; |.....................| -0.1957 | 0.7323 | -17.88 | -11.06 |
+#&gt; |.....................| -4.245 | -1.195 | 0.3418 | 6.336 |
+#&gt; |.....................| -9.795 | -0.1748 | 5.588 | -10.40 |
+#&gt; |<span style='font-weight: bold;'> 27</span>| 488.65823 | 0.9993 | -1.015 | -0.9093 | -0.9386 |
+#&gt; |.....................| -0.9862 | -0.8880 | -0.7310 | -0.7933 |
+#&gt; |.....................| -0.8415 | -0.8800 | -0.8835 | -0.9295 |
+#&gt; |.....................| -0.7913 | -0.8712 | -0.9210 | -0.7883 |
+#&gt; | U| 488.65823 | 91.42 | -5.204 | -0.8859 | -2.190 |
+#&gt; |.....................| -4.628 | 0.4567 | 0.8878 | 0.06053 |
+#&gt; |.....................| 0.8421 | 0.05803 | 0.7253 | 0.8472 |
+#&gt; |.....................| 1.276 | 0.9642 | 0.8187 | 1.312 |
+#&gt; | X|<span style='font-weight: bold;'> 488.65823</span> | 91.42 | 0.005497 | 0.2919 | 0.1119 |
+#&gt; |.....................| 0.009772 | 0.6122 | 0.8878 | 0.06053 |
+#&gt; |.....................| 0.8421 | 0.05803 | 0.7253 | 0.8472 |
+#&gt; |.....................| 1.276 | 0.9642 | 0.8187 | 1.312 |
+#&gt; | F| Forward Diff. | 33.05 | 2.045 | -0.01570 | 0.05526 |
+#&gt; |.....................| -0.2154 | 0.6997 | -18.21 | -10.28 |
+#&gt; |.....................| -4.052 | -1.334 | 0.4619 | 6.811 |
+#&gt; |.....................| -9.752 | -0.1974 | 5.317 | -10.39 |
+#&gt; |<span style='font-weight: bold;'> 28</span>| 488.35451 | 0.9920 | -1.016 | -0.9093 | -0.9386 |
+#&gt; |.....................| -0.9862 | -0.8883 | -0.7243 | -0.7897 |
+#&gt; |.....................| -0.8399 | -0.8795 | -0.8836 | -0.9319 |
+#&gt; |.....................| -0.7876 | -0.8712 | -0.9229 | -0.7844 |
+#&gt; | U| 488.35451 | 90.75 | -5.204 | -0.8859 | -2.190 |
+#&gt; |.....................| -4.628 | 0.4566 | 0.8906 | 0.06063 |
+#&gt; |.....................| 0.8427 | 0.05804 | 0.7252 | 0.8450 |
+#&gt; |.....................| 1.281 | 0.9643 | 0.8170 | 1.317 |
+#&gt; | X|<span style='font-weight: bold;'> 488.35451</span> | 90.75 | 0.005493 | 0.2920 | 0.1119 |
+#&gt; |.....................| 0.009772 | 0.6122 | 0.8906 | 0.06063 |
+#&gt; |.....................| 0.8427 | 0.05804 | 0.7252 | 0.8450 |
+#&gt; |.....................| 1.281 | 0.9643 | 0.8170 | 1.317 |
+#&gt; | F| Forward Diff. | -22.42 | 1.954 | -0.3353 | 0.1391 |
+#&gt; |.....................| -0.1757 | 0.7405 | -17.32 | -10.46 |
+#&gt; |.....................| -4.053 | -1.161 | 0.2825 | 6.114 |
+#&gt; |.....................| -9.506 | -0.1281 | 5.370 | -10.21 |
+#&gt; |<span style='font-weight: bold;'> 29</span>| 488.13711 | 0.9995 | -1.016 | -0.9092 | -0.9387 |
+#&gt; |.....................| -0.9861 | -0.8886 | -0.7177 | -0.7858 |
+#&gt; |.....................| -0.8384 | -0.8791 | -0.8837 | -0.9342 |
+#&gt; |.....................| -0.7840 | -0.8711 | -0.9249 | -0.7804 |
+#&gt; | U| 488.13711 | 91.44 | -5.205 | -0.8858 | -2.190 |
+#&gt; |.....................| -4.628 | 0.4565 | 0.8934 | 0.06074 |
+#&gt; |.....................| 0.8434 | 0.05805 | 0.7251 | 0.8430 |
+#&gt; |.....................| 1.285 | 0.9643 | 0.8153 | 1.322 |
+#&gt; | X|<span style='font-weight: bold;'> 488.13711</span> | 91.44 | 0.005489 | 0.2920 | 0.1119 |
+#&gt; |.....................| 0.009773 | 0.6122 | 0.8934 | 0.06074 |
+#&gt; |.....................| 0.8434 | 0.05805 | 0.7251 | 0.8430 |
+#&gt; |.....................| 1.285 | 0.9643 | 0.8153 | 1.322 |
+#&gt; | F| Forward Diff. | 33.81 | 2.022 | 0.006720 | 0.05587 |
+#&gt; |.....................| -0.1935 | 0.7042 | -17.76 | -9.667 |
+#&gt; |.....................| -3.890 | -1.276 | 0.4404 | 6.589 |
+#&gt; |.....................| -9.459 | -0.1517 | 5.102 | -10.20 |
+#&gt; |<span style='font-weight: bold;'> 30</span>| 487.82953 | 0.9922 | -1.017 | -0.9091 | -0.9387 |
+#&gt; |.....................| -0.9861 | -0.8889 | -0.7108 | -0.7824 |
+#&gt; |.....................| -0.8369 | -0.8787 | -0.8838 | -0.9367 |
+#&gt; |.....................| -0.7803 | -0.8711 | -0.9268 | -0.7763 |
+#&gt; | U| 487.82953 | 90.77 | -5.206 | -0.8858 | -2.190 |
+#&gt; |.....................| -4.628 | 0.4563 | 0.8962 | 0.06084 |
+#&gt; |.....................| 0.8440 | 0.05806 | 0.7251 | 0.8408 |
+#&gt; |.....................| 1.289 | 0.9644 | 0.8136 | 1.327 |
+#&gt; | X|<span style='font-weight: bold;'> 487.82953</span> | 90.77 | 0.005484 | 0.2920 | 0.1119 |
+#&gt; |.....................| 0.009774 | 0.6121 | 0.8962 | 0.06084 |
+#&gt; |.....................| 0.8440 | 0.05806 | 0.7251 | 0.8408 |
+#&gt; |.....................| 1.289 | 0.9644 | 0.8136 | 1.327 |
+#&gt; | F| Forward Diff. | -20.31 | 1.935 | -0.3119 | 0.1382 |
+#&gt; |.....................| -0.1555 | 0.7438 | -16.49 | -9.852 |
+#&gt; |.....................| -3.955 | -1.103 | 0.2044 | 5.876 |
+#&gt; |.....................| -9.237 | -0.1098 | 5.167 | -10.02 |
+#&gt; |<span style='font-weight: bold;'> 31</span>| 487.63293 | 0.9997 | -1.018 | -0.9090 | -0.9388 |
+#&gt; |.....................| -0.9860 | -0.8892 | -0.7043 | -0.7786 |
+#&gt; |.....................| -0.8354 | -0.8782 | -0.8838 | -0.9390 |
+#&gt; |.....................| -0.7766 | -0.8711 | -0.9289 | -0.7723 |
+#&gt; | U| 487.63293 | 91.46 | -5.207 | -0.8857 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4562 | 0.8989 | 0.06095 |
+#&gt; |.....................| 0.8446 | 0.05808 | 0.7250 | 0.8387 |
+#&gt; |.....................| 1.294 | 0.9644 | 0.8119 | 1.332 |
+#&gt; | X|<span style='font-weight: bold;'> 487.63293</span> | 91.46 | 0.005480 | 0.2920 | 0.1119 |
+#&gt; |.....................| 0.009774 | 0.6121 | 0.8989 | 0.06095 |
+#&gt; |.....................| 0.8446 | 0.05808 | 0.7250 | 0.8387 |
+#&gt; |.....................| 1.294 | 0.9644 | 0.8119 | 1.332 |
+#&gt; | F| Forward Diff. | 35.34 | 2.001 | 0.03668 | 0.05608 |
+#&gt; |.....................| -0.1731 | 0.7098 | -16.98 | -9.135 |
+#&gt; |.....................| -3.742 | -1.209 | 0.3780 | 6.351 |
+#&gt; |.....................| -9.183 | 0.6525 | 4.885 | -10.01 |
+#&gt; |<span style='font-weight: bold;'> 32</span>| 487.31820 | 0.9926 | -1.019 | -0.9090 | -0.9388 |
+#&gt; |.....................| -0.9860 | -0.8895 | -0.6975 | -0.7753 |
+#&gt; |.....................| -0.8338 | -0.8778 | -0.8838 | -0.9414 |
+#&gt; |.....................| -0.7728 | -0.8714 | -0.9308 | -0.7679 |
+#&gt; | U| 487.3182 | 90.81 | -5.208 | -0.8856 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4560 | 0.9017 | 0.06104 |
+#&gt; |.....................| 0.8453 | 0.05809 | 0.7250 | 0.8366 |
+#&gt; |.....................| 1.298 | 0.9641 | 0.8102 | 1.337 |
+#&gt; | X|<span style='font-weight: bold;'> 487.3182</span> | 90.81 | 0.005475 | 0.2920 | 0.1119 |
+#&gt; |.....................| 0.009775 | 0.6121 | 0.9017 | 0.06104 |
+#&gt; |.....................| 0.8453 | 0.05809 | 0.7250 | 0.8366 |
+#&gt; |.....................| 1.298 | 0.9641 | 0.8102 | 1.337 |
+#&gt; | F| Forward Diff. | -17.75 | 1.917 | -0.2852 | 0.1361 |
+#&gt; |.....................| -0.1360 | 0.7493 | -16.63 | -9.386 |
+#&gt; |.....................| -3.766 | -1.006 | 0.1674 | 5.665 |
+#&gt; |.....................| -8.945 | 0.7251 | 4.960 | -9.828 |
+#&gt; |<span style='font-weight: bold;'> 33</span>| 487.13531 | 0.9998 | -1.020 | -0.9089 | -0.9389 |
+#&gt; |.....................| -0.9859 | -0.8898 | -0.6907 | -0.7715 |
+#&gt; |.....................| -0.8323 | -0.8774 | -0.8839 | -0.9437 |
+#&gt; |.....................| -0.7691 | -0.8717 | -0.9328 | -0.7639 |
+#&gt; | U| 487.13531 | 91.47 | -5.208 | -0.8855 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4559 | 0.9045 | 0.06116 |
+#&gt; |.....................| 0.8459 | 0.05810 | 0.7250 | 0.8345 |
+#&gt; |.....................| 1.303 | 0.9638 | 0.8084 | 1.342 |
+#&gt; | X|<span style='font-weight: bold;'> 487.13531</span> | 91.47 | 0.005471 | 0.2920 | 0.1118 |
+#&gt; |.....................| 0.009775 | 0.6120 | 0.9045 | 0.06116 |
+#&gt; |.....................| 0.8459 | 0.05810 | 0.7250 | 0.8345 |
+#&gt; |.....................| 1.303 | 0.9638 | 0.8084 | 1.342 |
+#&gt; | F| Forward Diff. | 35.92 | 1.979 | 0.06301 | 0.05698 |
+#&gt; |.....................| -0.1526 | 0.7131 | -16.77 | -8.520 |
+#&gt; |.....................| -3.634 | -1.163 | 0.3177 | 6.099 |
+#&gt; |.....................| -8.917 | 0.6421 | 4.685 | -9.820 |
+#&gt; |<span style='font-weight: bold;'> 34</span>| 486.82694 | 0.9926 | -1.021 | -0.9088 | -0.9389 |
+#&gt; |.....................| -0.9859 | -0.8902 | -0.6837 | -0.7686 |
+#&gt; |.....................| -0.8308 | -0.8770 | -0.8839 | -0.9460 |
+#&gt; |.....................| -0.7654 | -0.8723 | -0.9347 | -0.7596 |
+#&gt; | U| 486.82694 | 90.81 | -5.209 | -0.8855 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4557 | 0.9074 | 0.06124 |
+#&gt; |.....................| 0.8465 | 0.05811 | 0.7250 | 0.8324 |
+#&gt; |.....................| 1.307 | 0.9632 | 0.8069 | 1.347 |
+#&gt; | X|<span style='font-weight: bold;'> 486.82694</span> | 90.81 | 0.005466 | 0.2920 | 0.1118 |
+#&gt; |.....................| 0.009775 | 0.6120 | 0.9074 | 0.06124 |
+#&gt; |.....................| 0.8465 | 0.05811 | 0.7250 | 0.8324 |
+#&gt; |.....................| 1.307 | 0.9632 | 0.8069 | 1.347 |
+#&gt; | F| Forward Diff. | -17.49 | 1.895 | -0.2726 | 0.1382 |
+#&gt; |.....................| -0.1159 | 0.7566 | -16.14 | -8.833 |
+#&gt; |.....................| -3.638 | -0.9303 | 0.1285 | 5.442 |
+#&gt; |.....................| -8.630 | 0.7091 | 4.774 | -9.639 |
+#&gt; |<span style='font-weight: bold;'> 35</span>| 486.64804 | 0.9998 | -1.021 | -0.9087 | -0.9390 |
+#&gt; |.....................| -0.9858 | -0.8905 | -0.6768 | -0.7649 |
+#&gt; |.....................| -0.8293 | -0.8767 | -0.8839 | -0.9483 |
+#&gt; |.....................| -0.7617 | -0.8727 | -0.9367 | -0.7554 |
+#&gt; | U| 486.64804 | 91.46 | -5.210 | -0.8854 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4556 | 0.9103 | 0.06135 |
+#&gt; |.....................| 0.8472 | 0.05812 | 0.7250 | 0.8304 |
+#&gt; |.....................| 1.311 | 0.9629 | 0.8051 | 1.352 |
+#&gt; | X|<span style='font-weight: bold;'> 486.64804</span> | 91.46 | 0.005462 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009776 | 0.6120 | 0.9103 | 0.06135 |
