diff options
Diffstat (limited to 'docs/dev/reference/saem.html')
| -rw-r--r-- | docs/dev/reference/saem.html | 779 | 
1 files changed, 0 insertions, 779 deletions
| diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html deleted file mode 100644 index 9b9a911d..00000000 --- a/docs/dev/reference/saem.html +++ /dev/null @@ -1,779 +0,0 @@ -<!DOCTYPE html> -<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Fit nonlinear mixed models with SAEM — saem • mkin</title><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><meta property="og:title" content="Fit nonlinear mixed models with SAEM — saem"><meta property="og:description" content="This function uses saemix::saemix() as a backend for fitting nonlinear mixed -effects models created from mmkin row objects using the Stochastic Approximation -Expectation Maximisation algorithm (SAEM)."><meta name="robots" content="noindex"><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> -<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> -<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> -<![endif]--></head><body data-spy="scroll" data-target="#toc"> -     - -    <div class="container template-reference-topic"> -      <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> -  <div class="container"> -    <div class="navbar-header"> -      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> -        <span class="sr-only">Toggle navigation</span> -        <span class="icon-bar"></span> -        <span class="icon-bar"></span> -        <span class="icon-bar"></span> -      </button> -      <span class="navbar-brand"> -        <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.2.3</span> -      </span> -    </div> - -    <div id="navbar" class="navbar-collapse collapse"> -      <ul class="nav navbar-nav"><li> -  <a href="../reference/index.html">Reference</a> -</li> -<li class="dropdown"> -  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> -    Articles -      -    <span class="caret"></span> -  </a> -  <ul class="dropdown-menu" role="menu"><li> -      <a href="../articles/mkin.html">Introduction to mkin</a> -    </li> -    <li class="divider"> -    <li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li> -    <li> -      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> -    </li> -    <li> -      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> -    </li> -    <li> -      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> -    </li> -    <li class="divider"> -    <li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li> -    <li> -      <a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a> -    </li> -    <li> -      <a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a> -    </li> -    <li> -      <a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a> -    </li> -    <li> -      <a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a> -    </li> -    <li> -      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> -    </li> -    <li class="divider"> -    <li class="dropdown-header">Performance</li> -    <li> -      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> -    </li> -    <li> -      <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> -    </li> -    <li> -      <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> -    </li> -    <li class="divider"> -    <li class="dropdown-header">Miscellaneous</li> -    <li> -      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> -    </li> -    <li> -      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> -    </li> -  </ul></li> -<li> -  <a href="../news/index.html">News</a> -</li> -      </ul><ul class="nav navbar-nav navbar-right"><li> -  <a href="https://github.com/jranke/mkin/" class="external-link"> -    <span class="fab fa-github fa-lg"></span> -      -  </a> -</li> -      </ul></div><!--/.nav-collapse --> -  </div><!--/.container --> -</div><!--/.navbar --> - -       - -      </header><div class="row"> -  <div class="col-md-9 contents"> -    <div class="page-header"> -    <h1>Fit nonlinear mixed models with SAEM</h1> -    <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/saem.R" class="external-link"><code>R/saem.R</code></a></small> -    <div class="hidden name"><code>saem.Rd</code></div> -    </div> - -    <div class="ref-description"> -    <p>This function uses <code><a href="https://rdrr.io/pkg/saemix/man/saemix.html" class="external-link">saemix::saemix()</a></code> as a backend for fitting nonlinear mixed -effects models created from <a href="mmkin.html">mmkin</a> row objects using the Stochastic Approximation -Expectation Maximisation algorithm (SAEM).</p> -    </div> - -    <div id="ref-usage"> -    <div class="sourceCode"><pre class="sourceCode r"><code><span><span class="fu">saem</span><span class="op">(</span><span class="va">object</span>, <span class="va">...</span><span class="op">)</span></span> -<span></span> -<span><span class="co"># S3 method for mmkin</span></span> -<span><span class="fu">saem</span><span class="op">(</span></span> -<span>  <span class="va">object</span>,</span> -<span>  transformations <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"mkin"</span>, <span class="st">"saemix"</span><span class="op">)</span>,</span> -<span>  error_model <span class="op">=</span> <span class="st">"auto"</span>,</span> -<span>  degparms_start <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/numeric.html" class="external-link">numeric</a></span><span class="op">(</span><span class="op">)</span>,</span> -<span>  test_log_parms <span class="op">=</span> <span class="cn">TRUE</span>,</span> -<span>  conf.level <span class="op">=</span> <span class="fl">0.6</span>,</span> -<span>  solution_type <span class="op">=</span> <span class="st">"auto"</span>,</span> -<span>  covariance.model <span class="op">=</span> <span class="st">"auto"</span>,</span> -<span>  omega.init <span class="op">=</span> <span class="st">"auto"</span>,</span> -<span>  covariates <span class="op">=</span> <span class="cn">NULL</span>,</span> -<span>  covariate_models <span class="op">=</span> <span class="cn">NULL</span>,</span> -<span>  no_random_effect <span class="op">=</span> <span class="cn">NULL</span>,</span> -<span>  error.init <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">1</span>, <span class="fl">1</span><span class="op">)</span>,</span> -<span>  nbiter.saemix <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">300</span>, <span class="fl">100</span><span class="op">)</span>,</span> -<span>  control <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>displayProgress <span class="op">=</span> <span class="cn">FALSE</span>, print <span class="op">=</span> <span class="cn">FALSE</span>, nbiter.saemix <span class="op">=</span> <span class="va">nbiter.saemix</span>,</span> -<span>    save <span class="op">=</span> <span class="cn">FALSE</span>, save.graphs <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> -<span>  verbose <span class="op">=</span> <span class="cn">FALSE</span>,</span> -<span>  quiet <span class="op">=</span> <span class="cn">FALSE</span>,</span> -<span>  <span class="va">...</span></span> -<span><span class="op">)</span></span> -<span></span> -<span><span class="co"># S3 method for saem.mmkin</span></span> -<span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">x</span>, digits <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/Extremes.html" class="external-link">max</a></span><span class="op">(</span><span class="fl">3</span>, <span class="fu"><a href="https://rdrr.io/r/base/options.html" class="external-link">getOption</a></span><span class="op">(</span><span class="st">"digits"</span><span class="op">)</span> <span class="op">-</span> <span class="fl">3</span><span class="op">)</span>, <span class="va">...