diff options
Diffstat (limited to 'docs/dev/reference')
137 files changed, 7406 insertions, 1048 deletions
| diff --git a/docs/dev/reference/AIC.mmkin.html b/docs/dev/reference/AIC.mmkin.html index b332257e..8c791755 100644 --- a/docs/dev/reference/AIC.mmkin.html +++ b/docs/dev/reference/AIC.mmkin.html @@ -73,7 +73,7 @@ same dataset." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ same dataset." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -187,8 +187,7 @@ dataframe if there are several fits in the column).</p>    <span class='va'>f</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>,      <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"FOCUS A"</span> <span class='op'>=</span> <span class='va'>FOCUS_2006_A</span>,           <span class='st'>"FOCUS C"</span> <span class='op'>=</span> <span class='va'>FOCUS_2006_C</span><span class='op'>)</span>, cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Optimisation did not converge:</span> -#> <span class='warning'>false convergence (8)</span></div><div class='input'>  <span class='co'># We get a warning because the FOMC model does not converge for the</span> +  <span class='co'># We get a warning because the FOMC model does not converge for the</span>    <span class='co'># FOCUS A dataset, as it is well described by SFO</span>    <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='st'>"FOCUS A"</span><span class='op'>]</span><span class='op'>)</span> <span class='co'># We get a single number for a single fit</span> @@ -199,15 +198,15 @@ dataframe if there are several fits in the column).</p>    <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span>, <span class='st'>"FOCUS A"</span><span class='op'>]</span><span class='op'>)</span>  </div><div class='output co'>#>      df      AIC  #> SFO   3 55.28197 -#> FOMC  4 57.28211 +#> FOMC  4 57.28222  #> DFOP  5 59.28197</div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span>, <span class='st'>"FOCUS A"</span><span class='op'>]</span>, k <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span> <span class='co'># If we do not penalize additional parameters, we get nearly the same</span>  </div><div class='output co'>#>      df      AIC  #> SFO   3 49.28197 -#> FOMC  4 49.28211 +#> FOMC  4 49.28222  #> DFOP  5 49.28197</div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>BIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span>, <span class='st'>"FOCUS A"</span><span class='op'>]</span><span class='op'>)</span>        <span class='co'># Comparing the BIC gives a very similar picture</span>  </div><div class='output co'>#>      df      BIC  #> SFO   3 55.52030 -#> FOMC  4 57.59987 +#> FOMC  4 57.59999  #> DFOP  5 59.67918</div><div class='input'>    <span class='co'># For FOCUS C, the more complex models fit better</span>    <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span>, <span class='st'>"FOCUS C"</span><span class='op'>]</span><span class='op'>)</span> diff --git a/docs/dev/reference/CAKE_export.html b/docs/dev/reference/CAKE_export.html index d3f45bf0..e187772f 100644 --- a/docs/dev/reference/CAKE_export.html +++ b/docs/dev/reference/CAKE_export.html @@ -73,7 +73,7 @@ specified as well." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ specified as well." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/D24_2014.html b/docs/dev/reference/D24_2014.html index 2498c58e..9ecb6330 100644 --- a/docs/dev/reference/D24_2014.html +++ b/docs/dev/reference/D24_2014.html @@ -77,7 +77,7 @@ constrained by data protection regulations." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> diff --git a/docs/dev/reference/DFOP.solution.html b/docs/dev/reference/DFOP.solution.html index 22b28732..3ee660f2 100644 --- a/docs/dev/reference/DFOP.solution.html +++ b/docs/dev/reference/DFOP.solution.html @@ -73,7 +73,7 @@ two exponential decline functions." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ two exponential decline functions." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/Extract.mmkin.html b/docs/dev/reference/Extract.mmkin.html index 0c02355f..8381337a 100644 --- a/docs/dev/reference/Extract.mmkin.html +++ b/docs/dev/reference/Extract.mmkin.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -220,7 +220,7 @@ either a list of mkinfit objects or a single mkinfit object.</p></td>    <span class='op'>)</span>  </div><div class='output co'>#> $par  #>  parent_0 log_alpha  log_beta     sigma  -#> 99.666193  2.549849  5.050586  1.890202  +#> 99.666192  2.549850  5.050586  1.890202   #>   #> $objective  #> [1] 28.58291 diff --git a/docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html b/docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html index 16d12378..a188430d 100644 --- a/docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html +++ b/docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html @@ -76,7 +76,7 @@ in this fit." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ in this fit." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html b/docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html index 6b8a6119..0bee1c16 100644 --- a/docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html +++ b/docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html @@ -76,7 +76,7 @@ in this fit." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ in this fit." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html b/docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html index 076a66c6..460fdf0d 100644 --- a/docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html +++ b/docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html @@ -76,7 +76,7 @@ in this fit." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ in this fit." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html b/docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html index 08f1d416..c1a5fdff 100644 --- a/docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html +++ b/docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html @@ -76,7 +76,7 @@ in this fit." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ in this fit." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/FOCUS_2006_datasets.html b/docs/dev/reference/FOCUS_2006_datasets.html index df4651f8..fb3a8f17 100644 --- a/docs/dev/reference/FOCUS_2006_datasets.html +++ b/docs/dev/reference/FOCUS_2006_datasets.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/FOMC.solution.html b/docs/dev/reference/FOMC.solution.html index ed5c4d21..1a5124e0 100644 --- a/docs/dev/reference/FOMC.solution.html +++ b/docs/dev/reference/FOMC.solution.html @@ -73,7 +73,7 @@ a decreasing rate constant." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ a decreasing rate constant." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/HS.solution.html b/docs/dev/reference/HS.solution.html index 8cf5c7f9..1b79e8b6 100644 --- a/docs/dev/reference/HS.solution.html +++ b/docs/dev/reference/HS.solution.html @@ -73,7 +73,7 @@ between them." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ between them." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/IORE.solution.html b/docs/dev/reference/IORE.solution.html index 29d615dc..bc17319e 100644 --- a/docs/dev/reference/IORE.solution.html +++ b/docs/dev/reference/IORE.solution.html @@ -73,7 +73,7 @@ a concentration dependent rate constant." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ a concentration dependent rate constant." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/NAFTA_SOP_2015-1.png b/docs/dev/reference/NAFTA_SOP_2015-1.pngBinary files differ index 4d823d77..4f0d7833 100644 --- a/docs/dev/reference/NAFTA_SOP_2015-1.png +++ b/docs/dev/reference/NAFTA_SOP_2015-1.png diff --git a/docs/dev/reference/NAFTA_SOP_2015.html b/docs/dev/reference/NAFTA_SOP_2015.html index 4243faba..fb65fec8 100644 --- a/docs/dev/reference/NAFTA_SOP_2015.html +++ b/docs/dev/reference/NAFTA_SOP_2015.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/NAFTA_SOP_Attachment-1.png b/docs/dev/reference/NAFTA_SOP_Attachment-1.pngBinary files differ index 6eb10cde..9417685e 100644 --- a/docs/dev/reference/NAFTA_SOP_Attachment-1.png +++ b/docs/dev/reference/NAFTA_SOP_Attachment-1.png diff --git a/docs/dev/reference/NAFTA_SOP_Attachment.html b/docs/dev/reference/NAFTA_SOP_Attachment.html index de984984..311a7c61 100644 --- a/docs/dev/reference/NAFTA_SOP_Attachment.html +++ b/docs/dev/reference/NAFTA_SOP_Attachment.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -193,7 +193,7 @@  #>          Estimate   Pr(>t)   Lower    Upper  #> parent_0 9.99e+01 1.41e-26 98.8116 101.0810  #> k1       2.67e-02 5.05e-06  0.0243   0.0295 -#> k2       2.42e-12 5.00e-01  0.0000      Inf +#> k2       2.26e-12 5.00e-01  0.0000      Inf  #> g        6.47e-01 3.67e-06  0.6248   0.6677  #> sigma    1.27e+00 8.91e-06  0.8395   1.6929  #>  @@ -202,7 +202,7 @@  #>      DT50     DT90 DT50_rep  #> SFO  67.7 2.25e+02 6.77e+01  #> IORE 58.2 1.07e+03 3.22e+02 -#> DFOP 55.5 5.22e+11 2.86e+11 +#> DFOP 55.5 5.59e+11 3.07e+11  #>   #> Representative half-life:  #> [1] 321.51</div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>nafta_att_p5a</span><span class='op'>)</span> diff --git a/docs/dev/reference/Rplot001.png b/docs/dev/reference/Rplot001.pngBinary files differ index bca41e2c..17a35806 100644 --- a/docs/dev/reference/Rplot001.png +++ b/docs/dev/reference/Rplot001.png diff --git a/docs/dev/reference/Rplot002.png b/docs/dev/reference/Rplot002.pngBinary files differ index 9b97a634..32c64fcd 100644 --- a/docs/dev/reference/Rplot002.png +++ b/docs/dev/reference/Rplot002.png diff --git a/docs/dev/reference/Rplot003.png b/docs/dev/reference/Rplot003.pngBinary files differ index ff6bc722..5726488c 100644 --- a/docs/dev/reference/Rplot003.png +++ b/docs/dev/reference/Rplot003.png diff --git a/docs/dev/reference/Rplot004.png b/docs/dev/reference/Rplot004.pngBinary files differ index 98dd019e..c279f831 100644 --- a/docs/dev/reference/Rplot004.png +++ b/docs/dev/reference/Rplot004.png diff --git a/docs/dev/reference/Rplot005.png b/docs/dev/reference/Rplot005.pngBinary files differ index 5e675828..92c7cc2d 100644 --- a/docs/dev/reference/Rplot005.png +++ b/docs/dev/reference/Rplot005.png diff --git a/docs/dev/reference/Rplot006.png b/docs/dev/reference/Rplot006.pngBinary files differ index da52f580..4c728f4e 100644 --- a/docs/dev/reference/Rplot006.png +++ b/docs/dev/reference/Rplot006.png diff --git a/docs/dev/reference/Rplot007.png b/docs/dev/reference/Rplot007.pngBinary files differ index fce3b6ee..10b7455a 100644 --- a/docs/dev/reference/Rplot007.png +++ b/docs/dev/reference/Rplot007.png diff --git a/docs/dev/reference/SFO.solution.html b/docs/dev/reference/SFO.solution.html index b3e7ef9a..43c434c6 100644 --- a/docs/dev/reference/SFO.solution.html +++ b/docs/dev/reference/SFO.solution.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/SFORB.solution.html b/docs/dev/reference/SFORB.solution.html index 9310212f..807fbe5c 100644 --- a/docs/dev/reference/SFORB.solution.html +++ b/docs/dev/reference/SFORB.solution.html @@ -76,7 +76,7 @@ and no substance in the bound fraction." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ and no substance in the bound fraction." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/add_err-1.png b/docs/dev/reference/add_err-1.pngBinary files differ index d2ce797f..9ba106db 100644 --- a/docs/dev/reference/add_err-1.png +++ b/docs/dev/reference/add_err-1.png diff --git a/docs/dev/reference/add_err-2.png b/docs/dev/reference/add_err-2.pngBinary files differ index ac220c9e..3088c40e 100644 --- a/docs/dev/reference/add_err-2.png +++ b/docs/dev/reference/add_err-2.png diff --git a/docs/dev/reference/add_err-3.png b/docs/dev/reference/add_err-3.pngBinary files differ index 40465b71..493a761a 100644 --- a/docs/dev/reference/add_err-3.png +++ b/docs/dev/reference/add_err-3.png diff --git a/docs/dev/reference/add_err.html b/docs/dev/reference/add_err.html index 6ea30515..b94cef29 100644 --- a/docs/dev/reference/add_err.html +++ b/docs/dev/reference/add_err.html @@ -74,7 +74,7 @@ may depend on the predicted value and is specified as a standard deviation." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -123,7 +123,7 @@ may depend on the predicted value and is specified as a standard deviation." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/aw.html b/docs/dev/reference/aw.html index ef808dd8..3b06f2a6 100644 --- a/docs/dev/reference/aw.html +++ b/docs/dev/reference/aw.html @@ -74,7 +74,7 @@ by Burnham and Anderson (2004)." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -123,7 +123,7 @@ by Burnham and Anderson (2004)." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/confint.mkinfit.html b/docs/dev/reference/confint.mkinfit.html index 515a7c9e..2237a539 100644 --- a/docs/dev/reference/confint.mkinfit.html +++ b/docs/dev/reference/confint.mkinfit.html @@ -79,7 +79,7 @@ method of Venzon and Moolgavkar (1988)." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -128,7 +128,7 @@ method of Venzon and Moolgavkar (1988)." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -273,68 +273,69 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,  <span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/identical.html'>identical</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.getenv.html'>Sys.getenv</a></span><span class='op'>(</span><span class='st'>"NOT_CRAN"</span><span class='op'>)</span>, <span class='st'>"true"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span>    <span class='va'>n_cores</span> <span class='op'><-</span> <span class='fu'>parallel</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span><span class='op'>(</span><span class='op'>)</span> <span class='op'>-</span> <span class='fl'>1</span>  <span class='op'>}</span> <span class='kw'>else</span> <span class='op'>{</span> - <span class='va'>n_cores</span> <span class='op'><-</span> <span class='fl'>1</span> +  <span class='va'>n_cores</span> <span class='op'><-</span> <span class='fl'>1</span>  <span class='op'>}</span>  <span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.getenv.html'>Sys.getenv</a></span><span class='op'>(</span><span class='st'>"TRAVIS"</span><span class='op'>)</span> <span class='op'>!=</span> <span class='st'>""</span><span class='op'>)</span> <span class='va'>n_cores</span> <span class='op'>=</span> <span class='fl'>1</span>  <span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.info.html'>Sys.info</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>[</span><span class='st'>"sysname"</span><span class='op'>]</span> <span class='op'>==</span> <span class='st'>"Windows"</span><span class='op'>)</span> <span class='va'>n_cores</span> <span class='op'>=</span> <span class='fl'>1</span> -<span class='va'>SFO_SFO</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span><span class='op'>)</span>, m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +<span class='va'>SFO_SFO</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span><span class='op'>)</span>, m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, +  use_of_ff <span class='op'>=</span> <span class='st'>"min"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  <span class='va'>SFO_SFO.ff</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span><span class='op'>)</span>, m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>,    use_of_ff <span class='op'>=</span> <span class='st'>"max"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  <span class='va'>f_d_1</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span><span class='va'>ci_profile</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"profile"</span>, cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span><span class='op'>)</span>  </div><div class='output co'>#>    user  system elapsed  -#>   3.900   0.929   3.548 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span> +#>   4.295   1.008   3.959 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span>  <span class='co'># If we additionally exclude parent_0 (the confidence of which is often of</span> -<span class='co'># minor interest), we get a nice performance improvement from about 50</span> -<span class='co'># seconds to about 12 seconds if we use at least four cores</span> +<span class='co'># minor interest), we get a nice performance improvement if we use at least 4 cores</span>  <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span><span class='va'>ci_profile_no_parent_0</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"profile"</span>,    <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"k_parent_sink"</span>, <span class='st'>"k_parent_m1"</span>, <span class='st'>"k_m1_sink"</span>, <span class='st'>"sigma"</span><span class='op'>)</span>, cores <span class='op'>=</span> <span class='va'>n_cores</span><span class='op'>)</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='message'>Profiling the likelihood</span></div><div class='output co'>#> <span class='warning'>Warning: scheduled cores 3, 2, 1 encountered errors in user code, all values of the jobs will be affected</span></div><div class='output co'>#> <span class='error'>Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 0.009 0.034 0.257</span></div><div class='input'><span class='va'>ci_profile</span> -</div><div class='output co'>#>                        2.5%        97.5% -#> parent_0       96.456003640 1.027703e+02 -#> k_parent        0.090911032 1.071578e-01 -#> k_m1            0.003892606 6.702775e-03 -#> f_parent_to_m1  0.471328495 5.611550e-01 -#> sigma           2.535612399 3.985263e+00</div><div class='input'><span class='va'>ci_quadratic_transformed</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>Profiling the likelihood</span></div><div class='output co'>#>    user  system elapsed  +#>   1.451   0.126   0.923 </div><div class='input'><span class='va'>ci_profile</span> +</div><div class='output co'>#>                       2.5%        97.5% +#> parent_0      96.456003640 1.027703e+02 +#> k_parent_sink  0.040762501 5.549764e-02 +#> k_parent_m1    0.046786482 5.500879e-02 +#> k_m1_sink      0.003892605 6.702778e-03 +#> sigma          2.535612399 3.985263e+00</div><div class='input'><span class='va'>ci_quadratic_transformed</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>  <span class='va'>ci_quadratic_transformed</span> -</div><div class='output co'>#>                        2.5%        97.5% -#> parent_0       96.403833585 102.79311650 -#> k_parent        0.090823771   0.10725430 -#> k_m1            0.004012219   0.00689755 -#> f_parent_to_m1  0.469118824   0.55959615 -#> sigma           2.396089689   3.85491806</div><div class='input'><span class='va'>ci_quadratic_untransformed</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span>, transformed <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span> +</div><div class='output co'>#>                       2.5%        97.5% +#> parent_0      96.403841640 1.027931e+02 +#> k_parent_sink  0.041033378 5.596269e-02 +#> k_parent_m1    0.046777902 5.511931e-02 +#> k_m1_sink      0.004012217 6.897547e-03 +#> sigma          2.396089689 3.854918e+00</div><div class='input'><span class='va'>ci_quadratic_untransformed</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span>, transformed <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>  <span class='va'>ci_quadratic_untransformed</span> -</div><div class='output co'>#>                        2.5%        97.5% -#> parent_0       96.403833589 1.027931e+02 -#> k_parent        0.090491913 1.069035e-01 -#> k_m1            0.003835485 6.685823e-03 -#> f_parent_to_m1  0.469113477 5.598387e-01 -#> sigma           2.396089689 3.854918e+00</div><div class='input'><span class='co'># Against the expectation based on Bates and Watts (1988), the confidence</span> +</div><div class='output co'>#>                       2.5%        97.5% +#> parent_0      96.403841645 102.79312449 +#> k_parent_sink  0.040485331   0.05535491 +#> k_parent_m1    0.046611582   0.05494364 +#> k_m1_sink      0.003835483   0.00668582 +#> sigma          2.396089689   3.85491806</div><div class='input'><span class='co'># Against the expectation based on Bates and Watts (1988), the confidence</span>  <span class='co'># intervals based on the internal parameter transformation are less</span>  <span class='co'># congruent with the likelihood based intervals. Note the superiority of the</span>  <span class='co'># interval based on the untransformed fit for k_m1_sink</span>  <span class='va'>rel_diffs_transformed</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/MathFun.html'>abs</a></span><span class='op'>(</span><span class='op'>(</span><span class='va'>ci_quadratic_transformed</span> <span class='op'>-</span> <span class='va'>ci_profile</span><span class='op'>)</span><span class='op'>/</span><span class='va'>ci_profile</span><span class='op'>)</span>  <span class='va'>rel_diffs_untransformed</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/MathFun.html'>abs</a></span><span class='op'>(</span><span class='op'>(</span><span class='va'>ci_quadratic_untransformed</span> <span class='op'>-</span> <span class='va'>ci_profile</span><span class='op'>)</span><span class='op'>/</span><span class='va'>ci_profile</span><span class='op'>)</span>  <span class='va'>rel_diffs_transformed</span> <span class='op'><</span> <span class='va'>rel_diffs_untransformed</span> -</div><div class='output co'>#>                 2.5% 97.5% -#> parent_0       FALSE FALSE -#> k_parent        TRUE  TRUE -#> k_m1           FALSE FALSE -#> f_parent_to_m1  TRUE FALSE -#> sigma           TRUE FALSE</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/Round.html'>signif</a></span><span class='op'>(</span><span class='va'>rel_diffs_transformed</span>, <span class='fl'>3</span><span class='op'>)</span> -</div><div class='output co'>#>                    2.5%    97.5% -#> parent_0       0.000541 0.000222 -#> k_parent       0.000960 0.000900 -#> k_m1           0.030700 0.029100 -#> f_parent_to_m1 0.004690 0.002780 -#> sigma          0.055000 0.032700</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/Round.html'>signif</a></span><span class='op'>(</span><span class='va'>rel_diffs_untransformed</span>, <span class='fl'>3</span><span class='op'>)</span> -</div><div class='output co'>#>                    2.5%    97.5% -#> parent_0       0.000541 0.000222 -#> k_parent       0.004610 0.002370 -#> k_m1           0.014700 0.002530 -#> f_parent_to_m1 0.004700 0.002350 -#> sigma          0.055000 0.032700</div><div class='input'> +</div><div class='output co'>#>                2.5% 97.5% +#> parent_0      FALSE FALSE +#> k_parent_sink  TRUE FALSE +#> k_parent_m1    TRUE FALSE +#> k_m1_sink     FALSE FALSE +#> sigma         FALSE FALSE</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/Round.html'>signif</a></span><span class='op'>(</span><span class='va'>rel_diffs_transformed</span>, <span class='fl'>3</span><span class='op'>)</span> +</div><div class='output co'>#>                   2.5%    97.5% +#> parent_0      0.000541 0.000222 +#> k_parent_sink 0.006650 0.008380 +#> k_parent_m1   0.000183 0.002010 +#> k_m1_sink     0.030700 0.029100 +#> sigma         0.055000 0.032700</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/Round.html'>signif</a></span><span class='op'>(</span><span class='va'>rel_diffs_untransformed</span>, <span class='fl'>3</span><span class='op'>)</span> +</div><div class='output co'>#>                   2.5%    97.5% +#> parent_0      0.000541 0.000222 +#> k_parent_sink 0.006800 0.002570 +#> k_parent_m1   0.003740 0.001180 +#> k_m1_sink     0.014700 0.002530 +#> sigma         0.055000 0.032700</div><div class='input'>  <span class='co'># Investigate a case with formation fractions</span>  <span class='va'>f_d_2</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> @@ -348,14 +349,14 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,  #> sigma           2.535612399 3.985263e+00</div><div class='input'><span class='va'>ci_quadratic_transformed_ff</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_2</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>  <span class='va'>ci_quadratic_transformed_ff</span>  </div><div class='output co'>#>                        2.5%        97.5% -#> parent_0       96.403833585 102.79311650 +#> parent_0       96.403833578 102.79311649  #> k_parent        0.090823771   0.10725430  #> k_m1            0.004012219   0.00689755  #> f_parent_to_m1  0.469118824   0.55959615  #> sigma           2.396089689   3.85491806</div><div class='input'><span class='va'>ci_quadratic_untransformed_ff</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_2</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span>, transformed <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>  <span class='va'>ci_quadratic_untransformed_ff</span>  </div><div class='output co'>#>                        2.5%        97.5% -#> parent_0       96.403833589 1.027931e+02 +#> parent_0       96.403833583 1.027931e+02  #> k_parent        0.090491913 1.069035e-01  #> k_m1            0.003835485 6.685823e-03  #> f_parent_to_m1  0.469113477 5.598387e-01 @@ -373,15 +374,15 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,  #> f_parent_to_m1  TRUE FALSE  #> sigma           TRUE FALSE</div><div class='input'><span class='va'>rel_diffs_transformed_ff</span>  </div><div class='output co'>#>                        2.5%        97.5% -#> parent_0       0.0005408689 0.0002217234 +#> parent_0       0.0005408690 0.0002217233  #> k_parent       0.0009598532 0.0009001864 -#> k_m1           0.0307283044 0.0290588365 -#> f_parent_to_m1 0.0046881768 0.0027780063 +#> k_m1           0.0307283041 0.0290588361 +#> f_parent_to_m1 0.0046881769 0.0027780063  #> sigma          0.0550252516 0.0327066836</div><div class='input'><span class='va'>rel_diffs_untransformed_ff</span>  </div><div class='output co'>#>                        2.5%        97.5% -#> parent_0       0.0005408689 0.0002217233 -#> k_parent       0.0046102155 0.0023732281 -#> k_m1           0.0146740688 0.0025291817 +#> parent_0       0.0005408689 0.0002217232 +#> k_parent       0.0046102156 0.0023732281 +#> k_m1           0.0146740690 0.0025291820  #> f_parent_to_m1 0.0046995211 0.0023457712  #> sigma          0.0550252516 0.0327066836</div><div class='input'>  <span class='co'># The profiling for the following fit does not finish in a reasonable time,</span> @@ -395,18 +396,18 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,    error_model_algorithm <span class='op'>=</span> <span class='st'>"direct"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_tc_2</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>  </div><div class='output co'>#>                        2.5%        97.5% -#> parent_0       94.596126334 106.19944007 -#> k_M1            0.037605408   0.04490759 -#> k_M2            0.008568739   0.01087675 -#> f_parent_to_M1  0.021463787   0.62023881 -#> f_parent_to_M2  0.015166531   0.37975349 -#> k1              0.273897467   0.33388084 -#> k2              0.018614555   0.02250379 -#> g               0.671943606   0.73583278 -#> sigma_low       0.251283766   0.83992113 -#> rsd_high        0.040411014   0.07662005</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_tc_2</span>, <span class='st'>"parent_0"</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span> +#> parent_0       94.596039609 106.19954892 +#> k_M1            0.037605368   0.04490762 +#> k_M2            0.008568731   0.01087676 +#> f_parent_to_M1  0.021462489   0.62023882 +#> f_parent_to_M2  0.015165617   0.37975348 +#> k1              0.273897348   0.33388101 +#> k2              0.018614554   0.02250378 +#> g               0.671943411   0.73583305 +#> sigma_low       0.251283495   0.83992077 +#> rsd_high        0.040411024   0.07662008</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_tc_2</span>, <span class='st'>"parent_0"</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>  </div><div class='output co'>#>              2.5%    97.5% -#> parent_0 94.59613 106.1994</div><div class='input'><span class='co'># }</span> +#> parent_0 94.59604 106.1995</div><div class='input'><span class='co'># }</span>  </div></pre>    </div>    <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> diff --git a/docs/dev/reference/create_deg_func.html b/docs/dev/reference/create_deg_func.html index 4945d157..65a682bb 100644 --- a/docs/dev/reference/create_deg_func.html +++ b/docs/dev/reference/create_deg_func.