+#&gt; |.....................| 0.8472 | 0.05812 | 0.7250 | 0.8304 |
+#&gt; |.....................| 1.311 | 0.9629 | 0.8051 | 1.352 |
+#&gt; | F| Forward Diff. | 35.26 | 1.955 | 0.07649 | 0.05940 |
+#&gt; |.....................| -0.1319 | 0.7217 | -16.38 | -8.030 |
+#&gt; |.....................| -3.491 | -1.078 | 0.2504 | 5.851 |
+#&gt; |.....................| -8.624 | 0.5993 | 4.494 | -9.625 |
+#&gt; |<span style='font-weight: bold;'> 36</span>| 486.34524 | 0.9928 | -1.022 | -0.9087 | -0.9390 |
+#&gt; |.....................| -0.9858 | -0.8909 | -0.6696 | -0.7621 |
+#&gt; |.....................| -0.8278 | -0.8763 | -0.8838 | -0.9506 |
+#&gt; |.....................| -0.7579 | -0.8733 | -0.9385 | -0.7509 |
+#&gt; | U| 486.34524 | 90.82 | -5.211 | -0.8854 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4554 | 0.9133 | 0.06143 |
+#&gt; |.....................| 0.8478 | 0.05813 | 0.7251 | 0.8283 |
+#&gt; |.....................| 1.316 | 0.9622 | 0.8036 | 1.358 |
+#&gt; | X|<span style='font-weight: bold;'> 486.34524</span> | 90.82 | 0.005456 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009776 | 0.6119 | 0.9133 | 0.06143 |
+#&gt; |.....................| 0.8478 | 0.05813 | 0.7251 | 0.8283 |
+#&gt; |.....................| 1.316 | 0.9622 | 0.8036 | 1.358 |
+#&gt; | F| Forward Diff. | -16.53 | 1.875 | -0.2661 | 0.1390 |
+#&gt; |.....................| -0.09763 | 0.7654 | -15.70 | -8.237 |
+#&gt; |.....................| -3.491 | -0.9040 | 0.06392 | 5.213 |
+#&gt; |.....................| -8.361 | 0.6621 | 4.584 | -9.445 |
+#&gt; |<span style='font-weight: bold;'> 37</span>| 486.17476 | 0.9998 | -1.023 | -0.9086 | -0.9391 |
+#&gt; |.....................| -0.9858 | -0.8913 | -0.6626 | -0.7586 |
+#&gt; |.....................| -0.8262 | -0.8759 | -0.8838 | -0.9529 |
+#&gt; |.....................| -0.7542 | -0.8736 | -0.9406 | -0.7467 |
+#&gt; | U| 486.17476 | 91.47 | -5.212 | -0.8853 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4552 | 0.9162 | 0.06153 |
+#&gt; |.....................| 0.8484 | 0.05814 | 0.7250 | 0.8263 |
+#&gt; |.....................| 1.320 | 0.9619 | 0.8018 | 1.363 |
+#&gt; | X|<span style='font-weight: bold;'> 486.17476</span> | 91.47 | 0.005452 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009776 | 0.6119 | 0.9162 | 0.06153 |
+#&gt; |.....................| 0.8484 | 0.05814 | 0.7250 | 0.8263 |
+#&gt; |.....................| 1.320 | 0.9619 | 0.8018 | 1.363 |
+#&gt; | F| Forward Diff. | 35.23 | 1.932 | 0.08715 | 0.05955 |
+#&gt; |.....................| -0.1122 | 0.7274 | -16.01 | -7.627 |
+#&gt; |.....................| -3.363 | -1.024 | 0.1942 | 5.616 |
+#&gt; |.....................| -8.345 | 0.5641 | 4.322 | -9.424 |
+#&gt; |<span style='font-weight: bold;'> 38</span>| 485.87468 | 0.9930 | -1.024 | -0.9086 | -0.9392 |
+#&gt; |.....................| -0.9858 | -0.8917 | -0.6553 | -0.7561 |
+#&gt; |.....................| -0.8248 | -0.8756 | -0.8837 | -0.9551 |
+#&gt; |.....................| -0.7504 | -0.8743 | -0.9424 | -0.7420 |
+#&gt; | U| 485.87468 | 90.84 | -5.213 | -0.8853 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4550 | 0.9192 | 0.06160 |
+#&gt; |.....................| 0.8490 | 0.05815 | 0.7252 | 0.8243 |
+#&gt; |.....................| 1.325 | 0.9613 | 0.8003 | 1.369 |
+#&gt; | X|<span style='font-weight: bold;'> 485.87468</span> | 90.84 | 0.005446 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009776 | 0.6118 | 0.9192 | 0.06160 |
+#&gt; |.....................| 0.8490 | 0.05815 | 0.7252 | 0.8243 |
+#&gt; |.....................| 1.325 | 0.9613 | 0.8003 | 1.369 |
+#&gt; | F| Forward Diff. | -15.16 | 1.855 | -0.2494 | 0.1393 |
+#&gt; |.....................| -0.07811 | 0.7704 | -15.31 | -7.716 |
+#&gt; |.....................| -3.357 | -0.8175 | -0.03012 | 4.971 |
+#&gt; |.....................| -8.100 | 0.5955 | 4.407 | -9.242 |
+#&gt; |<span style='font-weight: bold;'> 39</span>| 485.71812 | 1.000 | -1.025 | -0.9085 | -0.9392 |
+#&gt; |.....................| -0.9858 | -0.8921 | -0.6482 | -0.7526 |
+#&gt; |.....................| -0.8232 | -0.8752 | -0.8836 | -0.9573 |
+#&gt; |.....................| -0.7467 | -0.8746 | -0.9444 | -0.7377 |
+#&gt; | U| 485.71812 | 91.48 | -5.214 | -0.8852 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4548 | 0.9221 | 0.06170 |
+#&gt; |.....................| 0.8497 | 0.05816 | 0.7252 | 0.8222 |
+#&gt; |.....................| 1.329 | 0.9610 | 0.7985 | 1.374 |
+#&gt; | X|<span style='font-weight: bold;'> 485.71812</span> | 91.48 | 0.005442 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009776 | 0.6118 | 0.9221 | 0.06170 |
+#&gt; |.....................| 0.8497 | 0.05816 | 0.7252 | 0.8222 |
+#&gt; |.....................| 1.329 | 0.9610 | 0.7985 | 1.374 |
+#&gt; | F| Forward Diff. | 36.02 | 1.911 | 0.1144 | 0.05926 |
+#&gt; |.....................| -0.09370 | 0.7314 | -15.47 | -7.071 |
+#&gt; |.....................| -3.248 | -0.9743 | 0.1265 | 5.377 |
+#&gt; |.....................| -7.775 | 0.5175 | 4.130 | -9.229 |
+#&gt; |<span style='font-weight: bold;'> 40</span>| 485.42108 | 0.9931 | -1.026 | -0.9085 | -0.9393 |
+#&gt; |.....................| -0.9858 | -0.8926 | -0.6408 | -0.7505 |
+#&gt; |.....................| -0.8218 | -0.8750 | -0.8834 | -0.9594 |
+#&gt; |.....................| -0.7430 | -0.8752 | -0.9461 | -0.7328 |
+#&gt; | U| 485.42108 | 90.85 | -5.215 | -0.8852 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4546 | 0.9252 | 0.06176 |
+#&gt; |.....................| 0.8503 | 0.05817 | 0.7254 | 0.8204 |
+#&gt; |.....................| 1.333 | 0.9604 | 0.7970 | 1.380 |
+#&gt; | X|<span style='font-weight: bold;'> 485.42108</span> | 90.85 | 0.005436 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009776 | 0.6117 | 0.9252 | 0.06176 |
+#&gt; |.....................| 0.8503 | 0.05817 | 0.7254 | 0.8204 |
+#&gt; |.....................| 1.333 | 0.9604 | 0.7970 | 1.380 |
+#&gt; | F| Forward Diff. | -14.37 | 1.836 | -0.2333 | 0.1389 |
+#&gt; |.....................| -0.05951 | 0.7785 | -14.33 | -7.292 |
+#&gt; |.....................| -3.229 | -0.7699 | -0.05471 | 4.764 |
+#&gt; |.....................| -7.801 | 0.5597 | 4.229 | -9.048 |
+#&gt; |<span style='font-weight: bold;'> 41</span>| 485.26815 | 0.9999 | -1.027 | -0.9084 | -0.9394 |
+#&gt; |.....................| -0.9858 | -0.8930 | -0.6338 | -0.7470 |
+#&gt; |.....................| -0.8202 | -0.8746 | -0.8833 | -0.9618 |
+#&gt; |.....................| -0.7392 | -0.8755 | -0.9482 | -0.7284 |
+#&gt; | U| 485.26815 | 91.48 | -5.216 | -0.8851 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4544 | 0.9281 | 0.06186 |
+#&gt; |.....................| 0.8509 | 0.05818 | 0.7254 | 0.8183 |
+#&gt; |.....................| 1.338 | 0.9601 | 0.7953 | 1.385 |
+#&gt; | X|<span style='font-weight: bold;'> 485.26815</span> | 91.48 | 0.005431 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009776 | 0.6117 | 0.9281 | 0.06186 |
+#&gt; |.....................| 0.8509 | 0.05818 | 0.7254 | 0.8183 |
+#&gt; |.....................| 1.338 | 0.9601 | 0.7953 | 1.385 |
+#&gt; | F| Forward Diff. | 35.37 | 1.889 | 0.1323 | 0.06297 |
+#&gt; |.....................| -0.07437 | 0.7390 | -14.80 | -6.641 |
+#&gt; |.....................| -3.116 | -0.8690 | 0.09880 | 5.162 |
+#&gt; |.....................| -7.761 | 0.4865 | 3.967 | -9.019 |
+#&gt; |<span style='font-weight: bold;'> 42</span>| 484.97448 | 0.9934 | -1.028 | -0.9084 | -0.9395 |
+#&gt; |.....................| -0.9859 | -0.8935 | -0.6264 | -0.7452 |
+#&gt; |.....................| -0.8188 | -0.8744 | -0.8830 | -0.9639 |
+#&gt; |.....................| -0.7352 | -0.8762 | -0.9500 | -0.7231 |
+#&gt; | U| 484.97448 | 90.88 | -5.217 | -0.8851 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4542 | 0.9311 | 0.06191 |
+#&gt; |.....................| 0.8515 | 0.05819 | 0.7257 | 0.8164 |
+#&gt; |.....................| 1.343 | 0.9594 | 0.7937 | 1.392 |
+#&gt; | X|<span style='font-weight: bold;'> 484.97448</span> | 90.88 | 0.005424 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009776 | 0.6116 | 0.9311 | 0.06191 |
+#&gt; |.....................| 0.8515 | 0.05819 | 0.7257 | 0.8164 |
+#&gt; |.....................| 1.343 | 0.9594 | 0.7937 | 1.392 |
+#&gt; | F| Forward Diff. | -12.51 | 1.817 | -0.2072 | 0.1320 |
+#&gt; |.....................| -0.04147 | 0.7868 | -13.90 | -6.839 |
+#&gt; |.....................| -3.097 | -0.6966 | -0.09701 | 4.567 |
+#&gt; |.....................| -7.500 | 0.5336 | 4.059 | -8.839 |
+#&gt; |<span style='font-weight: bold;'> 43</span>| 484.82513 | 0.9998 | -1.029 | -0.9083 | -0.9395 |
+#&gt; |.....................| -0.9858 | -0.8939 | -0.6193 | -0.7417 |
+#&gt; |.....................| -0.8172 | -0.8741 | -0.8829 | -0.9662 |
+#&gt; |.....................| -0.7313 | -0.8765 | -0.9521 | -0.7185 |
+#&gt; | U| 484.82513 | 91.47 | -5.218 | -0.8851 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4540 | 0.9341 | 0.06202 |
+#&gt; |.....................| 0.8522 | 0.05820 | 0.7257 | 0.8143 |
+#&gt; |.....................| 1.347 | 0.9592 | 0.7919 | 1.397 |
+#&gt; | X|<span style='font-weight: bold;'> 484.82513</span> | 91.47 | 0.005419 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009776 | 0.6116 | 0.9341 | 0.06202 |
+#&gt; |.....................| 0.8522 | 0.05820 | 0.7257 | 0.8143 |
+#&gt; |.....................| 1.347 | 0.9592 | 0.7919 | 1.397 |
+#&gt; | F| Forward Diff. | 34.86 | 1.871 | 0.1566 | 0.07097 |
+#&gt; |.....................| -0.05046 | 0.7508 | -14.35 | -6.106 |
+#&gt; |.....................| -2.960 | -0.8322 | 0.03576 | 4.926 |
+#&gt; |.....................| -7.463 | 0.4624 | 3.813 | -8.806 |
+#&gt; |<span style='font-weight: bold;'> 44</span>| 484.54032 | 0.9935 | -1.030 | -0.9084 | -0.9396 |
+#&gt; |.....................| -0.9859 | -0.8946 | -0.6118 | -0.7403 |
+#&gt; |.....................| -0.8157 | -0.8739 | -0.8825 | -0.9682 |
+#&gt; |.....................| -0.7274 | -0.8772 | -0.9538 | -0.7130 |
+#&gt; | U| 484.54032 | 90.89 | -5.219 | -0.8851 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4537 | 0.9372 | 0.06206 |
+#&gt; |.....................| 0.8528 | 0.05820 | 0.7260 | 0.8125 |
+#&gt; |.....................| 1.352 | 0.9585 | 0.7904 | 1.404 |