</span><span class="op">)</span></span> -<span></span> -<span><span class="fu">saemix_model</span><span class="op">(</span></span> -<span>  <span class="va">object</span>,</span> -<span>  solution_type <span class="op">=</span> <span class="st">"auto"</span>,</span> -<span>  transformations <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"mkin"</span>, <span class="st">"saemix"</span><span class="op">)</span>,</span> -<span>  error_model <span class="op">=</span> <span class="st">"auto"</span>,</span> -<span>  degparms_start <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/numeric.html" class="external-link">numeric</a></span><span class="op">(</span><span class="op">)</span>,</span> -<span>  covariance.model <span class="op">=</span> <span class="st">"auto"</span>,</span> -<span>  no_random_effect <span class="op">=</span> <span class="cn">NULL</span>,</span> -<span>  omega.init <span class="op">=</span> <span class="st">"auto"</span>,</span> -<span>  covariates <span class="op">=</span> <span class="cn">NULL</span>,</span> -<span>  covariate_models <span class="op">=</span> <span class="cn">NULL</span>,</span> -<span>  error.init <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/numeric.html" class="external-link">numeric</a></span><span class="op">(</span><span class="op">)</span>,</span> -<span>  test_log_parms <span class="op">=</span> <span class="cn">FALSE</span>,</span> -<span>  conf.level <span class="op">=</span> <span class="fl">0.6</span>,</span> -<span>  verbose <span class="op">=</span> <span class="cn">FALSE</span>,</span> -<span>  <span class="va">...</span></span> -<span><span class="op">)</span></span> -<span></span> -<span><span class="fu">saemix_data</span><span class="op">(</span><span class="va">object</span>, covariates <span class="op">=</span> <span class="cn">NULL</span>, verbose <span class="op">=</span> <span class="cn">FALSE</span>, <span class="va">...</span><span class="op">)</span></span></code></pre></div> -    </div> - -    <div id="arguments"> -    <h2>Arguments</h2> -    <dl><dt>object</dt> -<dd><p>An <a href="mmkin.html">mmkin</a> row object containing several fits of the same -<a href="mkinmod.html">mkinmod</a> model to different datasets</p></dd> - - -<dt>...</dt> -<dd><p>Further parameters passed to <a href="https://rdrr.io/pkg/saemix/man/saemixModel.html" class="external-link">saemix::saemixModel</a>.</p></dd> - - -<dt>transformations</dt> -<dd><p>Per default, all parameter transformations are done -in mkin. If this argument is set to 'saemix', parameter transformations -are done in 'saemix' for the supported cases, i.e. (as of version 1.1.2) -SFO, FOMC, DFOP and HS without fixing <code>parent_0</code>, and SFO or DFOP with -one SFO metabolite.</p></dd> - - -<dt>error_model</dt> -<dd><p>Possibility to override the error model used in the mmkin object</p></dd> - - -<dt>degparms_start</dt> -<dd><p>Parameter values given as a named numeric vector will -be used to override the starting values obtained from the 'mmkin' object.</p></dd> - - -<dt>test_log_parms</dt> -<dd><p>If TRUE, an attempt is made to use more robust starting -values for population parameters fitted as log parameters in mkin (like -rate constants) by only considering rate constants that pass the t-test -when calculating mean degradation parameters using <a href="mean_degparms.html">mean_degparms</a>.</p></dd> - - -<dt>conf.level</dt> -<dd><p>Possibility to adjust the required confidence level -for parameter that are tested if requested by 'test_log_parms'.</p></dd> - - -<dt>solution_type</dt> -<dd><p>Possibility to specify the solution type in case the -automatic choice is not desired</p></dd> - - -<dt>covariance.model</dt> -<dd><p>Will be passed to <code><a href="https://rdrr.io/pkg/saemix/man/saemixModel.html" class="external-link">saemix::saemixModel()</a></code>. Per -default, uncorrelated random effects are specified for all degradation -parameters.</p></dd> - - -<dt>omega.init</dt> -<dd><p>Will be passed to <code><a href="https://rdrr.io/pkg/saemix/man/saemixModel.html" class="external-link">saemix::saemixModel()</a></code>. If using -mkin transformations and the default covariance model with optionally -excluded random effects, the variances of the degradation parameters -are estimated using <a href="mean_degparms.html">mean_degparms</a>, with testing of untransformed -log parameters for significant difference from zero. If not using -mkin transformations or a custom covariance model, the default -initialisation of <a href="https://rdrr.io/pkg/saemix/man/saemixModel.html" class="external-link">saemix::saemixModel</a> is used for omega.init.</p></dd> - - -<dt>covariates</dt> -<dd><p>A data frame with covariate data for use in -'covariate_models', with dataset names as row names.</p></dd> - - -<dt>covariate_models</dt> -<dd><p>A list containing linear model formulas with one explanatory -variable, i.e. of the type 'parameter ~ covariate'. Covariates must be available -in the 'covariates' data frame.</p></dd> - - -<dt>no_random_effect</dt> -<dd><p>Character vector of degradation parameters for -which there should be no variability over the groups. Only used -if the covariance model is not explicitly specified.</p></dd> - - -<dt>error.init</dt> -<dd><p>Will be passed to <code><a href="https://rdrr.io/pkg/saemix/man/saemixModel.html" class="external-link">saemix::saemixModel()</a></code>.</p></dd> - - -<dt>nbiter.saemix</dt> -<dd><p>Convenience option to increase the number of -iterations</p></dd> - - -<dt>control</dt> -<dd><p>Passed to <a href="https://rdrr.io/pkg/saemix/man/saemix.html" class="external-link">saemix::saemix</a>.</p></dd> - - -<dt>verbose</dt> -<dd><p>Should we print information about created objects of -type <a href="https://rdrr.io/pkg/saemix/man/SaemixModel-class.html" class="external-link">saemix::SaemixModel</a> and <a href="https://rdrr.io/pkg/saemix/man/SaemixData-class.html" class="external-link">saemix::SaemixData</a>?</p></dd> - - -<dt>quiet</dt> -<dd><p>Should we suppress the messages saemix prints at the beginning -and the end of the optimisation process?</p></dd> - - -<dt>x</dt> -<dd><p>An saem.mmkin object to print</p></dd> - - -<dt>digits</dt> -<dd><p>Number of digits to use for printing</p></dd> - -</dl></div> -    <div id="value"> -    <h2>Value</h2> -     - -<p>An S3 object of class 'saem.mmkin', containing the fitted -<a href="https://rdrr.io/pkg/saemix/man/SaemixObject-class.html" class="external-link">saemix::SaemixObject</a> as a list component named 'so'. The -object also inherits from 'mixed.mmkin'.</p> - - -<p>An <a href="https://rdrr.io/pkg/saemix/man/SaemixModel-class.html" class="external-link">saemix::SaemixModel</a> object.</p> - - -<p>An <a href="https://rdrr.io/pkg/saemix/man/SaemixData-class.html" class="external-link">saemix::SaemixData</a> object.</p> -    </div> -    <div id="details"> -    <h2>Details</h2> -    <p>An mmkin row object is essentially a list of mkinfit objects that have been -obtained by fitting the same model to a list of datasets using <a href="mkinfit.html">mkinfit</a>.</p> -<p>Starting values for the fixed effects (population mean parameters, argument -psi0 of <code><a href="https://rdrr.io/pkg/saemix/man/saemixModel.html" class="external-link">saemix::saemixModel()</a></code> are the mean values of the parameters found -using <a href="mmkin.html">mmkin</a>.