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -181,8 +181,8 @@      deSolve <span class='op'>=</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, solution_type <span class='op'>=</span> <span class='st'>"deSolve"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,      replications <span class='op'>=</span> <span class='fl'>2</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='message'>Loading required package: rbenchmark</span></div><div class='output co'>#>         test replications elapsed relative user.self sys.self user.child -#> 1 analytical            2   0.396    1.000     0.395        0          0 -#> 2    deSolve            2   0.694    1.753     0.693        0          0 +#> 1 analytical            2   0.396     1.00     0.396        0          0 +#> 2    deSolve            2   0.709     1.79     0.707        0          0  #>   sys.child  #> 1         0  #> 2         0</div><div class='input'>  <span class='va'>DFOP_SFO</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span> @@ -193,8 +193,8 @@      deSolve <span class='op'>=</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>DFOP_SFO</span>, <span class='va'>FOCUS_D</span>, solution_type <span class='op'>=</span> <span class='st'>"deSolve"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,      replications <span class='op'>=</span> <span class='fl'>2</span><span class='op'>)</span>  </div><div class='output co'>#>         test replications elapsed relative user.self sys.self user.child -#> 1 analytical            2   0.838    1.000     0.838    0.001          0 -#> 2    deSolve            2   1.573    1.877     1.572    0.000          0 +#> 1 analytical            2   0.844    1.000     0.844        0          0 +#> 2    deSolve            2   1.624    1.924     1.624        0          0  #>   sys.child  #> 1         0  #> 2         0</div><div class='input'><span class='co'># }</span> diff --git a/docs/dev/reference/dimethenamid_2018-1.png b/docs/dev/reference/dimethenamid_2018-1.pngBinary files differ new file mode 100644 index 00000000..52b8a2be --- /dev/null +++ b/docs/dev/reference/dimethenamid_2018-1.png diff --git a/docs/dev/reference/dimethenamid_2018-2.png b/docs/dev/reference/dimethenamid_2018-2.pngBinary files differ new file mode 100644 index 00000000..a81b2aaf --- /dev/null +++ b/docs/dev/reference/dimethenamid_2018-2.png diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html index 21dea623..a77cf0f4 100644 --- a/docs/dev/reference/dimethenamid_2018.html +++ b/docs/dev/reference/dimethenamid_2018.html @@ -77,7 +77,7 @@ constrained by data protection regulations." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -168,7 +168,7 @@ constrained by data protection regulations.</p>      <p>Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)  Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour  Rev. 2 - November 2017 -<a href='http://registerofquestions.efsa.europa.eu/roqFrontend/outputLoader?output=ON-5211'>http://registerofquestions.efsa.europa.eu/roqFrontend/outputLoader?output=ON-5211</a></p> +<a href='https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716'>https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a></p>      <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>      <p>The R code used to create this data object is installed with this package @@ -203,7 +203,476 @@ specific pieces of information in the comments.</p>  #> Elliot 2          0.75              33.37          23  #> Flaach            0.40                 NA          20  #> BBA 2.2           0.40                 NA          20 -#> BBA 2.3           0.40                 NA          20</div></pre> +#> BBA 2.3           0.40                 NA          20</div><div class='input'><span class='va'>dmta_ds</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>:</span><span class='fl'>8</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>{</span> +  <span class='va'>ds_i</span> <span class='op'><-</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span><span class='op'>[[</span><span class='va'>i</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>data</span> +  <span class='va'>ds_i</span><span class='op'>[</span><span class='va'>ds_i</span><span class='op'>$</span><span class='va'>name</span> <span class='op'>==</span> <span class='st'>"DMTAP"</span>, <span class='st'>"name"</span><span class='op'>]</span> <span class='op'><-</span>  <span class='st'>"DMTA"</span> +  <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'><-</span> <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'>*</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>f_time_norm</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span> +  <span class='va'>ds_i</span> +<span class='op'>}</span><span class='op'>)</span> +<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>)</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>sapply</a></span><span class='op'>(</span><span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='va'>ds</span><span class='op'>$</span><span class='va'>title</span><span class='op'>)</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> +<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span> +<span class='co'># \dontrun{</span> +<span class='va'>dfop_sfo3_plus</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span> +  DMTA <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"M23"</span>, <span class='st'>"M27"</span>, <span class='st'>"M31"</span><span class='op'>)</span><span class='op'>)</span>, +  M23 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, +  M27 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, +  M31 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"M27"</span>, sink <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>, +  quiet <span class='op'>=</span> <span class='cn'>TRUE</span> +<span class='op'>)</span> +<span class='va'>f_dmta_mkin_tc</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span> +  <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"DFOP-SFO3+"</span> <span class='op'>=</span> <span class='va'>dfop_sfo3_plus</span><span class='op'>)</span>, +  <span class='va'>dmta_ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> +<span class='fu'><a href='nlmixr.mmkin.html'>nlmixr_model</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> function ()  +#> { +#>     ini({ +#>         DMTA_0 = 98.7697627680706 +#>         eta.DMTA_0 ~ 2.35171765917765 +#>         log_k_M23 = -3.92162409637283 +#>         eta.log_k_M23 ~ 0.549278519419884 +#>         log_k_M27 = -4.33774620773911 +#>         eta.log_k_M27 ~ 0.864474956685295 +#>         log_k_M31 = -4.24767627688461 +#>         eta.log_k_M31 ~ 0.750297149164171 +#>         log_k1 = -2.2341008812259 +#>         eta.log_k1 ~ 0.902976221565793 +#>         log_k2 = -3.7762779983269 +#>         eta.log_k2 ~ 1.57684519529298 +#>         g_qlogis = 0.450175725479389 +#>         eta.g_qlogis ~ 3.0851335687675 +#>         f_DMTA_tffm0_1_qlogis = -2.09240906629456 +#>         eta.f_DMTA_tffm0_1_qlogis ~ 0.3 +#>         f_DMTA_tffm0_2_qlogis = -2.18057573598794 +#>         eta.f_DMTA_tffm0_2_qlogis ~ 0.3 +#>         f_DMTA_tffm0_3_qlogis = -2.14267187609763 +#>         eta.f_DMTA_tffm0_3_qlogis ~ 0.3 +#>         sigma_low_DMTA = 0.697933852349996 +#>         rsd_high_DMTA = 0.0257724286053519 +#>         sigma_low_M23 = 0.697933852349996 +#>         rsd_high_M23 = 0.0257724286053519 +#>         sigma_low_M27 = 0.697933852349996 +#>         rsd_high_M27 = 0.0257724286053519 +#>         sigma_low_M31 = 0.697933852349996 +#>         rsd_high_M31 = 0.0257724286053519 +#>     }) +#>     model({ +#>         DMTA_0_model = DMTA_0 + eta.DMTA_0 +#>         DMTA(0) = DMTA_0_model +#>         k_M23 = exp(log_k_M23 + eta.log_k_M23) +#>         k_M27 = exp(log_k_M27 + eta.log_k_M27) +#>         k_M31 = exp(log_k_M31 + eta.log_k_M31) +#>         k1 = exp(log_k1 + eta.log_k1) +#>         k2 = exp(log_k2 + eta.log_k2) +#>         g = expit(g_qlogis + eta.g_qlogis) +#>         f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis) +#>         f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis) +#>         f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis) +#>         f_DMTA_to_M23 = f_DMTA_tffm0_1 +#>         f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1) +#>         f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) *  +#>             (1 - f_DMTA_tffm0_1) +#>         d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 -  +#>             g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 -  +#>             g) * exp(-k2 * time))) * DMTA +#>         d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) +  +#>             k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +  +#>             (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23 +#>         d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) +  +#>             k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +  +#>             (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 +  +#>             k_M31 * M31 +#>         d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) +  +#>             k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +  +#>             (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31 +#>         DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA) +#>         M23 ~ add(sigma_low_M23) + prop(rsd_high_M23) +#>         M27 ~ add(sigma_low_M27) + prop(rsd_high_M27) +#>         M31 ~ add(sigma_low_M31) + prop(rsd_high_M31) +#>     }) +#> } +#> <environment: 0x555559ac3820></div><div class='input'><span class='co'># The focei fit takes about four minutes on my system</span> +<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span> +  <span class='va'>f_dmta_nlmixr_focei</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>, +    control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span><span class='op'>)</span><span class='op'>)</span> +<span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:02  +#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:04  +#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:01  +#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:08  +#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:07  +#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:07  +#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:00  +#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:00  +#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>RxODE 1.1.0 using 8 threads (see ?getRxThreads)</span> +#> <span class='message'>  no cache: create with `rxCreateCache()`</span></div><div class='output co'>#> <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation +#> F: Forward difference gradient approximation +#> C: Central difference gradient approximation +#> M: Mixed forward and central difference gradient approximation +#> Unscaled parameters for Omegas=chol(solve(omega)); +#> Diagonals are transformed, as specified by foceiControl(diagXform=) +#> |-----+---------------+-----------+-----------+-----------+-----------| +#> |    #| Objective Fun |    DMTA_0 | log_k_M23 | log_k_M27 | log_k_M31 | +#> |.....................|    log_k1 |    log_k2 |  g_qlogis |f_DMTA_tffm0_1_qlogis | +#> |.....................|f_DMTA_tffm0_2_qlogis |f_DMTA_tffm0_3_qlogis | sigma_low |  rsd_high | +#> |.....................|        o1 |        o2 |        o3 |        o4 | +#> |.....................|        o5 |        o6 |        o7 |        o8 | +#> <span style='text-decoration: underline;'>|.....................|        o9 |       o10 |...........|...........|</span> +#> calculating covariance matrix +#> done</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#> <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#> <span class='warning'>Warning: S matrix non-positive definite</span></div><div class='output co'>#> <span class='warning'>Warning: using R matrix to calculate covariance</span></div><div class='output co'>#> <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='output co'>#>    user  system elapsed  +#> 232.621  14.126 246.850 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span> +</div><div class='output co'>#> nlmixr version used for fitting:    2.0.4  +#> mkin version used for pre-fitting:  1.0.5  +#> R version used for fitting:         4.1.0  +#> Date of fit:     Wed Aug  4 15:53:54 2021  +#> Date of summary: Wed Aug  4 15:53:54 2021  +#>  +#> Equations: +#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +#>            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +#>            * DMTA +#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M23 * M23 +#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31 +#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M31 * M31 +#>  +#> Data: +#> 568 observations of 4 variable(s) grouped in 6 datasets +#>  +#> Degradation model predictions using RxODE +#>  +#> Fitted in 246.669 s +#>  +#> Variance model: Two-component variance function  +#>  +#> Mean of starting values for individual parameters: +#>       DMTA_0    log_k_M23    log_k_M27    log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2  +#>      98.7698      -3.9216      -4.3377      -4.2477       0.1380       0.1393  +#> f_DMTA_ilr_3       log_k1       log_k2     g_qlogis  +#>      -1.7571      -2.2341      -3.7763       0.4502  +#>  +#> Mean of starting values for error model parameters: +#> sigma_low  rsd_high  +#>   0.69793   0.02577  +#>  +#> Fixed degradation parameter values: +#> None +#>  +#> Results: +#>  +#> Likelihood calculated by focei   +#>    AIC  BIC logLik +#>   1936 2031 -945.9 +#>  +#> Optimised parameters: +#>                          est.   lower   upper +#> DMTA_0                98.7698 98.7356 98.8039 +#> log_k_M23             -3.9216 -3.9235 -3.9197 +#> log_k_M27             -4.3377 -4.3398 -4.3357 +#> log_k_M31             -4.2477 -4.2497 -4.2457 +#> log_k1                -2.2341 -2.2353 -2.2329 +#> log_k2                -3.7763 -3.7781 -3.7744 +#> g_qlogis               0.4502  0.4496  0.4507 +#> f_DMTA_tffm0_1_qlogis -2.0924 -2.0936 -2.0912 +#> f_DMTA_tffm0_2_qlogis -2.1806 -2.1818 -2.1794 +#> f_DMTA_tffm0_3_qlogis -2.1427 -2.1439 -2.1415 +#>  +#> Correlation:  +#>                       DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs +#> log_k_M23             0                                                +#> log_k_M27             0      0                                         +#> log_k_M31             0      0      0                                  +#> log_k1                0      0      0      0                           +#> log_k2                0      0      0      0      0                    +#> g_qlogis              0      0      0      0      0      0             +#> f_DMTA_tffm0_1_qlogis 0      0      0      0      0      0      0      +#> f_DMTA_tffm0_2_qlogis 0      0      0      0      0      0      0      +#> f_DMTA_tffm0_3_qlogis 0      0      0      0      0      0      0      +#>                       f_DMTA_0_1 f_DMTA_0_2 +#> log_k_M23                                   +#> log_k_M27                                   +#> log_k_M31                                   +#> log_k1                                      +#> log_k2                                      +#> g_qlogis                                    +#> f_DMTA_tffm0_1_qlogis                       +#> f_DMTA_tffm0_2_qlogis 0                     +#> f_DMTA_tffm0_3_qlogis 0          0          +#>  +#> Random effects (omega): +#>                           eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31 +#> eta.DMTA_0                     2.352        0.0000        0.0000        0.0000 +#> eta.log_k_M23                  0.000        0.5493        0.0000        0.0000 +#> eta.log_k_M27                  0.000        0.0000        0.8645        0.0000 +#> eta.log_k_M31                  0.000        0.0000        0.0000        0.7503 +#> eta.log_k1                     0.000        0.0000        0.0000        0.0000 +#> eta.log_k2                     0.000        0.0000        0.0000        0.0000 +#> eta.g_qlogis                   0.000        0.0000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_1_qlogis      0.000        0.0000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_2_qlogis      0.000        0.0000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_3_qlogis      0.000        0.0000        0.0000        0.0000 +#>                           eta.log_k1 eta.log_k2 eta.g_qlogis +#> eta.DMTA_0                     0.000      0.000        0.000 +#> eta.log_k_M23                  0.000      0.000        0.000 +#> eta.log_k_M27                  0.000      0.000        0.000 +#> eta.log_k_M31                  0.000      0.000        0.000 +#> eta.log_k1                     0.903      0.000        0.000 +#> eta.log_k2                     0.000      1.577        0.000 +#> eta.g_qlogis                   0.000      0.000        3.085 +#> eta.f_DMTA_tffm0_1_qlogis      0.000      0.000        0.000 +#> eta.f_DMTA_tffm0_2_qlogis      0.000      0.000        0.000 +#> eta.f_DMTA_tffm0_3_qlogis      0.000      0.000        0.000 +#>                           eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis +#> eta.DMTA_0                                      0.0                       0.0 +#> eta.log_k_M23                                   0.0                       0.0 +#> eta.log_k_M27                                   0.0                       0.0 +#> eta.log_k_M31                                   0.0                       0.0 +#> eta.log_k1                                      0.0                       0.0 +#> eta.log_k2                                      0.0                       0.0 +#> eta.g_qlogis                                    0.0                       0.0 +#> eta.f_DMTA_tffm0_1_qlogis                       0.3                       0.0 +#> eta.f_DMTA_tffm0_2_qlogis                       0.0                       0.3 +#> eta.f_DMTA_tffm0_3_qlogis                       0.0                       0.0 +#>                           eta.f_DMTA_tffm0_3_qlogis +#> eta.DMTA_0                                      0.0 +#> eta.log_k_M23                                   0.0 +#> eta.log_k_M27                                   0.0 +#> eta.log_k_M31                                   0.0 +#> eta.log_k1                                      0.0 +#> eta.log_k2                                      0.0 +#> eta.g_qlogis                                    0.0 +#> eta.f_DMTA_tffm0_1_qlogis                       0.0 +#> eta.f_DMTA_tffm0_2_qlogis                       0.0 +#> eta.f_DMTA_tffm0_3_qlogis                       0.3 +#>  +#> Variance model: +#> sigma_low  rsd_high  +#>   0.69793   0.02577  +#>  +#> Backtransformed parameters: +#>                   est.    lower    upper +#> DMTA_0        98.76976 98.73563 98.80390 +#> k_M23          0.01981  0.01977  0.01985 +#> k_M27          0.01307  0.01304  0.01309 +#> k_M31          0.01430  0.01427  0.01433 +#> f_DMTA_to_M23  0.10984       NA       NA +#> f_DMTA_to_M27  0.09036       NA       NA +#> f_DMTA_to_M31  0.08399       NA       NA +#> k1             0.10709  0.10696  0.10722 +#> k2             0.02291  0.02287  0.02295 +#> g              0.61068  0.61055  0.61081 +#>  +#> Resulting formation fractions: +#>                ff +#> DMTA_M23  0.10984 +#> DMTA_M27  0.09036 +#> DMTA_M31  0.08399 +#> DMTA_sink 0.71581 +#>  +#> Estimated disappearance times: +#>       DT50   DT90 DT50back DT50_k1 DT50_k2 +#> DMTA 10.66  59.78       18   6.473   30.26 +#> M23  34.99 116.24       NA      NA      NA +#> M27  53.05 176.23       NA      NA      NA +#> M31  48.48 161.05       NA      NA      NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span> +</div><div class='img'><img src='dimethenamid_2018-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># Using saemix takes about 18 minutes</span> +<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span> +  <span class='va'>f_dmta_saemix</span> <span class='op'><-</span> <span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +<span class='op'>)</span> +</div><div class='output co'>#> Running main SAEM algorithm +#> [1] "Wed Aug  4 15:53:55 2021" +#> .... +#>     Minimisation finished +#> [1] "Wed Aug  4 16:12:40 2021"</div><div class='output co'>#>     user   system  elapsed  +#> 1192.021    0.064 1192.182 </div><div class='input'> +<span class='co'># nlmixr with est = "saem" is pretty fast with default iteration numbers, most</span> +<span class='co'># of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end</span> +<span class='co'># The likelihood calculated for the nlmixr fit is much lower than that found by saemix</span> +<span class='co'># Also, the trace plot and the plot of the individual predictions is not</span> +<span class='co'># convincing for the parent. It seems we are fitting an overparameterised</span> +<span class='co'># model, so the result we get strongly depends on starting parameters and control settings.</span> +<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span> +  <span class='va'>f_dmta_nlmixr_saem</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>, +    control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span>, logLik <span class='op'>=</span> <span class='cn'>TRUE</span>, nmc <span class='op'>=</span> <span class='fl'>9</span><span class='op'>)</span><span class='op'>)</span> +<span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> 1:    98.3427   -3.5148   -3.3187   -3.7728   -2.1163   -2.8457    0.9482   -2.8064   -2.7412   -2.8745    2.7912    0.6805    0.8213    0.8055    0.8578    1.4980    2.9309    0.2850    0.2854    0.2850    4.0990    0.3821    3.5349    0.6537    5.4143    0.0002    4.5093    0.1905 +#> 500:    97.8277   -4.3506   -4.0318   -4.1520   -3.0553   -3.5843    1.1326   -2.0873   -2.0421   -2.0751    0.2960    1.2515    0.2531    0.3807    0.7928    0.8863    6.5211    0.1433    0.1082    0.3353    0.8960    0.0470    0.7501    0.0475    0.9527    0.0281    0.7321    0.0594</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#>    user  system elapsed  +#> 813.299   3.736 151.935 </div><div class='input'><span class='fu'>traceplot</span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='error'>Error in traceplot(f_dmta_nlmixr_saem$nm): could not find function "traceplot"</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span> +</div><div class='output co'>#> nlmixr version used for fitting:    2.0.4  +#> mkin version used for pre-fitting:  1.0.5  +#> R version used for fitting:         4.1.0  +#> Date of fit:     Wed Aug  4 16:16:18 2021  +#> Date of summary: Wed Aug  4 16:16:18 2021  +#>  +#> Equations: +#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * +#>            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) +#>            * DMTA +#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M23 * M23 +#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31 +#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g) +#>            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +#>            exp(-k2 * time))) * DMTA - k_M31 * M31 +#>  +#> Data: +#> 568 observations of 4 variable(s) grouped in 6 datasets +#>  +#> Degradation model predictions using RxODE +#>  +#> Fitted in 151.67 s +#>  +#> Variance model: Two-component variance function  +#>  +#> Mean of starting values for individual parameters: +#>       DMTA_0    log_k_M23    log_k_M27    log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2  +#>      98.7698      -3.9216      -4.3377      -4.2477       0.1380       0.1393  +#> f_DMTA_ilr_3       log_k1       log_k2     g_qlogis  +#>      -1.7571      -2.2341      -3.7763       0.4502  +#>  +#> Mean of starting values for error model parameters: +#> sigma_low_DMTA  rsd_high_DMTA  sigma_low_M23   rsd_high_M23  sigma_low_M27  +#>        0.69793        0.02577        0.69793        0.02577        0.69793  +#>   rsd_high_M27  sigma_low_M31   rsd_high_M31  +#>        0.02577        0.69793        0.02577  +#>  +#> Fixed degradation parameter values: +#> None +#>  +#> Results: +#>  +#> Likelihood calculated by focei   +#>    AIC  BIC logLik +#>   2036 2157 -989.8 +#>  +#> Optimised parameters: +#>                         est.  lower  upper +#> DMTA_0                97.828 96.121 99.535 +#> log_k_M23             -4.351 -5.300 -3.401 +#> log_k_M27             -4.032 -4.470 -3.594 +#> log_k_M31             -4.152 -4.689 -3.615 +#> log_k1                -3.055 -3.785 -2.325 +#> log_k2                -3.584 -4.517 -2.651 +#> g_qlogis               1.133 -2.165  4.430 +#> f_DMTA_tffm0_1_qlogis -2.087 -2.407 -1.768 +#> f_DMTA_tffm0_2_qlogis -2.042 -2.336 -1.748 +#> f_DMTA_tffm0_3_qlogis -2.075 -2.557 -1.593 +#>  +#> Correlation:  +#>                       DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs +#> log_k_M23             -0.031                                           +#> log_k_M27             -0.050  0.004                                    +#> log_k_M31             -0.032  0.003  0.078                             +#> log_k1                 0.014 -0.002 -0.002 -0.001                      +#> log_k2                 0.059  0.006 -0.001  0.002 -0.037               +#> g_qlogis              -0.077  0.005  0.009  0.004  0.035 -0.201        +#> f_DMTA_tffm0_1_qlogis -0.104  0.066  0.009  0.006  0.000 -0.011  0.014 +#> f_DMTA_tffm0_2_qlogis -0.120  0.013  0.081 -0.033 -0.002 -0.013  0.017 +#> f_DMTA_tffm0_3_qlogis -0.086  0.010  0.060  0.078 -0.002 -0.005  0.010 +#>                       f_DMTA_0_1 f_DMTA_0_2 +#> log_k_M23                                   +#> log_k_M27                                   +#> log_k_M31                                   +#> log_k1                                      +#> log_k2                                      +#> g_qlogis                                    +#> f_DMTA_tffm0_1_qlogis                       +#> f_DMTA_tffm0_2_qlogis  0.026                +#> f_DMTA_tffm0_3_qlogis  0.019      0.002     +#>  +#> Random effects (omega): +#>                           eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31 +#> eta.DMTA_0                     0.296         0.000        0.0000        0.0000 +#> eta.log_k_M23                  0.000         1.252        0.0000        0.0000 +#> eta.log_k_M27                  0.000         0.000        0.2531        0.0000 +#> eta.log_k_M31                  0.000         0.000        0.0000        0.3807 +#> eta.log_k1                     0.000         0.000        0.0000        0.0000 +#> eta.log_k2                     0.000         0.000        0.0000        0.0000 +#> eta.g_qlogis                   0.000         0.000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_1_qlogis      0.000         0.000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_2_qlogis      0.000         0.000        0.0000        0.0000 +#> eta.f_DMTA_tffm0_3_qlogis      0.000         0.000        0.0000        0.0000 +#>                           eta.log_k1 eta.log_k2 eta.g_qlogis +#> eta.DMTA_0                    0.0000     0.0000        0.000 +#> eta.log_k_M23                 0.0000     0.0000        0.000 +#> eta.log_k_M27                 0.0000     0.0000        0.000 +#> eta.log_k_M31                 0.0000     0.0000        0.000 +#> eta.log_k1                    0.7928     0.0000        0.000 +#> eta.log_k2                    0.0000     0.8863        0.000 +#> eta.g_qlogis                  0.0000     0.0000        6.521 +#> eta.f_DMTA_tffm0_1_qlogis     0.0000     0.0000        0.000 +#> eta.f_DMTA_tffm0_2_qlogis     0.0000     0.0000        0.000 +#> eta.f_DMTA_tffm0_3_qlogis     0.0000     0.0000        0.000 +#>                           eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis +#> eta.DMTA_0                                   0.0000                    0.0000 +#> eta.log_k_M23                                0.0000                    0.0000 +#> eta.log_k_M27                                0.0000                    0.0000 +#> eta.log_k_M31                                0.0000                    0.0000 +#> eta.log_k1                                   0.0000                    0.0000 +#> eta.log_k2                                   0.0000                    0.0000 +#> eta.g_qlogis                                 0.0000                    0.0000 +#> eta.f_DMTA_tffm0_1_qlogis                    0.1433                    0.0000 +#> eta.f_DMTA_tffm0_2_qlogis                    0.0000                    0.1082 +#> eta.f_DMTA_tffm0_3_qlogis                    0.0000                    0.0000 +#>                           eta.f_DMTA_tffm0_3_qlogis +#> eta.DMTA_0                                   0.0000 +#> eta.log_k_M23                                0.0000 +#> eta.log_k_M27                                0.0000 +#> eta.log_k_M31                                0.0000 +#> eta.log_k1                                   0.0000 +#> eta.log_k2                                   0.0000 +#> eta.g_qlogis                                 0.0000 +#> eta.f_DMTA_tffm0_1_qlogis                    0.0000 +#> eta.f_DMTA_tffm0_2_qlogis                    0.0000 +#> eta.f_DMTA_tffm0_3_qlogis                    0.3353 +#>  +#> Variance model: +#> sigma_low_DMTA  rsd_high_DMTA  sigma_low_M23   rsd_high_M23  sigma_low_M27  +#>        0.89603        0.04704        0.75015        0.04753        0.95265  +#>   rsd_high_M27  sigma_low_M31   rsd_high_M31  +#>        0.02810        0.73212        0.05942  +#>  +#> Backtransformed parameters: +#>                   est.     lower    upper +#> DMTA_0        97.82774 96.120503 99.53498 +#> k_M23          0.01290  0.004991  0.03334 +#> k_M27          0.01774  0.011451  0.02749 +#> k_M31          0.01573  0.009195  0.02692 +#> f_DMTA_to_M23  0.11033        NA       NA +#> f_DMTA_to_M27  0.10218        NA       NA +#> f_DMTA_to_M31  0.08784        NA       NA +#> k1             0.04711  0.022707  0.09773 +#> k2             0.02775  0.010918  0.07056 +#> g              0.75632  0.102960  0.98823 +#>  +#> Resulting formation fractions: +#>                ff +#> DMTA_M23  0.11033 +#> DMTA_M27  0.10218 +#> DMTA_M31  0.08784 +#> DMTA_sink 0.69965 +#>  +#> Estimated disappearance times: +#>       DT50   DT90 DT50back DT50_k1 DT50_k2 +#> DMTA 16.59  57.44    17.29   14.71   24.97 +#> M23  53.74 178.51       NA      NA      NA +#> M27  39.07 129.78       NA      NA      NA +#> M31  44.06 146.36       NA      NA      NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span> +</div><div class='img'><img src='dimethenamid_2018-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span> +</div></pre>    </div>    <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">      <nav id="toc" data-toggle="toc" class="sticky-top"> diff --git a/docs/dev/reference/endpoints.html b/docs/dev/reference/endpoints.html index db702c2e..dc1d1f17 100644 --- a/docs/dev/reference/endpoints.html +++ b/docs/dev/reference/endpoints.html @@ -78,7 +78,7 @@ advantage that the SFORB model can also be used for metabolites." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -127,7 +127,7 @@ advantage that the SFORB model can also be used for metabolites." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -165,8 +165,8 @@ advantage that the SFORB model can also be used for metabolites.</p>      <colgroup><col class="name" /><col class="desc" /></colgroup>      <tr>        <th>fit</th> -      <td><p>An object of class <a href='mkinfit.html'>mkinfit</a>, <a href='nlme.mmkin.html'>nlme.mmkin</a> or -<a href='saem.html'>saem.mmkin</a>. Or another object that has list components +      <td><p>An object of class <a href='mkinfit.html'>mkinfit</a>, <a href='nlme.mmkin.html'>nlme.mmkin</a>, <a href='saem.html'>saem.mmkin</a> or +<a href='nlmixr.mmkin.html'>nlmixr.mmkin</a>. Or another object that has list components  mkinmod containing an <a href='mkinmod.html'>mkinmod</a> degradation model, and two numeric vectors,  bparms.optim and bparms.fixed, that contain parameter values  for that model.</p></td> diff --git a/docs/dev/reference/experimental_data_for_UBA-1.png b/docs/dev/reference/experimental_data_for_UBA-1.pngBinary files differ index 24cb54c5..33946ded 100644 --- a/docs/dev/reference/experimental_data_for_UBA-1.png +++ b/docs/dev/reference/experimental_data_for_UBA-1.png diff --git a/docs/dev/reference/experimental_data_for_UBA.html b/docs/dev/reference/experimental_data_for_UBA.html index 78e57fb0..9904370f 100644 --- a/docs/dev/reference/experimental_data_for_UBA.html +++ b/docs/dev/reference/experimental_data_for_UBA.html @@ -100,7 +100,7 @@ Dataset 12 is from the Renewal Assessment Report (RAR) for thifensulfuron-methyl        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -149,7 +149,7 @@ Dataset 12 is from the Renewal Assessment Report (RAR) for thifensulfuron-methyl        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/f_time_norm_focus.html b/docs/dev/reference/f_time_norm_focus.html index 3421043d..852e00a0 100644 --- a/docs/dev/reference/f_time_norm_focus.html +++ b/docs/dev/reference/f_time_norm_focus.html @@ -73,7 +73,7 @@ in Appendix 8 to the FOCUS kinetics guidance (FOCUS 2014, p. 369)." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> diff --git a/docs/dev/reference/focus_soil_moisture.html b/docs/dev/reference/focus_soil_moisture.html index c46fd69a..0e6fea28 100644 --- a/docs/dev/reference/focus_soil_moisture.html +++ b/docs/dev/reference/focus_soil_moisture.html @@ -73,7 +73,7 @@ corresponds to pF2, MWHC to pF 1 and 1/3 bar to pF 2.5." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ corresponds to pF2, MWHC to pF 1 and 1/3 bar to pF 2.5." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/get_deg_func.html b/docs/dev/reference/get_deg_func.html index a266bf5f..fb661085 100644 --- a/docs/dev/reference/get_deg_func.html +++ b/docs/dev/reference/get_deg_func.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/ilr.html b/docs/dev/reference/ilr.html index 98e51211..452647d6 100644 --- a/docs/dev/reference/ilr.html +++ b/docs/dev/reference/ilr.html @@ -73,7 +73,7 @@ transformations." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ transformations." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/index.html b/docs/dev/reference/index.html index e038ef5c..bb030605 100644 --- a/docs/dev/reference/index.html +++ b/docs/dev/reference/index.html @@ -71,7 +71,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -175,7 +175,7 @@        </tr><tr>          <td> -          <p><code><a href="mmkin.html">mmkin()</a></code> </p> +          <p><code><a href="mmkin.html">mmkin()</a></code> <code><a href="mmkin.html">print(<i><mmkin></i>)</a></code> </p>          </td>          <td><p>Fit one or more kinetic models with one or more state variables to one or  more datasets</p></td> @@ -297,12 +297,6 @@ of an mmkin object</p></td>            <p><code><a href="AIC.mmkin.html">AIC(<i><mmkin></i>)</a></code> <code><a href="AIC.mmkin.html">BIC(<i><mmkin></i>)</a></code> </p>          </td>          <td><p>Calculate the AIC for a column of an mmkin object</p></td> -      </tr><tr> -         -        <td> -          <p><code><a href="print.mmkin.html">print(<i><mmkin></i>)</a></code> </p> -        </td> -        <td><p>Print method for mmkin objects</p></td>        </tr>      </tbody><tbody>        <tr> @@ -331,6 +325,12 @@ of an mmkin object</p></td>        </tr><tr>          <td> +          <p><code><a href="nlmixr.mmkin.html">nlmixr(<i><mmkin></i>)</a></code> <code><a href="nlmixr.mmkin.html">print(<i><nlmixr.mmkin></i>)</a></code> <code><a href="nlmixr.mmkin.html">nlmixr_model()</a></code> <code><a href="nlmixr.mmkin.html">nlmixr_data()</a></code> </p> +        </td> +        <td><p>Fit nonlinear mixed models using nlmixr</p></td> +      </tr><tr> +         +        <td>            <p><code><a href="plot.mixed.mmkin.html">plot(<i><mixed.mmkin></i>)</a></code> </p>          </td>          <td><p>Plot predictions from a fitted nonlinear mixed model obtained via an mmkin row object</p></td> @@ -343,13 +343,19 @@ of an mmkin object</p></td>        </tr><tr>          <td> +          <p><code><a href="summary.nlmixr.mmkin.html">summary(<i><nlmixr.mmkin></i>)</a></code> <code><a href="summary.nlmixr.mmkin.html">print(<i><summary.nlmixr.mmkin></i>)</a></code> </p> +        </td> +        <td><p>Summary method for class "nlmixr.mmkin"</p></td> +      </tr><tr> +         +        <td>            <p><code><a href="summary.saem.mmkin.html">summary(<i><saem.mmkin></i>)</a></code> <code><a href="summary.saem.mmkin.html">print(<i><summary.saem.mmkin></i>)</a></code> </p>          </td>          <td><p>Summary method for class "saem.mmkin"</p></td>        </tr><tr>          <td> -          <p><code><a href="nlme.html">nlme_function()</a></code> <code><a href="nlme.html">mean_degparms()</a></code> <code><a href="nlme.html">nlme_data()</a></code> </p> +          <p><code><a href="nlme.html">nlme_function()</a></code> <code><a href="nlme.html">nlme_data()</a></code> </p>          </td>          <td><p>Helper functions to create nlme models from mmkin row objects</p></td>        </tr><tr> @@ -576,6 +582,12 @@ kinetic models fitted with mkinfit</p></td>        </tr><tr>          <td> +          <p><code><a href="tffm0.html">tffm0()</a></code> <code><a href="tffm0.html">invtffm0()</a></code> </p> +        </td> +        <td><p>Transform formation fractions as in the first published mkin version</p></td> +      </tr><tr> +         +        <td>            <p><code><a href="logLik.mkinfit.html">logLik(<i><mkinfit></i>)</a></code> </p>          </td>          <td><p>Calculated the log-likelihood of a fitted mkinfit object</p></td> @@ -612,6 +624,12 @@ kinetic models fitted with mkinfit</p></td>        </tr><tr>          <td> +          <p><code><a href="mean_degparms.html">mean_degparms()</a></code> </p> +        </td> +        <td><p>Calculate mean degradation parameters for an mmkin row object</p></td> +      </tr><tr> +         +        <td>            <p><code><a href="create_deg_func.html">create_deg_func()</a></code> </p>          </td>          <td><p>Create degradation functions for known analytical solutions</p></td> diff --git a/docs/dev/reference/loftest-1.png b/docs/dev/reference/loftest-1.pngBinary files differ index 6b918fec..d6006ecc 100644 --- a/docs/dev/reference/loftest-1.png +++ b/docs/dev/reference/loftest-1.png diff --git a/docs/dev/reference/loftest-2.png b/docs/dev/reference/loftest-2.pngBinary files differ index 60874bd3..4d0dc551 100644 --- a/docs/dev/reference/loftest-2.png +++ b/docs/dev/reference/loftest-2.png diff --git a/docs/dev/reference/loftest-3.png b/docs/dev/reference/loftest-3.pngBinary files differ index 4837e7f2..6afd084b 100644 --- a/docs/dev/reference/loftest-3.png +++ b/docs/dev/reference/loftest-3.png diff --git a/docs/dev/reference/loftest-4.png b/docs/dev/reference/loftest-4.pngBinary files differ index 9c18ac30..f94eede1 100644 --- a/docs/dev/reference/loftest-4.png +++ b/docs/dev/reference/loftest-4.png diff --git a/docs/dev/reference/loftest-5.png b/docs/dev/reference/loftest-5.pngBinary files differ index 11f2bda7..43460a65 100644 --- a/docs/dev/reference/loftest-5.png +++ b/docs/dev/reference/loftest-5.png diff --git a/docs/dev/reference/loftest.html b/docs/dev/reference/loftest.html index abbbd3b9..9dbd547d 100644 --- a/docs/dev/reference/loftest.html +++ b/docs/dev/reference/loftest.html @@ -75,7 +75,7 @@ lrtest.default from the lmtest package." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -124,7 +124,7 @@ lrtest.default from the lmtest package." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/logLik.mkinfit.html b/docs/dev/reference/logLik.mkinfit.html index 66539dbd..3e9452c6 100644 --- a/docs/dev/reference/logLik.mkinfit.html +++ b/docs/dev/reference/logLik.mkinfit.html @@ -76,7 +76,7 @@ the error model." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ the error model." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -196,11 +196,11 @@ and the fitted error model parameters.</p>      parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='st'>"m1"</span><span class='op'>)</span>,      m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>    <span class='op'>)</span> -</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'>  <span class='va'>d_t</span> <span class='op'><-</span> <span class='va'>FOCUS_2006_D</span> +</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'>  <span class='va'>d_t</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span>    <span class='va'>f_nw</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>sfo_sfo</span>, <span class='va'>d_t</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> <span class='co'># no weighting (weights are unity)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'>  <span class='va'>f_obs</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>sfo_sfo</span>, <span class='va'>d_t</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'>  <span class='va'>f_tc</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>sfo_sfo</span>, <span class='va'>d_t</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nw</span>, <span class='va'>f_obs</span>, <span class='va'>f_tc</span><span class='op'>)</span> +  <span class='va'>f_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_nw</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span> +  <span class='va'>f_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_nw</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> +  <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nw</span>, <span class='va'>f_obs</span>, <span class='va'>f_tc</span><span class='op'>)</span>  </div><div class='output co'>#>       df      AIC  #> f_nw   5 204.4486  #> f_obs  6 205.8727 diff --git a/docs/dev/reference/logistic.solution-2.png b/docs/dev/reference/logistic.solution-2.pngBinary files differ index 764996df..73e6436d 100644 --- a/docs/dev/reference/logistic.solution-2.png +++ b/docs/dev/reference/logistic.solution-2.png diff --git a/docs/dev/reference/logistic.solution.html b/docs/dev/reference/logistic.solution.html index 950e8a8e..ab68c99e 100644 --- a/docs/dev/reference/logistic.solution.html +++ b/docs/dev/reference/logistic.solution.html @@ -73,7 +73,7 @@ an increasing rate constant, supposedly caused by microbial growth" />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ an increasing rate constant, supposedly caused by microbial growth" />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -240,10 +240,10 @@ Version 1.1, 18 December 2014    <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span><span class='op'>(</span><span class='va'>m</span><span class='op'>)</span>  </div><div class='img'><img src='logistic.solution-2.png' alt='' width='700' height='433' /></div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>m</span><span class='op'>)</span><span class='op'>$</span><span class='va'>bpar</span>  </div><div class='output co'>#>              Estimate   se_notrans   t value       Pr(>t)        Lower -#> parent_0 1.057896e+02 1.9023449703 55.610119 3.768361e-16 1.016451e+02 -#> kmax     6.398190e-02 0.0143201031  4.467978 3.841829e-04 3.929235e-02 +#> parent_0 1.057896e+02 1.9023449590 55.610120 3.768360e-16 1.016451e+02 +#> kmax     6.398190e-02 0.0143201029  4.467978 3.841828e-04 3.929235e-02  #> k0       1.612775e-04 0.0005866813  0.274898 3.940351e-01 5.846688e-08 -#> r        2.263946e-01 0.1718110715  1.317695 1.061044e-01 4.335843e-02 +#> r        2.263946e-01 0.1718110662  1.317695 1.061043e-01 4.335843e-02  #> sigma    5.332935e+00 0.9145907310  5.830952 4.036926e-05 3.340213e+00  #>                Upper  #> parent_0 109.9341588 diff --git a/docs/dev/reference/lrtest.mkinfit.html b/docs/dev/reference/lrtest.mkinfit.html index b76ebc87..f2d8472e 100644 --- a/docs/dev/reference/lrtest.mkinfit.html +++ b/docs/dev/reference/lrtest.mkinfit.html @@ -76,7 +76,7 @@ and can be expressed by fixing the parameters of the other." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ and can be expressed by fixing the parameters of the other." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/max_twa_parent.html b/docs/dev/reference/max_twa_parent.html index 25f745e9..a358568a 100644 --- a/docs/dev/reference/max_twa_parent.html +++ b/docs/dev/reference/max_twa_parent.html @@ -78,7 +78,7 @@ soil section of the FOCUS guidance." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -127,7 +127,7 @@ soil section of the FOCUS guidance." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/mccall81_245T-1.png b/docs/dev/reference/mccall81_245T-1.pngBinary files differ index 5daa5f18..91fe060e 100644 --- a/docs/dev/reference/mccall81_245T-1.png +++ b/docs/dev/reference/mccall81_245T-1.png diff --git a/docs/dev/reference/mccall81_245T.html b/docs/dev/reference/mccall81_245T.html index 7179533d..f79137be 100644 --- a/docs/dev/reference/mccall81_245T.html +++ b/docs/dev/reference/mccall81_245T.html @@ -74,7 +74,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -181,30 +181,30 @@      <span class='va'>fit.1</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO_SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>mccall81_245T</span>, <span class='va'>soil</span> <span class='op'>==</span> <span class='st'>"Commerce"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'>    <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.1</span><span class='op'>)</span><span class='op'>$</span><span class='va'>bpar</span>  </div><div class='output co'>#>                         Estimate   se_notrans   t value       Pr(>t) -#> T245_0              1.038550e+02 2.1847074888 47.537272 4.472189e-18 +#> T245_0              1.038550e+02 2.1847074945 47.537272 4.472189e-18  #> k_T245              4.337042e-02 0.0018983965 22.845818 2.276911e-13 -#> k_phenol            4.050581e-01 0.2986993400  1.356073 9.756988e-02 -#> k_anisole           6.678742e-03 0.0008021439  8.326114 2.623176e-07 -#> f_T245_to_phenol    6.227599e-01 0.3985340295  1.562627 6.949412e-02 -#> f_phenol_to_anisole 1.000000e+00 0.6718439378  1.488441 7.867787e-02 -#> sigma               2.514628e+00 0.4907558750  5.123989 6.233156e-05 +#> k_phenol            4.050581e-01 0.2986993563  1.356073 9.756989e-02 +#> k_anisole           6.678742e-03 0.0008021439  8.326114 2.623177e-07 +#> f_T245_to_phenol    6.227599e-01 0.3985340558  1.562627 6.949413e-02 +#> f_phenol_to_anisole 1.000000e+00 0.6718439825  1.488441 7.867789e-02 +#> sigma               2.514628e+00 0.4907558883  5.123989 6.233157e-05  #>                            Lower        Upper -#> T245_0              99.246061370 1.084640e+02 +#> T245_0              99.246061385 1.084640e+02  #> k_T245               0.039631621 4.746194e-02 -#> k_phenol             0.218013878 7.525762e-01 +#> k_phenol             0.218013879 7.525762e-01  #> k_anisole            0.005370739 8.305299e-03 -#> f_T245_to_phenol     0.547559083 6.924813e-01 +#> f_T245_to_phenol     0.547559081 6.924813e-01  #> f_phenol_to_anisole  0.000000000 1.000000e+00  #> sigma                1.706607296 3.322649e+00</div><div class='input'>    <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fit.1</span><span class='op'>)</span>  </div><div class='output co'>#> $ff  #>    T245_phenol      T245_sink phenol_anisole    phenol_sink  -#>   6.227599e-01   3.772401e-01   1.000000e+00   6.894640e-11  +#>   6.227599e-01   3.772401e-01   1.000000e+00   3.773626e-10   #>   #> $distimes  #>               DT50      DT90  #> T245     15.982025  53.09114  #> phenol    1.711229   5.68458 -#> anisole 103.784092 344.76329 +#> anisole 103.784093 344.76329  #> </div><div class='input'>    <span class='co'># formation fraction from phenol to anisol is practically 1. As we cannot</span>      <span class='co'># fix formation fractions when using the ilr transformation, we can turn of</span>      <span class='co'># the sink in the model generation</span> @@ -215,28 +215,28 @@        quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'>    <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.2</span><span class='op'>)</span><span class='op'>$</span><span class='va'>bpar</span>  </div><div class='output co'>#>                      Estimate   se_notrans   t value       Pr(>t)        Lower -#> T245_0           1.038550e+02 2.1623653027 48.028439 4.993108e-19 99.271020526 -#> k_T245           4.337042e-02 0.0018343666 23.643268 3.573555e-14  0.039650977 -#> k_phenol         4.050582e-01 0.1177237248  3.440752 1.679252e-03  0.218746585 -#> k_anisole        6.678741e-03 0.0006829745  9.778903 1.872894e-08  0.005377083 -#> f_T245_to_phenol 6.227599e-01 0.0342197865 18.198825 2.039410e-12  0.547975628 +#> T245_0           1.038550e+02 2.1623653066 48.028439 4.993108e-19 99.271020284 +#> k_T245           4.337042e-02 0.0018343666 23.643268 3.573556e-14  0.039650976 +#> k_phenol         4.050582e-01 0.1177237473  3.440752 1.679254e-03  0.218746587 +#> k_anisole        6.678742e-03 0.0006829745  9.778903 1.872894e-08  0.005377083 +#> f_T245_to_phenol 6.227599e-01 0.0342197875 18.198824 2.039411e-12  0.547975637  #> sigma            2.514628e+00 0.3790944250  6.633250 2.875782e-06  1.710983655  #>                         Upper -#> T245_0           108.43904097 +#> T245_0           108.43904074  #> k_T245             0.04743877 -#> k_phenol           0.75005577 +#> k_phenol           0.75005585  #> k_anisole          0.00829550 -#> f_T245_to_phenol   0.69212306 +#> f_T245_to_phenol   0.69212308  #> sigma              3.31827222</div><div class='input'>    <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fit.1</span><span class='op'>)</span>  </div><div class='output co'>#> $ff  #>    T245_phenol      T245_sink phenol_anisole    phenol_sink  -#>   6.227599e-01   3.772401e-01   1.000000e+00   6.894640e-11  +#>   6.227599e-01   3.772401e-01   1.000000e+00   3.773626e-10   #>   #> $distimes  #>               DT50      DT90  #> T245     15.982025  53.09114  #> phenol    1.711229   5.68458 -#> anisole 103.784092 344.76329 +#> anisole 103.784093 344.76329  #> </div><div class='input'>    <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span><span class='op'>(</span><span class='va'>fit.2</span><span class='op'>)</span>  </div><div class='img'><img src='mccall81_245T-1.png' alt='' width='700' height='433' /></div><div class='input'>  <span class='co'># }</span>  </div></pre> diff --git a/docs/dev/reference/mean_degparms.html b/docs/dev/reference/mean_degparms.html new file mode 100644 index 00000000..f63dbc31 --- /dev/null +++ b/docs/dev/reference/mean_degparms.html @@ -0,0 +1,210 @@ +<!-- Generated by pkgdown: do not edit by hand --> +<!DOCTYPE html> +<html lang="en"> +  <head> +  <meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> + +<title>Calculate mean degradation parameters for an mmkin row object — mean_degparms • mkin</title> + + +<!-- jquery --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script> +<!-- Bootstrap --> + +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" /> + +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script> + +<!-- bootstrap-toc --> +<link rel="stylesheet" href="../bootstrap-toc.css"> +<script src="../bootstrap-toc.js"></script> + +<!-- Font Awesome icons --> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" /> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" /> + +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script> + +<!-- headroom.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> + +<!-- pkgdown --> +<link href="../pkgdown.css" rel="stylesheet"> +<script src="../pkgdown.js"></script> + + + + +<meta property="og:title" content="Calculate mean degradation parameters for an mmkin row object — mean_degparms" /> +<meta property="og:description" content="Calculate mean degradation parameters for an mmkin row object" /> + + +<meta name="robots" content="noindex"> + +<!-- mathjax --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> + +<!