+#&gt; | X|<span style='font-weight: bold;'> 484.54032</span> | 90.89 | 0.005412 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009775 | 0.6115 | 0.9372 | 0.06206 |
+#&gt; |.....................| 0.8528 | 0.05820 | 0.7260 | 0.8125 |
+#&gt; |.....................| 1.352 | 0.9585 | 0.7904 | 1.404 |
+#&gt; | F| Forward Diff. | -11.88 | 1.798 | -0.1931 | 0.1288 |
+#&gt; |.....................| -0.02100 | 0.7941 | -13.56 | -6.327 |
+#&gt; |.....................| -2.985 | -0.6346 | -0.1369 | 4.355 |
+#&gt; |.....................| -7.207 | 0.4876 | 3.910 | -8.603 |
+#&gt; |<span style='font-weight: bold;'> 45</span>| 484.39828 | 0.9999 | -1.031 | -0.9082 | -0.9397 |
+#&gt; |.....................| -0.9859 | -0.8950 | -0.6045 | -0.7369 |
+#&gt; |.....................| -0.8141 | -0.8736 | -0.8824 | -0.9706 |
+#&gt; |.....................| -0.7235 | -0.8774 | -0.9559 | -0.7084 |
+#&gt; | U| 484.39828 | 91.47 | -5.220 | -0.8850 | -2.191 |
+#&gt; |.....................| -4.628 | 0.4535 | 0.9402 | 0.06215 |
+#&gt; |.....................| 0.8534 | 0.05821 | 0.7261 | 0.8104 |
+#&gt; |.....................| 1.357 | 0.9582 | 0.7886 | 1.409 |
+#&gt; | X|<span style='font-weight: bold;'> 484.39828</span> | 91.47 | 0.005407 | 0.2921 | 0.1118 |
+#&gt; |.....................| 0.009775 | 0.6115 | 0.9402 | 0.06215 |
+#&gt; |.....................| 0.8534 | 0.05821 | 0.7261 | 0.8104 |
+#&gt; |.....................| 1.357 | 0.9582 | 0.7886 | 1.409 |
+#&gt; | F| Forward Diff. | 34.75 | 1.847 | 0.1787 | 0.06647 |
+#&gt; |.....................| -0.03069 | 0.7556 | -13.39 | -5.638 |
+#&gt; |.....................| -2.842 | -0.7351 | -0.07352 | 4.648 |
+#&gt; |.....................| -7.153 | 0.4383 | 3.662 | -8.575 |
+#&gt; |<span style='font-weight: bold;'> 46</span>| 484.12389 | 0.9935 | -1.033 | -0.9083 | -0.9398 |
+#&gt; |.....................| -0.9861 | -0.8957 | -0.5972 | -0.7360 |
+#&gt; |.....................| -0.8127 | -0.8736 | -0.8818 | -0.9724 |
+#&gt; |.....................| -0.7196 | -0.8781 | -0.9577 | -0.7026 |
+#&gt; | U| 484.12389 | 90.89 | -5.221 | -0.8851 | -2.192 |
+#&gt; |.....................| -4.628 | 0.4532 | 0.9432 | 0.06218 |
+#&gt; |.....................| 0.8540 | 0.05821 | 0.7265 | 0.8087 |
+#&gt; |.....................| 1.361 | 0.9576 | 0.7871 | 1.416 |
+#&gt; | X|<span style='font-weight: bold;'> 484.12389</span> | 90.89 | 0.005400 | 0.2921 | 0.1117 |
+#&gt; |.....................| 0.009773 | 0.6114 | 0.9432 | 0.06218 |
+#&gt; |.....................| 0.8540 | 0.05821 | 0.7265 | 0.8087 |
+#&gt; |.....................| 1.361 | 0.9576 | 0.7871 | 1.416 |
+#&gt; | F| Forward Diff. | -12.23 | 1.776 | -0.1772 | 0.1286 |
+#&gt; |.....................| -0.003904 | 0.8005 | -13.23 | -5.967 |
+#&gt; |.....................| -2.801 | -0.5825 | -0.1993 | 4.126 |
+#&gt; |.....................| -6.930 | 0.4309 | 3.746 | -8.373 |
+#&gt; |<span style='font-weight: bold;'> 47</span>| 483.96910 | 0.9995 | -1.034 | -0.9082 | -0.9399 |
+#&gt; |.....................| -0.9861 | -0.8963 | -0.5897 | -0.7331 |
+#&gt; |.....................| -0.8111 | -0.8733 | -0.8815 | -0.9747 |
+#&gt; |.....................| -0.7157 | -0.8785 | -0.9598 | -0.6976 |
+#&gt; | U| 483.9691 | 91.44 | -5.222 | -0.8850 | -2.192 |
+#&gt; |.....................| -4.628 | 0.4529 | 0.9464 | 0.06226 |
+#&gt; |.....................| 0.8547 | 0.05822 | 0.7267 | 0.8067 |
+#&gt; |.....................| 1.366 | 0.9573 | 0.7854 | 1.423 |
+#&gt; | X|<span style='font-weight: bold;'> 483.9691</span> | 91.44 | 0.005394 | 0.2921 | 0.1117 |
+#&gt; |.....................| 0.009773 | 0.6113 | 0.9464 | 0.06226 |
+#&gt; |.....................| 0.8547 | 0.05822 | 0.7267 | 0.8067 |
+#&gt; |.....................| 1.366 | 0.9573 | 0.7854 | 1.423 |
+#&gt; | F| Forward Diff. | 31.42 | 1.822 | 0.1778 | 0.07033 |
+#&gt; |.....................| -0.01094 | 0.7681 | -13.66 | -5.343 |
+#&gt; |.....................| -2.704 | -0.6601 | -0.05834 | 4.483 |
+#&gt; |.....................| -6.846 | 0.3977 | 3.514 | -8.343 |
+#&gt; |<span style='font-weight: bold;'> 48</span>| 483.71026 | 0.9937 | -1.035 | -0.9084 | -0.9400 |
+#&gt; |.....................| -0.9863 | -0.8970 | -0.5817 | -0.7327 |
+#&gt; |.....................| -0.8099 | -0.8734 | -0.8808 | -0.9764 |
+#&gt; |.....................| -0.7120 | -0.8790 | -0.9614 | -0.6918 |
+#&gt; | U| 483.71026 | 90.90 | -5.224 | -0.8851 | -2.192 |
+#&gt; |.....................| -4.628 | 0.4526 | 0.9497 | 0.06228 |
+#&gt; |.....................| 0.8552 | 0.05822 | 0.7272 | 0.8052 |
+#&gt; |.....................| 1.370 | 0.9567 | 0.7840 | 1.430 |
+#&gt; | X|<span style='font-weight: bold;'> 483.71026</span> | 90.90 | 0.005386 | 0.2921 | 0.1117 |
+#&gt; |.....................| 0.009771 | 0.6112 | 0.9497 | 0.06228 |
+#&gt; |.....................| 0.8552 | 0.05822 | 0.7272 | 0.8052 |
+#&gt; |.....................| 1.370 | 0.9567 | 0.7840 | 1.430 |
+#&gt; | F| Forward Diff. | -11.41 | 1.753 | -0.1608 | 0.1222 |
+#&gt; |.....................| 0.01159 | 0.8050 | -10.44 | -3.810 |
+#&gt; |.....................| -1.727 | 0.1311 | 2.133 | 3.863 |
+#&gt; |.....................| -5.017 | 1.937 | 3.587 | -8.159 |
+#&gt; |<span style='font-weight: bold;'> 49</span>| 483.59835 | 1.000 | -1.037 | -0.9083 | -0.9401 |
+#&gt; |.....................| -0.9863 | -0.8977 | -0.5748 | -0.7309 |
+#&gt; |.....................| -0.8089 | -0.8737 | -0.8826 | -0.9789 |
+#&gt; |.....................| -0.7088 | -0.8807 | -0.9637 | -0.6861 |
+#&gt; | U| 483.59835 | 91.50 | -5.225 | -0.8850 | -2.192 |
+#&gt; |.....................| -4.628 | 0.4523 | 0.9525 | 0.06233 |
+#&gt; |.....................| 0.8556 | 0.05821 | 0.7260 | 0.8029 |
+#&gt; |.....................| 1.374 | 0.9551 | 0.7819 | 1.437 |
+#&gt; | X|<span style='font-weight: bold;'> 483.59835</span> | 91.50 | 0.005379 | 0.2921 | 0.1117 |
+#&gt; |.....................| 0.009771 | 0.6112 | 0.9525 | 0.06233 |
+#&gt; |.....................| 0.8556 | 0.05821 | 0.7260 | 0.8029 |
+#&gt; |.....................| 1.374 | 0.9551 | 0.7819 | 1.437 |
+#&gt; | F| Forward Diff. | 35.70 | 1.806 | 0.2381 | 0.06477 |
+#&gt; |.....................| 0.008951 | 0.7715 | -12.71 | -4.946 |
+#&gt; |.....................| -2.552 | -0.6506 | -0.07612 | 4.309 |
+#&gt; |.....................| -6.609 | 0.2622 | 3.318 | -8.104 |
+#&gt; |<span style='font-weight: bold;'> 50</span>| 483.34903 | 0.9946 | -1.038 | -0.9084 | -0.9402 |
+#&gt; |.....................| -0.9865 | -0.8986 | -0.5687 | -0.7321 |
+#&gt; |.....................| -0.8087 | -0.8746 | -0.8853 | -0.9811 |
+#&gt; |.....................| -0.7064 | -0.8834 | -0.9659 | -0.6790 |
+#&gt; | U| 483.34903 | 90.99 | -5.227 | -0.8851 | -2.192 |
+#&gt; |.....................| -4.629 | 0.4518 | 0.9551 | 0.06229 |
+#&gt; |.....................| 0.8557 | 0.05818 | 0.7240 | 0.8009 |
+#&gt; |.....................| 1.377 | 0.9526 | 0.7800 | 1.445 |
+#&gt; | X|<span style='font-weight: bold;'> 483.34903</span> | 90.99 | 0.005370 | 0.2921 | 0.1117 |
+#&gt; |.....................| 0.009769 | 0.6111 | 0.9551 | 0.06229 |
+#&gt; |.....................| 0.8557 | 0.05818 | 0.7240 | 0.8009 |
+#&gt; |.....................| 1.377 | 0.9526 | 0.7800 | 1.445 |
+#&gt; | F| Forward Diff. | -5.120 | 1.736 | -0.09503 | 0.1090 |
+#&gt; |.....................| 0.03046 | 0.8092 | -12.63 | -5.226 |
+#&gt; |.....................| -2.620 | -0.5304 | -0.3057 | 3.753 |
+#&gt; |.....................| -6.427 | 0.07650 | 3.398 | -7.915 |
+#&gt; |<span style='font-weight: bold;'> 51</span>| 483.15597 | 0.9980 | -1.040 | -0.9083 | -0.9402 |
+#&gt; |.....................| -0.9866 | -0.8991 | -0.5603 | -0.7286 |
+#&gt; |.....................| -0.8069 | -0.8742 | -0.8851 | -0.9836 |
+#&gt; |.....................| -0.7022 | -0.8834 | -0.9682 | -0.6737 |
+#&gt; | U| 483.15597 | 91.30 | -5.228 | -0.8851 | -2.192 |
+#&gt; |.....................| -4.629 | 0.4516 | 0.9585 | 0.06239 |
+#&gt; |.....................| 0.8564 | 0.05819 | 0.7241 | 0.7987 |
+#&gt; |.....................| 1.382 | 0.9525 | 0.7781 | 1.452 |
+#&gt; | X|<span style='font-weight: bold;'> 483.15597</span> | 91.30 | 0.005364 | 0.2921 | 0.1117 |
+#&gt; |.....................| 0.009769 | 0.6110 | 0.9585 | 0.06239 |
+#&gt; |.....................| 0.8564 | 0.05819 | 0.7241 | 0.7987 |
+#&gt; |.....................| 1.382 | 0.9525 | 0.7781 | 1.452 |
+#&gt; |<span style='font-weight: bold;'> 52</span>| 483.02721 | 1.004 | -1.042 | -0.9082 | -0.9404 |
+#&gt; |.....................| -0.9866 | -0.9001 | -0.5449 | -0.7222 |
+#&gt; |.....................| -0.8037 | -0.8736 | -0.8847 | -0.9882 |
+#&gt; |.....................| -0.6943 | -0.8835 | -0.9723 | -0.6641 |
+#&gt; | U| 483.02721 | 91.87 | -5.230 | -0.8850 | -2.192 |
+#&gt; |.....................| -4.629 | 0.4511 | 0.9649 | 0.06258 |
+#&gt; |.....................| 0.8577 | 0.05821 | 0.7244 | 0.7946 |
+#&gt; |.....................| 1.391 | 0.9524 | 0.7746 | 1.463 |
+#&gt; | X|<span style='font-weight: bold;'> 483.02721</span> | 91.87 | 0.005352 | 0.2921 | 0.1117 |
+#&gt; |.....................| 0.009768 | 0.6109 | 0.9649 | 0.06258 |
+#&gt; |.....................| 0.8577 | 0.05821 | 0.7244 | 0.7946 |
+#&gt; |.....................| 1.391 | 0.9524 | 0.7746 | 1.463 |
+#&gt; | F| Forward Diff. | 64.04 | 1.793 | 0.5284 | 0.01389 |
+#&gt; |.....................| 0.02898 | 0.7509 | -12.63 | -3.976 |
+#&gt; |.....................| -2.339 | -0.6213 | 0.1061 | 4.124 |
+#&gt; |.....................| -6.092 | 0.06517 | 2.880 | -7.726 |
+#&gt; |<span style='font-weight: bold;'> 53</span>| 482.23689 | 0.9946 | -1.047 | -0.9090 | -0.9407 |
+#&gt; |.....................| -0.9878 | -0.9036 | -0.5201 | -0.7284 |
+#&gt; |.....................| -0.8010 | -0.8752 | -0.8830 | -0.9901 |
+#&gt; |.....................| -0.6858 | -0.8831 | -0.9756 | -0.6451 |
+#&gt; | U| 482.23689 | 90.99 | -5.236 | -0.8857 | -2.192 |
+#&gt; |.....................| -4.630 | 0.4496 | 0.9752 | 0.06240 |
+#&gt; |.....................| 0.8589 | 0.05816 | 0.7257 | 0.7929 |
+#&gt; |.....................| 1.401 | 0.9528 | 0.7717 | 1.486 |
+#&gt; | X|<span style='font-weight: bold;'> 482.23689</span> | 90.99 | 0.005323 | 0.2920 | 0.1116 |