</p> -    </div> -    <div id="see-also"> -    <h2>See also</h2> -    <div class="dont-index"><p><a href="summary.saem.mmkin.html">summary.saem.mmkin</a> <a href="plot.mixed.mmkin.html">plot.mixed.mmkin</a></p></div> -    </div> - -    <div id="ref-examples"> -    <h2>Examples</h2> -    <div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="co"># \dontrun{</span></span></span> -<span class="r-in"><span><span class="va">ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="va">experimental_data_for_UBA_2019</span><span class="op">[</span><span class="fl">6</span><span class="op">:</span><span class="fl">10</span><span class="op">]</span>,</span></span> -<span class="r-in"><span> <span class="kw">function</span><span class="op">(</span><span class="va">x</span><span class="op">)</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">x</span><span class="op">$</span><span class="va">data</span><span class="op">[</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"name"</span>, <span class="st">"time"</span>, <span class="st">"value"</span><span class="op">)</span><span class="op">]</span><span class="op">)</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"Dataset"</span>, <span class="fl">6</span><span class="op">:</span><span class="fl">10</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="va">f_mmkin_parent_p0_fixed</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="va">ds</span>,</span></span> -<span class="r-in"><span>  state.ini <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fl">100</span><span class="op">)</span>, fixed_initials <span class="op">=</span> <span class="st">"parent"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="va">f_saem_p0_fixed</span> <span class="op"><-</span> <span class="fu">saem</span><span class="op">(</span><span class="va">f_mmkin_parent_p0_fixed</span><span class="op">)</span></span></span> -<span class="r-in"><span></span></span> -<span class="r-in"><span><span class="va">f_mmkin_parent</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span><span class="op">)</span>, <span class="va">ds</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="va">f_saem_sfo</span> <span class="op"><-</span> <span class="fu">saem</span><span class="op">(</span><span class="va">f_mmkin_parent</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="va">f_saem_fomc</span> <span class="op"><-</span> <span class="fu">saem</span><span class="op">(</span><span class="va">f_mmkin_parent</span><span class="op">[</span><span class="st">"FOMC"</span>, <span class="op">]</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="va">f_saem_dfop</span> <span class="op"><-</span> <span class="fu">saem</span><span class="op">(</span><span class="va">f_mmkin_parent</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_sfo</span>, <span class="va">f_saem_fomc</span>, <span class="va">f_saem_dfop</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> Data: 90 observations of 1 variable(s) grouped in 5 datasets</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span>             npar    AIC    BIC     Lik</span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_sfo     5 624.33 622.38 -307.17</span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_fomc    7 467.85 465.11 -226.92</span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_dfop    9 493.76 490.24 -237.88</span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_sfo</span>, <span class="va">f_saem_dfop</span>, test <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> Data: 90 observations of 1 variable(s) grouped in 5 datasets</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span>             npar    AIC    BIC     Lik  Chisq Df Pr(>Chisq)    </span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_sfo     5 624.33 622.38 -307.17                         </span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_dfop    9 493.76 490.24 -237.88 138.57  4  < 2.2e-16 ***</span> -<span class="r-out co"><span class="r-pr">#></span> ---</span> -<span class="r-out co"><span class="r-pr">#></span> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span> -<span class="r-in"><span><span class="fu"><a href="illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_dfop</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> [1] "sd(g_qlogis)"</span> -<span class="r-in"><span><span class="va">f_saem_dfop_red</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem_dfop</span>, no_random_effect <span class="op">=</span> <span class="st">"g_qlogis"</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_dfop</span>, <span class="va">f_saem_dfop_red</span>, test <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> Data: 90 observations of 1 variable(s) grouped in 5 datasets</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span>                 npar    AIC    BIC     Lik Chisq Df Pr(>Chisq)</span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_dfop_red    8 488.68 485.55 -236.34                    </span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_dfop        9 493.76 490.24 -237.88     0  1          1</span> -<span class="r-in"><span></span></span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_sfo</span>, <span class="va">f_saem_fomc</span>, <span class="va">f_saem_dfop</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> Data: 90 observations of 1 variable(s) grouped in 5 datasets</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span>             npar    AIC    BIC     Lik</span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_sfo     5 624.33 622.38 -307.17</span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_fomc    7 467.85 465.11 -226.92</span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_dfop    9 493.76 490.24 -237.88</span> -<span class="r-in"><span><span class="co"># The returned saem.mmkin object contains an SaemixObject, therefore we can use</span></span></span> -<span class="r-in"><span><span class="co"># functions from saemix</span></span></span> -<span class="r-in"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span></span> -<span class="r-msg co"><span class="r-pr">#></span> Loading required package: npde</span> -<span class="r-msg co"><span class="r-pr">#></span> Package saemix, version 3.2</span> -<span class="r-msg co"><span class="r-pr">#></span>   please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr</span> -<span class="r-msg co"><span class="r-pr">#></span> </span> -<span class="r-msg co"><span class="r-pr">#></span> Attaching package: ‘saemix’</span> -<span class="r-msg co"><span class="r-pr">#></span> The following objects are masked from ‘package:npde’:</span> -<span class="r-msg co"><span class="r-pr">#></span> </span> -<span class="r-msg co"><span class="r-pr">#></span>     kurtosis, skewness</span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/compare.saemix.html" class="external-link">compare.saemix</a></span><span class="op">(</span><span class="va">f_saem_sfo</span><span class="op">$</span><span class="va">so</span>, <span class="va">f_saem_fomc</span><span class="op">$</span><span class="va">so</span>, <span class="va">f_saem_dfop</span><span class="op">$</span><span class="va">so</span><span class="op">)</span></span></span> -<span class="r-msg co"><span class="r-pr">#></span> Likelihoods calculated by importance sampling</span> -<span class="r-out co"><span class="r-pr">#></span>        AIC      BIC</span> -<span class="r-out co"><span class="r-pr">#></span> 1 624.3316 622.3788</span> -<span class="r-out co"><span class="r-pr">#></span> 2 467.8472 465.1132</span> -<span class="r-out co"><span class="r-pr">#></span> 3 493.7592 490.2441</span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_fomc</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"convergence"</span><span class="op">)</span></span></span> -<span class="r-plt img"><img src="saem-1.png" alt="" width="700" height="433"></span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_fomc</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"individual.fit"</span><span class="op">)</span></span></span> -<span class="r-plt img"><img src="saem-2.png" alt="" width="700" height="433"></span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_fomc</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"npde"</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> Simulating data using nsim = 1000 simulated datasets</span> -<span class="r-out co"><span class="r-pr">#></span> Computing WRES and npde .