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> + + + +  </head> + +  <body data-spy="scroll" data-target="#toc"> +    <div class="container template-reference-topic"> +      <header> +      <div class="navbar navbar-default navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> +        <span class="sr-only">Toggle navigation</span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <span class="navbar-brand"> +        <a class="navbar-link" href="../index.html">mkin</a> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span> +      </span> +    </div> + +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +        <li> +  <a href="../reference/index.html">Functions and data</a> +</li> +<li class="dropdown"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> +    Articles +      +    <span class="caret"></span> +  </a> +  <ul class="dropdown-menu" role="menu"> +    <li> +      <a href="../articles/mkin.html">Introduction to mkin</a> +    </li> +    <li> +      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> +    </li> +    <li> +      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> +    </li> +    <li> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +    </li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li> +    <li> +      <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a> +    </li> +  </ul> +</li> +<li> +  <a href="../news/index.html">News</a> +</li> +      </ul> +      <ul class="nav navbar-nav navbar-right"> +        <li> +  <a href="https://github.com/jranke/mkin/"> +    <span class="fab fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +       +    </div><!--/.nav-collapse --> +  </div><!--/.container --> +</div><!--/.navbar --> + +       + +      </header> + +<div class="row"> +  <div class="col-md-9 contents"> +    <div class="page-header"> +    <h1>Calculate mean degradation parameters for an mmkin row object</h1> +    <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/mean_degparms.R'><code>R/mean_degparms.R</code></a></small> +    <div class="hidden name"><code>mean_degparms.Rd</code></div> +    </div> + +    <div class="ref-description"> +    <p>Calculate mean degradation parameters for an mmkin row object</p> +    </div> + +    <pre class="usage"><span class='fu'>mean_degparms</span><span class='op'>(</span><span class='va'>object</span>, random <span class='op'>=</span> <span class='cn'>FALSE</span>, test_log_parms <span class='op'>=</span> <span class='cn'>FALSE</span>, conf.level <span class='op'>=</span> <span class='fl'>0.6</span><span class='op'>)</span></pre> + +    <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> +    <table class="ref-arguments"> +    <colgroup><col class="name" /><col class="desc" /></colgroup> +    <tr> +      <th>object</th> +      <td><p>An mmkin row object containing several fits of the same model to different datasets</p></td> +    </tr> +    <tr> +      <th>random</th> +      <td><p>Should a list with fixed and random effects be returned?</p></td> +    </tr> +    <tr> +      <th>test_log_parms</th> +      <td><p>If TRUE, log parameters are only considered in +the mean calculations if their untransformed counterparts (most likely +rate constants) pass the t-test for significant difference from zero.</p></td> +    </tr> +    <tr> +      <th>conf.level</th> +      <td><p>Possibility to adjust the required confidence level +for parameter that are tested if requested by 'test_log_parms'.</p></td> +    </tr> +    </table> + +    <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> + +    <p>If random is FALSE (default), a named vector containing mean values +of the fitted degradation model parameters. If random is TRUE, a list with +fixed and random effects, in the format required by the start argument of +nlme for the case of a single grouping variable ds.</p> + +  </div> +  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> +    <nav id="toc" data-toggle="toc" class="sticky-top"> +      <h2 data-toc-skip>Contents</h2> +    </nav> +  </div> +</div> + + +      <footer> +      <div class="copyright"> +  <p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> +  <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p> +</div> + +      </footer> +   </div> + +   + + +  </body> +</html> + + diff --git a/docs/dev/reference/mixed-1.png b/docs/dev/reference/mixed-1.pngBinary files differ index 3400c4aa..422ab6a0 100644 --- a/docs/dev/reference/mixed-1.png +++ b/docs/dev/reference/mixed-1.png diff --git a/docs/dev/reference/mixed.html b/docs/dev/reference/mixed.html index 18a67af8..338480ee 100644 --- a/docs/dev/reference/mixed.html +++ b/docs/dev/reference/mixed.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -180,6 +180,10 @@      </tr>      </table> +    <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> + +    <p>An object of class 'mixed.mmkin' which has the observed data in a +single dataframe which is convenient for plotting</p>      <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>      <pre class="examples"><div class='input'><span class='va'>sampling_times</span> <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>3</span>, <span class='fl'>7</span>, <span class='fl'>14</span>, <span class='fl'>28</span>, <span class='fl'>60</span>, <span class='fl'>90</span>, <span class='fl'>120</span><span class='op'>)</span> @@ -235,18 +239,16 @@  #> Status of individual fits:  #>   #>           dataset -#> model      1  2  3  4  5  6 7  8  -#>   DFOP-SFO OK OK OK OK OK C OK OK +#> model      1  2  3  4  5  6  7  8  +#>   DFOP-SFO OK OK OK OK OK OK OK OK  #>   #> OK: No warnings -#> C: Optimisation did not converge: -#> iteration limit reached without convergence (10)  #>   #> Mean fitted parameters:  #>        parent_0        log_k_m1 f_parent_qlogis          log_k1          log_k2  -#>      100.606304       -8.759216       -0.002001       -3.350539       -3.989549  +#>      100.674757       -8.761916       -0.004347       -3.348812       -3.986853   #>        g_qlogis  -#>       -0.090353 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_mixed</span><span class='op'>)</span> +#>       -0.087392 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_mixed</span><span class='op'>)</span>  </div><div class='img'><img src='mixed-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>  </div></pre>    </div> diff --git a/docs/dev/reference/mkin_long_to_wide.html b/docs/dev/reference/mkin_long_to_wide.html index 28a37800..6246fbe2 100644 --- a/docs/dev/reference/mkin_long_to_wide.html +++ b/docs/dev/reference/mkin_long_to_wide.html @@ -74,7 +74,7 @@ variable and several dependent variables as columns." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -123,7 +123,7 @@ variable and several dependent variables as columns." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/mkin_wide_to_long.html b/docs/dev/reference/mkin_wide_to_long.html index f085d162..f2bf00c1 100644 --- a/docs/dev/reference/mkin_wide_to_long.html +++ b/docs/dev/reference/mkin_wide_to_long.html @@ -74,7 +74,7 @@ mkinfit." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -123,7 +123,7 @@ mkinfit." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/mkinds.html b/docs/dev/reference/mkinds.html index 907f8ad3..0d1de46d 100644 --- a/docs/dev/reference/mkinds.html +++ b/docs/dev/reference/mkinds.html @@ -75,7 +75,7 @@ provided by this package come as mkinds objects nevertheless." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -124,7 +124,7 @@ provided by this package come as mkinds objects nevertheless." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/mkindsg.html b/docs/dev/reference/mkindsg.html index 3e4dfb39..67c6e5df 100644 --- a/docs/dev/reference/mkindsg.html +++ b/docs/dev/reference/mkindsg.html @@ -75,7 +75,7 @@ dataset if no data are supplied." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -124,7 +124,7 @@ dataset if no data are supplied." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -239,12 +239,12 @@ or covariates like soil pH).</p></dd>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>mdsg</span><span class='op'>)</span>  </div><div class='output co'>#> <mkindsg> holding 5 mkinds objects  #> Title $title:  Experimental X  -#> Occurrene of observed compounds $observed_n: +#> Occurrence of observed compounds $observed_n:  #> parent     A1   #>      5      5 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>mdsg</span>, verbose <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  </div><div class='output co'>#> <mkindsg> holding 5 mkinds objects  #> Title $title:  Experimental X  -#> Occurrene of observed compounds $observed_n: +#> Occurrence of observed compounds $observed_n:  #> parent     A1   #>      5      5   #>  @@ -290,7 +290,7 @@ or covariates like soil pH).</p></dd>  #> Observation unit:  \%AR </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>mdsg</span>, verbose <span class='op'>=</span> <span class='cn'>TRUE</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  </div><div class='output co'>#> <mkindsg> holding 5 mkinds objects  #> Title $title:  Experimental X  -#> Occurrene of observed compounds $observed_n: +#> Occurrence of observed compounds $observed_n:  #> parent     A1   #>      5      5   #>  diff --git a/docs/dev/reference/mkinerrmin.html b/docs/dev/reference/mkinerrmin.html index 1cff040d..94c575cb 100644 --- a/docs/dev/reference/mkinerrmin.html +++ b/docs/dev/reference/mkinerrmin.html @@ -73,7 +73,7 @@ the chi-squared test as defined in the FOCUS kinetics report from 2006." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ the chi-squared test as defined in the FOCUS kinetics report from 2006." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/mkinerrplot.html b/docs/dev/reference/mkinerrplot.html index 2324b968..7f1fd048 100644 --- a/docs/dev/reference/mkinerrplot.html +++ b/docs/dev/reference/mkinerrplot.html @@ -76,7 +76,7 @@ using the argument show_errplot = TRUE." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ using the argument show_errplot = TRUE." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/mkinfit-1.png b/docs/dev/reference/mkinfit-1.pngBinary files differ index eed9064f..de2a90a9 100644 --- a/docs/dev/reference/mkinfit-1.png +++ b/docs/dev/reference/mkinfit-1.png diff --git a/docs/dev/reference/mkinfit.html b/docs/dev/reference/mkinfit.html index 6ae7b343..5910038f 100644 --- a/docs/dev/reference/mkinfit.html +++ b/docs/dev/reference/mkinfit.html @@ -80,7 +80,7 @@ likelihood function." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -431,17 +431,17 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6  <span class='co'># Use shorthand notation for parent only degradation</span>  <span class='va'>fit</span> <span class='op'><-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='va'>FOCUS_2006_C</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span> -</div><div class='output co'>#> mkin version used for fitting:    0.9.50.4  +</div><div class='output co'>#> mkin version used for fitting:    1.0.3.9000   #> R version used for fitting:       4.0.3  -#> Date of fit:     Mon Jan 11 12:41:45 2021  -#> Date of summary: Mon Jan 11 12:41:45 2021  +#> Date of fit:     Mon Feb 15 17:09:39 2021  +#> Date of summary: Mon Feb 15 17:09:39 2021   #>   #> Equations:  #> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent  #>   #> Model predictions using solution type analytical   #>  -#> Fitted using 222 model solutions performed in 0.046 s +#> Fitted using 222 model solutions performed in 0.045 s  #>   #> Error model: Constant variance   #>  @@ -476,10 +476,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6  #>   #> Parameter correlation:  #>             parent_0  log_alpha   log_beta     sigma -#> parent_0   1.000e+00 -1.565e-01 -3.142e-01 4.758e-08 -#> log_alpha -1.565e-01  1.000e+00  9.564e-01 1.007e-07 -#> log_beta  -3.142e-01  9.564e-01  1.000e+00 8.568e-08 -#> sigma      4.758e-08  1.007e-07  8.568e-08 1.000e+00 +#> parent_0   1.000e+00 -1.565e-01 -3.142e-01 4.772e-08 +#> log_alpha -1.565e-01  1.000e+00  9.564e-01 1.005e-07 +#> log_beta  -3.142e-01  9.564e-01  1.000e+00 8.541e-08 +#> sigma      4.772e-08  1.005e-07  8.541e-08 1.000e+00  #>   #> Backtransformed parameters:  #> Confidence intervals for internally transformed parameters are asymmetric. @@ -548,7 +548,7 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6  #> ---  #> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</div><div class='input'><span class='fu'><a href='parms.html'>parms</a></span><span class='op'>(</span><span class='va'>fit.tc</span><span class='op'>)</span>  </div><div class='output co'>#>       parent_0       k_parent           k_m1 f_parent_to_m1      sigma_low  -#>   1.007343e+02   1.005562e-01   5.166712e-03   5.083933e-01   3.049884e-03  +#>   1.007343e+02   1.005562e-01   5.166712e-03   5.083933e-01   3.049883e-03   #>       rsd_high   #>   7.928118e-02 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fit.tc</span><span class='op'>)</span>  </div><div class='output co'>#> $ff @@ -574,10 +574,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6      analytical <span class='op'>=</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>,        solution_type <span class='op'>=</span> <span class='st'>"analytical"</span><span class='op'>)</span><span class='op'>)</span>  <span class='op'>}</span> -</div><div class='output co'>#> <span class='message'>Loading required package: rbenchmark</span></div><div class='output co'>#>               test relative elapsed -#> 3       analytical    1.000   0.526 -#> 1 deSolve_compiled    1.903   1.001 -#> 2            eigen    2.308   1.214</div><div class='input'><span class='co'># }</span> +</div><div class='output co'>#>               test relative elapsed +#> 3       analytical    1.000   0.563 +#> 1 deSolve_compiled    1.702   0.958 +#> 2            eigen    2.597   1.462</div><div class='input'><span class='co'># }</span>  <span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, FOMC-SFO</span>  <span class='co'># \dontrun{</span> @@ -587,22 +587,21 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6  </div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>fit.FOMC_SFO</span> <span class='op'><-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>FOMC_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  <span class='co'># Again, we get a warning and try a more sophisticated error model</span>  <span class='va'>fit.FOMC_SFO.tc</span> <span class='op'><-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>FOMC_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Optimisation did not converge:</span> -#> <span class='warning'>iteration limit reached without convergence (10)</span></div><div class='input'><span class='co'># This model has a higher likelihood, but not significantly so</span> +<span class='co'># This model has a higher likelihood, but not significantly so</span>  <span class='fu'><a href='https://rdrr.io/pkg/lmtest/man/lrtest.html'>lrtest</a></span><span class='op'>(</span><span class='va'>fit.tc</span>, <span class='va'>fit.FOMC_SFO.tc</span><span class='op'>)</span>  </div><div class='output co'>#> Likelihood ratio test  #>   #> Model 1: FOMC_SFO with error model tc and fixed parameter(s) m1_0  #> Model 2: SFO_SFO with error model tc and fixed parameter(s) m1_0  #>   #Df  LogLik Df  Chisq Pr(>Chisq) -#> 1   7 -64.870                      -#> 2   6 -64.983 -1 0.2259     0.6346</div><div class='input'><span class='co'># Also, the missing standard error for log_beta and the t-tests for alpha</span> +#> 1   7 -64.829                      +#> 2   6 -64.983 -1 0.3075     0.5792</div><div class='input'><span class='co'># Also, the missing standard error for log_beta and the t-tests for alpha</span>  <span class='co'># and beta indicate overparameterisation</span>  <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.FOMC_SFO.tc</span>, data <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#> <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#> <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#> <span class='warning'>Warning: diag(.) had 0 or NA entries; non-finite result is doubtful</span></div><div class='output co'>#> mkin version used for fitting:    0.9.50.4  +</div><div class='output co'>#> <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#> <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#> <span class='warning'>Warning: diag(.) had 0 or NA entries; non-finite result is doubtful</span></div><div class='output co'>#> mkin version used for fitting:    1.0.3.9000   #> R version used for fitting:       4.0.3  -#> Date of fit:     Mon Jan 11 12:41:56 2021  -#> Date of summary: Mon Jan 11 12:41:56 2021  +#> Date of fit:     Mon Feb 15 17:09:50 2021  +#> Date of summary: Mon Feb 15 17:09:50 2021   #>   #> Equations:  #> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent @@ -611,12 +610,12 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6  #>   #> Model predictions using solution type deSolve   #>  -#> Fitted using 4273 model solutions performed in 3.456 s +#> Fitted using 3729 model solutions performed in 2.815 s  #>   #> Error model: Two-component variance function   #>   #> Error model algorithm: d_3  -#> Three-step fitting yielded a higher likelihood than direct fitting  +#> Direct fitting and three-step fitting yield approximately the same likelihood   #>   #> Starting values for parameters to be optimised:  #>                 value   type @@ -642,72 +641,67 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6  #>      value  type  #> m1_0     0 state  #>  -#>  -#> Warning(s):  -#> Optimisation did not converge: -#> iteration limit reached without convergence (10) -#>   #> Results:  #>  -#>        AIC      BIC    logLik -#>   143.7396 155.2027 -64.86982 +#>       AIC      BIC    logLik +#>   143.658 155.1211 -64.82902  #>   #> Optimised, transformed parameters with symmetric confidence intervals: -#>                   Estimate Std. Error   Lower    Upper -#> parent_0         1.016e+02    1.90600 97.7400 105.5000 -#> log_k_m1        -5.285e+00    0.09286 -5.4740  -5.0950 -#> f_parent_qlogis  6.482e-04    0.06164 -0.1251   0.1264 -#> log_alpha        5.467e+00        NaN     NaN      NaN -#> log_beta         7.750e+00        NaN     NaN      NaN -#> sigma_low        0.000e+00        NaN     NaN      NaN -#> rsd_high         7.989e-02        NaN     NaN      NaN +#>                   Estimate Std. Error     Lower      Upper +#> parent_0        101.600000  2.6400000 96.240000 107.000000 +#> log_k_m1         -5.284000  0.0929100 -5.474000  -5.095000 +#> f_parent_qlogis   0.001426  0.0767000 -0.155000   0.157800 +#> log_alpha         5.522000  0.0077320  5.506000   5.538000 +#> log_beta          7.806000        NaN       NaN        NaN +#> sigma_low         0.002488  0.0002431  0.001992   0.002984 +#> rsd_high          0.079210  0.0093280  0.060180   0.098230  #>   #> Parameter correlation: -#>                   parent_0   log_k_m1 f_parent_qlogis log_alpha log_beta -#> parent_0         1.0000000 -0.0002167         -0.6060       NaN      NaN -#> log_k_m1        -0.0002167  1.0000000          0.5474       NaN      NaN -#> f_parent_qlogis -0.6060320  0.5474423          1.0000       NaN      NaN -#> log_alpha              NaN        NaN             NaN         1      NaN -#> log_beta               NaN        NaN             NaN       NaN        1 -#> sigma_low              NaN        NaN             NaN       NaN      NaN -#> rsd_high               NaN        NaN             NaN       NaN      NaN -#>                 sigma_low rsd_high -#> parent_0              NaN      NaN -#> log_k_m1              NaN      NaN -#> f_parent_qlogis       NaN      NaN -#> log_alpha             NaN      NaN -#> log_beta              NaN      NaN -#> sigma_low               1      NaN -#> rsd_high              NaN        1 +#>                  parent_0  log_k_m1 f_parent_qlogis log_alpha log_beta +#> parent_0         1.000000 -0.095226        -0.76678   0.70544      NaN +#> log_k_m1        -0.095226  1.000000         0.51432  -0.14387      NaN +#> f_parent_qlogis -0.766780  0.514321         1.00000  -0.61396      NaN +#> log_alpha        0.705444 -0.143872        -0.61396   1.00000      NaN +#> log_beta              NaN       NaN             NaN       NaN        1 +#> sigma_low        0.016073  0.001586         0.01548   5.87007      NaN +#> rsd_high         0.006626 -0.011700        -0.05357   0.04849      NaN +#>                 sigma_low  rsd_high +#> parent_0         0.016073  0.006626 +#> log_k_m1         0.001586 -0.011700 +#> f_parent_qlogis  0.015476 -0.053566 +#> log_alpha        5.870075  0.048487 +#> log_beta              NaN       NaN +#> sigma_low        1.000000 -0.652558 +#> rsd_high        -0.652558  1.000000  #>   #> Backtransformed parameters:  #> Confidence intervals for internally transformed parameters are asymmetric.  #> t-test (unrealistically) based on the assumption of normal distribution  #> for estimators of untransformed parameters.  #>                 Estimate t value    Pr(>t)     Lower     Upper -#> parent_0       1.016e+02 32.5400 7.812e-26 97.740000 1.055e+02 -#> k_m1           5.069e-03 10.0400 1.448e-11  0.004194 6.126e-03 -#> f_parent_to_m1 5.002e-01 20.7300 5.001e-20  0.468800 5.315e-01 -#> alpha          2.367e+02  0.6205 2.697e-01        NA        NA -#> beta           2.322e+03  0.6114 2.727e-01        NA        NA -#> sigma_low      0.000e+00     NaN       NaN       NaN       NaN -#> rsd_high       7.989e-02  8.6630 4.393e-10       NaN       NaN +#> parent_0       1.016e+02 32.7800 6.311e-26 9.624e+01 1.070e+02 +#> k_m1           5.072e-03 10.1200 1.216e-11 4.196e-03 6.130e-03 +#> f_parent_to_m1 5.004e-01 20.8300 4.317e-20 4.613e-01 5.394e-01 +#> alpha          2.502e+02  0.5624 2.889e-01 2.463e+02 2.542e+02 +#> beta           2.455e+03  0.5549 2.915e-01        NA        NA +#> sigma_low      2.488e-03  0.4843 3.158e-01 1.992e-03 2.984e-03 +#> rsd_high       7.921e-02  8.4300 8.001e-10 6.018e-02 9.823e-02  #>   #> FOCUS Chi2 error levels in percent:  #>          err.min n.optim df -#> All data   6.782       5 14 -#> parent     7.142       3  6 -#> m1         4.639       2  8 +#> All data   6.781       5 14 +#> parent     7.141       3  6 +#> m1         4.640       2  8  #>   #> Resulting formation fractions:  #>                 ff -#> parent_m1   0.5002 -#> parent_sink 0.4998 +#> parent_m1   0.5004 +#> parent_sink 0.4996  #>   #> Estimated disappearance times: -#>          DT50  DT90 DT50back -#> parent   6.81  22.7    6.833 -#> m1     136.74 454.2       NA</div><div class='input'> +#>           DT50  DT90 DT50back +#> parent   6.812  22.7    6.834 +#> m1     136.661 454.0       NA</div><div class='input'>  <span class='co'># We can easily use starting parameters from the parent only fit (only for illustration)</span>  <span class='va'>fit.FOMC</span> <span class='op'>=</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='va'>FOCUS_2006_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>  <span class='va'>fit.FOMC_SFO</span> <span class='op'><-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>FOMC_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, diff --git a/docs/dev/reference/mkinmod.html b/docs/dev/reference/mkinmod.html index 9a7dac6f..ac7c2daa 100644 --- a/docs/dev/reference/mkinmod.html +++ b/docs/dev/reference/mkinmod.html @@ -44,9 +44,7 @@  variable, specifying the corresponding submodel as well as outgoing pathways  (see examples).  Print mkinmod objects in a way that the user finds his way to get to its -components. -This is a convenience function to set up the lists used as arguments for -mkinmod." /> +components." />  <meta name="robots" content="noindex"> @@ -78,7 +76,7 @@ mkinmod." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -127,7 +125,7 @@ mkinmod." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -155,8 +153,6 @@ variable, specifying the corresponding submodel as well as outgoing pathways  (see examples).</p>  <p>Print mkinmod objects in a way that the user finds his way to get to its  components.</p> -<p>This is a convenience function to set up the lists used as arguments for -<code>mkinmod</code>.</p>      </div>      <pre class="usage"><span class='fu'>mkinmod</span><span class='op'>(</span> @@ -348,7 +344,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media</p>     parent <span class='op'>=</span> <span class='fu'>mkinsub</span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span>, full_name <span class='op'>=</span> <span class='st'>"Test compound"</span><span class='op'>)</span>,     m1 <span class='op'>=</span> <span class='fu'>mkinsub</span><span class='op'>(</span><span class='st'>"SFO"</span>, full_name <span class='op'>=</span> <span class='st'>"Metabolite M1"</span><span class='op'>)</span>,     name <span class='op'>=</span> <span class='st'>"SFO_SFO"</span>, dll_dir <span class='op'>=</span> <span class='va'>DLL_dir</span>, unload <span class='op'>=</span> <span class='cn'>TRUE</span>, overwrite <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='message'>Copied DLL from /tmp/Rtmpy4eiQb/file554e573761a7.so to /home/jranke/.local/share/mkin/SFO_SFO.so</span></div><div class='input'><span class='co'># Now we can save the model and restore it in a new session</span> +</div><div class='output co'>#> <span class='message'>Copied DLL from /tmp/RtmpKZJMFk/file179ba717d15c81.so to /home/jranke/.local/share/mkin/SFO_SFO.so</span></div><div class='input'><span class='co'># Now we can save the model and restore it in a new session</span>  <span class='fu'><a href='https://rdrr.io/r/base/readRDS.html'>saveRDS</a></span><span class='op'>(</span><span class='va'>SFO_SFO.2</span>, file <span class='op'>=</span> <span class='st'>"~/SFO_SFO.rds"</span><span class='op'>)</span>  <span class='co'># Terminate the R session here if you would like to check, and then do</span>  <span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'><a href='https://pkgdown.jrwb.de/mkin/'>mkin</a></span><span class='op'>)</span> @@ -397,7 +393,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media</p>  #>     })  #>     return(predicted)  #> } -#> <environment: 0x55555cac8d00></div><div class='input'> +#> <environment: 0x555559c54f78></div><div class='input'>  <span class='co'># If we have several parallel metabolites</span>  <span class='co'># (compare tests/testthat/test_synthetic_data_for_UBA_2014.R)</span>  <span class='va'>m_synth_DFOP_par</span> <span class='op'><-</span> <span class='fu'>mkinmod</span><span class='op'>(</span> diff --git a/docs/dev/reference/mkinparplot-1.png b/docs/dev/reference/mkinparplot-1.pngBinary files differ index dcf3e4b5..c9ed49eb 100644 --- a/docs/dev/reference/mkinparplot-1.png +++ b/docs/dev/reference/mkinparplot-1.png diff --git a/docs/dev/reference/mkinparplot.html b/docs/dev/reference/mkinparplot.html index 0a989ef9..bac6e71c 100644 --- a/docs/dev/reference/mkinparplot.html +++ b/docs/dev/reference/mkinparplot.html @@ -73,7 +73,7 @@ mkinfit." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ mkinfit." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -176,7 +176,8 @@ effect, namely to produce a plot.