+#&gt; |.....................| 0.009757 | 0.6105 | 0.9752 | 0.06240 |
+#&gt; |.....................| 0.8589 | 0.05816 | 0.7257 | 0.7929 |
+#&gt; |.....................| 1.401 | 0.9528 | 0.7717 | 1.486 |
+#&gt; | F| Forward Diff. | -6.401 | 1.688 | -0.06693 | 0.1101 |
+#&gt; |.....................| 0.07752 | 0.8485 | -12.38 | -4.258 |
+#&gt; |.....................| -2.381 | -0.3971 | -0.4532 | 3.327 |
+#&gt; |.....................| -5.692 | 0.09795 | 3.049 | -7.221 |
+#&gt; |<span style='font-weight: bold;'> 54</span>| 481.84664 | 1.002 | -1.052 | -0.9094 | -0.9410 |
+#&gt; |.....................| -0.9885 | -0.9064 | -0.4925 | -0.7287 |
+#&gt; |.....................| -0.7974 | -0.8758 | -0.8811 | -0.9941 |
+#&gt; |.....................| -0.6765 | -0.8831 | -0.9802 | -0.6288 |
+#&gt; | U| 481.84664 | 91.67 | -5.240 | -0.8860 | -2.193 |
+#&gt; |.....................| -4.631 | 0.4482 | 0.9866 | 0.06239 |
+#&gt; |.....................| 0.8604 | 0.05815 | 0.7270 | 0.7893 |
+#&gt; |.....................| 1.412 | 0.9528 | 0.7678 | 1.506 |
+#&gt; | X|<span style='font-weight: bold;'> 481.84664</span> | 91.67 | 0.005298 | 0.2919 | 0.1116 |
+#&gt; |.....................| 0.009749 | 0.6102 | 0.9866 | 0.06239 |
+#&gt; |.....................| 0.8604 | 0.05815 | 0.7270 | 0.7893 |
+#&gt; |.....................| 1.412 | 0.9528 | 0.7678 | 1.506 |
+#&gt; | F| Forward Diff. | 47.13 | 1.726 | 0.4206 | 0.02536 |
+#&gt; |.....................| 0.06828 | 0.8062 | -11.83 | -3.346 |
+#&gt; |.....................| -2.102 | -0.4847 | -0.09759 | 3.731 |
+#&gt; |.....................| -5.096 | -0.5769 | 2.736 | -6.997 |
+#&gt; |<span style='font-weight: bold;'> 55</span>| 481.27209 | 0.9943 | -1.058 | -0.9105 | -0.9413 |
+#&gt; |.....................| -0.9900 | -0.9106 | -0.4653 | -0.7394 |
+#&gt; |.....................| -0.7957 | -0.8780 | -0.8782 | -0.9956 |
+#&gt; |.....................| -0.6736 | -0.8789 | -0.9829 | -0.6135 |
+#&gt; | U| 481.27209 | 90.96 | -5.246 | -0.8870 | -2.193 |
+#&gt; |.....................| -4.632 | 0.4464 | 0.9978 | 0.06208 |
+#&gt; |.....................| 0.8611 | 0.05808 | 0.7292 | 0.7879 |
+#&gt; |.....................| 1.416 | 0.9569 | 0.7655 | 1.525 |
+#&gt; | X|<span style='font-weight: bold;'> 481.27209</span> | 90.96 | 0.005268 | 0.2917 | 0.1116 |
+#&gt; |.....................| 0.009735 | 0.6098 | 0.9978 | 0.06208 |
+#&gt; |.....................| 0.8611 | 0.05808 | 0.7292 | 0.7879 |
+#&gt; |.....................| 1.416 | 0.9569 | 0.7655 | 1.525 |
+#&gt; | F| Forward Diff. | -10.35 | 1.643 | -0.1028 | 0.1091 |
+#&gt; |.....................| 0.1039 | 0.8949 | -11.59 | -3.607 |
+#&gt; |.....................| -2.172 | -0.3207 | -0.4703 | 3.042 |
+#&gt; |.....................| -5.188 | 0.5388 | 2.890 | -6.602 |
+#&gt; |<span style='font-weight: bold;'> 56</span>| 480.86800 | 0.9992 | -1.064 | -0.9113 | -0.9415 |
+#&gt; |.....................| -0.9915 | -0.9152 | -0.4371 | -0.7498 |
+#&gt; |.....................| -0.7937 | -0.8800 | -0.8752 | -0.9980 |
+#&gt; |.....................| -0.6700 | -0.8785 | -0.9867 | -0.5989 |
+#&gt; | U| 480.868 | 91.41 | -5.252 | -0.8877 | -2.193 |
+#&gt; |.....................| -4.634 | 0.4442 | 1.010 | 0.06178 |
+#&gt; |.....................| 0.8619 | 0.05803 | 0.7313 | 0.7858 |
+#&gt; |.....................| 1.420 | 0.9572 | 0.7622 | 1.543 |
+#&gt; | X|<span style='font-weight: bold;'> 480.868</span> | 91.41 | 0.005236 | 0.2916 | 0.1115 |
+#&gt; |.....................| 0.009720 | 0.6093 | 1.010 | 0.06178 |
+#&gt; |.....................| 0.8619 | 0.05803 | 0.7313 | 0.7858 |
+#&gt; |.....................| 1.420 | 0.9572 | 0.7622 | 1.543 |
+#&gt; |<span style='font-weight: bold;'> 57</span>| 480.18757 | 0.9994 | -1.075 | -0.9131 | -0.9420 |
+#&gt; |.....................| -0.9946 | -0.9242 | -0.3882 | -0.7756 |
+#&gt; |.....................| -0.7917 | -0.8845 | -0.8694 | -1.000 |
+#&gt; |.....................| -0.6674 | -0.8772 | -0.9919 | -0.5742 |
+#&gt; | U| 480.18757 | 91.43 | -5.264 | -0.8893 | -2.194 |
+#&gt; |.....................| -4.637 | 0.4401 | 1.030 | 0.06104 |
+#&gt; |.....................| 0.8627 | 0.05790 | 0.7356 | 0.7839 |
+#&gt; |.....................| 1.423 | 0.9585 | 0.7577 | 1.573 |
+#&gt; | X|<span style='font-weight: bold;'> 480.18757</span> | 91.43 | 0.005177 | 0.2913 | 0.1115 |
+#&gt; |.....................| 0.009690 | 0.6083 | 1.030 | 0.06104 |
+#&gt; |.....................| 0.8627 | 0.05790 | 0.7356 | 0.7839 |
+#&gt; |.....................| 1.423 | 0.9585 | 0.7577 | 1.573 |
+#&gt; |<span style='font-weight: bold;'> 58</span>| 477.33677 | 1.000 | -1.128 | -0.9215 | -0.9444 |
+#&gt; |.....................| -1.009 | -0.9662 | -0.1601 | -0.8958 |
+#&gt; |.....................| -0.7824 | -0.9055 | -0.8420 | -1.010 |
+#&gt; |.....................| -0.6551 | -0.8713 | -1.016 | -0.4591 |
+#&gt; | U| 477.33677 | 91.51 | -5.317 | -0.8967 | -2.196 |
+#&gt; |.....................| -4.651 | 0.4208 | 1.124 | 0.05757 |
+#&gt; |.....................| 0.8666 | 0.05729 | 0.7556 | 0.7749 |
+#&gt; |.....................| 1.438 | 0.9642 | 0.7367 | 1.713 |
+#&gt; | X|<span style='font-weight: bold;'> 477.33677</span> | 91.51 | 0.004910 | 0.2897 | 0.1112 |
+#&gt; |.....................| 0.009550 | 0.6037 | 1.124 | 0.05757 |
+#&gt; |.....................| 0.8666 | 0.05729 | 0.7556 | 0.7749 |
+#&gt; |.....................| 1.438 | 0.9642 | 0.7367 | 1.713 |
+#&gt; |<span style='font-weight: bold;'> 59</span>| 470.34077 | 1.005 | -1.340 | -0.9551 | -0.9536 |
+#&gt; |.....................| -1.067 | -1.134 | 0.7520 | -1.376 |
+#&gt; |.....................| -0.7448 | -0.9894 | -0.7326 | -1.050 |
+#&gt; |.....................| -0.6055 | -0.8475 | -1.115 | 0.001078 |
+#&gt; | U| 470.34077 | 91.93 | -5.528 | -0.9265 | -2.205 |
+#&gt; |.....................| -4.709 | 0.3439 | 1.502 | 0.04372 |
+#&gt; |.....................| 0.8821 | 0.05487 | 0.8354 | 0.7391 |
+#&gt; |.....................| 1.496 | 0.9871 | 0.6524 | 2.272 |
+#&gt; | X|<span style='font-weight: bold;'> 470.34077</span> | 91.93 | 0.003973 | 0.2836 | 0.1102 |
+#&gt; |.....................| 0.009011 | 0.5851 | 1.502 | 0.04372 |
+#&gt; |.....................| 0.8821 | 0.05487 | 0.8354 | 0.7391 |
+#&gt; |.....................| 1.496 | 0.9871 | 0.6524 | 2.272 |
+#&gt; | F| Forward Diff. | 26.15 | 0.9841 | -0.2917 | -0.5557 |
+#&gt; |.....................| 0.1743 | 0.07961 | -5.483 | -2.977 |
+#&gt; |.....................| -1.594 | -1.883 | 1.921 | 2.622 |
+#&gt; |.....................| -2.684 | 3.199 | -3.516 | -0.2713 |
+#&gt; |<span style='font-weight: bold;'> 60</span>| 503.34963 | 1.001 | -1.624 | -0.8890 | -0.8555 |
+#&gt; |.....................| -1.160 | -1.269 | 1.871 | -1.579 |
+#&gt; |.....................| -0.5570 | -0.7566 | -0.9888 | -1.205 |
+#&gt; |.....................| -0.4219 | -1.204 | -0.3205 | 0.003684 |
+#&gt; | U| 503.34963 | 91.54 | -5.813 | -0.8679 | -2.107 |
+#&gt; |.....................| -4.802 | 0.2817 | 1.965 | 0.03787 |
+#&gt; |.....................| 0.9599 | 0.06159 | 0.6484 | 0.5998 |
+#&gt; |.....................| 1.714 | 0.6438 | 1.334 | 2.275 |
+#&gt; | X|<span style='font-weight: bold;'> 503.34963</span> | 91.54 | 0.002989 | 0.2957 | 0.1216 |
+#&gt; |.....................| 0.008214 | 0.5700 | 1.965 | 0.03787 |
+#&gt; |.....................| 0.9599 | 0.06159 | 0.6484 | 0.5998 |
+#&gt; |.....................| 1.714 | 0.6438 | 1.334 | 2.275 |
+#&gt; |<span style='font-weight: bold;'> 61</span>| 469.52776 | 1.001 | -1.377 | -0.9480 | -0.9425 |
+#&gt; |.....................| -1.079 | -1.153 | 0.9014 | -1.405 |
+#&gt; |.....................| -0.7213 | -0.9635 | -0.7590 | -1.066 |
+#&gt; |.....................| -0.5863 | -0.9260 | -1.020 | 0.002305 |
+#&gt; | U| 469.52776 | 91.55 | -5.565 | -0.9203 | -2.194 |
+#&gt; |.....................| -4.721 | 0.3353 | 1.564 | 0.04288 |
+#&gt; |.....................| 0.8919 | 0.05562 | 0.8161 | 0.7248 |
+#&gt; |.....................| 1.519 | 0.9115 | 0.7335 | 2.274 |
+#&gt; | X|<span style='font-weight: bold;'> 469.52776</span> | 91.55 | 0.003829 | 0.2849 | 0.1114 |
+#&gt; |.....................| 0.008907 | 0.5831 | 1.564 | 0.04288 |
+#&gt; |.....................| 0.8919 | 0.05562 | 0.8161 | 0.7248 |
+#&gt; |.....................| 1.519 | 0.9115 | 0.7335 | 2.274 |
+#&gt; | F| Forward Diff. | -33.46 | 0.8466 | -0.2714 | -0.3437 |
+#&gt; |.....................| -0.005169 | 0.9674 | -4.363 | -2.175 |
+#&gt; |.....................| -0.4723 | -1.194 | 1.668 | 1.180 |
+#&gt; |.....................| -1.975 | -3.231 | 4.715 | 0.6860 |
+#&gt; |<span style='font-weight: bold;'> 62</span>| 468.69396 | 1.009 | -1.417 | -0.9407 | -0.9181 |
+#&gt; |.....................| -1.088 | -1.184 | 1.029 | -1.410 |
+#&gt; |.....................| -0.7106 | -0.9016 | -0.8502 | -1.110 |
+#&gt; |.....................| -0.5641 | -0.8957 | -1.025 | -0.08379 |
+#&gt; | U| 468.69396 | 92.28 | -5.606 | -0.9138 | -2.170 |
+#&gt; |.....................| -4.730 | 0.3207 | 1.617 | 0.04273 |
+#&gt; |.....................| 0.8963 | 0.05740 | 0.7496 | 0.6857 |
+#&gt; |.....................| 1.546 | 0.9407 | 0.7298 | 2.169 |
+#&gt; | X|<span style='font-weight: bold;'> 468.69396</span> | 92.28 | 0.003677 | 0.2862 | 0.1142 |
+#&gt; |.....................| 0.008826 | 0.5795 | 1.617 | 0.04273 |
+#&gt; |.....................| 0.8963 | 0.05740 | 0.7496 | 0.6857 |
+#&gt; |.....................| 1.546 | 0.9407 | 0.7298 | 2.169 |
+#&gt; | F| Forward Diff. | 44.64 | 0.7919 | 0.8591 | -0.3536 |
+#&gt; |.....................| -0.1337 | 0.2061 | -3.251 | 1.076 |
+#&gt; |.....................| 0.6486 | -0.6734 | -0.006662 | -4.031 |
+#&gt; |.....................| -0.9510 | -1.369 | 2.636 | 0.2207 |
+#&gt; |<span style='font-weight: bold;'> 63</span>| 468.25975 | 1.001 | -1.457 | -0.9435 | -0.8944 |
+#&gt; |.....................| -1.092 | -1.207 | 1.162 | -1.430 |
+#&gt; |.....................| -0.7163 | -0.8453 | -0.9089 | -1.031 |
+#&gt; |.....................| -0.5350 | -0.9084 | -1.055 | -0.1705 |
+#&gt; | U| 468.25975 | 91.62 | -5.645 | -0.9163 | -2.146 |
+#&gt; |.....................| -4.734 | 0.3104 | 1.671 | 0.04217 |