</span> -<span class="r-msg co"><span class="r-pr">#></span> Please use npdeSaemix to obtain VPC and npde</span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_fomc</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"vpc"</span><span class="op">)</span></span></span> -<span class="r-plt img"><img src="saem-3.png" alt="" width="700" height="433"></span> -<span class="r-in"><span></span></span> -<span class="r-in"><span><span class="va">f_mmkin_parent_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_mmkin_parent</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="va">f_saem_fomc_tc</span> <span class="op"><-</span> <span class="fu">saem</span><span class="op">(</span><span class="va">f_mmkin_parent_tc</span><span class="op">[</span><span class="st">"FOMC"</span>, <span class="op">]</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_fomc</span>, <span class="va">f_saem_fomc_tc</span>, test <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> Data: 90 observations of 1 variable(s) grouped in 5 datasets</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span>                npar    AIC    BIC     Lik Chisq Df Pr(>Chisq)</span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_fomc       7 467.85 465.11 -226.92                    </span> -<span class="r-out co"><span class="r-pr">#></span> f_saem_fomc_tc    8 469.83 466.71 -226.92 0.015  1     0.9027</span> -<span class="r-in"><span></span></span> -<span class="r-in"><span><span class="va">sfo_sfo</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"A1"</span><span class="op">)</span>,</span></span> -<span class="r-in"><span>  A1 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span><span class="op">)</span></span></span> -<span class="r-msg co"><span class="r-pr">#></span> Temporary DLL for differentials generated and loaded</span> -<span class="r-in"><span><span class="va">fomc_sfo</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="st">"A1"</span><span class="op">)</span>,</span></span> -<span class="r-in"><span>  A1 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span><span class="op">)</span></span></span> -<span class="r-msg co"><span class="r-pr">#></span> Temporary DLL for differentials generated and loaded</span> -<span class="r-in"><span><span class="va">dfop_sfo</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="st">"A1"</span><span class="op">)</span>,</span></span> -<span class="r-in"><span>  A1 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span><span class="op">)</span></span></span> -<span class="r-msg co"><span class="r-pr">#></span> Temporary DLL for differentials generated and loaded</span> -<span class="r-in"><span><span class="co"># The following fit uses analytical solutions for SFO-SFO and DFOP-SFO,</span></span></span> -<span class="r-in"><span><span class="co"># and compiled ODEs for FOMC that are much slower</span></span></span> -<span class="r-in"><span><span class="va">f_mmkin</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span></span> -<span class="r-in"><span>    <span class="st">"SFO-SFO"</span> <span class="op">=</span> <span class="va">sfo_sfo</span>, <span class="st">"FOMC-SFO"</span> <span class="op">=</span> <span class="va">fomc_sfo</span>, <span class="st">"DFOP-SFO"</span> <span class="op">=</span> <span class="va">dfop_sfo</span><span class="op">)</span>,</span></span> -<span class="r-in"><span>  <span class="va">ds</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="co"># saem fits of SFO-SFO and DFOP-SFO to these data take about five seconds</span></span></span> -<span class="r-in"><span><span class="co"># each on this system, as we use analytical solutions written for saemix.</span></span></span> -<span class="r-in"><span><span class="co"># When using the analytical solutions written for mkin this took around</span></span></span> -<span class="r-in"><span><span class="co"># four minutes</span></span></span> -<span class="r-in"><span><span class="va">f_saem_sfo_sfo</span> <span class="op"><-</span> <span class="fu">saem</span><span class="op">(</span><span class="va">f_mmkin</span><span class="op">[</span><span class="st">"SFO-SFO"</span>, <span class="op">]</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="va">f_saem_dfop_sfo</span> <span class="op"><-</span> <span class="fu">saem</span><span class="op">(</span><span class="va">f_mmkin</span><span class="op">[</span><span class="st">"DFOP-SFO"</span>, <span class="op">]</span><span class="op">)</span></span></span> -<span class="r-in"><span><span class="co"># We can use print, plot and summary methods to check the results</span></span></span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">f_saem_dfop_sfo</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> Kinetic nonlinear mixed-effects model fit by SAEM</span> -<span class="r-out co"><span class="r-pr">#></span> Structural model:</span> -<span class="r-out co"><span class="r-pr">#></span> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span> -<span class="r-out co"><span class="r-pr">#></span>            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span> -<span class="r-out co"><span class="r-pr">#></span>            * parent</span> -<span class="r-out co"><span class="r-pr">#></span> d_A1/dt = + f_parent_to_A1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)</span> -<span class="r-out co"><span class="r-pr">#></span>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *</span> -<span class="r-out co"><span class="r-pr">#></span>            exp(-k2 * time))) * parent - k_A1 * A1</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Data:</span> -<span class="r-out co"><span class="r-pr">#></span> 170 observations of 2 variable(s) grouped in 5 datasets</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Likelihood computed by importance sampling</span> -<span class="r-out co"><span class="r-pr">#></span>     AIC   BIC logLik</span> -<span class="r-out co"><span class="r-pr">#></span>   839.2 834.1 -406.6</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Fitted parameters:</span> -<span class="r-out co"><span class="r-pr">#></span>                    estimate    lower   upper</span> -<span class="r-out co"><span class="r-pr">#></span> parent_0           93.70402 91.04104 96.3670</span> -<span class="r-out co"><span class="r-pr">#></span> log_k_A1           -5.83760 -7.66452 -4.0107</span> -<span class="r-out co"><span class="r-pr">#></span> f_parent_qlogis    -0.95718 -1.35955 -0.5548</span> -<span class="r-out co"><span class="r-pr">#></span> log_k1             -2.35514 -3.39402 -1.3163</span> -<span class="r-out co"><span class="r-pr">#></span> log_k2             -3.79634 -5.64009 -1.9526</span> -<span class="r-out co"><span class="r-pr">#></span> g_qlogis           -0.02108 -0.66463  0.6225</span> -<span class="r-out co"><span class="r-pr">#></span> a.1                 1.88191  1.66491  2.0989</span> -<span class="r-out co"><span class="r-pr">#></span> SD.parent_0         2.81628  0.78922  4.8433</span> -<span class="r-out co"><span class="r-pr">#></span> SD.log_k_A1         1.78751  0.42105  3.1540</span> -<span class="r-out co"><span class="r-pr">#></span> SD.f_parent_qlogis  0.45016  0.16116  0.7391</span> -<span class="r-out co"><span class="r-pr">#></span> SD.log_k1           1.06923  0.31676  1.8217</span> -<span class="r-out co"><span class="r-pr">#></span> SD.log_k2           2.03768  0.70938  3.3660</span> -<span class="r-out co"><span class="r-pr">#></span> SD.g_qlogis         0.44024 -0.09262  0.9731</span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_dfop_sfo</span><span class="op">)</span></span></span> -<span class="r-plt img"><img src="saem-4.png" alt="" width="700" height="433"></span> -<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">f_saem_dfop_sfo</span>, data <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> saemix version used for fitting:      3.2 </span> -<span class="r-out co"><span class="r-pr">#></span> mkin version used for pre-fitting:  1.2.3 </span> -<span class="r-out co"><span class="r-pr">#></span> R version used for fitting:         4.2.3 </span> -<span class="r-out co"><span class="r-pr">#></span> Date of fit:     Sun Apr 16 08:32:32 2023 </span> -<span class="r-out co"><span class="r-pr">#></span> Date of summary: Sun Apr 16 08:32:32 2023 </span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Equations:</span> -<span class="r-out co"><span class="r-pr">#></span> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span> -<span class="r-out co"><span class="r-pr">#></span>            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span> -<span class="r-out co"><span class="r-pr">#></span>            * parent</span> -<span class="r-out co"><span class="r-pr">#></span> d_A1/dt = + f_parent_to_A1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)</span> -<span class="r-out co"><span class="r-pr">#></span>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *</span> -<span class="r-out co"><span class="r-pr">#></span>            exp(-k2 * time))) * parent - k_A1 * A1</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Data:</span> -<span class="r-out co"><span class="r-pr">#></span> 170 observations of 2 variable(s) grouped in 5 datasets</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Model predictions using solution type analytical </span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Fitted in 4.145 s</span> -<span class="r-out co"><span class="r-pr">#></span> Using 300, 100 iterations and 10 chains</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Variance model: Constant variance </span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Starting values for degradation parameters:</span> -<span class="r-out co"><span class="r-pr">#></span>        parent_0        log_k_A1 f_parent_qlogis          log_k1          log_k2 </span> -<span class="r-out co"><span class="r-pr">#></span>         93.8102         -5.3734         -0.9711         -1.8799         -4.2708 </span> -<span class="r-out co"><span class="r-pr">#></span>        g_qlogis </span> -<span class="r-out co"><span class="r-pr">#></span>          0.1356 </span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Fixed degradation parameter values:</span> -<span class="r-out co"><span class="r-pr">#></span> None</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Starting values for random effects (square root of initial entries in omega):</span> -<span class="r-out co"><span class="r-pr">#></span>                 parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2 g_qlogis</span> -<span class="r-out co"><span class="r-pr">#></span> parent_0           4.941    0.000          0.0000  0.000  0.000   0.0000</span> -<span class="r-out co"><span class="r-pr">#></span> log_k_A1           0.000    2.551          0.0000  0.000  0.000   0.0000</span> -<span class="r-out co"><span class="r-pr">#></span> f_parent_qlogis    0.000    0.000          0.7251  0.000  0.000   0.0000</span> -<span class="r-out co"><span class="r-pr">#></span> log_k1             0.000    0.000          0.0000  1.449  0.000   0.0000</span> -<span class="r-out co"><span class="r-pr">#></span> log_k2             0.000    0.000          0.0000  0.000  2.228   0.0000</span> -<span class="r-out co"><span class="r-pr">#></span> g_qlogis           0.000    0.000          0.0000  0.000  0.000   0.7814</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Starting values for error model parameters:</span> -<span class="r-out co"><span class="r-pr">#></span> a.1 </span> -<span class="r-out co"><span class="r-pr">#></span>   1 </span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Results:</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Likelihood computed by importance sampling</span> -<span class="r-out co"><span class="r-pr">#></span>     AIC   BIC logLik</span> -<span class="r-out co"><span class="r-pr">#></span>   839.2 834.1 -406.6</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Optimised parameters:</span> -<span class="r-out co"><span class="r-pr">#></span>                        est.    lower   upper</span> -<span class="r-out co"><span class="r-pr">#></span> parent_0           93.70402 91.04104 96.3670</span> -<span class="r-out co"><span class="r-pr">#></span> log_k_A1           -5.83760 -7.66452 -4.0107</span> -<span class="r-out co"><span class="r-pr">#></span> f_parent_qlogis    -0.95718 -1.35955 -0.5548</span> -<span class="r-out co"><span class="r-pr">#></span> log_k1             -2.35514 -3.39402 -1.3163</span> -<span class="r-out co"><span class="r-pr">#></span> log_k2             -3.79634 -5.64009 -1.9526</span> -<span class="r-out co"><span class="r-pr">#></span> g_qlogis           -0.02108 -0.66463  0.6225</span> -<span class="r-out co"><span class="r-pr">#></span> a.1                 1.88191  1.66491  2.0989</span> -<span class="r-out co"><span class="r-pr">#></span> SD.parent_0         2.81628  0.78922  4.8433</span> -<span class="r-out co"><span class="r-pr">#></span> SD.log_k_A1         1.78751  0.42105  3.1540</span> -<span class="r-out co"><span class="r-pr">#></span> SD.f_parent_qlogis  0.45016  0.16116  0.7391</span> -<span class="r-out co"><span class="r-pr">#></span> SD.log_k1           1.06923  0.31676  1.8217</span> -<span class="r-out co"><span class="r-pr">#></span> SD.log_k2           2.03768  0.70938  3.3660</span> -<span class="r-out co"><span class="r-pr">#></span> SD.g_qlogis         0.44024 -0.09262  0.9731</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Correlation: </span> -<span class="r-out co"><span class="r-pr">#></span>                 parnt_0 lg_k_A1 f_prnt_ log_k1  log_k2 </span> -<span class="r-out co"><span class="r-pr">#></span> log_k_A1        -0.0147                                </span> -<span class="r-out co"><span class="r-pr">#></span> f_parent_qlogis -0.0269  0.0573                        </span> -<span class="r-out co"><span class="r-pr">#></span> log_k1           0.0263 -0.0011 -0.0040                </span> -<span class="r-out co"><span class="r-pr">#></span> log_k2           0.0020  0.0065 -0.0002 -0.0776        </span> -<span class="r-out co"><span class="r-pr">#></span> g_qlogis        -0.0248 -0.0180 -0.0004 -0.0903 -0.0603</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Random effects:</span> -<span class="r-out co"><span class="r-pr">#></span>                      est.    lower  upper</span> -<span class="r-out co"><span class="r-pr">#></span> SD.parent_0        2.8163  0.78922 4.8433</span> -<span class="r-out co"><span class="r-pr">#></span> SD.log_k_A1        1.7875  0.42105 3.1540</span> -<span class="r-out co"><span class="r-pr">#></span> SD.f_parent_qlogis 0.4502  0.16116 0.7391</span> -<span class="r-out co"><span class="r-pr">#></span> SD.log_k1          1.0692  0.31676 1.8217</span> -<span class="r-out co"><span class="r-pr">#></span> SD.log_k2          2.0377  0.70938 3.3660</span> -<span class="r-out co"><span class="r-pr">#></span> SD.g_qlogis        0.4402 -0.09262 0.9731</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Variance model:</span> -<span class="r-out co"><span class="r-pr">#></span>      est. lower upper</span> -<span class="r-out co"><span class="r-pr">#></span> a.1 1.882 1.665 2.099</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Backtransformed parameters:</span> -<span class="r-out co"><span class="r-pr">#></span>                     est.     lower    upper</span> -<span class="r-out co"><span class="r-pr">#></span> parent_0       93.704015 9.104e+01 96.36699</span> -<span class="r-out co"><span class="r-pr">#></span> k_A1            0.002916 4.692e-04  