</p>    phenol <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"anisole"</span><span class='op'>)</span><span class='op'>)</span>,    anisole <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"max"</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>fit</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>model</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>mccall81_245T</span>, <span class='va'>soil</span> <span class='op'>==</span> <span class='st'>"Commerce"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'>mkinparplot</span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#> <span class='warning'>Warning: Optimisation did not converge:</span> +#> <span class='warning'>false convergence (8)</span></div><div class='input'><span class='fu'>mkinparplot</span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>  </div><div class='img'><img src='mkinparplot-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>  </div></pre>    </div> diff --git a/docs/dev/reference/mkinplot.html b/docs/dev/reference/mkinplot.html index 417c8c73..120bddb3 100644 --- a/docs/dev/reference/mkinplot.html +++ b/docs/dev/reference/mkinplot.html @@ -73,7 +73,7 @@ plot.mkinfit." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ plot.mkinfit." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/mkinpredict.html b/docs/dev/reference/mkinpredict.html index 3221fc23..1ebaecb5 100644 --- a/docs/dev/reference/mkinpredict.html +++ b/docs/dev/reference/mkinpredict.html @@ -74,7 +74,7 @@ kinetic parameters and initial values for the state variables." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -123,7 +123,7 @@ kinetic parameters and initial values for the state variables." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -408,10 +408,10 @@ as these always return mapped output.</p></td>        solution_type <span class='op'>=</span> <span class='st'>"analytical"</span>, use_compiled <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span><span class='op'>[</span><span class='fl'>201</span>,<span class='op'>]</span><span class='op'>)</span>  <span class='op'>}</span>  </div><div class='output co'>#>               test relative elapsed +#> 2 deSolve_compiled      1.0   0.005  #> 4       analytical      1.0   0.005 -#> 2 deSolve_compiled      1.2   0.006 -#> 1            eigen      4.0   0.020 -#> 3          deSolve     44.2   0.221</div><div class='input'> +#> 1            eigen      4.4   0.022 +#> 3          deSolve     46.8   0.234</div><div class='input'>  <span class='co'># \dontrun{</span>    <span class='co'># Predict from a fitted model</span>    <span class='va'>f</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_2006_C</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> diff --git a/docs/dev/reference/mkinresplot.html b/docs/dev/reference/mkinresplot.html index 4b2f6bea..30377f2c 100644 --- a/docs/dev/reference/mkinresplot.html +++ b/docs/dev/reference/mkinresplot.html @@ -75,7 +75,7 @@ argument show_residuals = TRUE." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -124,7 +124,7 @@ argument show_residuals = TRUE." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -242,7 +242,7 @@ lines of the mkinfit object, and <code><a href='plot.mkinfit.html'>plot_res</a><  combining the plot of the fit and the residual plot.</p></div>      <h2 class="hasAnchor" id="author"><a class="anchor" href="#author"></a>Author</h2> -    <p>Johannes Ranke</p> +    <p>Johannes Ranke and Katrin Lindenberger</p>      <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>      <pre class="examples"><div class='input'> diff --git a/docs/dev/reference/mmkin-1.png b/docs/dev/reference/mmkin-1.pngBinary files differ index 7b7da90a..701a6d6a 100644 --- a/docs/dev/reference/mmkin-1.png +++ b/docs/dev/reference/mmkin-1.png diff --git a/docs/dev/reference/mmkin-2.png b/docs/dev/reference/mmkin-2.pngBinary files differ index ce2b2af4..5277b389 100644 --- a/docs/dev/reference/mmkin-2.png +++ b/docs/dev/reference/mmkin-2.png diff --git a/docs/dev/reference/mmkin-3.png b/docs/dev/reference/mmkin-3.pngBinary files differ index bb96f1b2..2659cd61 100644 --- a/docs/dev/reference/mmkin-3.png +++ b/docs/dev/reference/mmkin-3.png diff --git a/docs/dev/reference/mmkin-4.png b/docs/dev/reference/mmkin-4.pngBinary files differ index 351b21aa..ae16ee79 100644 --- a/docs/dev/reference/mmkin-4.png +++ b/docs/dev/reference/mmkin-4.png diff --git a/docs/dev/reference/mmkin-5.png b/docs/dev/reference/mmkin-5.pngBinary files differ index c1c05eea..2b9dc831 100644 --- a/docs/dev/reference/mmkin-5.png +++ b/docs/dev/reference/mmkin-5.png diff --git a/docs/dev/reference/mmkin.html b/docs/dev/reference/mmkin.html index 651eb9a6..c385bbf6 100644 --- a/docs/dev/reference/mmkin.html +++ b/docs/dev/reference/mmkin.html @@ -75,7 +75,7 @@ datasets specified in its first two arguments." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -124,7 +124,7 @@ datasets specified in its first two arguments." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -155,10 +155,13 @@ datasets specified in its first two arguments.</p>      <pre class="usage"><span class='fu'>mmkin</span><span class='op'>(</span>    models <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>,    <span class='va'>datasets</span>, -  cores <span class='op'>=</span> <span class='fu'>parallel</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span><span class='op'>(</span><span class='op'>)</span>, +  cores <span class='op'>=</span> <span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.info.html'>Sys.info</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>[</span><span class='st'>"sysname"</span><span class='op'>]</span> <span class='op'>==</span> <span class='st'>"Windows"</span><span class='op'>)</span> <span class='fl'>1</span> <span class='kw'>else</span> <span class='fu'>parallel</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span><span class='op'>(</span><span class='op'>)</span>,    cluster <span class='op'>=</span> <span class='cn'>NULL</span>,    <span class='va'>...</span> -<span class='op'>)</span></pre> +<span class='op'>)</span> + +<span class='co'># S3 method for mmkin</span> +<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>x</span>, <span class='va'>...</span><span class='op'>)</span></pre>      <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>      <table class="ref-arguments"> @@ -180,7 +183,8 @@ data for <code><a href='mkinfit.html'>mkinfit</a></code>.</p></td>  is only used when the <code>cluster</code> argument is <code>NULL</code>. On Windows  machines, cores > 1 is not supported, you need to use the <code>cluster</code>  argument to use multiple logical processors. Per default, all cores -detected by <code><a href='https://rdrr.io/r/parallel/detectCores.html'>parallel::detectCores()</a></code> are used.</p></td> +detected by <code><a href='https://rdrr.io/r/parallel/detectCores.html'>parallel::detectCores()</a></code> are used, except on Windows where +the default is 1.</p></td>      </tr>      <tr>        <th>cluster</th> @@ -189,7 +193,11 @@ for parallel execution.</p></td>      </tr>      <tr>        <th>...</th> -      <td><p>Further arguments that will be passed to <code><a href='mkinfit.html'>mkinfit</a></code>.</p></td> +      <td><p>Not used.</p></td> +    </tr> +    <tr> +      <th>x</th> +      <td><p>An mmkin object.</p></td>      </tr>      </table> @@ -227,19 +235,19 @@ plotting.</p></div>  <span class='va'>time_default</span>  </div><div class='output co'>#>    user  system elapsed  -#>   4.968   0.427   1.342 </div><div class='input'><span class='va'>time_1</span> +#>   4.771   0.576   1.803 </div><div class='input'><span class='va'>time_1</span>  </div><div class='output co'>#>    user  system elapsed  -#>   5.365   0.000   5.368 </div><div class='input'> +#>   5.779   0.000   5.781 </div><div class='input'>  <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fits.0</span><span class='op'>[[</span><span class='st'>"SFO_lin"</span>, <span class='fl'>2</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span>  </div><div class='output co'>#> $ff  #>   parent_M1 parent_sink       M1_M2     M1_sink  -#>   0.7340478   0.2659522   0.7505687   0.2494313  +#>   0.7340481   0.2659519   0.7505683   0.2494317   #>   #> $distimes  #>             DT50       DT90  #> parent  0.877769   2.915885 -#> M1      2.325746   7.725960 -#> M2     33.720083 112.015691 +#> M1      2.325744   7.725956 +#> M2     33.720100 112.015749  #> </div><div class='input'>  <span class='co'># plot.mkinfit handles rows or columns of mmkin result objects</span>  <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>fits.0</span><span class='op'>[</span><span class='fl'>1</span>, <span class='op'>]</span><span class='op'>)</span> @@ -266,12 +274,10 @@ plotting.</p></div>  #>       dataset  #> model  A  B  C  D   #>   SFO  OK OK OK OK -#>   FOMC C  OK OK OK +#>   FOMC OK OK OK OK  #>   DFOP OK OK OK OK  #>  -#> OK: No warnings -#> C: Optimisation did not converge: -#> false convergence (8)</div><div class='input'><span class='co'># We get false convergence for the FOMC fit to FOCUS_2006_A because this</span> +#> OK: No warnings</div><div class='input'><span class='co'># We get false convergence for the FOMC fit to FOCUS_2006_A because this</span>  <span class='co'># dataset is really SFO, and the FOMC fit is overparameterised</span>  <span class='fu'>stopCluster</span><span class='op'>(</span><span class='va'>cl</span><span class='op'>)</span>  <span class='co'># }</span> diff --git a/docs/dev/reference/nafta-1.png b/docs/dev/reference/nafta-1.pngBinary files differ index 4d823d77..4f0d7833 100644 --- a/docs/dev/reference/nafta-1.png +++ b/docs/dev/reference/nafta-1.png diff --git a/docs/dev/reference/nafta.html b/docs/dev/reference/nafta.html index bbc8797d..6fb797a5 100644 --- a/docs/dev/reference/nafta.html +++ b/docs/dev/reference/nafta.html @@ -76,7 +76,7 @@ order of increasing model complexity, i.e. SFO, then IORE, and finally DFOP." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ order of increasing model complexity, i.e. SFO, then IORE, and finally DFOP." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/nlme-1.png b/docs/dev/reference/nlme-1.pngBinary files differ index 193722c7..365aaef0 100644 --- a/docs/dev/reference/nlme-1.png +++ b/docs/dev/reference/nlme-1.png diff --git a/docs/dev/reference/nlme-2.png b/docs/dev/reference/nlme-2.pngBinary files differ index c0fb6dcf..40841404 100644 --- a/docs/dev/reference/nlme-2.png +++ b/docs/dev/reference/nlme-2.png diff --git a/docs/dev/reference/nlme.html b/docs/dev/reference/nlme.html index b3e88428..55a94443 100644 --- a/docs/dev/reference/nlme.html +++ b/docs/dev/reference/nlme.html @@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -124,7 +124,7 @@ datasets. They are used internally by the nlme.mmkin() method." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -155,8 +155,6 @@ datasets. They are used internally by the <code><a href='nlme.mmkin.html'>nlme.m      <pre class="usage"><span class='fu'>nlme_function</span><span class='op'>(</span><span class='va'>object</span><span class='op'>)</span> -<span class='fu'>mean_degparms</span><span class='op'>(</span><span class='va'>object</span>, random <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span> -  <span class='fu'>nlme_data</span><span class='op'>(</span><span class='va'>object</span><span class='op'>)</span></pre>      <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> @@ -166,19 +164,11 @@ datasets. They are used internally by the <code><a href='nlme.mmkin.html'>nlme.m        <th>object</th>        <td><p>An mmkin row object containing several fits of the same model to different datasets</p></td>      </tr> -    <tr> -      <th>random</th> -      <td><p>Should a list with fixed and random effects be returned?</p></td> -    </tr>      </table>      <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>      <p>A function that can be used with nlme</p> -<p>If random is FALSE (default), a named vector containing mean values -of the fitted degradation model parameters. If random is TRUE, a list with -fixed and random effects, in the format required by the start argument of -nlme for the case of a single grouping variable ds.</p>  <p>A <code><a href='https://rdrr.io/pkg/nlme/man/groupedData.html'>groupedData</a></code> object</p>      <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2> @@ -206,12 +196,12 @@ nlme for the case of a single grouping variable ds.</p>  <span class='va'>ds</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>d1 <span class='op'>=</span> <span class='va'>d1</span>, d2 <span class='op'>=</span> <span class='va'>d2</span>, d3 <span class='op'>=</span> <span class='va'>d3</span><span class='op'>)</span>  <span class='va'>f</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='va'>ds</span>, cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -<span class='va'>mean_dp</span> <span class='op'><-</span> <span class='fu'>mean_degparms</span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span> +<span class='va'>mean_dp</span> <span class='op'><-</span> <span class='fu'><a href='mean_degparms.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span>  <span class='va'>grouped_data</span> <span class='op'><-</span> <span class='fu'>nlme_data</span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span>  <span class='va'>nlme_f</span> <span class='op'><-</span> <span class='fu'>nlme_function</span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span>  <span class='co'># These assignments are necessary for these objects to be</span>  <span class='co'># visible to nlme and augPred when evaluation is done by</span> -<span class='co'># pkgdown to generated the html docs.</span> +<span class='co'># pkgdown to generate the html docs.</span>  <span class='fu'><a href='https://rdrr.io/r/base/assign.html'>assign</a></span><span class='op'>(</span><span class='st'>"nlme_f"</span>, <span class='va'>nlme_f</span>, <span class='fu'><a href='https://rdrr.io/r/base/environment.html'>globalenv</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>)</span>  <span class='fu'><a href='https://rdrr.io/r/base/assign.html'>assign</a></span><span class='op'>(</span><span class='st'>"grouped_data"</span>, <span class='va'>grouped_data</span>, <span class='fu'><a href='https://rdrr.io/r/base/environment.html'>globalenv</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>)</span> @@ -224,37 +214,37 @@ nlme for the case of a single grouping variable ds.</p>  <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>m_nlme</span><span class='op'>)</span>  </div><div class='output co'>#> Nonlinear mixed-effects model fit by maximum likelihood  #>   Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink)  -#>  Data: grouped_data  +#>   Data: grouped_data   #>        AIC      BIC    logLik -#>   252.7798 262.1358 -121.3899 +#>   300.6824 310.2426 -145.3412  #>   #> Random effects:  #>  Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1)  #>  Level: ds  #>  Structure: Diagonal -#>             parent_0 log_k_parent_sink Residual -#> StdDev: 0.0006768135         0.6800777 2.489397 +#>         parent_0 log_k_parent_sink Residual +#> StdDev: 1.697361         0.6801209 3.666073  #>  -#> Fixed effects: parent_0 + log_k_parent_sink ~ 1  -#>                       Value Std.Error DF   t-value p-value -#> parent_0          101.74884 0.6456014 44 157.60321       0 -#> log_k_parent_sink  -3.05575 0.4015811 44  -7.60929       0 +#> Fixed effects:  parent_0 + log_k_parent_sink ~ 1  +#>                       Value Std.Error DF  t-value p-value +#> parent_0          100.99378 1.3890416 46 72.70753       0 +#> log_k_parent_sink  -3.07521 0.4018589 46 -7.65246       0  #>  Correlation:   #>                   prnt_0 -#> log_k_parent_sink 0.026  +#> log_k_parent_sink 0.027   #>   #> Standardized Within-Group Residuals:  #>        Min         Q1        Med         Q3        Max  -#> -2.1317488 -0.6878121  0.0828385  0.8592270  2.9529864  +#> -1.9942823 -0.5622565  0.1791579  0.7165038  2.0704781   #>  -#> Number of Observations: 48 +#> Number of Observations: 50  #> Number of Groups: 3 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/pkg/nlme/man/augPred.html'>augPred</a></span><span class='op'>(</span><span class='va'>m_nlme</span>, level <span class='op'>=</span> <span class='fl'>0</span><span class='op'>:</span><span class='fl'>1</span><span class='op'>)</span>, layout <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>3</span>, <span class='fl'>1</span><span class='op'>)</span><span class='op'>)</span>  </div><div class='img'><img src='nlme-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># augPred does not work on fits with more than one state</span>  <span class='co'># variable</span>  <span class='co'>#</span>  <span class='co'># The procedure is greatly simplified by the nlme.mmkin function</span>  <span class='va'>f_nlme</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme</span><span class='op'>)</span> +<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme</span><span class='op'>)</span>  </div><div class='img'><img src='nlme-2.png' alt='' width='700' height='433' /></div></pre>    </div>    <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> diff --git a/docs/dev/reference/nlme.mmkin-1.png b/docs/dev/reference/nlme.mmkin-1.pngBinary files differ index 25bebeca..95adfafb 100644 --- a/docs/dev/reference/nlme.mmkin-1.png +++ b/docs/dev/reference/nlme.mmkin-1.png diff --git a/docs/dev/reference/nlme.mmkin-2.png b/docs/dev/reference/nlme.mmkin-2.pngBinary files differ index c314c149..53b6fc76 100644 --- a/docs/dev/reference/nlme.mmkin-2.png +++ b/docs/dev/reference/nlme.mmkin-2.png diff --git a/docs/dev/reference/nlme.mmkin-3.png b/docs/dev/reference/nlme.mmkin-3.pngBinary files differ index a40b7cad..8df1e73b 100644 --- a/docs/dev/reference/nlme.mmkin-3.png +++ b/docs/dev/reference/nlme.mmkin-3.png diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html index a4d7070a..db863392 100644 --- a/docs/dev/reference/nlme.mmkin.html +++ b/docs/dev/reference/nlme.mmkin.html @@ -74,7 +74,7 @@ have been obtained by fitting the same model to a list of datasets." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -123,7 +123,7 @@ have been obtained by fitting the same model to a list of datasets." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -155,11 +155,11 @@ have been obtained by fitting the same model to a list of datasets.</p>  <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span>    <span class='va'>model</span>,    data <span class='op'>=</span> <span class='st'>"auto"</span>, -  fixed <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>as.list</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='fu'><a href='nlme_function.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>el</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/eval.html'>eval</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/parse.html'>parse</a></span><span class='op'>(</span>text <span class='op'>=</span> +  fixed <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>as.list</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='fu'><a href='mean_degparms.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>el</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/eval.html'>eval</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/parse.html'>parse</a></span><span class='op'>(</span>text <span class='op'>=</span>      <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='va'>el</span>, <span class='fl'>1</span>, sep <span class='op'>=</span> <span class='st'>"~"</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span>, -  random <span class='op'>=</span> <span class='fu'>pdDiag</span><span class='op'>(</span><span class='va'>fixed</span><span class='op'>)</span>, +  random <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/pdDiag.html'>pdDiag</a></span><span class='op'>(</span><span class='va'>fixed</span><span class='op'>)</span>,    <span class='va'>groups</span>, -  start <span class='op'>=</span> <span class='fu'><a href='nlme_function.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span>, random <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>, +  start <span class='op'>=</span> <span class='fu'><a href='mean_degparms.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span>, random <span class='op'>=</span> <span class='cn'>TRUE</span>, test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,    correlation <span class='op'>=</span> <span class='cn'>NULL</span>,    weights <span class='op'>=</span> <span class='cn'>NULL</span>,    <span class='va'>subset</span>, @@ -194,10 +194,9 @@ mmkin model are used as fixed parameters</p></td>      </tr>      <tr>        <th>random</th> -      <td><p>If not specified, correlated random effects are set up -for all optimised degradation model parameters using the log-Cholesky -parameterization <a href='https://rdrr.io/pkg/nlme/man/pdLogChol.html'>nlme::pdLogChol</a> that is also the default of -the generic <a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a> method.</p></td> +      <td><p>If not specified, no correlations between random effects are +set up for the optimised degradation model parameters. This is +achieved by using the <a href='https://rdrr.io/pkg/nlme/man/pdDiag.html'>nlme::pdDiag</a> method.</p></td>      </tr>      <tr>        <th>groups</th> @@ -262,6 +261,12 @@ parameters taken from the mmkin object are used</p></td>      <p>Upon success, a fitted 'nlme.mmkin' object, which is an nlme object  with additional elements. It also inherits from 'mixed.mmkin'.</p> +    <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2> + +    <p>Note that the convergence of the nlme algorithms depends on the quality +of the data. In degradation kinetics, we often only have few datasets +(e.g. data for few soils) and complicated degradation models, which may +make it impossible to obtain convergence with nlme.</p>      <h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2>      <p>As the object inherits from <a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme::nlme</a>, there is a wealth of @@ -284,7 +289,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as    <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo</span>, <span class='va'>f_nlme_dfop</span><span class='op'>)</span>  </div><div class='output co'>#>             Model df      AIC      BIC    logLik   Test  L.Ratio p-value  #> f_nlme_sfo      1  5 625.0539 637.5529 -307.5269                         -#> f_nlme_dfop     2  9 495.1270 517.6253 -238.5635 1 vs 2 137.9268  <.0001</div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span> +#> f_nlme_dfop     2  9 495.1270 517.6253 -238.5635 1 vs 2 137.9269  <.0001</div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>  </div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood  #>   #> Structural model: @@ -312,7 +317,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as  </div><div class='img'><img src='nlme.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'>  <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>  </div><div class='output co'>#> $distimes  #>            DT50     DT90 DT50back  DT50_k1  DT50_k2 -#> parent 10.79857 100.7937 30.34192 4.193937 43.85442 +#> parent 10.79857 100.7937 30.34193 4.193938 43.85443  #> </div><div class='input'>    <span class='va'>ds_2</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>,     <span class='kw'>function</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span> <span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span><span class='op'>)</span><span class='op'>]</span><span class='op'>)</span> @@ -335,16 +340,17 @@ methods that will automatically work on 'nlme.mmkin' objects, such as    <span class='co'># f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])</span>    <span class='co'>#plot(f_nlme_sfo_sfo_ff)</span> -  <span class='co'># With the log-Cholesky parameterization, this converges in 11</span> -  <span class='co'># iterations and around 100 seconds, but without tweaking control</span> -  <span class='co'># parameters (with pdDiag, increasing the tolerance and pnlsMaxIter was</span> -  <span class='co'># necessary)</span> -  <span class='va'>f_nlme_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in nlme.formula(model = value ~ (mkin::get_deg_func())(name, time,     parent_0, log_k_A1, f_parent_qlogis, log_k1, log_k2, g_qlogis),     data = structure(list(ds = structure(c(1L, 1L, 1L, 1L, 1L,     1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,     1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,     1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,     2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,     2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,     3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,     3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,     4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,     4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,     5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,     5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L    ), .Label = c("1", "2", "3", "4", "5"), class = c("ordered",     "factor")), name = c("parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1"), time = c(0, 0, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34,     55, 55, 90, 90, 112, 112, 132, 132, 3, 3, 6, 6, 10, 10, 20,     20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 0, 0, 3,     3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180,     3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180,     180, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70,     70, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 0,     0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91,     91, 120, 120, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70,     70, 91, 91, 120, 120, 0, 0, 8, 8, 14, 14, 21, 21, 41, 41,     63, 63, 91, 91, 120, 120, 8, 8, 14, 14, 21, 21, 41, 41, 63,     63, 91, 91, 120, 120), value = c(97.2, 96.4, 71.1, 69.2,     58.1, 56.6, 44.4, 43.4, 33.3, 29.2, 17.6, 18, 10.5, 9.3,     4.5, 4.7, 3, 3.4, 2.3, 2.7, 4.3, 4.6, 7, 7.2, 8.2, 8, 11,     13.7, 11.5, 12.7, 14.9, 14.5, 12.1, 12.3, 9.9, 10.2, 8.8,     7.8, 93.6, 92.3, 87, 82.2, 74, 73.9, 64.2, 69.5, 54, 54.6,     41.1, 38.4, 32.5, 35.5, 28.1, 29, 26.5, 27.6, 3.9, 3.1, 6.9,     6.6, 10.4, 8.3, 14.4, 13.7, 22.1, 22.3, 27.5, 25.4, 28, 26.6,     25.8, 25.3, 91.9, 90.8, 64.9, 66.2, 43.5, 44.1, 18.3, 18.1,     10.2, 10.8, 4.9, 3.3, 1.6, 1.5, 1.1, 0.9, 9.6, 7.7, 15, 15.1,     21.2, 21.1, 19.7, 18.9, 17.5, 15.9, 9.5, 9.8, 6.2, 6.1, 99.8,     98.3, 77.1, 77.2, 59, 58.1, 27.4, 29.2, 19.1, 29.6, 10.1,     18.2, 4.5, 9.1, 2.3, 2.9, 2, 1.8, 2, 2.2, 4.2, 3.9, 7.4,     7.9, 14.5, 13.7, 14.2, 12.2, 13.7, 13.2, 13.6, 15.4, 10.4,     11.6, 10, 9.5, 9.1, 9, 96.1, 94.3, 73.9, 73.9, 69.4, 73.1,     65.6, 65.3, 55.9, 54.4, 47, 49.3, 44.7, 46.7, 42.1, 41.3,     3.3, 3.4, 3.9, 2.9, 6.4, 7.2, 9.1, 8.5, 11.7, 12, 13.3, 13.2,     14.3, 12.1)), row.names = c(NA, -170L), class = c("nfnGroupedData",     "nfGroupedData", "groupedData", "data.frame"), formula = value ~         time | ds, FUN = function (x)     max(x, na.rm = TRUE), order.groups = FALSE), start = list(        fixed = c(parent_0 = 93.8101519326534, log_k_A1 = -9.76474551635931,         f_parent_qlogis = -0.971114801595408, log_k1 = -1.87993711571859,         log_k2 = -4.27081421366622, g_qlogis = 0.135644115277507        ), random = list(ds = structure(c(2.56569977430371, -3.49441920289139,         -3.32614443321494, 4.35347873814922, -0.0986148763466161,         4.65850590018027, 1.8618544764481, 6.12693257601545,         4.91792724701579, -17.5652201996596, -0.466203822618637,         0.746660653597927, 0.282193987271096, -0.42053488943072,         -0.142115928819667, 0.369240076779088, -1.38985563501659,         1.02592753494098, 0.73090914081534, -0.736221117518819,         0.768170629350299, -1.89347658079869, 1.72168783460352,         0.844607177798114, -1.44098906095325, -0.377731855445672,         0.168180098477565, 0.469683412912104, 0.500717664434525,         -0.760849320378522), .Dim = 5:6, .Dimnames = list(c("1",         "2", "3", "4", "5"), c("parent_0", "log_k_A1", "f_parent_qlogis",         "log_k1", "log_k2", "g_qlogis"))))), fixed = list(parent_0 ~         1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~         1, g_qlogis ~ 1), random = structure(numeric(0), class = c("pdDiag",     "pdMat"), formula = structure(list(parent_0 ~ 1, log_k_A1 ~         1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~         1), class = "listForm"), Dimnames = list(NULL, NULL))): maximum number of iterations (maxIter = 50) reached without convergence</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 49.95 16.5 44.08</span></div><div class='input'> +  <span class='co'># For the following, we need to increase pnlsMaxIter and the tolerance</span> +  <span class='co'># to get convergence</span> +  <span class='va'>f_nlme_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, +    control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>pnlsMaxIter <span class='op'>=</span> <span class='fl'>120</span>, tolerance <span class='op'>=</span> <span class='fl'>5e-4</span><span class='op'>)</span><span class='op'>)</span> +    <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in plot(f_nlme_dfop_sfo): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'> +</div><div class='img'><img src='nlme.mmkin-3.png' alt='' width='700' height='433' /></div><div class='input'>    <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'> +</div><div class='output co'>#>                 Model df       AIC       BIC    logLik   Test  L.Ratio p-value +#> f_nlme_dfop_sfo     1 13  843.8547  884.6201 -408.9274                         +#> f_nlme_sfo_sfo      2  9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3274  <.0001</div><div class='input'>    <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span>  </div><div class='output co'>#> $ff  #> parent_sink   parent_A1     A1_sink  @@ -355,7 +361,15 @@ methods that will automatically work on 'nlme.mmkin' objects, such as  #> parent 19.13518  63.5657  #> A1     66.02155 219.3189  #> </div><div class='input'>  <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in endpoints(f_nlme_dfop_sfo): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'> +</div><div class='output co'>#> $ff +#>   parent_A1 parent_sink  +#>   0.2768574   0.7231426  +#>  +#> $distimes +#>             DT50     DT90 DT50back  DT50_k1  DT50_k2 +#> parent  11.07091 104.6320 31.49737 4.462383 46.20825 +#> A1     162.30519 539.1662       NA       NA       NA +#> </div><div class='input'>    <span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='fu'>findFunction</span><span class='op'>(</span><span class='st'>"varConstProp"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>></span> <span class='fl'>0</span><span class='op'>)</span> <span class='op'>{</span> <span class='co'># tc error model for nlme available</span>      <span class='co'># Attempts to fit metabolite kinetics with the tc error model are possible,</span>      <span class='co'># but need tweeking of control values and sometimes do not converge</span> @@ -381,7 +395,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as  #> Fixed effects:  #>  list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)   #> parent_0   log_k1   log_k2 g_qlogis  -#> 94.04775 -1.82340 -4.16715  0.05685  +#> 94.04774 -1.82340 -4.16716  0.05686   #>   #> Random effects:  #>  Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) @@ -395,10 +409,8 @@ methods that will automatically work on 'nlme.mmkin' objects, such as  #>  Formula: ~fitted(.)   #>  Parameter estimates:  #>      const       prop  -#> 2.23224114 0.01262341 </div><div class='input'> -  <span class='va'>f_2_obs</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>, -   <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>, -    <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span> +#> 2.23223147 0.01262395 </div><div class='input'> +  <span class='va'>f_2_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_2</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span>    <span class='va'>f_nlme_sfo_sfo_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>    <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo_obs</span><span class='op'>)</span>  </div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood @@ -429,18 +441,21 @@ methods that will automatically work on 'nlme.mmkin' objects, such as  #>  Formula: ~1 | name   #>  Parameter estimates:  #>    parent        A1  -#> 1.0000000 0.2050003 </div><div class='input'>  <span class='va'>f_nlme_dfop_sfo_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in nlme.formula(model = value ~ (mkin::get_deg_func())(name, time,     parent_0, log_k_A1, f_parent_qlogis, log_k1, log_k2, g_qlogis),     data = structure(list(ds = structure(c(1L, 1L, 1L, 1L, 1L,     1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,     1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,     1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,     2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,     2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,     3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,     3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,     4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,     4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,     5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,     5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L    ), .Label = c("1", "2", "3", "4", "5"), class = c("ordered",     "factor")), name = c("parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1", "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "parent", "parent",     "parent", "parent", "parent", "parent", "A1", "A1", "A1",     "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1",     "A1"), time = c(0, 0, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34,     55, 55, 90, 90, 112, 112, 132, 132, 3, 3, 6, 6, 10, 10, 20,     20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 0, 0, 3,     3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180,     3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180,     180, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70,     70, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 0,     0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91,     91, 120, 120, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70,     70, 91, 91, 120, 120, 0, 0, 8, 8, 14, 14, 21, 21, 41, 41,     63, 63, 91, 91, 120, 120, 8, 8, 14, 14, 21, 21, 41, 41, 63,     63, 91, 91, 120, 120), value = c(97.2, 96.4, 71.1, 69.2,     58.1, 56.6, 44.4, 43.4, 33.3, 29.2, 17.6, 18, 10.5, 9.3,     4.5, 4.7, 3, 3.4, 2.3, 2.7, 4.3, 4.6, 7, 7.2, 8.2, 8, 11,     13.7, 11.5, 12.7, 14.9, 14.5, 12.1, 12.3, 9.9, 10.2, 8.8,     7.8, 93.6, 92.3, 87, 82.2, 74, 73.9, 64.2, 69.5, 54, 54.6,     41.1, 38.4, 32.5, 35.5, 28.1, 29, 26.5, 27.6, 3.9, 3.1, 6.9,     6.6, 10.4, 8.3, 14.4, 13.7, 22.1, 22.3, 27.5, 25.4, 28, 26.6,     25.8, 25.3, 91.9, 90.8, 64.9, 66.2, 43.5, 44.1, 18.3, 18.1,     10.2, 10.8, 4.9, 3.3, 1.6, 1.5, 1.1, 0.9, 9.6, 7.7, 15, 15.1,     21.2, 21.1, 19.7, 18.9, 17.5, 15.9, 9.5, 9.8, 6.2, 6.1, 99.8,     98.3, 77.1, 77.2, 59, 58.1, 27.4, 29.2, 19.1, 29.6, 10.1,     18.2, 4.5, 9.1, 2.3, 2.9, 2, 1.8, 2, 2.2, 4.2, 3.9, 7.4,     7.9, 14.5, 13.7, 14.2, 12.2, 13.7, 13.2, 13.6, 15.4, 10.4,     11.6, 10, 9.5, 9.1, 9, 96.1, 94.3, 73.9, 73.9, 69.4, 73.1,     65.6, 65.3, 55.9, 54.4, 47, 49.3, 44.7, 46.7, 42.1, 41.3,     3.3, 3.4, 3.9, 2.9, 6.4, 7.2, 9.1, 8.5, 11.7, 12, 13.3, 13.2,     14.3, 12.1)), row.names = c(NA, -170L), class = c("nfnGroupedData",     "nfGroupedData", "groupedData", "data.frame"), formula = value ~         time | ds, FUN = function (x)     max(x, na.rm = TRUE), order.groups = FALSE), start = list(        fixed = c(parent_0 = 93.4272167134207, log_k_A1 = -9.71590717106959,         f_parent_qlogis = -0.953712099744438, log_k1 = -1.95256957646888,         log_k2 = -4.42919226610318, g_qlogis = 0.193023137298073        ), random = list(ds = structure(c(2.85557330683041, -3.87630303729395,         -2.78062140212751, 4.82042042600536, -1.01906929341432,         4.613992019697, 2.05871276943309, 6.0766404049189, 4.86471337131288,         -17.6140585653619, -0.480721175257541, 0.773079218835614,         0.260464433006093, -0.440615012802434, -0.112207463781733,         0.445812953745225, -1.49588630006094, 1.13602040717272,         0.801850880762046, -0.887797941619048, 0.936480292463262,         -2.43093808171905, 1.91256225793793, 0.984827519864443,         -1.40293198854659, -0.455176326336681, 0.376355651864385,         0.343919720700401, 0.46329187713133, -0.728390923359434        ), .Dim = 5:6, .Dimnames = list(c("1", "2", "3", "4",         "5"), c("parent_0", "log_k_A1", "f_parent_qlogis", "log_k1",         "log_k2", "g_qlogis"))))), fixed = list(parent_0 ~ 1,         log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~             1, g_qlogis ~ 1), random = structure(numeric(0), class = c("pdDiag",     "pdMat"), formula = structure(list(parent_0 ~ 1, log_k_A1 ~         1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~         1), class = "listForm"), Dimnames = list(NULL, NULL)),     weights = structure(numeric(0), formula = ~1 | name, class = c("varIdent",     "varFunc"))): maximum number of iterations (maxIter = 50) reached without convergence</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 59.38 16.5 53.5</span></div><div class='input'> -  <span class='va'>f_2_tc</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>, -   <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>, -    <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> -  <span class='co'># f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # stops with error message</span> -  <span class='va'>f_nlme_dfop_sfo_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='error'>Error in X[, fmap[[nm]]] <- gradnm: number of items to replace is not a multiple of replacement length</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 6.363 2.688 5.469</span></div><div class='input'>  <span class='co'># We get warnings about false convergence in the LME step in several iterations</span> -  <span class='co'># but as the last such warning occurs in iteration 25 and we have 28 iterations</span> -  <span class='co'># we can ignore these</span> -  <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_dfop_sfo_obs</span>, <span class='va'>f_nlme_dfop_sfo_tc</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs, f_nlme_dfop_sfo_tc): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'> +#> 1.0000000 0.2049995 </div><div class='input'>  <span class='va'>f_nlme_dfop_sfo_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, +    control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>pnlsMaxIter <span class='op'>=</span> <span class='fl'>120</span>, tolerance <span class='op'>=</span> <span class='fl'>5e-4</span><span class='op'>)</span><span class='op'>)</span> + +  <span class='va'>f_2_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_2</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> +  <span class='co'># f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # No convergence with 50 iterations</span> +  <span class='co'># f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO", ],</span> +  <span class='co'>#  control = list(pnlsMaxIter = 120, tolerance = 5e-4)) # Error in X[, fmap[[nm]]] <- gradnm</span> + +  <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_dfop_sfo_obs</span><span class='op'>)</span> +</div><div class='output co'>#>                     Model df      AIC      BIC    logLik   Test  L.Ratio +#> f_nlme_dfop_sfo         1 13 843.8547 884.6201 -408.9274                 +#> f_nlme_dfop_sfo_obs     2 14 817.5338 861.4350 -394.7669 1 vs 2 28.32091 +#>                     p-value +#> f_nlme_dfop_sfo             +#> f_nlme_dfop_sfo_obs  <.0001</div><div class='input'>  <span class='co'># }</span>  </div></pre>    </div> diff --git a/docs/dev/reference/nlmixr.mmkin-1.png b/docs/dev/reference/nlmixr.mmkin-1.pngBinary files differ new file mode 100644 index 00000000..851d363d --- /dev/null +++ b/docs/dev/reference/nlmixr.mmkin-1.png diff --git a/docs/dev/reference/nlmixr.mmkin-2.png b/docs/dev/reference/nlmixr.mmkin-2.pngBinary files differ new file mode 100644 index 00000000..d0c74c31 --- /dev/null +++ b/docs/dev/reference/nlmixr.mmkin-2.png diff --git a/docs/dev/reference/nlmixr.mmkin.html b/docs/dev/reference/nlmixr.mmkin.html new file mode 100644 index 00000000..99a7ad14 --- /dev/null +++ b/docs/dev/reference/nlmixr.mmkin.html @@ -0,0 +1,5001 @@ +<!-- Generated by pkgdown: do not edit by hand --> +<!DOCTYPE html> +<html lang="en"> +  <head> +  <meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> + +<title>Fit nonlinear mixed models using nlmixr — nlmixr.mmkin • mkin</title> + + +<!-- jquery --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script> +<!-- Bootstrap --> + +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" /> + +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script> + +<!-- bootstrap-toc --> +<link rel="stylesheet" href="../bootstrap-toc.css"> +<script src="../bootstrap-toc.js"></script> + +<!-- Font Awesome icons --> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" /> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" /> + +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script> + +<!-- headroom.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> + +<!-- pkgdown --> +<link href="../pkgdown.css" rel="stylesheet"> +<script src="../pkgdown.js"></script> + + + + +<meta property="og:title" content="Fit nonlinear mixed models using nlmixr — nlmixr.mmkin" /> +<meta property="og:description" content="This function uses nlmixr::nlmixr() as a backend for fitting nonlinear mixed +effects models created from mmkin row objects using the Stochastic Approximation +Expectation Maximisation algorithm (SAEM)." /> + + +<meta name="robots" content="noindex"> + +<!-- mathjax --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> + +<!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> + + + +  </head> + +  <body data-spy="scroll" data-target="#toc"> +    <div class="container template-reference-topic"> +      <header> +      <div class="navbar navbar-default navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> +        <span class="sr-only">Toggle navigation</span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <span class="navbar-brand"> +        <a class="navbar-link" href="../index.html">mkin</a> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span> +      </span> +    </div> + +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +        <li> +  <a href="../reference/index.html">Functions and data</a> +</li> +<li class="dropdown"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> +    Articles +      +    <span class="caret"></span> +  </a> +  <ul class="dropdown-menu" role="menu"> +    <li> +      <a href="../articles/mkin.html">Introduction to mkin</a> +    </li> +    <li> +      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> +    </li> +    <li> +      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> +    </li> +    <li> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +    </li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li> +    <li> +      <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a> +    </li> +  </ul> +</li> +<li> +  <a href="../news/index.html">News</a> +</li> +      </ul> +      <ul class="nav navbar-nav navbar-right"> +        <li> +  <a href="https://github.com/jranke/mkin/"> +    <span class="fab fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +       +    </div><!--/.nav-collapse --> +  </div><!--/.container --> +</div><!--/.navbar --> + +       + +      </header> + +<div class="row"> +  <div class="col-md-9 contents"> +    <div class="page-header"> +    <h1>Fit nonlinear mixed models using nlmixr</h1> +    <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/nlmixr.R'><code>R/nlmixr.R</code></a></small> +    <div class="hidden name"><code>nlmixr.mmkin.Rd</code></div> +    </div> + +    <div class="ref-description"> +    <p>This function uses <code><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr()</a></code> as a backend for fitting nonlinear mixed +effects models created from <a href='mmkin.html'>mmkin</a> row objects using the Stochastic Approximation +Expectation Maximisation algorithm (SAEM).</p> +    </div> + +    <pre class="usage"><span class='co'># S3 method for mmkin</span> +<span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span> +  <span class='va'>object</span>, +  data <span class='op'>=</span> <span class='cn'>NULL</span>, +  est <span class='op'>=</span> <span class='cn'>NULL</span>, +  control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='op'>)</span>, +  table <span class='op'>=</span> <span class='fu'>tableControl</span><span class='op'>(</span><span class='op'>)</span>, +  error_model <span class='op'>=</span> <span class='va'>object</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>err_mod</span>, +  test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span>, +  conf.level <span class='op'>=</span> <span class='fl'>0.6</span>, +  degparms_start <span class='op'>=</span> <span class='st'>"auto"</span>, +  eta_start <span class='op'>=</span> <span class='st'>"auto"</span>, +  <span class='va'>...</span>, +  save <span class='op'>=</span> <span class='cn'>NULL</span>, +  envir <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/sys.parent.html'>parent.frame</a></span><span class='op'>(</span><span class='op'>)</span> +<span class='op'>)</span> + +<span class='co'># S3 method for nlmixr.mmkin</span> +<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>x</span>, digits <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Extremes.html'>max</a></span><span class='op'>(</span><span class='fl'>3</span>, <span class='fu'><a href='https://rdrr.io/r/base/options.html'>getOption</a></span><span class='op'>(</span><span class='st'>"digits"</span><span class='op'>)</span> <span class='op'>-</span> <span class='fl'>3</span><span class='op'>)</span>, <span class='va'>...</span><span class='op'>)</span> + +<span class='fu'>nlmixr_model</span><span class='op'>(</span> +  <span class='va'>object</span>, +  est <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"saem"</span>, <span class='st'>"focei"</span><span class='op'>)</span>, +  degparms_start <span class='op'>=</span> <span class='st'>"auto"</span>, +  eta_start <span class='op'>=</span> <span class='st'>"auto"</span>, +  test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span>, +  conf.level <span class='op'>=</span> <span class='fl'>0.6</span>, +  error_model <span class='op'>=</span> <span class='va'>object</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>err_mod</span>, +  add_attributes <span class='op'>=</span> <span class='cn'>FALSE</span> +<span class='op'>)</span> + +<span class='fu'>nlmixr_data</span><span class='op'>(</span><span class='va'>object</span>, <span class='va'>...</span><span class='op'>)</span></pre> + +    <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> +    <table class="ref-arguments"> +    <colgroup><col class="name" /><col class="desc" /></colgroup> +    <tr> +      <th>object</th> +      <td><p>An <a href='mmkin.html'>mmkin</a> row object containing several fits of the same +<a href='mkinmod.html'>mkinmod</a> model to different datasets</p></td> +    </tr> +    <tr> +      <th>data</th> +      <td><p>Not used, as the data are extracted from the mmkin row object</p></td> +    </tr> +    <tr> +      <th>est</th> +      <td><p>Estimation method passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td> +    </tr> +    <tr> +      <th>control</th> +      <td><p>Passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td> +    </tr> +    <tr> +      <th>table</th> +      <td><p>Passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td> +    </tr> +    <tr> +      <th>error_model</th> +      <td><p>Possibility to override the error model which is being +set based on the error model used in the mmkin row object.</p></td> +    </tr> +    <tr> +      <th>test_log_parms</th> +      <td><p>If TRUE, an attempt is made to use more robust starting +values for population parameters fitted as log parameters in mkin (like +rate constants) by only considering rate constants that pass the t-test +when calculating mean degradation parameters using <a href='mean_degparms.html'>mean_degparms</a>.</p></td> +    </tr> +    <tr> +      <th>conf.level</th> +      <td><p>Possibility to adjust the required confidence level +for parameter that are tested if requested by 'test_log_parms'.</p></td> +    </tr> +    <tr> +      <th>degparms_start</th> +      <td><p>Parameter values given as a named numeric vector will +be used to override the starting values obtained from the 'mmkin' object.</p></td> +    </tr> +    <tr> +      <th>eta_start</th> +      <td><p>Standard deviations on the transformed scale given as a +named numeric vector will be used to override the starting values obtained +from the 'mmkin' object.</p></td> +    </tr> +    <tr> +      <th>...</th> +      <td><p>Passed to nlmixr_model</p></td> +    </tr> +    <tr> +      <th>save</th> +      <td><p>Passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td> +    </tr> +    <tr> +      <th>envir</th> +      <td><p>Passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td> +    </tr> +    <tr> +      <th>x</th> +      <td><p>An nlmixr.mmkin object to print</p></td> +    </tr> +    <tr> +      <th>digits</th> +      <td><p>Number of digits to use for printing</p></td> +    </tr> +    <tr> +      <th>add_attributes</th> +      <td><p>Should the starting values used for degradation model +parameters and their distribution and for the error model parameters +be returned as attributes?</p></td> +    </tr> +    </table> + +    <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> + +    <p>An S3 object of class 'nlmixr.mmkin', containing the fitted +<a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a> object as a list component named 'nm'. The +object also inherits from 'mixed.mmkin'.</p> +<p>An function defining a model suitable for fitting with <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a>.</p> +<p>An dataframe suitable for use with <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p> +    <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2> + +    <p>An mmkin row object is essentially a list of mkinfit objects that have been +obtained by fitting the same model to a list of datasets using <a href='mkinfit.html'>mkinfit</a>.