+#&gt; |.....................| 0.8939 | 0.05903 | 0.7067 | 0.7562 |
+#&gt; |.....................| 1.580 | 0.9284 | 0.7040 | 2.064 |
+#&gt; | X|<span style='font-weight: bold;'> 468.25975</span> | 91.62 | 0.003534 | 0.2857 | 0.1169 |
+#&gt; |.....................| 0.008791 | 0.5770 | 1.671 | 0.04217 |
+#&gt; |.....................| 0.8939 | 0.05903 | 0.7067 | 0.7562 |
+#&gt; |.....................| 1.580 | 0.9284 | 0.7040 | 2.064 |
+#&gt; | F| Forward Diff. | -27.10 | 0.6132 | -0.09159 | -0.08800 |
+#&gt; |.....................| -0.1078 | -0.3202 | -2.388 | 1.638 |
+#&gt; |.....................| 1.140 | 0.1171 | 0.1600 | 3.377 |
+#&gt; |.....................| 1.163 | -2.226 | -0.6898 | -0.6683 |
+#&gt; |<span style='font-weight: bold;'> 64</span>| 467.71969 | 1.007 | -1.501 | -0.9546 | -0.8725 |
+#&gt; |.....................| -1.088 | -1.196 | 1.309 | -1.518 |
+#&gt; |.....................| -0.7729 | -0.8084 | -0.9408 | -1.028 |
+#&gt; |.....................| -0.5596 | -0.8715 | -1.022 | -0.2167 |
+#&gt; | U| 467.71969 | 92.14 | -5.690 | -0.9262 | -2.124 |
+#&gt; |.....................| -4.730 | 0.3152 | 1.732 | 0.03962 |
+#&gt; |.....................| 0.8705 | 0.06009 | 0.6835 | 0.7588 |
+#&gt; |.....................| 1.551 | 0.9640 | 0.7321 | 2.007 |
+#&gt; | X|<span style='font-weight: bold;'> 467.71969</span> | 92.14 | 0.003381 | 0.2837 | 0.1195 |
+#&gt; |.....................| 0.008831 | 0.5781 | 1.732 | 0.03962 |
+#&gt; |.....................| 0.8705 | 0.06009 | 0.6835 | 0.7588 |
+#&gt; |.....................| 1.551 | 0.9640 | 0.7321 | 2.007 |
+#&gt; | F| Forward Diff. | 13.64 | 0.5263 | -0.09449 | -0.03300 |
+#&gt; |.....................| -0.2497 | 0.5177 | -1.944 | 1.719 |
+#&gt; |.....................| 0.02781 | -0.4546 | 0.1053 | 4.139 |
+#&gt; |.....................| 0.2369 | 0.8861 | 1.752 | -0.4404 |
+#&gt; |<span style='font-weight: bold;'> 65</span>| 467.30536 | 1.004 | -1.542 | -0.9574 | -0.8551 |
+#&gt; |.....................| -1.078 | -1.202 | 1.437 | -1.633 |
+#&gt; |.....................| -0.8162 | -0.7674 | -0.9588 | -1.081 |
+#&gt; |.....................| -0.5907 | -0.8860 | -1.037 | -0.2723 |
+#&gt; | U| 467.30536 | 91.87 | -5.731 | -0.9286 | -2.107 |
+#&gt; |.....................| -4.720 | 0.3124 | 1.785 | 0.03631 |
+#&gt; |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7116 |
+#&gt; |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
+#&gt; | X|<span style='font-weight: bold;'> 467.30536</span> | 91.87 | 0.003244 | 0.2832 | 0.1216 |
+#&gt; |.....................| 0.008917 | 0.5775 | 1.785 | 0.03631 |
+#&gt; |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7116 |
+#&gt; |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
+#&gt; | F| Forward Diff. | -28.84 | 0.5077 | -0.1377 | 0.05990 |
+#&gt; |.....................| -0.2272 | 0.7424 | -2.070 | -0.4026 |
+#&gt; |.....................| -0.6342 | -0.6074 | -0.7367 | -1.927 |
+#&gt; |.....................| -1.174 | -0.4282 | -0.2913 | -0.8226 |
+#&gt; |<span style='font-weight: bold;'> 66</span>| 467.70919 | 1.018 | -1.590 | -0.9528 | -0.8478 |
+#&gt; |.....................| -1.050 | -1.273 | 1.541 | -1.746 |
+#&gt; |.....................| -0.7981 | -0.6862 | -0.9431 | -1.082 |
+#&gt; |.....................| -0.5846 | -0.9179 | -1.062 | -0.3171 |
+#&gt; | U| 467.70919 | 93.14 | -5.778 | -0.9245 | -2.100 |
+#&gt; |.....................| -4.692 | 0.2799 | 1.829 | 0.03305 |
+#&gt; |.....................| 0.8601 | 0.06362 | 0.6818 | 0.7103 |
+#&gt; |.....................| 1.521 | 0.9193 | 0.6977 | 1.885 |
+#&gt; | X|<span style='font-weight: bold;'> 467.70919</span> | 93.14 | 0.003094 | 0.2840 | 0.1225 |
+#&gt; |.....................| 0.009168 | 0.5695 | 1.829 | 0.03305 |
+#&gt; |.....................| 0.8601 | 0.06362 | 0.6818 | 0.7103 |
+#&gt; |.....................| 1.521 | 0.9193 | 0.6977 | 1.885 |
+#&gt; |<span style='font-weight: bold;'> 67</span>| 467.47896 | 1.015 | -1.557 | -0.9559 | -0.8529 |
+#&gt; |.....................| -1.069 | -1.224 | 1.469 | -1.667 |
+#&gt; |.....................| -0.8105 | -0.7423 | -0.9538 | -1.081 |
+#&gt; |.....................| -0.5885 | -0.8957 | -1.045 | -0.2858 |
+#&gt; | U| 467.47896 | 92.90 | -5.746 | -0.9273 | -2.105 |
+#&gt; |.....................| -4.711 | 0.3023 | 1.799 | 0.03531 |
+#&gt; |.....................| 0.8550 | 0.06200 | 0.6740 | 0.7117 |
+#&gt; |.....................| 1.517 | 0.9407 | 0.7123 | 1.923 |
+#&gt; | X|<span style='font-weight: bold;'> 467.47896</span> | 92.90 | 0.003197 | 0.2835 | 0.1219 |
+#&gt; |.....................| 0.008994 | 0.5750 | 1.799 | 0.03531 |
+#&gt; |.....................| 0.8550 | 0.06200 | 0.6740 | 0.7117 |
+#&gt; |.....................| 1.517 | 0.9407 | 0.7123 | 1.923 |
+#&gt; |<span style='font-weight: bold;'> 68</span>| 467.47242 | 1.015 | -1.547 | -0.9569 | -0.8545 |
+#&gt; |.....................| -1.075 | -1.209 | 1.447 | -1.644 |
+#&gt; |.....................| -0.8142 | -0.7594 | -0.9570 | -1.080 |
+#&gt; |.....................| -0.5898 | -0.8890 | -1.040 | -0.2763 |
+#&gt; | U| 467.47242 | 92.83 | -5.736 | -0.9282 | -2.106 |
+#&gt; |.....................| -4.717 | 0.3092 | 1.790 | 0.03600 |
+#&gt; |.....................| 0.8534 | 0.06150 | 0.6716 | 0.7121 |
+#&gt; |.....................| 1.515 | 0.9472 | 0.7168 | 1.935 |
+#&gt; | X|<span style='font-weight: bold;'> 467.47242</span> | 92.83 | 0.003229 | 0.2833 | 0.1217 |
+#&gt; |.....................| 0.008942 | 0.5767 | 1.790 | 0.03600 |
+#&gt; |.....................| 0.8534 | 0.06150 | 0.6716 | 0.7121 |
+#&gt; |.....................| 1.515 | 0.9472 | 0.7168 | 1.935 |
+#&gt; |<span style='font-weight: bold;'> 69</span>| 467.34503 | 1.012 | -1.542 | -0.9574 | -0.8552 |
+#&gt; |.....................| -1.078 | -1.203 | 1.437 | -1.633 |
+#&gt; |.....................| -0.8160 | -0.7673 | -0.9586 | -1.080 |
+#&gt; |.....................| -0.5904 | -0.8859 | -1.037 | -0.2720 |
+#&gt; | U| 467.34503 | 92.56 | -5.731 | -0.9286 | -2.107 |
+#&gt; |.....................| -4.720 | 0.3123 | 1.786 | 0.03631 |
+#&gt; |.....................| 0.8527 | 0.06128 | 0.6705 | 0.7121 |
+#&gt; |.....................| 1.514 | 0.9501 | 0.7188 | 1.940 |
+#&gt; | X|<span style='font-weight: bold;'> 467.34503</span> | 92.56 | 0.003244 | 0.2832 | 0.1216 |
+#&gt; |.....................| 0.008918 | 0.5775 | 1.786 | 0.03631 |
+#&gt; |.....................| 0.8527 | 0.06128 | 0.6705 | 0.7121 |
+#&gt; |.....................| 1.514 | 0.9501 | 0.7188 | 1.940 |
+#&gt; |<span style='font-weight: bold;'> 70</span>| 467.25859 | 1.007 | -1.542 | -0.9574 | -0.8552 |
+#&gt; |.....................| -1.078 | -1.202 | 1.437 | -1.633 |
+#&gt; |.....................| -0.8161 | -0.7674 | -0.9587 | -1.080 |
+#&gt; |.....................| -0.5906 | -0.8860 | -1.037 | -0.2722 |
+#&gt; | U| 467.25859 | 92.16 | -5.731 | -0.9286 | -2.107 |
+#&gt; |.....................| -4.720 | 0.3124 | 1.785 | 0.03631 |
+#&gt; |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7118 |
+#&gt; |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
+#&gt; | X|<span style='font-weight: bold;'> 467.25859</span> | 92.16 | 0.003244 | 0.2832 | 0.1216 |
+#&gt; |.....................| 0.008918 | 0.5775 | 1.785 | 0.03631 |
+#&gt; |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7118 |
+#&gt; |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
+#&gt; | F| Forward Diff. | 0.4422 | 0.5213 | 0.04284 | 0.02840 |
+#&gt; |.....................| -0.2383 | 0.7531 | -2.043 | -0.07081 |
+#&gt; |.....................| -0.6548 | -0.6872 | -0.7073 | -1.773 |
+#&gt; |.....................| -1.488 | -0.4400 | -0.3907 | -0.8156 |
+#&gt; |<span style='font-weight: bold;'> 71</span>| 467.25330 | 1.007 | -1.543 | -0.9574 | -0.8552 |
+#&gt; |.....................| -1.078 | -1.203 | 1.439 | -1.633 |
+#&gt; |.....................| -0.8155 | -0.7668 | -0.9581 | -1.079 |
+#&gt; |.....................| -0.5893 | -0.8856 | -1.037 | -0.2714 |
+#&gt; | U| 467.2533 | 92.12 | -5.731 | -0.9287 | -2.107 |
+#&gt; |.....................| -4.720 | 0.3121 | 1.786 | 0.03631 |
+#&gt; |.....................| 0.8529 | 0.06129 | 0.6709 | 0.7133 |
+#&gt; |.....................| 1.516 | 0.9504 | 0.7190 | 1.941 |
+#&gt; | X|<span style='font-weight: bold;'> 467.2533</span> | 92.12 | 0.003243 | 0.2832 | 0.1216 |
+#&gt; |.....................| 0.008919 | 0.5774 | 1.786 | 0.03631 |
+#&gt; |.....................| 0.8529 | 0.06129 | 0.6709 | 0.7133 |
+#&gt; |.....................| 1.516 | 0.9504 | 0.7190 | 1.941 |
+#&gt; | F| Forward Diff. | -3.065 | 0.5175 | 0.01752 | 0.03302 |
+#&gt; |.....................| -0.2370 | 0.7457 | -1.985 | -0.01476 |
+#&gt; |.....................| -0.5869 | -0.6438 | -0.7222 | -1.672 |
+#&gt; |.....................| -1.086 | -0.3942 | -0.3461 | -0.8075 |
+#&gt; |<span style='font-weight: bold;'> 72</span>| 467.24583 | 1.008 | -1.544 | -0.9571 | -0.8551 |
+#&gt; |.....................| -1.077 | -1.206 | 1.442 | -1.635 |
+#&gt; |.....................| -0.8142 | -0.7642 | -0.9569 | -1.078 |
+#&gt; |.....................| -0.5901 | -0.8857 | -1.037 | -0.2715 |
+#&gt; | U| 467.24583 | 92.22 | -5.733 | -0.9284 | -2.107 |
+#&gt; |.....................| -4.719 | 0.3108 | 1.788 | 0.03626 |
+#&gt; |.....................| 0.8534 | 0.06137 | 0.6718 | 0.7144 |
+#&gt; |.....................| 1.515 | 0.9503 | 0.7191 | 1.941 |
+#&gt; | X|<span style='font-weight: bold;'> 467.24583</span> | 92.22 | 0.003238 | 0.2832 | 0.1216 |
+#&gt; |.....................| 0.008927 | 0.5771 | 1.788 | 0.03626 |
+#&gt; |.....................| 0.8534 | 0.06137 | 0.6718 | 0.7144 |
+#&gt; |.....................| 1.515 | 0.9503 | 0.7191 | 1.941 |
+#&gt; | F| Forward Diff. | 6.834 | 0.5162 | 0.08982 | 0.01752 |
+#&gt; |.....................| -0.2436 | 0.7158 | -2.020 | -0.04939 |
+#&gt; |.....................| -0.5459 | -0.6263 | -0.5712 | -1.499 |
+#&gt; |.....................| -1.429 | -0.4150 | -0.4098 | -0.8001 |
+#&gt; |<span style='font-weight: bold;'> 73</span>| 467.23713 | 1.007 | -1.546 | -0.9569 | -0.8551 |
+#&gt; |.....................| -1.076 | -1.209 | 1.446 | -1.636 |
+#&gt; |.....................| -0.8132 | -0.7618 | -0.9559 | -1.076 |