0.01812</span> -<span class="r-out co"><span class="r-pr">#></span> f_parent_to_A1  0.277443 2.043e-01  0.36475</span> -<span class="r-out co"><span class="r-pr">#></span> k1              0.094880 3.357e-02  0.26813</span> -<span class="r-out co"><span class="r-pr">#></span> k2              0.022453 3.553e-03  0.14191</span> -<span class="r-out co"><span class="r-pr">#></span> g               0.494731 3.397e-01  0.65078</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Resulting formation fractions:</span> -<span class="r-out co"><span class="r-pr">#></span>                 ff</span> -<span class="r-out co"><span class="r-pr">#></span> parent_A1   0.2774</span> -<span class="r-out co"><span class="r-pr">#></span> parent_sink 0.7226</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Estimated disappearance times:</span> -<span class="r-out co"><span class="r-pr">#></span>         DT50   DT90 DT50back DT50_k1 DT50_k2</span> -<span class="r-out co"><span class="r-pr">#></span> parent  14.0  72.38    21.79   7.306   30.87</span> -<span class="r-out co"><span class="r-pr">#></span> A1     237.7 789.68       NA      NA      NA</span> -<span class="r-out co"><span class="r-pr">#></span> </span> -<span class="r-out co"><span class="r-pr">#></span> Data:</span> -<span class="r-out co"><span class="r-pr">#></span>          ds   name time observed predicted residual   std standardized</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent    0     97.2  95.70025  1.49975 1.882      0.79693</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent    0     96.4  95.70025  0.69975 1.882      0.37183</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent    3     71.1  71.44670 -0.34670 1.882     -0.18423</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent    3     69.2  71.44670 -2.24670 1.882     -1.19384</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent    6     58.1  56.59283  1.50717 1.882      0.80087</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent    6     56.6  56.59283  0.00717 1.882      0.00381</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   10     44.4  44.56648 -0.16648 1.882     -0.08847</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   10     43.4  44.56648 -1.16648 1.882     -0.61984</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   20     33.3  29.76020  3.53980 1.882      1.88096</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   20     29.2  29.76020 -0.56020 1.882     -0.29767</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   34     17.6  19.39208 -1.79208 1.882     -0.95226</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   34     18.0  19.39208 -1.39208 1.882     -0.73971</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   55     10.5  10.55761 -0.05761 1.882     -0.03061</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   55      9.3  10.55761 -1.25761 1.882     -0.66826</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   90      4.5   3.84742  0.65258 1.882      0.34676</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent   90      4.7   3.84742  0.85258 1.882      0.45304</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent  112      3.0   2.03997  0.96003 1.882      0.51013</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent  112      3.4   2.03997  1.36003 1.882      0.72268</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent  132      2.3   1.14585  1.15415 1.882      0.61328</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6 parent  132      2.7   1.14585  1.55415 1.882      0.82583</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1    3      4.3   4.86054 -0.56054 1.882     -0.29786</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1    3      4.6   4.86054 -0.26054 1.882     -0.13844</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1    6      7.0   7.74179 -0.74179 1.882     -0.39417</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1    6      7.2   7.74179 -0.54179 1.882     -0.28789</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   10      8.2   9.94048 -1.74048 1.882     -0.92485</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   10      8.0   9.94048 -1.94048 1.882     -1.03112</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   20     11.0  12.19109 -1.19109 1.882     -0.63291</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   20     13.7  12.19109  1.50891 1.882      0.80180</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   34     11.5  13.10706 -1.60706 1.882     -0.85395</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   34     12.7  13.10706 -0.40706 1.882     -0.21630</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   55     14.9  13.06131  1.83869 1.882      0.97703</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   55     14.5  13.06131  1.43869 1.882      0.76448</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   90     12.1  11.54495  0.55505 1.882      0.29494</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1   90     12.3  11.54495  0.75505 1.882      0.40122</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1  112      9.9  10.31533 -0.41533 1.882     -0.22070</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1  112     10.2  10.31533 -0.11533 1.882     -0.06128</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1  132      8.8   9.20222 -0.40222 1.882     -0.21373</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 6     A1  132      7.8   9.20222 -1.40222 1.882     -0.74510</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent    0     93.6  90.82357  2.77643 1.882      1.47532</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent    0     92.3  90.82357  1.47643 1.882      0.78453</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent    3     87.0  84.73448  2.26552 1.882      1.20384</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent    3     82.2  84.73448 -2.53448 1.882     -1.34675</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent    7     74.0  77.65013 -3.65013 1.882     -1.93958</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent    7     73.9  77.65013 -3.75013 1.882     -1.99272</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent   14     64.2  67.60639 -3.40639 1.882     -1.81007</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent   14     69.5  67.60639  1.89361 1.882      1.00621</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent   30     54.0  52.53663  1.46337 1.882      0.77760</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent   30     54.6  52.53663  2.06337 1.882      1.09642</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent   60     41.1  39.42728  1.67272 1.882      0.88884</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent   60     38.4  39.42728 -1.02728 1.882     -0.54587</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent   90     32.5  33.76360 -1.26360 1.882     -0.67144</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent   90     35.5  33.76360  1.73640 1.882      0.92268</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent  120     28.1  30.39975 -2.29975 1.882     -1.22203</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent  120     29.0  30.39975 -1.39975 1.882     -0.74379</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent  180     26.5  25.62379  0.87621 1.882      0.46559</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7 parent  180     27.6  25.62379  1.97621 1.882      1.05010</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1    3      3.9   2.70005  1.19995 1.882      0.63762</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1    3      3.1   2.70005  0.39995 1.882      0.21252</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1    7      6.9   5.83475  1.06525 1.882      0.56605</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1    