</p> +    <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2> + +    <div class='dont-index'><p><a href='summary.nlmixr.mmkin.html'>summary.nlmixr.mmkin</a> <a href='plot.mixed.mmkin.html'>plot.mixed.mmkin</a></p></div> + +    <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> +    <pre class="examples"><div class='input'><span class='co'># \dontrun{</span> +<span class='va'>ds</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>, + <span class='kw'>function</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span><span class='op'>)</span><span class='op'>]</span><span class='op'>)</span><span class='op'>)</span> +<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"Dataset"</span>, <span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>)</span> + +<span class='va'>f_mmkin_parent</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span>, <span class='st'>"HS"</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span> +<span class='va'>f_mmkin_parent_tc</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>, <span class='va'>ds</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, +  cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> + +<span class='va'>f_nlmixr_sfo_saem</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> 1:    86.5083   -3.1968    4.1673    1.7173   48.7028 +#> 2:    87.3628   -3.1468    3.9589    1.6315   45.1225 +#> 3:    86.8866   -3.2249    3.7610    1.8212   43.0034 +#> 4:    85.9210   -3.2427    3.5729    1.7302   39.4197 +#> 5:    85.8539   -3.2018    3.3943    1.7234   38.2933 +#> 6:    85.6934   -3.2262    3.2246    1.6843   39.0348 +#> 7:    85.7421   -3.2696    4.1298    1.7086   39.8152 +#> 8:    85.1605   -3.2190    3.9234    1.7588   41.7476 +#> 9:    84.7745   -3.2389    3.7361    1.6708   41.8512 +#> 10:    84.6549   -3.2078    3.5493    1.6489   41.6110 +#> 11:    84.4739   -3.2788    3.3718    1.5664   42.0076 +#> 12:    84.7871   -3.2674    3.4931    1.6097   40.9060 +#> 13:    84.5267   -3.2635    3.3185    1.6352   39.6914 +#> 14:    84.9806   -3.2353    3.1525    1.6470   39.2556 +#> 15:    84.9752   -3.2566    2.9949    1.6756   39.6152 +#> 16:    85.6293   -3.2232    2.8452    1.7076   39.4391 +#> 17:    85.9944   -3.2268    2.7029    1.6702   40.2731 +#> 18:    86.2811   -3.2260    2.5678    1.7100   41.4854 +#> 19:    86.2617   -3.2476    2.4489    1.7051   41.3066 +#> 20:    85.7552   -3.2032    3.3323    1.8885   42.2273 +#> 21:    85.6493   -3.2685    3.2317    1.7941   39.4198 +#> 22:    86.0133   -3.2457    4.0910    1.7044   39.0319 +#> 23:    86.1636   -3.2528    4.9399    1.6571   38.6728 +#> 24:    86.3086   -3.1708    7.0791    1.8182   39.6791 +#> 25:    85.7316   -3.2203    6.7252    1.7369   38.3546 +#> 26:    85.3476   -3.2341    6.3889    1.6864   38.0521 +#> 27:    85.6328   -3.2543    6.0695    1.6945   37.7990 +#> 28:    85.1715   -3.2191    5.7660    1.7898   38.5662 +#> 29:    85.4945   -3.2264    5.4777    1.7007   40.1659 +#> 30:    85.0864   -3.2463    5.2038    1.6156   39.0718 +#> 31:    85.8220   -3.2347    4.9436    1.6115   39.2011 +#> 32:    85.9869   -3.2400    4.6964    1.6818   41.2956 +#> 33:    85.9899   -3.2041    4.4616    1.6606   40.6657 +#> 34:    85.8353   -3.2065    4.2385    1.6868   41.5006 +#> 35:    85.8113   -3.2366    4.0266    1.8261   41.0403 +#> 36:    85.5233   -3.2389    3.8253    1.7348   39.5202 +#> 37:    85.1751   -3.2657    3.6340    1.6948   39.6097 +#> 38:    85.2768   -3.2380    3.4887    1.6820   38.7641 +#> 39:    84.8240   -3.2264    3.3143    1.5979   39.8074 +#> 40:    85.3754   -3.2147    3.1485    1.5810   39.1710 +#> 41:    85.0277   -3.2347    2.9911    1.7061   39.9948 +#> 42:    85.0113   -3.2651    3.1969    1.6208   39.7266 +#> 43:    85.0772   -3.2729    3.0371    1.6160   40.2919 +#> 44:    85.0769   -3.2272    3.3310    1.7321   38.5229 +#> 45:    85.1638   -3.2546    3.1644    1.6968   40.2382 +#> 46:    84.7966   -3.2597    5.0694    1.6816   38.7996 +#> 47:    85.0588   -3.2247    5.9549    1.7452   39.6569 +#> 48:    85.1769   -3.2557    5.6572    1.7441   37.9050 +#> 49:    84.9296   -3.2425    5.3743    1.6729   37.7885 +#> 50:    85.3414   -3.2421    5.1056    1.6646   38.2243 +#> 51:    84.9127   -3.2674    5.8827    1.7180   40.2859 +#> 52:    85.2014   -3.2471    5.5885    1.7318   39.1745 +#> 53:    85.9330   -3.2228    7.2369    1.8328   39.0461 +#> 54:    86.9718   -3.1447    6.9332    1.8404   39.3098 +#> 55:    87.2708   -3.1595    6.6308    1.8049   39.1338 +#> 56:    87.2006   -3.1746    6.2993    1.7541   38.2780 +#> 57:    87.8013   -3.2306    5.9843    1.6664   40.4876 +#> 58:    87.7294   -3.2120    5.6851    1.5831   41.5056 +#> 59:    87.4898   -3.2207    5.4008    1.5039   41.4401 +#> 60:    86.9156   -3.1861    5.1308    1.6408   39.8972 +#> 61:    86.4508   -3.1870    4.8742    1.5935   39.6871 +#> 62:    86.4028   -3.2191    4.6305    1.6267   39.2092 +#> 63:    86.2536   -3.2491    4.5199    1.5617   39.7603 +#> 64:    85.9775   -3.2650    4.2939    1.6077   39.1909 +#> 65:    85.8907   -3.2430    4.0792    1.6729   37.9420 +#> 66:    85.3450   -3.2888    3.8753    1.6201   40.8998 +#> 67:    85.1869   -3.2940    3.6815    1.6157   40.5107 +#> 68:    84.8029   -3.2830    3.4974    1.6040   40.6254 +#> 69:    85.3549   -3.2425    4.4768    1.5238   40.2418 +#> 70:    85.7957   -3.2296    4.2529    1.7175   40.8618 +#> 71:    85.4200   -3.2381    4.0403    1.6695   41.5731 +#> 72:    85.2950   -3.2566    3.8383    1.5998   40.6494 +#> 73:    85.0683   -3.2464    3.6464    1.5576   39.8095 +#> 74:    85.1667   -3.2436    3.4641    1.6383   39.4925 +#> 75:    84.6547   -3.2300    3.7226    1.6656   40.4684 +#> 76:    84.4882   -3.2521    3.6468    1.6035   40.1800 +#> 77:    84.5250   -3.2398    4.1501    1.6827   40.5269 +#> 78:    84.5191   -3.2372    5.5482    1.6309   41.1739 +#> 79:    84.7471   -3.2581    6.0637    1.6259   41.1003 +#> 80:    85.0581   -3.2680    5.7605    1.6841   40.8918 +#> 81:    84.8468   -3.2564    5.4725    1.6475   39.3456 +#> 82:    84.7614   -3.2385    5.1988    1.7550   38.7275 +#> 83:    85.2921   -3.2657    5.9253    1.6672   39.2423 +#> 84:    85.5760   -3.2261    5.6290    1.7505   39.5500 +#> 85:    85.3215   -3.2277    5.5987    1.8027   39.3145 +#> 86:    85.2656   -3.2023    5.3188    1.8024   40.3098 +#> 87:    84.8950   -3.2551    5.0528    1.7123   39.3470 +#> 88:    84.3157   -3.2661    4.8002    1.6267   38.7095 +#> 89:    84.5442   -3.2870    4.5602    1.5892   39.1735 +#> 90:    85.0956   -3.2195    4.8385    1.5796   39.5164 +#> 91:    84.8619   -3.2621    4.5966    1.6889   39.5512 +#> 92:    84.4901   -3.2735    6.1405    1.6704   39.3358 +#> 93:    84.0819   -3.2609    5.8335    1.6130   38.8618 +#> 94:    84.7585   -3.2336    5.5418    1.6301   38.6591 +#> 95:    85.2669   -3.2358    5.2647    1.6619   38.9136 +#> 96:    85.4955   -3.2064    5.0015    1.7673   39.0495 +#> 97:    85.6591   -3.2016    4.7514    1.7046   40.7861 +#> 98:    86.2097   -3.2833    7.4722    1.6413   42.2938 +#> 99:    85.9645   -3.2570    7.7124    1.5592   41.7216 +#> 100:    85.7018   -3.2605    8.2687    1.6798   40.6639 +#> 101:    85.9905   -3.1956   11.0194    1.7017   39.4324 +#> 102:    87.2679   -3.1741   10.4684    1.7063   38.6812 +#> 103:    86.1910   -3.1709    9.9450    1.7151   38.5198 +#> 104:    86.4413   -3.1544    9.4478    1.7123   38.7428 +#> 105:    85.9840   -3.1921   10.6297    1.8135   38.7775 +#> 106:    85.9926   -3.1839   10.0982    1.7228   40.3136 +#> 107:    85.1792   -3.2343    9.5933    1.6367   40.2709 +#> 108:    84.7583   -3.2332    9.1136    1.6907   41.2122 +#> 109:    85.3756   -3.2311    8.6579    1.7307   39.9303 +#> 110:    84.9686   -3.2365    8.2250    1.7221   40.0379 +#> 111:    84.8527   -3.2448    7.8138    1.6775   39.6794 +#> 112:    84.6271   -3.2609    7.4231    1.7321   41.5666 +#> 113:    84.8515   -3.3056    7.2514    1.7001   41.9758 +#> 114:    84.5991   -3.2319    7.8463    1.7690   41.1386 +#> 115:    85.0535   -3.2864    7.4540    1.7282   40.3883 +#> 116:    85.8661   -3.2355    7.0813    1.7801   39.3078 +#> 117:    85.9911   -3.2357    6.7272    1.6911   38.3913 +#> 118:    86.1894   -3.2424    6.3909    1.6701   38.1915 +#> 119:    85.5637   -3.1992    6.0713    1.7360   38.9386 +#> 120:    86.0733   -3.2069    5.7677    1.7185   36.5189 +#> 121:    86.0168   -3.2181    5.4794    1.7135   38.4044 +#> 122:    86.7470   -3.2319    6.1989    1.6840   38.2615 +#> 123:    86.2918   -3.2089    5.8890    1.6656   38.8486 +#> 124:    85.9387   -3.2124    5.5945    1.6334   37.9425 +#> 125:    86.1519   -3.2717    5.3148    1.7094   38.9708 +#> 126:    85.5194   -3.2391    5.4217    1.6799   39.4876 +#> 127:    85.9691   -3.2205    5.8051    1.6436   40.0593 +#> 128:    85.6171   -3.2309    5.5148    1.6852   39.5398 +#> 129:    84.9252   -3.2495    5.2391    1.7154   40.4020 +#> 130:    85.1496   -3.2882    5.0538    1.7189   40.0908 +#> 131:    85.8552   -3.2474    7.1203    1.6329   39.0547 +#> 132:    86.4666   -3.2151    6.7643    1.7342   38.6596 +#> 133:    86.1550   -3.1895    6.4261    1.7904   38.6211 +#> 134:    86.5040   -3.1785    6.1048    1.7180   39.0804 +#> 135:    85.9752   -3.2116    5.7996    1.6979   38.1745 +#> 136:    86.2161   -3.2075    5.5096    1.7408   38.9002 +#> 137:    85.8408   -3.2604    6.9319    1.7616   39.1657 +#> 138:    86.1261   -3.2179    7.0802    1.8115   37.6614 +#> 139:    85.9082   -3.2374    6.7262    1.7209   38.1986 +#> 140:    85.9556   -3.2641    6.3899    1.8300   39.2071 +#> 141:    86.2052   -3.1928    6.0704    1.7385   38.1745 +#> 142:    86.4062   -3.2076    5.8348    1.6693   38.0271 +#> 143:    86.0680   -3.2372    5.5431    1.7259   39.3885 +#> 144:    86.2001   -3.2040    5.2659    1.6803   38.1606 +#> 145:    86.5820   -3.2306    5.0026    1.6063   38.7208 +#> 146:    86.4522   -3.2072    4.7525    1.6572   37.5206 +#> 147:    85.8311   -3.2320    4.5149    1.7043   39.6955 +#> 148:    86.0754   -3.2072    5.4070    1.6707   38.8858 +#> 149:    87.0038   -3.1954    5.1367    1.7361   37.9862 +#> 150:    86.8647   -3.1903    4.8798    1.7995   39.6906 +#> 151:    86.4913   -3.2101    4.6358    1.7618   39.2462 +#> 152:    86.4667   -3.2254    4.6929    1.7762   38.0665 +#> 153:    86.0176   -3.2241    4.4586    1.7708   37.6367 +#> 154:    85.8680   -3.2359    5.2401    1.7272   37.7322 +#> 155:    85.6560   -3.2147    3.3340    1.7833   38.4605 +#> 156:    85.6927   -3.1987    1.9644    1.8176   39.4958 +#> 157:    86.3686   -3.2294    3.4959    1.6556   39.7058 +#> 158:    86.7614   -3.2051    2.3005    1.6413   40.3968 +#> 159:    86.6393   -3.2243    1.7824    1.6521   40.0846 +#> 160:    86.8686   -3.1850    1.6490    1.7211   39.6362 +#> 161:    86.7853   -3.2071    1.1720    1.6132   39.6921 +#> 162:    86.7337   -3.1825    1.0646    1.5897   41.1027 +#> 163:    86.9192   -3.1365    1.0339    1.6656   40.2410 +#> 164:    86.6652   -3.2052    0.9750    1.5817   40.6189 +#> 165:    86.6154   -3.1870    1.2602    1.6559   40.1832 +#> 166:    86.7300   -3.2096    1.2144    1.6571   39.8989 +#> 167:    86.4536   -3.2135    0.5155    1.7436   39.6313 +#> 168:    86.4848   -3.2315    0.5060    1.6681   39.1479 +#> 169:    86.2641   -3.2444    0.3935    1.6781   40.2903 +#> 170:    86.2482   -3.2628    0.3342    1.6177   40.2600 +#> 171:    86.2833   -3.2338    0.1701    1.6698   39.8946 +#> 172:    86.2155   -3.2175    0.1858    1.6090   39.9709 +#> 173:    86.2916   -3.2313    0.2088    1.6918   41.4421 +#> 174:    86.1920   -3.2050    0.2067    1.7521   40.7724 +#> 175:    86.2771   -3.2071    0.2213    1.5502   40.5055 +#> 176:    86.2589   -3.1867    0.2010    1.5814   40.0963 +#> 177:    86.2740   -3.2209    0.2679    1.6774   40.9479 +#> 178:    86.2210   -3.1896    0.4420    1.5512   40.3238 +#> 179:    86.1769   -3.2036    0.5592    1.6008   40.3873 +#> 180:    85.9366   -3.2046    0.5056    1.6948   41.4254 +#> 181:    85.9173   -3.2167    0.6033    1.6886   39.5784 +#> 182:    85.7077   -3.2508    0.5008    1.7501   40.4224 +#> 183:    85.8084   -3.2743    0.5737    1.7174   40.0576 +#> 184:    85.7776   -3.2518    0.7164    1.7495   39.8748 +#> 185:    85.6192   -3.2378    1.1401    1.7562   39.9841 +#> 186:    85.6951   -3.2460    1.5642    1.7330   39.1282 +#> 187:    85.5281   -3.2309    1.5452    1.7900   38.4833 +#> 188:    85.3476   -3.2018    1.1385    1.8106   39.2842 +#> 189:    85.1914   -3.2180    1.0465    1.7562   40.0715 +#> 190:    85.2759   -3.2275    1.0437    1.7160   39.9928 +#> 191:    85.3630   -3.2728    1.5672    1.7394   39.4749 +#> 192:    85.1334   -3.2467    0.9598    1.6243   39.7385 +#> 193:    84.9313   -3.2401    0.6441    1.6518   39.5447 +#> 194:    84.9097   -3.2361    0.4275    1.6509   40.3383 +#> 195:    84.9131   -3.2241    0.3344    1.5868   39.1438 +#> 196:    84.9117   -3.2419    0.2435    1.6882   40.1132 +#> 197:    84.9569   -3.2776    0.2352    1.6351   40.1070 +#> 198:    84.9113   -3.2334    0.2133    1.6282   39.9988 +#> 199:    84.9028   -3.2637    0.1859    1.6127   38.8695 +#> 200:    84.9020   -3.2456    0.2429    1.6172   40.2644 +#> 201:    84.9327   -3.2292    0.1787    1.6720   40.5826 +#> 202:    84.9313   -3.2363    0.1487    1.6641   40.1952 +#> 203:    84.9208   -3.2350    0.1445    1.6449   40.0176 +#> 204:    84.9312   -3.2296    0.1488    1.6292   40.1353 +#> 205:    84.9302   -3.2277    0.1454    1.6167   40.4137 +#> 206:    84.9378   -3.2314    0.1474    1.6263   40.2241 +#> 207:    84.9190   -3.2369    0.1454    1.6374   40.1459 +#> 208:    84.9085   -3.2385    0.1527    1.6439   40.1931 +#> 209:    84.8920   -3.2411    0.1566    1.6396   40.1558 +#> 210:    84.8787   -3.2435    0.1574    1.6381   40.1872 +#> 211:    84.8784   -3.2460    0.1528    1.6407   40.1825 +#> 212:    84.8745   -3.2469    0.1474    1.6439   40.0865 +#> 213:    84.8702   -3.2474    0.1429    1.6459   40.0164 +#> 214:    84.8592   -3.2476    0.1421    1.6506   39.9852 +#> 215:    84.8558   -3.2479    0.1389    1.6549   39.9882 +#> 216:    84.8542   -3.2488    0.1365    1.6625   39.9461 +#> 217:    84.8594   -3.2488    0.1354    1.6691   39.9751 +#> 218:    84.8634   -3.2487    0.1335    1.6751   39.9844 +#> 219:    84.8653   -3.2485    0.1298    1.6759   39.9263 +#> 220:    84.8722   -3.2496    0.1267    1.6748   39.8897 +#> 221:    84.8782   -3.2496    0.1267    1.6757   39.8504 +#> 222:    84.8772   -3.2483    0.1278    1.6761   39.8406 +#> 223:    84.8765   -3.2490    0.1296    1.6785   39.8138 +#> 224:    84.8750   -3.2492    0.1274    1.6772   39.8278 +#> 225:    84.8767   -3.2493    0.1266    1.6727   39.8642 +#> 226:    84.8741   -3.2495    0.1251    1.6711   39.8208 +#> 227:    84.8678   -3.2502    0.1234    1.6680   39.8193 +#> 228:    84.8618   -3.2509    0.1217    1.6660   39.7846 +#> 229:    84.8567   -3.2504    0.1208    1.6640   39.7538 +#> 230:    84.8559   -3.2503    0.1215    1.6624   39.7184 +#> 231:    84.8548   -3.2501    0.1203    1.6596   39.6840 +#> 232:    84.8528   -3.2505    0.1206    1.6550   39.6882 +#> 233:    84.8510   -3.2499    0.1229    1.6560   39.7083 +#> 234:    84.8479   -3.2502    0.1243    1.6568   39.7116 +#> 235:    84.8443   -3.2509    0.1244    1.6571   39.7504 +#> 236:    84.8391   -3.2515    0.1253    1.6584   39.7761 +#> 237:    84.8390   -3.2522    0.1246    1.6595   39.8188 +#> 238:    84.8433   -3.2520    0.1240    1.6606   39.8393 +#> 239:    84.8453   -3.2517    0.1233    1.6604   39.8360 +#> 240:    84.8439   -3.2519    0.1225    1.6597   39.8355 +#> 241:    84.8423   -3.2516    0.1215    1.6591   39.8154 +#> 242:    84.8403   -3.2521    0.1208    1.6572   39.7956 +#> 243:    84.8378   -3.2514    0.1199    1.6579   39.7842 +#> 244:    84.8375   -3.2501    0.1191    1.6582   39.7851 +#> 245:    84.8367   -3.2497    0.1200    1.6571   39.7873 +#> 246:    84.8348   -3.2499    0.1200    1.6561   39.7972 +#> 247:    84.8344   -3.2490    0.1196    1.6546   39.8425 +#> 248:    84.8320   -3.2485    0.1197    1.6551   39.8607 +#> 249:    84.8330   -3.2477    0.1212    1.6550   39.8643 +#> 250:    84.8348   -3.2481    0.1217    1.6561   39.8570 +#> 251:    84.8384   -3.2483    0.1214    1.6569   39.8535 +#> 252:    84.8394   -3.2487    0.1218    1.6578   39.8584 +#> 253:    84.8408   -3.2490    0.1229    1.6586   39.9146 +#> 254:    84.8414   -3.2497    0.1232    1.6602   39.9561 +#> 255:    84.8424   -3.2502    0.1229    1.6617   39.9734 +#> 256:    84.8428   -3.2506    0.1230    1.6609   39.9959 +#> 257:    84.8425   -3.2507    0.1221    1.6600   40.0029 +#> 258:    84.8420   -3.2513    0.1213    1.6585   40.0135 +#> 259:    84.8411   -3.2512    0.1212    1.6576   40.0261 +#> 260:    84.8404   -3.2513    0.1219    1.6562   40.0238 +#> 261:    84.8382   -3.2514    0.1226    1.6553   40.0140 +#> 262:    84.8358   -3.2511    0.1226    1.6547   40.0022 +#> 263:    84.8337   -3.2513    0.1224    1.6539   40.0037 +#> 264:    84.8318   -3.2511    0.1223    1.6531   39.9986 +#> 265:    84.8316   -3.2504    0.1213    1.6533   40.0094 +#> 266:    84.8325   -3.2503    0.1202    1.6549   40.0179 +#> 267:    84.8328   -3.2501    0.1189    1.6547   40.0438 +#> 268:    84.8324   -3.2505    0.1183    1.6532   40.0734 +#> 269:    84.8315   -3.2505    0.1177    1.6545   40.0714 +#> 270:    84.8304   -3.2508    0.1175    1.6545   40.0698 +#> 271:    84.8293   -3.2512    0.1173    1.6542   40.0623 +#> 272:    84.8279   -3.2512    0.1165    1.6537   40.0659 +#> 273:    84.8260   -3.2512    0.1171    1.6536   40.0580 +#> 274:    84.8241   -3.2512    0.1172    1.6523   40.0540 +#> 275:    84.8245   -3.2508    0.1171    1.6529   40.0513 +#> 276:    84.8240   -3.2510    0.1165    1.6523   40.0407 +#> 277:    84.8240   -3.2509    0.1160    1.6516   40.0290 +#> 278:    84.8250   -3.2507    0.1156    1.6505   40.0255 +#> 279:    84.8253   -3.2507    0.1147    1.6509   40.0301 +#> 280:    84.8252   -3.2507    0.1140    1.6503   40.0278 +#> 281:    84.8255   -3.2508    0.1135    1.6504   40.0238 +#> 282:    84.8246   -3.2506    0.1128    1.6505   40.0212 +#> 283:    84.8237   -3.2508    0.1120    1.6509   40.0206 +#> 284:    84.8235   -3.2507    0.1121    1.6518   40.0316 +#> 285:    84.8236   -3.2499    0.1121    1.6523   40.0330 +#> 286:    84.8230   -3.2490    0.1118    1.6530   40.0435 +#> 287:    84.8222   -3.2485    0.1119    1.6526   40.0428 +#> 288:    84.8211   -3.2486    0.1120    1.6512   40.0446 +#> 289:    84.8196   -3.2490    0.1121    1.6508   40.0355 +#> 290:    84.8189   -3.2494    0.1121    1.6503   40.0319 +#> 291:    84.8183   -3.2495    0.1126    1.6501   40.0263 +#> 292:    84.8174   -3.2496    0.1127    1.6495   40.0226 +#> 293:    84.8163   -3.2499    0.1126    1.6488   40.0255 +#> 294:    84.8165   -3.2499    0.1125    1.6479   40.0207 +#> 295:    84.8165   -3.2502    0.1130    1.6466   40.0406 +#> 296:    84.8158   -3.2508    0.1131    1.6464   40.0428 +#> 297:    84.8162   -3.2506    0.1129    1.6465   40.0432 +#> 298:    84.8166   -3.2501    0.1131    1.6460   40.0415 +#> 299:    84.8184   -3.2499    0.1138    1.6451   40.0513 +#> 300:    84.8205   -3.2499    0.1144    1.6450   40.0615 +#> 301:    84.8216   -3.2496    0.1156    1.6450   40.0591 +#> 302:    84.8225   -3.2498    0.1161    1.6448   40.0618 +#> 303:    84.8232   -3.2493    0.1163    1.6451   40.0612 +#> 304:    84.8233   -3.2488    0.1166    1.6450   40.0669 +#> 305:    84.8230   -3.2485    0.1163    1.6439   40.0714 +#> 306:    84.8221   -3.2482    0.1158    1.6440   40.0838 +#> 307:    84.8217   -3.2479    0.1154    1.6445   40.0835 +#> 308:    84.8219   -3.2477    0.1156    1.6450   40.0829 +#> 309:    84.8224   -3.2477    0.1152    1.6450   40.0836 +#> 310:    84.8224   -3.2480    0.1148    1.6457   40.0873 +#> 311:    84.8225   -3.2480    0.1143    1.6459   40.0894 +#> 312:    84.8219   -3.2482    0.1136    1.6460   40.0835 +#> 313:    84.8214   -3.2484    0.1131    1.6462   40.0810 +#> 314:    84.8208   -3.2485    0.1130    1.6471   40.0786 +#> 315:    84.8211   -3.2485    0.1128    1.6470   40.0707 +#> 316:    84.8211   -3.2483    0.1127    1.6469   40.0628 +#> 317:    84.8210   -3.2482    0.1124    1.6472   40.0580 +#> 318:    84.8201   -3.2484    0.1122    1.6472   40.0602 +#> 319:    84.8196   -3.2484    0.1117    1.6479   40.0555 +#> 320:    84.8183   -3.2480    0.1119    1.6486   40.0659 +#> 321:    84.8173   -3.2479    0.1122    1.6489   40.0713 +#> 322:    84.8164   -3.2479    0.1129    1.6491   40.0781 +#> 323:    84.8159   -3.2480    0.1136    1.6489   40.0790 +#> 324:    84.8158   -3.2480    0.1140    1.6489   40.0746 +#> 325:    84.8158   -3.2480    0.1138    1.6484   40.0845 +#> 326:    84.8157   -3.2482    0.1137    1.6482   40.0953 +#> 327:    84.8155   -3.2482    0.1134    1.6482   40.0955 +#> 328:    84.8156   -3.2482    0.1133    1.6471   40.1167 +#> 329:    84.8152   -3.2483    0.1129    1.6466   40.1195 +#> 330:    84.8152   -3.2482    0.1124    1.6459   40.1280 +#> 331:    84.8151   -3.2478    0.1120    1.6467   40.1282 +#> 332:    84.8147   -3.2477    0.1115    1.6471   40.1265 +#> 333:    84.8145   -3.2477    0.1110    1.6470   40.1333 +#> 334:    84.8144   -3.2479    0.1108    1.6468   40.1474 +#> 335:    84.8141   -3.2481    0.1106    1.6475   40.1549 +#> 336:    84.8135   -3.2481    0.1103    1.6481   40.1664 +#> 337:    84.8134   -3.2481    0.1106    1.6476   40.1837 +#> 338:    84.8129   -3.2479    0.1109    1.6482   40.1855 +#> 339:    84.8126   -3.2478    0.1107    1.6478   40.1830 +#> 340:    84.8120   -3.2482    0.1106    1.6471   40.1893 +#> 341:    84.8120   -3.2482    0.1106    1.6467   40.1931 +#> 342:    84.8119   -3.2482    0.1106    1.6473   40.2091 +#> 343:    84.8135   -3.2483    0.1109    1.6475   40.2113 +#> 344:    84.8153   -3.2483    0.1114    1.6472   40.2116 +#> 345:    84.8165   -3.2484    0.1119    1.6465   40.2110 +#> 346:    84.8171   -3.2481    0.1121    1.6462   40.2099 +#> 347:    84.8184   -3.2483    0.1126    1.6459   40.2120 +#> 348:    84.8189   -3.2483    0.1127    1.6455   40.2115 +#> 349:    84.8198   -3.2483    0.1127    1.6450   40.2087 +#> 350:    84.8202   -3.2482    0.1125    1.6454   40.2118 +#> 351:    84.8208   -3.2483    0.1120    1.6447   40.2094 +#> 352:    84.8213   -3.2483    0.1118    1.6444   40.2070 +#> 353:    84.8218   -3.2481    0.1115    1.6445   40.2077 +#> 354:    84.8226   -3.2482    0.1114    1.6439   40.2077 +#> 355:    84.8230   -3.2481    0.1113    1.6439   40.2072 +#> 356:    84.8232   -3.2479    0.1111    1.6439   40.2075 +#> 357:    84.8239   -3.2477    0.1109    1.6441   40.2021 +#> 358:    84.8245   -3.2476    0.1107    1.6445   40.2028 +#> 359:    84.8251   -3.2476    0.1107    1.6452   40.2032 +#> 360:    84.8252   -3.2474    0.1110    1.6462   40.2012 +#> 361:    84.8258   -3.2473    0.1108    1.6469   40.2043 +#> 362:    84.8260   -3.2475    0.1107    1.6467   40.2056 +#> 363:    84.8262   -3.2474    0.1106    1.6469   40.2028 +#> 364:    84.8266   -3.2472    0.1104    1.6473   40.1979 +#> 365:    84.8270   -3.2469    0.1102    1.6479   40.1923 +#> 366:    84.8273   -3.2469    0.1100    1.6482   40.1872 +#> 367:    84.8267   -3.2468    0.1099    1.6483   40.1836 +#> 368:    84.8263   -3.2470    0.1099    1.6483   40.1850 +#> 369:    84.8269   -3.2471    0.1098    1.6484   40.1864 +#> 370:    84.8274   -3.2472    0.1098    1.6484   40.1856 +#> 371:    84.8282   -3.2471    0.1101    1.6489   40.1839 +#> 372:    84.8288   -3.2469    0.1099    1.6492   40.1804 +#> 373:    84.8294   -3.2467    0.1098    1.6494   40.1806 +#> 374:    84.8301   -3.2466    0.1096    1.6491   40.1855 +#> 375:    84.8301   -3.2467    0.1093    1.6488   40.1951 +#> 376:    84.8302   -3.2467    0.1092    1.6484   40.1921 +#> 377:    84.8302   -3.2467    0.1092    1.6486   40.1842 +#> 378:    84.8300   -3.2467    0.1095    1.6485   40.1760 +#> 379:    84.8296   -3.2468    0.1094    1.6483   40.1701 +#> 380:    84.8297   -3.2469    0.1094    1.6483   40.1738 +#> 381:    84.8299   -3.2469    0.1093    1.6485   40.1801 +#> 382:    84.8302   -3.2470    0.1092    1.6488   40.1857 +#> 383:    84.8299   -3.2469    0.1090    1.6491   40.1859 +#> 384:    84.8297   -3.2470    0.1090    1.6488   40.1903 +#> 385:    84.8289   -3.2469    0.1095    1.6487   40.1978 +#> 386:    84.8282   -3.2470    0.1098    1.6487   40.1976 +#> 387:    84.8277   -3.2471    0.1101    1.6488   40.1910 +#> 388:    84.8270   -3.2471    0.1104    1.6486   40.1863 +#> 389:    84.8263   -3.2471    0.1108    1.6486   40.1837 +#> 390:    84.8259   -3.2472    0.1109    1.6491   40.1881 +#> 391:    84.8250   -3.2472    0.1111    1.6499   40.1919 +#> 392:    84.8248   -3.2471    0.1113    1.6501   40.1961 +#> 393:    84.8247   -3.2471    0.1113    1.6503   40.1941 +#> 394:    84.8241   -3.2470    0.1114    1.6508   40.1933 +#> 395:    84.8239   -3.2469    0.1115    1.6510   40.1916 +#> 396:    84.8239   -3.2468    0.1115    1.6515   40.1946 +#> 397:    84.8239   -3.2466    0.1113    1.6517   40.1979 +#> 398:    84.8241   -3.2467    0.1112    1.6519   40.1966 +#> 399:    84.8244   -3.2466    0.1112    1.6522   40.1975 +#> 400:    84.8248   -3.2466    0.1111    1.6523   40.1919 +#> 401:    84.8255   -3.2466    0.1109    1.6523   40.1889 +#> 402:    84.8259   -3.2468    0.1108    1.6523   40.1836 +#> 403:    84.8257   -3.2470    0.1109    1.6524   40.1787 +#> 404:    84.8251   -3.2470    0.1111    1.6528   40.1788 +#> 405:    84.8244   -3.2472    0.1113    1.6530   40.1761 +#> 406:    84.8235   -3.2472    0.1113    1.6529   40.1763 +#> 407:    84.8231   -3.2471    0.1112    1.6531   40.1742 +#> 408:    84.8229   -3.2471    0.1110    1.6530   40.1728 +#> 409:    84.8229   -3.2471    0.1109    1.6528   40.1698 +#> 410:    84.8233   -3.2473    0.1109    1.6524   40.1701 +#> 411:    84.8235   -3.2474    0.1109    1.6522   40.1714 +#> 412:    84.8236   -3.2474    0.1110    1.6517   40.1716 +#> 413:    84.8241   -3.2474    0.1111    1.6512   40.1741 +#> 414:    84.8238   -3.2476    0.1108    1.6508   40.1809 +#> 415:    84.8238   -3.2477    0.1108    1.6505   40.1803 +#> 416:    84.8234   -3.2475    0.1110    1.6504   40.1880 +#> 417:    84.8232   -3.2475    0.1112    1.6510   40.1938 +#> 418:    84.8232   -3.2475    0.1112    1.6511   40.1944 +#> 419:    84.8231   -3.2476    0.1114    1.6513   40.1921 +#> 420:    84.8226   -3.2477    0.1113    1.6511   40.1880 +#> 421:    84.8220   -3.2478    0.1111    1.6508   40.1859 +#> 422:    84.8213   -3.2478    0.1110    1.6503   40.1897 +#> 423:    84.8207   -3.2479    0.1110    1.6499   40.1876 +#> 424:    84.8203   -3.2479    0.1111    1.6498   40.1860 +#> 425:    84.8198   -3.2479    0.1111    1.6498   40.1817 +#> 426:    84.8191   -3.2479    0.1113    1.6498   40.1796 +#> 427:    84.8186   -3.2478    0.1112    1.6498   40.1781 +#> 428:    84.8183   -3.2478    0.1114    1.6496   40.1738 +#> 429:    84.8177   -3.2477    0.1116    1.6495   40.1695 +#> 430:    84.8172   -3.2477    0.1119    1.6496   40.1739 +#> 431:    84.8169   -3.2478    0.1120    1.6494   40.1741 +#> 432:    84.8169   -3.2479    0.1121    1.6490   40.1758 +#> 433:    84.8170   -3.2479    0.1121    1.6491   40.1793 +#> 434:    84.8171   -3.2480    0.1122    1.6488   40.1808 +#> 435:    84.8173   -3.2481    0.1123    1.6487   40.1845 +#> 436:    84.8176   -3.2481    0.1123    1.6489   40.1866 +#> 437:    84.8178   -3.2480    0.1122    1.6496   40.1872 +#> 438:    84.8183   -3.2480    0.1121    1.6502   40.1869 +#> 439:    84.8185   -3.2481    0.1119    1.6504   40.1834 +#> 440:    84.8185   -3.2480    0.1118    1.6506   40.1831 +#> 441:    84.8188   -3.2480    0.1120    1.6502   40.1893 +#> 442:    84.8192   -3.2480    0.1120    1.6501   40.1930 +#> 443:    84.8196   -3.2480    0.1120    1.6499   40.1917 +#> 444:    84.8202   -3.2478    0.1122    1.6498   40.1966 +#> 445:    84.8207   -3.2476    0.1124    1.6499   40.1977 +#> 446:    84.8210   -3.2473    0.1123    1.6496   40.2017 +#> 447:    84.8217   -3.2472    0.1123    1.6491   40.2030 +#> 448:    84.8221   -3.2473    0.1122    1.6488   40.2025 +#> 449:    84.8225   -3.2474    0.1121    1.6485   40.2069 +#> 450:    84.8224   -3.2473    0.1119    1.6484   40.2078 +#> 451:    84.8221   -3.2473    0.1118    1.6483   40.2032 +#> 452:    84.8220   -3.2472    0.1117    1.6484   40.1989 +#> 453:    84.8220   -3.2472    0.1117    1.6483   40.1953 +#> 454:    84.8220   -3.2473    0.1122    1.6483   40.1942 +#> 455:    84.8220   -3.2472    0.1124    1.6484   40.1932 +#> 456:    84.8220   -3.2470    0.1124    1.6478   40.1972 +#> 457:    84.8222   -3.2469    0.1125    1.6476   40.1989 +#> 458:    84.8226   -3.2468    0.1125    1.6479   40.1989 +#> 459:    84.8228   -3.2467    0.1126    1.6480   40.2035 +#> 460:    84.8231   -3.2467    0.1124    1.6479   40.2032 +#> 461:    84.8236   -3.2466    0.1126    1.6482   40.2030 +#> 462:    84.8238   -3.2466    0.1124    1.6481   40.2052 +#> 463:    84.8238   -3.2467    0.1123    1.6479   40.2023 +#> 464:    84.8233   -3.2467    0.1123    1.6479   40.2004 +#> 465:    84.8230   -3.2468    0.1123    1.6482   40.2043 +#> 466:    84.8233   -3.2469    0.1123    1.6480   40.2062 +#> 467:    84.8236   -3.2468    0.1121    1.6480   40.2026 +#> 468:    84.8238   -3.2468    0.1120    1.6477   40.2034 +#> 469:    84.8239   -3.2468    0.1119    1.6474   40.2035 +#> 470:    84.8241   -3.2469    0.1116    1.6473   40.2015 +#> 471:    84.8241   -3.2470    0.1116    1.6476   40.1993 +#> 472:    84.8240   -3.2469    0.1117    1.6478   40.1977 +#> 473:    84.8239   -3.2468    0.1119    1.6479   40.1949 +#> 474:    84.8239   -3.2466    0.1118    1.6480   40.1946 +#> 475:    84.8239   -3.2464    0.1119    1.6483   40.1941 +#> 476:    84.8237   -3.2462    0.1121    1.6488   40.1930 +#> 477:    84.8235   -3.2462    0.1122    1.6488   40.1901 +#> 478:    84.8235   -3.2462    0.1125    1.6488   40.1837 +#> 479:    84.8238   -3.2463    0.1128    1.6486   40.1814 +#> 480:    84.8238   -3.2464    0.1129    1.6484   40.1794 +#> 481:    84.8239   -3.2464    0.1129    1.6483   40.1783 +#> 482:    84.8237   -3.2465    0.1130    1.6482   40.1784 +#> 483:    84.8234   -3.2465    0.1130    1.6483   40.1764 +#> 484:    84.8227   -3.2465    0.1132    1.6482   40.1775 +#> 485:    84.8223   -3.2465    0.1133    1.6483   40.1764 +#> 486:    84.8219   -3.2465    0.1135    1.6484   40.1781 +#> 487:    84.8215   -3.2465    0.1136    1.6487   40.1770 +#> 488:    84.8214   -3.2466    0.1136    1.6486   40.1796 +#> 489:    84.8214   -3.2466    0.1134    1.6489   40.1801 +#> 490:    84.8214   -3.2466    0.1132    1.6490   40.1786 +#> 491:    84.8218   -3.2466    0.1131    1.6494   40.1805 +#> 492:    84.8220   -3.2465    0.1133    1.6495   40.1805 +#> 493:    84.8223   -3.2465    0.1137    1.6493   40.1791 +#> 494:    84.8223   -3.2465    0.1140    1.6494   40.1774 +#> 495:    84.8224   -3.2465    0.1142    1.6491   40.1764 +#> 496:    84.8225   -3.2465    0.1142    1.6491   40.1750 +#> 497:    84.8229   -3.2465    0.1142    1.6487   40.1742 +#> 498:    84.8230   -3.2466    0.1140    1.6485   40.1712 +#> 499:    84.8229   -3.2466    0.1137    1.6485   40.1688 +#> 500:    84.8228   -3.2468    0.1134    1.6488   40.1690</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_sfo_focei</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation +#> F: Forward difference gradient approximation +#> C: Central difference gradient approximation +#> M: Mixed forward and central difference gradient approximation +#> Unscaled parameters for Omegas=chol(solve(omega)); +#> Diagonals are transformed, as specified by foceiControl(diagXform=) +#> |-----+---------------+-----------+-----------+-----------+-----------| +#> |    #| Objective Fun |  parent_0 |log_k_parent |     sigma |        o1 | +#> <span style='text-decoration: underline;'>|.....................