+#&gt; |.....................| -0.5919 | -0.8860 | -1.037 | -0.2716 |
+#&gt; | U| 467.23713 | 92.12 | -5.734 | -0.9282 | -2.107 |
+#&gt; |.....................| -4.718 | 0.3095 | 1.789 | 0.03621 |
+#&gt; |.....................| 0.8538 | 0.06143 | 0.6724 | 0.7154 |
+#&gt; |.....................| 1.513 | 0.9500 | 0.7191 | 1.941 |
+#&gt; | X|<span style='font-weight: bold;'> 467.23713</span> | 92.12 | 0.003233 | 0.2833 | 0.1216 |
+#&gt; |.....................| 0.008936 | 0.5768 | 1.789 | 0.03621 |
+#&gt; |.....................| 0.8538 | 0.06143 | 0.6724 | 0.7154 |
+#&gt; |.....................| 1.513 | 0.9500 | 0.7191 | 1.941 |
+#&gt; | F| Forward Diff. | -3.249 | 0.5067 | 0.04417 | 0.02698 |
+#&gt; |.....................| -0.2393 | 0.6753 | -1.942 | -0.1419 |
+#&gt; |.....................| -0.5001 | -0.5983 | -0.6679 | -1.518 |
+#&gt; |.....................| -1.576 | -0.4506 | -0.4091 | -0.8075 |
+#&gt; |<span style='font-weight: bold;'> 74</span>| 467.22826 | 1.008 | -1.548 | -0.9568 | -0.8550 |
+#&gt; |.....................| -1.074 | -1.212 | 1.450 | -1.638 |
+#&gt; |.....................| -0.8127 | -0.7593 | -0.9548 | -1.076 |
+#&gt; |.....................| -0.5925 | -0.8862 | -1.037 | -0.2718 |
+#&gt; | U| 467.22826 | 92.20 | -5.736 | -0.9281 | -2.107 |
+#&gt; |.....................| -4.716 | 0.3080 | 1.791 | 0.03615 |
+#&gt; |.....................| 0.8540 | 0.06151 | 0.6733 | 0.7160 |
+#&gt; |.....................| 1.512 | 0.9499 | 0.7192 | 1.940 |
+#&gt; | X|<span style='font-weight: bold;'> 467.22826</span> | 92.20 | 0.003227 | 0.2833 | 0.1216 |
+#&gt; |.....................| 0.008947 | 0.5764 | 1.791 | 0.03615 |
+#&gt; |.....................| 0.8540 | 0.06151 | 0.6733 | 0.7160 |
+#&gt; |.....................| 1.512 | 0.9499 | 0.7192 | 1.940 |
+#&gt; | F| Forward Diff. | 4.158 | 0.5052 | 0.09162 | 0.01474 |
+#&gt; |.....................| -0.2441 | 0.6411 | -1.927 | 0.008374 |
+#&gt; |.....................| -0.4204 | -0.5681 | -0.5325 | -1.398 |
+#&gt; |.....................| -1.545 | -0.4616 | -0.4623 | -0.8062 |
+#&gt; |<span style='font-weight: bold;'> 75</span>| 467.21798 | 1.007 | -1.549 | -0.9567 | -0.8549 |
+#&gt; |.....................| -1.073 | -1.215 | 1.453 | -1.641 |
+#&gt; |.....................| -0.8130 | -0.7568 | -0.9541 | -1.075 |
+#&gt; |.....................| -0.5920 | -0.8862 | -1.036 | -0.2722 |
+#&gt; | U| 467.21798 | 92.13 | -5.738 | -0.9280 | -2.107 |
+#&gt; |.....................| -4.715 | 0.3065 | 1.792 | 0.03607 |
+#&gt; |.....................| 0.8539 | 0.06158 | 0.6738 | 0.7163 |
+#&gt; |.....................| 1.512 | 0.9498 | 0.7195 | 1.940 |
+#&gt; | X|<span style='font-weight: bold;'> 467.21798</span> | 92.13 | 0.003221 | 0.2833 | 0.1216 |
+#&gt; |.....................| 0.008959 | 0.5760 | 1.792 | 0.03607 |
+#&gt; |.....................| 0.8539 | 0.06158 | 0.6738 | 0.7163 |
+#&gt; |.....................| 1.512 | 0.9498 | 0.7195 | 1.940 |
+#&gt; | F| Forward Diff. | -2.820 | 0.4989 | 0.05960 | 0.01935 |
+#&gt; |.....................| -0.2421 | 0.6061 | -1.914 | -0.2151 |
+#&gt; |.....................| -0.5103 | -0.6093 | -0.7625 | -1.437 |
+#&gt; |.....................| -1.510 | -0.4672 | -0.4489 | -0.8043 |
+#&gt; |<span style='font-weight: bold;'> 76</span>| 467.20848 | 1.008 | -1.551 | -0.9569 | -0.8547 |
+#&gt; |.....................| -1.072 | -1.218 | 1.456 | -1.643 |
+#&gt; |.....................| -0.8130 | -0.7539 | -0.9520 | -1.075 |
+#&gt; |.....................| -0.5920 | -0.8859 | -1.036 | -0.2725 |
+#&gt; | U| 467.20848 | 92.20 | -5.740 | -0.9282 | -2.106 |
+#&gt; |.....................| -4.714 | 0.3053 | 1.793 | 0.03601 |
+#&gt; |.....................| 0.8539 | 0.06166 | 0.6753 | 0.7165 |
+#&gt; |.....................| 1.512 | 0.9501 | 0.7200 | 1.939 |
+#&gt; | X|<span style='font-weight: bold;'> 467.20848</span> | 92.20 | 0.003215 | 0.2833 | 0.1217 |
+#&gt; |.....................| 0.008973 | 0.5757 | 1.793 | 0.03601 |
+#&gt; |.....................| 0.8539 | 0.06166 | 0.6753 | 0.7165 |
+#&gt; |.....................| 1.512 | 0.9501 | 0.7200 | 1.939 |
+#&gt; | F| Forward Diff. | 3.706 | 0.4993 | 0.1020 | 0.01046 |
+#&gt; |.....................| -0.2448 | 0.5847 | -1.899 | -0.1702 |
+#&gt; |.....................| -0.3837 | -0.5516 | -0.5275 | -1.370 |
+#&gt; |.....................| -1.509 | -0.4527 | -0.4630 | -0.7991 |
+#&gt; |<span style='font-weight: bold;'> 77</span>| 467.20140 | 1.007 | -1.554 | -0.9572 | -0.8545 |
+#&gt; |.....................| -1.070 | -1.221 | 1.459 | -1.644 |
+#&gt; |.....................| -0.8137 | -0.7511 | -0.9495 | -1.075 |
+#&gt; |.....................| -0.5926 | -0.8856 | -1.035 | -0.2726 |
+#&gt; | U| 467.2014 | 92.12 | -5.742 | -0.9285 | -2.106 |
+#&gt; |.....................| -4.712 | 0.3041 | 1.795 | 0.03600 |
+#&gt; |.....................| 0.8536 | 0.06174 | 0.6772 | 0.7169 |
+#&gt; |.....................| 1.512 | 0.9504 | 0.7205 | 1.939 |
+#&gt; | X|<span style='font-weight: bold;'> 467.2014</span> | 92.12 | 0.003207 | 0.2832 | 0.1217 |
+#&gt; |.....................| 0.008990 | 0.5754 | 1.795 | 0.03600 |
+#&gt; |.....................| 0.8536 | 0.06174 | 0.6772 | 0.7169 |
+#&gt; |.....................| 1.512 | 0.9504 | 0.7205 | 1.939 |
+#&gt; | F| Forward Diff. | -4.697 | 0.4875 | 0.03394 | 0.01314 |
+#&gt; |.....................| -0.2450 | 0.5527 | -1.903 | -0.2230 |
+#&gt; |.....................| -0.3367 | -0.5055 | -0.4386 | -1.334 |
+#&gt; |.....................| -1.570 | -0.4518 | -0.4312 | -0.7987 |
+#&gt; |<span style='font-weight: bold;'> 78</span>| 467.19155 | 1.008 | -1.556 | -0.9574 | -0.8545 |
+#&gt; |.....................| -1.067 | -1.224 | 1.462 | -1.645 |
+#&gt; |.....................| -0.8159 | -0.7492 | -0.9499 | -1.074 |
+#&gt; |.....................| -0.5924 | -0.8858 | -1.035 | -0.2722 |
+#&gt; | U| 467.19155 | 92.18 | -5.745 | -0.9286 | -2.106 |
+#&gt; |.....................| -4.709 | 0.3027 | 1.796 | 0.03596 |
+#&gt; |.....................| 0.8527 | 0.06180 | 0.6768 | 0.7173 |
+#&gt; |.....................| 1.512 | 0.9502 | 0.7208 | 1.940 |
+#&gt; | X|<span style='font-weight: bold;'> 467.19155</span> | 92.18 | 0.003200 | 0.2832 | 0.1217 |
+#&gt; |.....................| 0.009010 | 0.5751 | 1.796 | 0.03596 |
+#&gt; |.....................| 0.8527 | 0.06180 | 0.6768 | 0.7173 |
+#&gt; |.....................| 1.512 | 0.9502 | 0.7208 | 1.940 |
+#&gt; | F| Forward Diff. | 2.102 | 0.4867 | 0.07498 | 0.004893 |
+#&gt; |.....................| -0.2442 | 0.5250 | -1.879 | -0.1740 |
+#&gt; |.....................| -0.3775 | -0.5383 | -0.4109 | -1.255 |
+#&gt; |.....................| -1.562 | -0.4584 | -0.4426 | -0.7882 |
+#&gt; |<span style='font-weight: bold;'> 79</span>| 467.18237 | 1.007 | -1.558 | -0.9574 | -0.8544 |
+#&gt; |.....................| -1.065 | -1.226 | 1.465 | -1.647 |
+#&gt; |.....................| -0.8177 | -0.7470 | -0.9510 | -1.074 |
+#&gt; |.....................| -0.5912 | -0.8859 | -1.035 | -0.2717 |
+#&gt; | U| 467.18237 | 92.12 | -5.747 | -0.9286 | -2.106 |
+#&gt; |.....................| -4.707 | 0.3016 | 1.797 | 0.03591 |
+#&gt; |.....................| 0.8519 | 0.06186 | 0.6761 | 0.7177 |
+#&gt; |.....................| 1.513 | 0.9501 | 0.7212 | 1.940 |
+#&gt; | X|<span style='font-weight: bold;'> 467.18237</span> | 92.12 | 0.003193 | 0.2832 | 0.1217 |
+#&gt; |.....................| 0.009031 | 0.5748 | 1.797 | 0.03591 |
+#&gt; |.....................| 0.8519 | 0.06186 | 0.6761 | 0.7177 |
+#&gt; |.....................| 1.513 | 0.9501 | 0.7212 | 1.940 |
+#&gt; | F| Forward Diff. | -4.940 | 0.4761 | 0.03110 | 0.006161 |
+#&gt; |.....................| -0.2415 | 0.4988 | -1.880 | -0.2651 |
+#&gt; |.....................| -0.3787 | -0.5263 | -0.4799 | -1.241 |
+#&gt; |.....................| -1.481 | -0.4641 | -0.4124 | -0.7761 |
+#&gt; |<span style='font-weight: bold;'> 80</span>| 467.17113 | 1.008 | -1.561 | -0.9574 | -0.8542 |
+#&gt; |.....................| -1.062 | -1.228 | 1.469 | -1.648 |
+#&gt; |.....................| -0.8192 | -0.7442 | -0.9515 | -1.074 |
+#&gt; |.....................| -0.5909 | -0.8858 | -1.034 | -0.2714 |
+#&gt; | U| 467.17113 | 92.19 | -5.749 | -0.9286 | -2.106 |
+#&gt; |.....................| -4.704 | 0.3008 | 1.799 | 0.03586 |
+#&gt; |.....................| 0.8513 | 0.06194 | 0.6757 | 0.7179 |
+#&gt; |.....................| 1.514 | 0.9502 | 0.7215 | 1.941 |
+#&gt; | X|<span style='font-weight: bold;'> 467.17113</span> | 92.19 | 0.003185 | 0.2832 | 0.1217 |
+#&gt; |.....................| 0.009056 | 0.5746 | 1.799 | 0.03586 |
+#&gt; |.....................| 0.8513 | 0.06194 | 0.6757 | 0.7179 |
+#&gt; |.....................| 1.514 | 0.9502 | 0.7215 | 1.941 |
+#&gt; |<span style='font-weight: bold;'> 81</span>| 467.15723 | 1.008 | -1.564 | -0.9575 | -0.8538 |
+#&gt; |.....................| -1.058 | -1.230 | 1.473 | -1.651 |
+#&gt; |.....................| -0.8215 | -0.7400 | -0.9524 | -1.074 |
+#&gt; |.....................| -0.5906 | -0.8857 | -1.034 | -0.2712 |
+#&gt; | U| 467.15723 | 92.19 | -5.753 | -0.9287 | -2.106 |
+#&gt; |.....................| -4.700 | 0.2996 | 1.800 | 0.03578 |
+#&gt; |.....................| 0.8504 | 0.06206 | 0.6750 | 0.7179 |
+#&gt; |.....................| 1.514 | 0.9503 | 0.7219 | 1.941 |
+#&gt; | X|<span style='font-weight: bold;'> 467.15723</span> | 92.19 | 0.003173 | 0.2832 | 0.1218 |
+#&gt; |.....................| 0.009093 | 0.5743 | 1.800 | 0.03578 |
+#&gt; |.....................| 0.8504 | 0.06206 | 0.6750 | 0.7179 |
+#&gt; |.....................| 1.514 | 0.9503 | 0.7219 | 1.941 |
+#&gt; |<span style='font-weight: bold;'> 82</span>| 467.09153 | 1.008 | -1.583 | -0.9578 | -0.8521 |
+#&gt; |.....................| -1.038 | -1.244 | 1.497 | -1.664 |
+#&gt; |.....................| -0.8331 | -0.7187 | -0.9572 | -1.074 |
+#&gt; |.....................| -0.5894 | -0.8854 | -1.031 | -0.2699 |
+#&gt; | U| 467.09153 | 92.20 | -5.772 | -0.9290 | -2.104 |
+#&gt; |.....................| -4.680 | 0.2934 | 1.810 | 0.03540 |
+#&gt; |.....................| 0.8456 | 0.06268 | 0.6715 | 0.7181 |
+#&gt; |.....................| 1.516 | 0.9506 | 0.7239 | 1.943 |