7      6.6   5.83475  0.76525 1.882      0.40663</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1   14     10.4  10.26142  0.13858 1.882      0.07364</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1   14      8.3  10.26142 -1.96142 1.882     -1.04225</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1   30     14.4  16.82999 -2.42999 1.882     -1.29123</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1   30     13.7  16.82999 -3.12999 1.882     -1.66319</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1   60     22.1  22.32486 -0.22486 1.882     -0.11949</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1   60     22.3  22.32486 -0.02486 1.882     -0.01321</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1   90     27.5  24.45927  3.04073 1.882      1.61576</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1   90     25.4  24.45927  0.94073 1.882      0.49988</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1  120     28.0  25.54862  2.45138 1.882      1.30260</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1  120     26.6  25.54862  1.05138 1.882      0.55868</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1  180     25.8  26.82277 -1.02277 1.882     -0.54347</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 7     A1  180     25.3  26.82277 -1.52277 1.882     -0.80916</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent    0     91.9  91.16791  0.73209 1.882      0.38901</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent    0     90.8  91.16791 -0.36791 1.882     -0.19550</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent    1     64.9  67.58358 -2.68358 1.882     -1.42598</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent    1     66.2  67.58358 -1.38358 1.882     -0.73520</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent    3     43.5  41.62086  1.87914 1.882      0.99853</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent    3     44.1  41.62086  2.47914 1.882      1.31735</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent    8     18.3  19.60116 -1.30116 1.882     -0.69140</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent    8     18.1  19.60116 -1.50116 1.882     -0.79768</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent   14     10.2  10.63101 -0.43101 1.882     -0.22903</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent   14     10.8  10.63101  0.16899 1.882      0.08980</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent   27      4.9   3.12435  1.77565 1.882      0.94354</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent   27      3.3   3.12435  0.17565 1.882      0.09334</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent   48      1.6   0.43578  1.16422 1.882      0.61864</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent   48      1.5   0.43578  1.06422 1.882      0.56550</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent   70      1.1   0.05534  1.04466 1.882      0.55510</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8 parent   70      0.9   0.05534  0.84466 1.882      0.44883</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1    1      9.6   7.63450  1.96550 1.882      1.04442</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1    1      7.7   7.63450  0.06550 1.882      0.03481</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1    3     15.0  15.52593 -0.52593 1.882     -0.27947</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1    3     15.1  15.52593 -0.42593 1.882     -0.22633</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1    8     21.2  20.32192  0.87808 1.882      0.46659</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1    8     21.1  20.32192  0.77808 1.882      0.41345</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1   14     19.7  20.09721 -0.39721 1.882     -0.21107</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1   14     18.9  20.09721 -1.19721 1.882     -0.63617</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1   27     17.5  16.37477  1.12523 1.882      0.59792</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1   27     15.9  16.37477 -0.47477 1.882     -0.25228</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1   48      9.5  10.13141 -0.63141 1.882     -0.33551</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1   48      9.8  10.13141 -0.33141 1.882     -0.17610</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1   70      6.2   5.81827  0.38173 1.882      0.20284</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 8     A1   70      6.1   5.81827  0.28173 1.882      0.14970</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent    0     99.8  97.48728  2.31272 1.882      1.22892</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent    0     98.3  97.48728  0.81272 1.882      0.43186</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent    1     77.1  79.29476 -2.19476 1.882     -1.16624</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent    1     77.2  79.29476 -2.09476 1.882     -1.11310</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent    3     59.0  55.67060  3.32940 1.882      1.76915</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent    3     58.1  55.67060  2.42940 1.882      1.29092</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent    8     27.4  31.57871 -4.17871 1.882     -2.22046</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent    8     29.2  31.57871 -2.37871 1.882     -1.26398</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   14     19.1  22.51546 -3.41546 1.882     -1.81489</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   14     29.6  22.51546  7.08454 1.882      3.76454</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   27     10.1  14.09074 -3.99074 1.882     -2.12057</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   27     18.2  14.09074  4.10926 1.882      2.18355</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   48      4.5   6.95747 -2.45747 1.882     -1.30584</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   48      9.1   6.95747  2.14253 1.882      1.13848</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   70      2.3   3.32472 -1.02472 1.882     -0.54451</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   70      2.9   3.32472 -0.42472 1.882     -0.22569</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   91      2.0   1.64300  0.35700 1.882      0.18970</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent   91      1.8   1.64300  0.15700 1.882      0.08343</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent  120      2.0   0.62073  1.37927 1.882      0.73291</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9 parent  120      2.2   0.62073  1.57927 1.882      0.83918</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1    1      4.2   3.64568  0.55432 1.882      0.29455</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1    1      3.9   3.64568  0.25432 1.882      0.13514</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1    3      7.4   8.30173 -0.90173 1.882     -0.47916</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1    3      7.9   8.30173 -0.40173 1.882     -0.21347</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1    8     14.5  12.71589  1.78411 1.882      0.94803</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1    8     13.7  12.71589  0.98411 1.882      0.52293</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   14     14.2  13.90452  0.29548 1.882      0.15701</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   14     12.2  13.90452 -1.70452 1.882     -0.90574</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   27     13.7  14.15523 -0.45523 1.882     -0.24190</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   27     13.2  14.15523 -0.95523 