+#&gt; | X|<span style='font-weight: bold;'> 467.09153</span> | 92.20 | 0.003114 | 0.2831 | 0.1220 |
+#&gt; |.....................| 0.009282 | 0.5728 | 1.810 | 0.03540 |
+#&gt; |.....................| 0.8456 | 0.06268 | 0.6715 | 0.7181 |
+#&gt; |.....................| 1.516 | 0.9506 | 0.7239 | 1.943 |
+#&gt; |<span style='font-weight: bold;'> 83</span>| 466.89701 | 1.009 | -1.658 | -0.9591 | -0.8451 |
+#&gt; |.....................| -0.9556 | -1.297 | 1.590 | -1.717 |
+#&gt; |.....................| -0.8794 | -0.6338 | -0.9760 | -1.073 |
+#&gt; |.....................| -0.5844 | -0.8840 | -1.022 | -0.2647 |
+#&gt; | U| 466.89701 | 92.27 | -5.846 | -0.9301 | -2.097 |
+#&gt; |.....................| -4.598 | 0.2688 | 1.849 | 0.03388 |
+#&gt; |.....................| 0.8264 | 0.06513 | 0.6578 | 0.7186 |
+#&gt; |.....................| 1.521 | 0.9519 | 0.7320 | 1.949 |
+#&gt; | X|<span style='font-weight: bold;'> 466.89701</span> | 92.27 | 0.002890 | 0.2829 | 0.1228 |
+#&gt; |.....................| 0.01008 | 0.5668 | 1.849 | 0.03388 |
+#&gt; |.....................| 0.8264 | 0.06513 | 0.6578 | 0.7186 |
+#&gt; |.....................| 1.521 | 0.9519 | 0.7320 | 1.949 |
+#&gt; |<span style='font-weight: bold;'> 84</span>| 466.81525 | 1.010 | -1.758 | -0.9608 | -0.8357 |
+#&gt; |.....................| -0.8455 | -1.369 | 1.715 | -1.787 |
+#&gt; |.....................| -0.9414 | -0.5201 | -1.001 | -1.072 |
+#&gt; |.....................| -0.5775 | -0.8822 | -1.009 | -0.2576 |
+#&gt; | U| 466.81525 | 92.41 | -5.946 | -0.9316 | -2.087 |
+#&gt; |.....................| -4.488 | 0.2358 | 1.901 | 0.03185 |
+#&gt; |.....................| 0.8007 | 0.06841 | 0.6394 | 0.7195 |
+#&gt; |.....................| 1.530 | 0.9537 | 0.7428 | 1.958 |
+#&gt; | X|<span style='font-weight: bold;'> 466.81525</span> | 92.41 | 0.002615 | 0.2826 | 0.1240 |
+#&gt; |.....................| 0.01125 | 0.5587 | 1.901 | 0.03185 |
+#&gt; |.....................| 0.8007 | 0.06841 | 0.6394 | 0.7195 |
+#&gt; |.....................| 1.530 | 0.9537 | 0.7428 | 1.958 |
+#&gt; | F| Forward Diff. | 1.005 | 0.03859 | 0.3281 | -0.1495 |
+#&gt; |.....................| 0.1126 | -0.4190 | -0.9638 | -1.159 |
+#&gt; |.....................| -0.4187 | -0.1084 | -1.236 | 1.865 |
+#&gt; |.....................| -0.3960 | -0.4043 | -0.1671 | 0.1635 |
+#&gt; |<span style='font-weight: bold;'> 85</span>| 467.22945 | 1.009 | -1.931 | -1.059 | -0.7851 |
+#&gt; |.....................| -0.6667 | -1.418 | 1.962 | -1.804 |
+#&gt; |.....................| -1.038 | -0.3298 | -0.7816 | -1.157 |
+#&gt; |.....................| -0.5368 | -0.8226 | -0.9633 | -0.3812 |
+#&gt; | U| 467.22945 | 92.33 | -6.120 | -1.019 | -2.037 |
+#&gt; |.....................| -4.309 | 0.2137 | 2.003 | 0.03136 |
+#&gt; |.....................| 0.7606 | 0.07390 | 0.7997 | 0.6429 |
+#&gt; |.....................| 1.578 | 1.011 | 0.7823 | 1.807 |
+#&gt; | X|<span style='font-weight: bold;'> 467.22945</span> | 92.33 | 0.002199 | 0.2652 | 0.1304 |
+#&gt; |.....................| 0.01345 | 0.5532 | 2.003 | 0.03136 |
+#&gt; |.....................| 0.7606 | 0.07390 | 0.7997 | 0.6429 |
+#&gt; |.....................| 1.578 | 1.011 | 0.7823 | 1.807 |
+#&gt; |<span style='font-weight: bold;'> 86</span>| 466.68655 | 1.009 | -1.812 | -0.9919 | -0.8198 |
+#&gt; |.....................| -0.7896 | -1.384 | 1.793 | -1.792 |
+#&gt; |.....................| -0.9716 | -0.4604 | -0.9317 | -1.100 |
+#&gt; |.....................| -0.5645 | -0.8633 | -0.9948 | -0.2964 |
+#&gt; | U| 466.68655 | 92.33 | -6.001 | -0.9592 | -2.072 |
+#&gt; |.....................| -4.432 | 0.2290 | 1.933 | 0.03172 |
+#&gt; |.....................| 0.7883 | 0.07013 | 0.6901 | 0.6945 |
+#&gt; |.....................| 1.545 | 0.9719 | 0.7553 | 1.910 |
+#&gt; | X|<span style='font-weight: bold;'> 466.68655</span> | 92.33 | 0.002477 | 0.2770 | 0.1260 |
+#&gt; |.....................| 0.01190 | 0.5570 | 1.933 | 0.03172 |
+#&gt; |.....................| 0.7883 | 0.07013 | 0.6901 | 0.6945 |
+#&gt; |.....................| 1.545 | 0.9719 | 0.7553 | 1.910 |
+#&gt; | F| Forward Diff. | -11.18 | 0.05254 | -0.8763 | -0.07569 |
+#&gt; |.....................| 0.1998 | -0.2059 | -0.4605 | -0.7124 |
+#&gt; |.....................| -0.3271 | 0.07217 | 0.9692 | 1.710 |
+#&gt; |.....................| -0.7229 | 0.7265 | 0.2517 | -0.09129 |
+#&gt; |<span style='font-weight: bold;'> 87</span>| 466.82655 | 1.009 | -1.865 | -0.9192 | -0.7946 |
+#&gt; |.....................| -0.7769 | -1.362 | 1.859 | -1.827 |
+#&gt; |.....................| -0.9838 | -0.4392 | -0.9155 | -1.146 |
+#&gt; |.....................| -0.4995 | -0.8511 | -1.000 | -0.3560 |
+#&gt; | U| 466.82655 | 92.34 | -6.054 | -0.8947 | -2.046 |
+#&gt; |.....................| -4.419 | 0.2394 | 1.960 | 0.03072 |
+#&gt; |.....................| 0.7832 | 0.07074 | 0.7019 | 0.6527 |
+#&gt; |.....................| 1.622 | 0.9836 | 0.7506 | 1.838 |
+#&gt; | X|<span style='font-weight: bold;'> 466.82655</span> | 92.34 | 0.002349 | 0.2901 | 0.1292 |
+#&gt; |.....................| 0.01205 | 0.5596 | 1.960 | 0.03072 |
+#&gt; |.....................| 0.7832 | 0.07074 | 0.7019 | 0.6527 |
+#&gt; |.....................| 1.622 | 0.9836 | 0.7506 | 1.838 |
+#&gt; |<span style='font-weight: bold;'> 88</span>| 466.65072 | 1.010 | -1.827 | -0.9719 | -0.8129 |
+#&gt; |.....................| -0.7861 | -1.378 | 1.811 | -1.801 |
+#&gt; |.....................| -0.9749 | -0.4546 | -0.9274 | -1.113 |
+#&gt; |.....................| -0.5467 | -0.8600 | -0.9963 | -0.3127 |
+#&gt; | U| 466.65072 | 92.43 | -6.015 | -0.9415 | -2.065 |
+#&gt; |.....................| -4.428 | 0.2318 | 1.940 | 0.03144 |
+#&gt; |.....................| 0.7869 | 0.07030 | 0.6933 | 0.6830 |
+#&gt; |.....................| 1.566 | 0.9750 | 0.7540 | 1.891 |
+#&gt; | X|<span style='font-weight: bold;'> 466.65072</span> | 92.43 | 0.002441 | 0.2806 | 0.1269 |
+#&gt; |.....................| 0.01194 | 0.5577 | 1.940 | 0.03144 |
+#&gt; |.....................| 0.7869 | 0.07030 | 0.6933 | 0.6830 |
+#&gt; |.....................| 1.566 | 0.9750 | 0.7540 | 1.891 |
+#&gt; | F| Forward Diff. | -1.340 | 0.07863 | 0.1180 | -0.03302 |
+#&gt; |.....................| 0.1973 | -0.03638 | -0.4314 | -0.7320 |
+#&gt; |.....................| -0.3719 | 0.04356 | 0.7597 | 1.009 |
+#&gt; |.....................| 0.3079 | 0.4883 | -0.4019 | -0.3069 |
+#&gt; |<span style='font-weight: bold;'> 89</span>| 466.64054 | 1.012 | -1.843 | -0.9769 | -0.8069 |
+#&gt; |.....................| -0.7968 | -1.376 | 1.833 | -1.786 |
+#&gt; |.....................| -0.9571 | -0.4600 | -0.9463 | -1.118 |
+#&gt; |.....................| -0.5553 | -0.8554 | -0.9954 | -0.3119 |
+#&gt; | U| 466.64054 | 92.56 | -6.031 | -0.9459 | -2.059 |
+#&gt; |.....................| -4.439 | 0.2329 | 1.949 | 0.03189 |
+#&gt; |.....................| 0.7943 | 0.07014 | 0.6795 | 0.6783 |
+#&gt; |.....................| 1.556 | 0.9795 | 0.7548 | 1.892 |
+#&gt; | X|<span style='font-weight: bold;'> 466.64054</span> | 92.56 | 0.002403 | 0.2797 | 0.1276 |
+#&gt; |.....................| 0.01181 | 0.5580 | 1.949 | 0.03189 |
+#&gt; |.....................| 0.7943 | 0.07014 | 0.6795 | 0.6783 |
+#&gt; |.....................| 1.556 | 0.9795 | 0.7548 | 1.892 |
+#&gt; | F| Forward Diff. | 13.35 | 0.06546 | -0.02976 | 0.01632 |
+#&gt; |.....................| 0.1680 | -0.06031 | -0.2101 | 0.2297 |
+#&gt; |.....................| -0.01975 | 0.1913 | 0.1108 | 0.6100 |
+#&gt; |.....................| -0.008263 | 1.320 | 0.06198 | -0.2490 |
+#&gt; |<span style='font-weight: bold;'> 90</span>| 466.63994 | 1.010 | -1.856 | -0.9836 | -0.8023 |
+#&gt; |.....................| -0.8121 | -1.369 | 1.859 | -1.781 |
+#&gt; |.....................| -0.9548 | -0.4699 | -0.9506 | -1.117 |
+#&gt; |.....................| -0.5644 | -0.8726 | -1.009 | -0.3176 |
+#&gt; | U| 466.63994 | 92.43 | -6.045 | -0.9518 | -2.054 |
+#&gt; |.....................| -4.454 | 0.2360 | 1.960 | 0.03203 |
+#&gt; |.....................| 0.7952 | 0.06986 | 0.6763 | 0.6795 |
+#&gt; |.....................| 1.545 | 0.9629 | 0.7430 | 1.885 |
+#&gt; | X|<span style='font-weight: bold;'> 466.63994</span> | 92.43 | 0.002371 | 0.2785 | 0.1282 |
+#&gt; |.....................| 0.01163 | 0.5587 | 1.960 | 0.03203 |
+#&gt; |.....................| 0.7952 | 0.06986 | 0.6763 | 0.6795 |
+#&gt; |.....................| 1.545 | 0.9629 | 0.7430 | 1.885 |
+#&gt; | F| Forward Diff. | 0.1431 | 0.02593 | -0.4247 | 0.08835 |
+#&gt; |.....................| 0.1490 | -0.08497 | 0.03702 | 0.4153 |
+#&gt; |.....................| -0.04754 | 0.2015 | 0.06787 | -0.3581 |
+#&gt; |.....................| -0.4069 | 0.09362 | -0.9227 | -0.5264 |
+#&gt; |<span style='font-weight: bold;'> 91</span>| 466.65402 | 1.008 | -1.856 | -0.9767 | -0.8037 |
+#&gt; |.....................| -0.8145 | -1.367 | 1.858 | -1.788 |
+#&gt; |.....................| -0.9540 | -0.4731 | -0.9517 | -1.111 |
+#&gt; |.....................| -0.5579 | -0.8741 | -0.9943 | -0.3092 |
+#&gt; | U| 466.65402 | 92.22 | -6.045 | -0.9458 | -2.055 |
+#&gt; |.....................| -4.457 | 0.2367 | 1.960 | 0.03184 |
+#&gt; |.....................| 0.7955 | 0.06976 | 0.6755 | 0.6846 |
+#&gt; |.....................| 1.553 | 0.9615 | 0.7557 | 1.895 |
+#&gt; | X|<span style='font-weight: bold;'> 466.65402</span> | 92.22 | 0.002370 | 0.2797 | 0.1280 |
+#&gt; |.....................| 0.01160 | 0.5589 | 1.960 | 0.03184 |
+#&gt; |.....................| 0.7955 | 0.06976 | 0.6755 | 0.6846 |
+#&gt; |.....................| 1.553 | 0.9615 | 0.7557 | 1.895 |
+#&gt; |<span style='font-weight: bold;'> 92</span>| 466.63541 | 1.010 | -1.856 | -0.9812 | -0.8028 |
+#&gt; |.....................| -0.8129 | -1.368 | 1.858 | -1.783 |
+#&gt; |.....................| -0.9545 | -0.4710 | -0.9509 | -1.115 |
+#&gt; |.....................| -0.5622 | -0.8731 | -1.004 | -0.3147 |
+#&gt; | U| 466.63541 | 92.36 | -6.045 | -0.9498 | -2.055 |
+#&gt; |.....................| -4.455 | 0.2363 | 1.960 | 0.03197 |
+#&gt; |.....................| 0.7953 | 0.06982 | 0.6761 | 0.6812 |
+#&gt; |.....................| 1.548 | 0.9624 | 0.7474 | 1.888 |
+#&gt; | X|<span style='font-weight: bold;'> 466.63541</span> | 92.36 | 0.002371 | 0.2789 | 0.1281 |
+#&gt; |.....................| 0.01162 | 0.5588 | 1.960 | 0.03197 |
+#&gt; |.....................| 0.7953 | 0.06982 | 0.6761 | 0.6812 |
+#&gt; |.....................| 1.548 | 0.9624 | 0.7474 | 1.888 |
+#&gt; | F| Forward Diff. | -7.597 | 0.01585 | -0.3721 | 0.09081 |
+#&gt; |.....................| 0.1473 | -0.05128 | 0.01723 | 0.2650 |
+#&gt; |.....................| -0.04930 | 0.2121 | 0.3911 | -0.1952 |
+#&gt; |.....................| -0.2951 | 0.01195 | -0.4116 | -0.4404 |
+#&gt; |<span style='font-weight: bold;'> 93</span>| 466.62967 | 1.010 | -1.857 | -0.9822 | -0.8038 |
+#&gt; |.....................| -0.8179 | -1.367 | 1.859 | -1.785 |
+#&gt; |.....................| -0.9524 | -0.4748 | -0.9515 | -1.114 |
+#&gt; |.....................| -0.5617 | -0.8740 | -1.004 | -0.3130 |
+#&gt; | U| 466.62967 | 92.43 | -6.045 | -0.9507 | -2.056 |
+#&gt; |.....................| -4.460 | 0.2370 | 1.960 | 0.03192 |
+#&gt; |.....................| 0.7962 | 0.06971 | 0.6756 | 0.6815 |
+#&gt; |.....................| 1.548 | 0.9616 | 0.7476 | 1.890 |
+#&gt; | X|<span style='font-weight: bold;'> 466.62967</span> | 92.43 | 0.002369 | 0.2787 | 0.1280 |
+#&gt; |.....................| 0.01156 | 0.5590 | 1.960 | 0.03192 |
+#&gt; |.....................| 0.7962 | 0.06971 | 0.6756 | 0.6815 |
+#&gt; |.....................| 1.548 | 0.9616 | 0.7476 | 1.890 |
+#&gt; | F| Forward Diff. | 0.1737 | 0.01712 | -0.3712 | 0.07555 |
+#&gt; |.....................| 0.1320 | -0.03330 | -0.1756 | 0.3015 |
+#&gt; |.....................| -0.06297 | 0.1717 | 0.09645 | -0.1674 |
+#&gt; |.....................| -0.2756 | -0.01624 | -0.3459 | -0.4307 |
+#&gt; |<span style='font-weight: bold;'> 94</span>| 466.62779 | 1.010 | -1.856 | -0.9797 | -0.8047 |
+#&gt; |.....................| -0.8221 | -1.366 | 1.862 | -1.786 |
+#&gt; |.....................| -0.9500 | -0.4779 | -0.9517 | -1.113 |
+#&gt; |.....................| -0.5623 | -0.8742 | -1.003 | -0.3111 |
+#&gt; | U| 466.62779 | 92.40 | -6.045 | -0.9484 | -2.056 |
+#&gt; |.....................| -4.464 | 0.2375 | 1.961 | 0.03188 |
+#&gt; |.....................| 0.7972 | 0.06963 | 0.6755 | 0.6823 |
+#&gt; |.....................| 1.548 | 0.9614 | 0.7480 | 1.893 |
+#&gt; | X|<span style='font-weight: bold;'> 466.62779</span> | 92.40 | 0.002370 | 0.2792 | 0.1279 |
+#&gt; |.....................| 0.01152 | 0.5591 | 1.961 | 0.03188 |
+#&gt; |.....................| 0.7972 | 0.06963 | 0.6755 | 0.6823 |
+#&gt; |.....................| 1.548 | 0.9614 | 0.7480 | 1.893 |
+#&gt; | F| Forward Diff. | -2.926 | 0.01199 | -0.2808 | 0.07297 |
+#&gt; |.....................| 0.1250 | -0.02504 | 0.02207 | 0.2419 |
+#&gt; |.....................| -0.03068 | 0.1983 | 0.3271 | -0.08125 |
+#&gt; |.....................| -0.2841 | -0.05347 | -0.2873 | -0.3919 |
+#&gt; |<span style='font-weight: bold;'> 95</span>| 466.62386 | 1.010 | -1.856 | -0.9811 | -0.8057 |
+#&gt; |.....................| -0.8267 | -1.365 | 1.862 | -1.788 |
+#&gt; |.....................| -0.9479 | -0.4822 | -0.9526 | -1.114 |
+#&gt; |.....................| -0.5610 | -0.8741 | -1.003 | -0.3093 |
+#&gt; | U| 466.62386 | 92.43 | -6.045 | -0.9497 | -2.057 |
+#&gt; |.....................| -4.469 | 0.2377 | 1.961 | 0.03183 |
+#&gt; |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
+#&gt; |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
+#&gt; | X|<span style='font-weight: bold;'> 466.62386</span> | 92.43 | 0.002370 | 0.2789 | 0.1278 |
+#&gt; |.....................| 0.01146 | 0.5592 | 1.961 | 0.03183 |
+#&gt; |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
+#&gt; |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
+#&gt; | F| Forward Diff. | 0.1137 | 0.01564 | -0.3265 | 0.06191 |
+#&gt; |.....................| 0.1094 | -0.02529 | 0.01125 | 0.2123 |
+#&gt; |.....................| -0.07598 | 0.1365 | 0.2003 | -0.1363 |
+#&gt; |.....................| -0.2276 | -0.05501 | -0.2526 | -0.4116 |
+#&gt; |<span style='font-weight: bold;'> 96</span>| 466.62386 | 1.010 | -1.856 | -0.9811 | -0.8057 |
+#&gt; |.....................| -0.8267 | -1.365 | 1.862 | -1.788 |
+#&gt; |.....................| -0.9479 | -0.4822 | -0.9526 | -1.114 |
+#&gt; |.....................| -0.5610 | -0.8741 | -1.003 | -0.3093 |
+#&gt; | U| 466.62386 | 92.43 | -6.045 | -0.9497 | -2.057 |
+#&gt; |.....................| -4.469 | 0.2377 | 1.961 | 0.03183 |
+#&gt; |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
+#&gt; |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
+#&gt; | X|<span style='font-weight: bold;'> 466.62386</span> | 92.43 | 0.002370 | 0.2789 | 0.1278 |
+#&gt; |.....................| 0.01146 | 0.5592 | 1.961 | 0.03183 |
+#&gt; |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
+#&gt; |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span>
<span class='va'>f_nlmixr_sfo_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>,
<span class='va'>f_nlmixr_fomc_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>,
@@ -873,11 +9602,110 @@ obtained by fitting the same model to a list of datasets using <a href='mkinfit.
<span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>,
<span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>
<span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in AIC(f_nlmixr_sfo_sfo_focei_const$nm, f_nlmixr_fomc_sfo_focei_const$nm, f_nlmixr_dfop_sfo_focei_const$nm, f_nlmixr_fomc_sfo_saem_obs$nm, f_nlmixr_fomc_sfo_focei_obs$nm, f_nlmixr_dfop_sfo_saem_obs$nm, f_nlmixr_dfop_sfo_focei_obs$nm, f_nlmixr_fomc_sfo_focei_tc$nm, f_nlmixr_dfop_sfo_focei_tc$nm, f_nlmixr_fomc_sfo_saem_obs_tc$nm, f_nlmixr_fomc_sfo_focei_obs_tc$nm, f_nlmixr_dfop_sfo_saem_obs_tc$nm, f_nlmixr_dfop_sfo_focei_obs_tc$nm): object 'f_nlmixr_sfo_sfo_focei_const' not found</span></div><div class='input'><span class='co'># Currently, FOMC-SFO with two-component error by variable fitted by focei gives the</span>
+</div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; df AIC
+#&gt; f_nlmixr_sfo_sfo_focei_const$nm 9 1082.4868
+#&gt; f_nlmixr_fomc_sfo_focei_const$nm 11 814.4317
+#&gt; f_nlmixr_dfop_sfo_focei_const$nm 13 866.0485
+#&gt; f_nlmixr_fomc_sfo_saem_obs$nm 12 791.7256
+#&gt; f_nlmixr_fomc_sfo_focei_obs$nm 12 794.5998
+#&gt; f_nlmixr_dfop_sfo_saem_obs$nm 14 812.0463
+#&gt; f_nlmixr_dfop_sfo_focei_obs$nm 14 846.9228
+#&gt; f_nlmixr_fomc_sfo_focei_tc$nm 12 812.3585
+#&gt; f_nlmixr_dfop_sfo_focei_tc$nm 14 842.3479
+#&gt; f_nlmixr_fomc_sfo_saem_obs_tc$nm 14 817.1261
+#&gt; f_nlmixr_fomc_sfo_focei_obs_tc$nm 14 787.4863
+#&gt; f_nlmixr_dfop_sfo_saem_obs_tc$nm 16 858.3213
+#&gt; f_nlmixr_dfop_sfo_focei_obs_tc$nm 16 811.0630</div><div class='input'><span class='co'># Currently, FOMC-SFO with two-component error by variable fitted by focei gives the</span>
<span class='co'># lowest AIC</span>
<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in plot(f_nlmixr_fomc_sfo_focei_obs_tc): object 'f_nlmixr_fomc_sfo_focei_obs_tc' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in summary(f_nlmixr_fomc_sfo_focei_obs_tc): object 'f_nlmixr_fomc_sfo_focei_obs_tc' not found</span></div><div class='input'><span class='co'># }</span>
+</div><div class='img'><img src='nlmixr.mmkin-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; nlmixr version used for fitting: 2.0.5
+#&gt; mkin version used for pre-fitting: 1.1.0
+#&gt; R version used for fitting: 4.1.1
+#&gt; Date of fit: Tue Oct 5 17:25:02 2021
+#&gt; Date of summary: Tue Oct 5 17:26:23 2021
+#&gt;
+#&gt; Equations:
+#&gt; d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
+#&gt; d_A1/dt = + f_parent_to_A1 * (alpha/beta) * 1/((time/beta) + 1) *
+#&gt; parent - k_A1 * A1
+#&gt;
+#&gt; Data:
+#&gt; 170 observations of 2 variable(s) grouped in 5 datasets
+#&gt;
+#&gt; Degradation model predictions using RxODE
+#&gt;
+#&gt; Fitted in 24.31 s
+#&gt;
+#&gt; Variance model: Two-component variance unique to each observed variable
+#&gt;
+#&gt; Mean of starting values for individual parameters:
+#&gt; parent_0 log_k_A1 f_parent_qlogis log_alpha log_beta
+#&gt; 93.1168 -5.3034 -0.9442 -0.1065 2.2909
+#&gt;
+#&gt; Mean of starting values for error model parameters:
+#&gt; sigma_low_parent rsd_high_parent sigma_low_A1 rsd_high_A1
+#&gt; 1.15958 0.03005 1.15958 0.03005
+#&gt;
+#&gt; Fixed degradation parameter values:
+#&gt; None
+#&gt;
+#&gt; Results:
+#&gt;
+#&gt; Likelihood calculated by focei
+#&gt; AIC BIC logLik
+#&gt; 787.5 831.4 -379.7
+#&gt;
+#&gt; Optimised parameters:
+#&gt; est. lower upper
+#&gt; parent_0 93.6898 91.2681 96.1114
+#&gt; log_k_A1 -6.2923 -8.3662 -4.2185
+#&gt; f_parent_qlogis -1.0019 -1.3760 -0.6278
+#&gt; log_alpha -0.1639 -0.6641 0.3363
+#&gt; log_beta 2.2031 1.6723 2.7340
+#&gt;
+#&gt; Correlation:
+#&gt; prnt_0 lg__A1 f_prn_ lg_lph
+#&gt; log_k_A1 0.368
+#&gt; f_parent_qlogis -0.788 -0.401
+#&gt; log_alpha 0.338 0.942 -0.307
+#&gt; log_beta -0.401 -0.761 0.253 -0.555
+#&gt;
+#&gt; Random effects (omega):
+#&gt; eta.parent_0 eta.log_k_A1 eta.f_parent_qlogis eta.log_alpha
+#&gt; eta.parent_0 4.74 0.00 0.0000 0.0000
+#&gt; eta.log_k_A1 0.00 5.57 0.0000 0.0000
+#&gt; eta.f_parent_qlogis 0.00 0.00 0.1646 0.0000
+#&gt; eta.log_alpha 0.00 0.00 0.0000 0.3312
+#&gt; eta.log_beta 0.00 0.00 0.0000 0.0000
+#&gt; eta.log_beta
+#&gt; eta.parent_0 0.0000
+#&gt; eta.log_k_A1 0.0000
+#&gt; eta.f_parent_qlogis 0.0000
+#&gt; eta.log_alpha 0.0000
+#&gt; eta.log_beta 0.3438
+#&gt;
+#&gt; Variance model:
+#&gt; sigma_low_parent rsd_high_parent sigma_low_A1 rsd_high_A1
+#&gt; 2.35467 0.00261 0.64525 0.08456
+#&gt;
+#&gt; Backtransformed parameters:
+#&gt; est. lower upper
+#&gt; parent_0 93.68976 9.127e+01 96.11140
+#&gt; k_A1 0.00185 2.326e-04 0.01472
+#&gt; f_parent_to_A1 0.26857 2.017e-01 0.34801
+#&gt; alpha 0.84879 5.147e-01 1.39971
+#&gt; beta 9.05342 5.325e+00 15.39359
+#&gt;
+#&gt; Resulting formation fractions:
+#&gt; ff
+#&gt; parent_A1 0.2686
+#&gt; parent_sink 0.7314
+#&gt;
+#&gt; Estimated disappearance times:
+#&gt; DT50 DT90 DT50back
+#&gt; parent 11.43 127.4 38.35
+#&gt; A1 374.59 1244.4 NA</div><div class='input'><span class='co'># }</span>
</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">

Contact - Imprint