1.882     -0.50759</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   48     13.6  13.31038  0.28962 1.882      0.15389</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   48     15.4  13.31038  2.08962 1.882      1.11037</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   70     10.4  11.85965 -1.45965 1.882     -0.77562</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   70     11.6  11.85965 -0.25965 1.882     -0.13797</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   91     10.0  10.36294 -0.36294 1.882     -0.19286</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1   91      9.5  10.36294 -0.86294 1.882     -0.45855</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1  120      9.1   8.43003  0.66997 1.882      0.35601</span> -<span class="r-out co"><span class="r-pr">#></span>   Dataset 9     A1  120      9.0   8.43003  0.56997 1.882      0.30287</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent    0     96.1  93.95603  2.14397 1.882      1.13925</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent    0     94.3  93.95603  0.34397 1.882      0.18278</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent    8     73.9  77.70592 -3.80592 1.882     -2.02237</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent    8     73.9  77.70592 -3.80592 1.882     -2.02237</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   14     69.4  70.04570 -0.64570 1.882     -0.34311</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   14     73.1  70.04570  3.05430 1.882      1.62298</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   21     65.6  64.01710  1.58290 1.882      0.84111</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   21     65.3  64.01710  1.28290 1.882      0.68170</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   41     55.9  54.98434  0.91566 1.882      0.48656</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   41     54.4  54.98434 -0.58434 1.882     -0.31050</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   63     47.0  49.87137 -2.87137 1.882     -1.52577</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   63     49.3  49.87137 -0.57137 1.882     -0.30361</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   91     44.7  45.06727 -0.36727 1.882     -0.19516</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent   91     46.7  45.06727  1.63273 1.882      0.86759</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent  120     42.1  40.76402  1.33598 1.882      0.70991</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10 parent  120     41.3  40.76402  0.53598 1.882      0.28481</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1    8      3.3   4.14599 -0.84599 1.882     -0.44954</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1    8      3.4   4.14599 -0.74599 1.882     -0.39640</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   14      3.9   6.08478 -2.18478 1.882     -1.16093</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   14      2.9   6.08478 -3.18478 1.882     -1.69231</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   21      6.4   7.59411 -1.19411 1.882     -0.63452</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   21      7.2   7.59411 -0.39411 1.882     -0.20942</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   41      9.1   9.78292 -0.68292 1.882     -0.36289</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   41      8.5   9.78292 -1.28292 1.882     -0.68171</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   63     11.7  10.93274  0.76726 1.882      0.40770</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   63     12.0  10.93274  1.06726 1.882      0.56711</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   91     13.3  11.93986  1.36014 1.882      0.72274</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1   91     13.2  11.93986  1.26014 1.882      0.66961</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1  120     14.3  12.79238  1.50762 1.882      0.80111</span> -<span class="r-out co"><span class="r-pr">#></span>  Dataset 10     A1  120     12.1  12.79238 -0.69238 1.882     -0.36791</span> -<span class="r-in"><span></span></span> -<span class="r-in"><span><span class="co"># The following takes about 6 minutes</span></span></span> -<span class="r-in"><span><span class="va">f_saem_dfop_sfo_deSolve</span> <span class="op"><-</span> <span class="fu">saem</span><span class="op">(</span><span class="va">f_mmkin</span><span class="op">[</span><span class="st">"DFOP-SFO"</span>, <span class="op">]</span>, solution_type <span class="op">=</span> <span class="st">"deSolve"</span>,</span></span> -<span class="r-in"><span>  nbiter.saemix <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">200</span>, <span class="fl">80</span><span class="op">)</span><span class="op">)</span></span></span> -<span class="r-out co"><span class="r-pr">#></span> DINTDY-  T (=R1) illegal      </span> -<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 70</span> -<span class="r-out co"><span class="r-pr">#></span>  </span> -<span class="r-out co"><span class="r-pr">#></span>       T not in interval TCUR - HU (= R1) to TCUR (=R2)      </span> -<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 53.1122, R2 = 56.6407</span> -<span class="r-out co"><span class="r-pr">#></span>  </span> -<span class="r-out co"><span class="r-pr">#></span> DINTDY-  T (=R1) illegal      </span> -<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 91</span> -<span class="r-out co"><span class="r-pr">#></span>  </span> -<span class="r-out co"><span class="r-pr">#></span>       T not in interval TCUR - HU (= R1) to TCUR (=R2)      </span> -<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 53.1122, R2 = 56.6407</span> -<span class="r-out co"><span class="r-pr">#></span>  </span> -<span class="r-out co"><span class="r-pr">#></span> DLSODA-  Trouble in DINTDY.  ITASK = I1, TOUT = R1</span> -<span class="r-out co"><span class="r-pr">#></span> In above message, I1 = 1</span> -<span class="r-out co"><span class="r-pr">#></span>  </span> -<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 91</span> -<span class="r-out co"><span class="r-pr">#></span>  </span> -<span class="r-out co"><span class="r-pr">#></span> Error in deSolve::lsoda(y = odeini, times = outtimes, func = lsoda_func,  : </span> -<span class="r-out co"><span class="r-pr">#></span>   illegal input detected before taking any integration steps - see written message</span> -<span class="r-in"><span></span></span> -<span class="r-in"><span><span class="co">#anova(</span></span></span> -<span class="r-in"><span><span class="co">#  f_saem_dfop_sfo,</span></span></span> -<span class="r-in"><span><span class="co">#  f_saem_dfop_sfo_deSolve))</span></span></span> -<span class="r-in"><span></span></span> -<span class="r-in"><span><span class="co"># If the model supports it, we can also use eigenvalue based solutions, which</span></span></span> -<span class="r-in"><span><span class="co"># take a similar amount of time</span></span></span> -<span class="r-in"><span><span class="co">#f_saem_sfo_sfo_eigen <- saem(f_mmkin["SFO-SFO", ], solution_type = "eigen",</span></span></span> -<span class="r-in"><span><span class="co">#  control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))</span></span></span> -<span class="r-in"><span><span class="co"># }</span></span></span> -</code></pre></div> -    </div> -  </div> -  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> -    <nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2> -    </nav></div> -</div> - - -      <footer><div class="copyright"> -  <p></p><p>Developed by Johannes Ranke.</p> -</div> - -<div class="pkgdown"> -  <p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p> -</div> - -      </footer></div> - -   - - -   - -  </body></html> - | 