|        o2 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    1</span>|     451.22394 |     1.000 |    -1.000 |   -0.7995 |   -0.9125 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9081 |...........|...........|...........|</span> +#> |    U|     451.22394 |     86.39 |    -3.215 |     5.768 |    0.7049 | +#> <span style='text-decoration: underline;'>|.....................|    0.9021 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     451.22394</span> |     86.39 |   0.04015 |     5.768 |    0.7049 | +#> <span style='text-decoration: underline;'>|.....................|    0.9021 |...........|...........|...........|</span> +#> |    G|    Gill Diff. |     52.79 |   0.01520 |    -15.05 |    0.6163 | +#> <span style='text-decoration: underline;'>|.....................|     2.488 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    2</span>|     3099.6543 |   0.03939 |    -1.000 |   -0.5255 |   -0.9237 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9534 |...........|...........|...........|</span> +#> |    U|     3099.6543 |     3.403 |    -3.215 |     6.558 |    0.6970 | +#> <span style='text-decoration: underline;'>|.....................|    0.8613 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     3099.6543</span> |     3.403 |   0.04014 |     6.558 |    0.6970 | +#> <span style='text-decoration: underline;'>|.....................|    0.8613 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    3</span>|     473.10068 |    0.9039 |    -1.000 |   -0.7721 |   -0.9136 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9126 |...........|...........|...........|</span> +#> |    U|     473.10068 |     78.09 |    -3.215 |     5.847 |    0.7041 | +#> <span style='text-decoration: underline;'>|.....................|    0.8980 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     473.10068</span> |     78.09 |   0.04015 |     5.847 |    0.7041 | +#> <span style='text-decoration: underline;'>|.....................|    0.8980 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    4</span>|     450.95086 |    0.9904 |    -1.000 |   -0.7967 |   -0.9126 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9086 |...........|...........|...........|</span> +#> |    U|     450.95086 |     85.56 |    -3.215 |     5.776 |    0.7048 | +#> <span style='text-decoration: underline;'>|.....................|    0.9017 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     450.95086</span> |     85.56 |   0.04015 |     5.776 |    0.7048 | +#> <span style='text-decoration: underline;'>|.....................|    0.9017 |...........|...........|...........|</span> +#> |    F| Forward Diff. |    -4.520 |   0.09729 |    -14.85 |   -0.2941 | +#> <span style='text-decoration: underline;'>|.....................|     2.449 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    5</span>|     450.82239 |    0.9932 |    -1.000 |   -0.7873 |   -0.9124 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9101 |...........|...........|...........|</span> +#> |    U|     450.82239 |     85.81 |    -3.215 |     5.804 |    0.7049 | +#> <span style='text-decoration: underline;'>|.....................|    0.9003 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     450.82239</span> |     85.81 |   0.04015 |     5.804 |    0.7049 | +#> <span style='text-decoration: underline;'>|.....................|    0.9003 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    6</span>|     450.73959 |    0.9981 |    -1.000 |   -0.7712 |   -0.9121 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9128 |...........|...........|...........|</span> +#> |    U|     450.73959 |     86.23 |    -3.215 |     5.850 |    0.7051 | +#> <span style='text-decoration: underline;'>|.....................|    0.8979 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     450.73959</span> |     86.23 |   0.04015 |     5.850 |    0.7051 | +#> <span style='text-decoration: underline;'>|.....................|    0.8979 |...........|...........|...........|</span> +#> |    F| Forward Diff. |     41.55 |   0.02901 |    -12.22 |    0.2553 | +#> <span style='text-decoration: underline;'>|.....................|     2.069 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    7</span>|     450.34694 |    0.9875 |    -1.000 |   -0.7467 |   -0.9114 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9169 |...........|...........|...........|</span> +#> |    U|     450.34694 |     85.32 |    -3.215 |     5.921 |    0.7056 | +#> <span style='text-decoration: underline;'>|.....................|    0.8942 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     450.34694</span> |     85.32 |   0.04014 |     5.921 |    0.7056 | +#> <span style='text-decoration: underline;'>|.....................|    0.8942 |...........|...........|...........|</span> +#> |    F| Forward Diff. |    -19.58 |    0.1161 |    -10.02 |   -0.6042 | +#> <span style='text-decoration: underline;'>|.....................|     1.700 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    8</span>|     450.09191 |    0.9931 |    -1.001 |   -0.7208 |   -0.9093 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9217 |...........|...........|...........|</span> +#> |    U|     450.09191 |     85.80 |    -3.216 |     5.995 |    0.7071 | +#> <span style='text-decoration: underline;'>|.....................|    0.8899 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     450.09191</span> |     85.80 |   0.04012 |     5.995 |    0.7071 | +#> <span style='text-decoration: underline;'>|.....................|    0.8899 |...........|...........|...........|</span> +#> |    F| Forward Diff. |     13.00 |   0.06566 |    -7.570 |   -0.3896 | +#> <span style='text-decoration: underline;'>|.....................|     1.273 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    9</span>|     449.93949 |    0.9873 |    -1.002 |   -0.6965 |   -0.8998 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9259 |...........|...........|...........|</span> +#> |    U|     449.93949 |     85.30 |    -3.217 |     6.065 |    0.7138 | +#> <span style='text-decoration: underline;'>|.....................|    0.8861 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.93949</span> |     85.30 |   0.04009 |     6.065 |    0.7138 | +#> <span style='text-decoration: underline;'>|.....................|    0.8861 |...........|...........|...........|</span> +#> |    F| Forward Diff. |    -18.86 |    0.1073 |    -5.670 |   -0.6860 | +#> <span style='text-decoration: underline;'>|.....................|    0.8878 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   10</span>|     449.82026 |    0.9918 |    -1.004 |   -0.6799 |   -0.8791 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9254 |...........|...........|...........|</span> +#> |    U|     449.82026 |     85.69 |    -3.219 |     6.113 |    0.7284 | +#> <span style='text-decoration: underline;'>|.....................|    0.8865 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.82026</span> |     85.69 |   0.04000 |     6.113 |    0.7284 | +#> <span style='text-decoration: underline;'>|.....................|    0.8865 |...........|...........|...........|</span> +#> |    F| Forward Diff. |     8.164 |   0.05669 |    -4.296 |   -0.3775 | +#> <span style='text-decoration: underline;'>|.....................|    0.8823 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   11</span>|     449.76996 |    0.9897 |    -1.006 |   -0.6720 |   -0.8560 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9364 |...........|...........|...........|</span> +#> |    U|     449.76996 |     85.50 |    -3.221 |     6.136 |    0.7447 | +#> <span style='text-decoration: underline;'>|.....................|    0.8766 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.76996</span> |     85.50 |   0.03990 |     6.136 |    0.7447 | +#> <span style='text-decoration: underline;'>|.....................|    0.8766 |...........|...........|...........|</span> +#> |    F| Forward Diff. |    -2.743 |   0.05613 |    -3.782 |   -0.3486 | +#> <span style='text-decoration: underline;'>|.....................|  -0.07732 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   12</span>|     449.73800 |    0.9901 |    -1.008 |   -0.6600 |   -0.8416 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9169 |...........|...........|...........|</span> +#> |    U|       449.738 |     85.54 |    -3.223 |     6.170 |    0.7549 | +#> <span style='text-decoration: underline;'>|.....................|    0.8942 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>       449.738</span> |     85.54 |   0.03983 |     6.170 |    0.7549 | +#> <span style='text-decoration: underline;'>|.....................|    0.8942 |...........|...........|...........|</span> +#> |    F| Forward Diff. |    0.5907 |   0.04688 |    -2.910 |   -0.3174 | +#> <span style='text-decoration: underline;'>|.....................|     1.529 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   13</span>|     449.73838 |    0.9854 |    -1.008 |   -0.6366 |   -0.8390 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9292 |...........|...........|...........|</span> +#> |    U|     449.73838 |     85.13 |    -3.224 |     6.238 |    0.7567 | +#> <span style='text-decoration: underline;'>|.....................|    0.8831 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.73838</span> |     85.13 |   0.03981 |     6.238 |    0.7567 | +#> <span style='text-decoration: underline;'>|.....................|    0.8831 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   14</span>|     449.71577 |    0.9877 |    -1.008 |   -0.6484 |   -0.8403 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9231 |...........|...........|...........|</span> +#> |    U|     449.71577 |     85.33 |    -3.223 |     6.204 |    0.7558 | +#> <span style='text-decoration: underline;'>|.....................|    0.8886 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.71577</span> |     85.33 |   0.03982 |     6.204 |    0.7558 | +#> <span style='text-decoration: underline;'>|.....................|    0.8886 |...........|...........|...........|</span> +#> |    F| Forward Diff. |    -13.00 |   0.06593 |    -2.084 |   -0.4341 | +#> <span style='text-decoration: underline;'>|.....................|     1.007 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   15</span>|     449.68436 |    0.9912 |    -1.009 |   -0.6401 |   -0.8344 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9311 |...........|...........|...........|</span> +#> |    U|     449.68436 |     85.64 |    -3.224 |     6.228 |    0.7599 | +#> <span style='text-decoration: underline;'>|.....................|    0.8814 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.68436</span> |     85.64 |   0.03979 |     6.228 |    0.7599 | +#> <span style='text-decoration: underline;'>|.....................|    0.8814 |...........|...........|...........|</span> +#> |    F| Forward Diff. |     7.939 |   0.02803 |    -1.419 |   -0.2659 | +#> <span style='text-decoration: underline;'>|.....................|    0.3125 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   16</span>|     449.66988 |    0.9896 |    -1.010 |   -0.6363 |   -0.8221 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9344 |...........|...........|...........|</span> +#> |    U|     449.66988 |     85.50 |    -3.226 |     6.239 |    0.7686 | +#> <span style='text-decoration: underline;'>|.....................|    0.8784 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.66988</span> |     85.50 |   0.03973 |     6.239 |    0.7686 | +#> <span style='text-decoration: underline;'>|.....................|    0.8784 |...........|...........|...........|</span> +#> |    F| Forward Diff. |   -0.8695 |   0.03361 |    -1.202 |   -0.2917 | +#> <span style='text-decoration: underline;'>|.....................|   0.02327 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   17</span>|     449.66421 |    0.9900 |    -1.012 |   -0.6343 |   -0.8088 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9351 |...........|...........|...........|</span> +#> |    U|     449.66421 |     85.53 |    -3.227 |     6.245 |    0.7779 | +#> <span style='text-decoration: underline;'>|.....................|    0.8778 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.66421</span> |     85.53 |   0.03969 |     6.245 |    0.7779 | +#> <span style='text-decoration: underline;'>|.....................|    0.8778 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   18</span>|     449.65407 |    0.9895 |    -1.015 |   -0.6307 |   -0.7728 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9370 |...........|...........|...........|</span> +#> |    U|     449.65407 |     85.49 |    -3.230 |     6.255 |    0.8033 | +#> <span style='text-decoration: underline;'>|.....................|    0.8761 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.65407</span> |     85.49 |   0.03957 |     6.255 |    0.8033 | +#> <span style='text-decoration: underline;'>|.....................|    0.8761 |...........|...........|...........|</span> +#> |    F| Forward Diff. |    0.6836 |  0.009868 |   -0.9456 |   -0.1262 | +#> <span style='text-decoration: underline;'>|.....................|   -0.2597 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   19</span>|     449.64227 |    0.9890 |    -1.006 |   -0.6121 |   -0.7274 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9339 |...........|...........|...........|</span> +#> |    U|     449.64227 |     85.45 |    -3.222 |     6.309 |    0.8353 | +#> <span style='text-decoration: underline;'>|.....................|    0.8789 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.64227</span> |     85.45 |   0.03989 |     6.309 |    0.8353 | +#> <span style='text-decoration: underline;'>|.....................|    0.8789 |...........|...........|...........|</span> +#> |    F| Forward Diff. |   -0.4372 |   0.06357 |    0.2445 |  -0.08318 | +#> <span style='text-decoration: underline;'>|.....................|  -0.05696 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   20</span>|     449.64227 |    0.9890 |    -1.006 |   -0.6121 |   -0.7274 | +#> <span style='text-decoration: underline;'>|.....................|   -0.9339 |...........|...........|...........|</span> +#> |    U|     449.64227 |     85.45 |    -3.222 |     6.309 |    0.8353 | +#> <span style='text-decoration: underline;'>|.....................|    0.8789 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     449.64227</span> |     85.45 |   0.03989 |     6.309 |    0.8353 | +#> <span style='text-decoration: underline;'>|.....................|    0.8789 |...........|...........|...........|</span> +#> calculating covariance matrix +#> done</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#> <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#> <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'> +<span class='va'>f_nlmixr_fomc_saem</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> 1:    93.6754   -0.2977    2.0254    2.7655    0.7032    0.5111   15.3443 +#> 2:    93.8828   -0.2006    2.0786    2.6886    0.6681    0.4855    7.5256 +#> 3:    94.0494   -0.2006    2.0891    2.9975    0.6347    0.4612    7.0501 +#> 4:    94.1641   -0.2446    2.0103    3.6008    0.6029    0.4382    6.2482 +#> 5:    93.8983   -0.2562    1.9851    4.5637    0.5728    0.4163    6.1507 +#> 6:    93.9311   -0.2542    1.9733    5.7516    0.5441    0.3954    6.1445 +#> 7:    93.8631   -0.2535    1.9876    5.4640    0.5169    0.3757    5.9234 +#> 8:    94.2851   -0.2327    1.9851    5.7884    0.4943    0.3569    5.9887 +#> 9:    94.2114   -0.2348    2.0169    5.4990    0.4733    0.3390    5.9730 +#> 10:    94.0782   -0.1951    2.0678    5.2240    0.4969    0.3221    5.7694 +#> 11:    94.0527   -0.1898    2.0988    4.9628    0.4924    0.3060    5.6429 +#> 12:    93.9845   -0.1795    2.1168    4.7147    0.4748    0.2907    5.4764 +#> 13:    93.9424   -0.1958    2.0924    4.4790    0.4551    0.2762    5.5598 +#> 14:    94.2255   -0.2005    2.0963    4.2910    0.4552    0.2623    5.4520 +#> 15:    94.6065   -0.1964    2.0794    4.0765    0.4516    0.2492    5.5275 +#> 16:    94.8393   -0.1872    2.0825    4.7814    0.4714    0.2368    5.4708 +#> 17:    94.5489   -0.1873    2.0822    5.3772    0.4714    0.2249    5.5790 +#> 18:    94.5797   -0.1994    2.0702    5.1083    0.4563    0.2137    5.5962 +#> 19:    94.7205   -0.1987    2.0942    5.1405    0.4580    0.2030    5.8328 +#> 20:    94.2162   -0.1961    2.0955    7.2352    0.4578    0.2081    5.5730 +#> 21:    94.2688   -0.1935    2.0980    6.8735    0.4539    0.2199    5.6561 +#> 22:    94.4008   -0.2294    2.0430    6.5298    0.4312    0.2528    5.4970 +#> 23:    93.8617   -0.2126    2.0861    6.2033    0.4420    0.2401    5.3679 +#> 24:    93.9223   -0.2173    2.0786    5.8931    0.4419    0.2281    5.4475 +#> 25:    94.1259   -0.2199    2.0790    5.5985    0.4429    0.2167    5.2610 +#> 26:    93.5597   -0.1966    2.1115    5.3186    0.4521    0.2059    5.0971 +#> 27:    93.5468   -0.2077    2.1016    5.0526    0.4458    0.2090    5.2223 +#> 28:    93.6901   -0.2106    2.0884    4.8000    0.4439    0.2114    5.1693 +#> 29:    93.4521   -0.1991    2.1349    4.5600    0.4236    0.2248    5.1834 +#> 30:    93.7678   -0.1998    2.1267    5.5252    0.4212    0.2297    5.0549 +#> 31:    93.5695   -0.2039    2.1244    5.2489    0.4165    0.2334    5.0965 +#> 32:    93.8288   -0.1855    2.1392    5.1872    0.4401    0.2286    5.0321 +#> 33:    93.9053   -0.1827    2.1426    4.9278    0.4479    0.2171    5.0706 +#> 34:    94.0876   -0.1871    2.1151    4.6814    0.4613    0.2063    5.1438 +#> 35:    94.5298   -0.1845    2.1221    4.4474    0.4586    0.2006    5.1897 +#> 36:    94.3221   -0.1765    2.1144    5.3164    0.4401    0.2193    5.0921 +#> 37:    94.3600   -0.1842    2.1021    5.3586    0.4507    0.2210    5.0926 +#> 38:    94.3734   -0.1790    2.1261    5.0907    0.4494    0.2100    5.1494 +#> 39:    94.5052   -0.1806    2.1319    4.8362    0.4514    0.1995    5.0177 +#> 40:    94.1042   -0.1906    2.0983    4.5944    0.4360    0.1984    5.2507 +#> 41:    94.1815   -0.1914    2.1166    4.3646    0.4385    0.1977    5.1065 +#> 42:    93.9837   -0.2144    2.0673    4.1464    0.4378    0.1878    5.1603 +#> 43:    93.8806   -0.2107    2.0840    3.9642    0.4456    0.1848    5.0904 +#> 44:    94.1765   -0.2107    2.0722    3.7660    0.4456    0.1881    5.1562 +#> 45:    94.2089   -0.2018    2.0874    3.5777    0.4482    0.1787    5.1219 +#> 46:    93.8851   -0.2111    2.0869    3.9421    0.4462    0.1697    5.0752 +#> 47:    94.1372   -0.2192    2.0731    3.7450    0.4517    0.1733    5.1784 +#> 48:    94.0436   -0.2157    2.0730    3.5578    0.4577    0.1854    5.1957 +#> 49:    93.9915   -0.2122    2.0740    3.3799    0.4450    0.1829    5.1116 +#> 50:    94.0579   -0.2233    2.0633    3.2109    0.4453    0.1964    5.0295 +#> 51:    94.0044   -0.2283    2.0544    3.9314    0.4563    0.2118    5.0457 +#> 52:    94.1080   -0.2174    2.0551    4.8914    0.4548    0.2182    5.0504 +#> 53:    94.3715   -0.2134    2.0598    6.2569    0.4509    0.2162    4.9574 +#> 54:    94.7344   -0.2119    2.0459    5.9440    0.4563    0.2121    5.1069 +#> 55:    94.2730   -0.2055    2.0625    5.6468    0.4758    0.2125    5.2656 +#> 56:    94.0206   -0.2017    2.0715    5.3645    0.4719    0.2045    5.1400 +#> 57:    94.0409   -0.1986    2.0837    5.0963    0.4801    0.2068    5.0902 +#> 58:    94.2392   -0.2122    2.0652    4.8415    0.4560    0.2334    5.1883 +#> 59:    93.9996   -0.1962    2.0764    4.5994    0.4686    0.2417    5.1242 +#> 60:    94.1448   -0.1840    2.1016    4.3694    0.4916    0.2296    5.0867 +#> 61:    94.4861   -0.1840    2.1239    4.3846    0.4916    0.2181    5.3979 +#> 62:    93.9892   -0.1781    2.1083    5.1623    0.5216    0.2072    5.0944 +#> 63:    94.0641   -0.1822    2.1129    4.9628    0.5123    0.1969    5.4228 +#> 64:    94.1414   -0.1733    2.1343    6.7238    0.5220    0.1879    5.3546 +#> 65:    94.0908   -0.1754    2.1160    8.4197    0.5165    0.1852    5.0873 +#> 66:    94.1490   -0.1753    2.1054    7.9987    0.5183    0.1857    5.0777 +#> 67:    93.8958   -0.1613    2.1295    7.5988    0.5004    0.2102    5.0641 +#> 68:    94.0579   -0.1683    2.1511    7.2188    0.5083    0.2110    5.3362 +#> 69:    94.0001   -0.1581    2.1629    6.8579    0.5225    0.2272    5.4399 +#> 70:    93.9712   -0.1733    2.1393    6.5150    0.5153    0.2403    5.5011 +#> 71:    94.3143   -0.1758    2.0989    6.1893    0.5043    0.2713    5.5366 +#> 72:    94.2138   -0.1842    2.1003    5.8798    0.5130    0.2578    5.2964 +#> 73:    94.1742   -0.1951    2.0773    5.5858    0.5165    0.2449    5.1986 +#> 74:    94.1287   -0.2003    2.0606    5.3065    0.5115    0.2326    4.8815 +#> 75:    94.4113   -0.1918    2.0811    5.6717    0.5153    0.2210    4.8370 +#> 76:    94.5175   -0.1940    2.0773    5.3881    0.5127    0.2127    4.9333 +#> 77:    94.4157   -0.1882    2.0714    5.1187    0.5189    0.2021    5.0162 +#> 78:    94.6190   -0.2000    2.0529    4.8628    0.5057    0.2064    4.9436 +#> 79:    94.8081   -0.2006    2.0458    4.6196    0.5053    0.2177    5.0159 +#> 80:    94.7817   -0.1943    2.0547    4.3886    0.5076    0.2099    5.1427 +#> 81:    94.5410   -0.1990    2.0686    4.8770    0.5032    0.2092    5.1192 +#> 82:    94.9536   -0.1936    2.0879    6.9870    0.4781    0.2068    5.1053 +#> 83:    94.7923   -0.1936    2.0777    6.6377    0.4734    0.2120    5.1233 +#> 84:    94.9314   -0.1881    2.0981    6.3058    0.4701    0.2088    5.2821 +#> 85:    94.8024   -0.1866    2.0975    5.9905    0.4684    0.2150    5.2088 +#> 86:    94.6506   -0.2019    2.0677    5.6910    0.4510    0.2043    5.2488 +#> 87:    94.9460   -0.1868    2.0823    5.4064    0.4625    0.2089    5.2663 +#> 88:    94.6365   -0.1901    2.0791    5.3471    0.4509    0.2203    5.2214 +#> 89:    94.5943   -0.2135    2.0521    5.0798    0.4585    0.2093    5.0161 +#> 90:    94.7957   -0.2131    2.0545    4.8258    0.4502    0.2026    5.1344 +#> 91:    94.6308   -0.2096    2.0565    4.5845    0.4566    0.2108    5.0403 +#> 92:    94.3521   -0.2059    2.0557    4.3553    0.4925    0.2072    5.3715 +#> 93:    94.5188   -0.2130    2.0646    4.1375    0.4980    0.1996    5.5624 +#> 94:    94.5995   -0.2056    2.0593    3.9306    0.4995    0.2167    5.3581 +#> 95:    94.7276   -0.1868    2.0922    3.7341    0.4863    0.2059    5.3610 +#> 96:    94.5986   -0.1900    2.0771    3.5474    0.4998    0.1956    5.2070 +#> 97:    94.2586   -0.1881    2.1051    3.9558    0.4757    0.1858    5.1561 +#> 98:    94.0716   -0.2098    2.0698    5.6441    0.4539    0.2044    5.1802 +#> 99:    94.2657   -0.2065    2.0679    5.6964    0.4679    0.2190    5.3608 +#> 100:    94.2331   -0.2203    2.0679    5.4116    0.4445    0.2256    5.4031 +#> 101:    93.8634   -0.2222    2.0720    5.1410    0.4279    0.2341    5.3774 +#> 102:    93.7675   -0.2496    2.0232    4.8839    0.4103    0.2224    5.1238 +#> 103:    93.9534   -0.2416    2.0249    4.6397    0.4144    0.2113    5.0031 +#> 104:    94.0631   -0.2442    2.0216    4.8203    0.4119    0.2007    5.1163 +#> 105:    94.0324   -0.2464    2.0092    4.5793    0.4135    0.2047    5.1666 +#> 106:    93.9954   -0.2482    2.0256    4.9167    0.4083    0.2052    5.2515 +#> 107:    94.2189   -0.2507    2.0121    4.6709    0.4072    0.2087    5.3430 +#> 108:    94.3707   -0.2448    2.0215    4.4373    0.4119    0.1996    5.1549 +#> 109:    94.1518   -0.2428    2.0197    4.2155    0.4155    0.1958    5.5480 +#> 110:    93.9287   -0.2571    2.0275    4.0047    0.4152    0.1931    5.8482 +#> 111:    93.9743   -0.2488    2.0202    3.8045    0.4171    0.2084    5.9798 +#> 112:    93.6245   -0.2350    2.0346    3.6142    0.4397    0.1980    6.0270 +#> 113:    94.5370   -0.2330    2.0593    3.9090    0.4422    0.1881    5.4431 +#> 114:    94.5052   -0.2289    2.0555    3.7135    0.4391    0.1787    5.5970 +#> 115:    94.5963   -0.2216    2.0579    3.5279    0.4446    0.1727    5.3901 +#> 116:    94.5059   -0.2293    2.0459    3.3515    0.4407    0.1705    5.2788 +#> 117:    94.6315   -0.2211    2.0564    3.1839    0.4279    0.1689    5.3258 +#> 118:    94.4868   -0.2194    2.0508    4.6523    0.4275    0.1604    5.1421 +#> 119:    94.1809   -0.2232    2.0444    7.0101    0.4302    0.1612    5.3468 +#> 120:    94.0950   -0.2231    2.0482    7.2110    0.4304    0.1625    5.1691 +#> 121:    94.1525   -0.2059    2.0682    6.8504    0.4474    0.1875    5.2811 +#> 122:    94.7122   -0.2154    2.0692    6.6747    0.4366    0.1906    5.3851 +#> 123:    94.2915   -0.2311    2.0431    6.9655    0.4351    0.2021    5.2103 +#> 124:    93.9984   -0.2310    2.0401    6.6173    0.4396    0.2091    5.0920 +#> 125:    94.3668   -0.2068    2.0505    6.2864    0.4983    0.1987    5.3263 +#> 126:    94.3570   -0.2043    2.0525    5.9721    0.5006    0.1887    5.3281 +#> 127:    94.7086   -0.2177    2.0377    5.6735    0.4762    0.1958    5.4003 +#> 128:    94.3565   -0.2173    2.0432    5.3898    0.4754    0.2055    5.5196 +#> 129:    94.4862   -0.2066    2.0639    5.1203    0.4807    0.1952    5.4783 +#> 130:    94.6107   -0.2026    2.0908    4.8643    0.4579    0.1855    5.6186 +#> 131:    94.6831   -0.1907    2.0920    4.6211    0.4710    0.1762    5.4859 +#> 132:    94.7035   -0.2052    2.0733    4.6333    0.4492    0.1723    5.2721 +#> 133:    94.1511   -0.2192    2.0615    5.7533    0.4362    0.1905    5.5019 +#> 134:    94.2758   -0.2101    2.0624    5.4656    0.4356    0.1810    5.3233 +#> 135:    94.6546   -0.1960    2.0826    5.1923    0.4281    0.1980    5.2515 +#> 136:    94.0322   -0.2100    2.0770    4.9327    0.4156    0.2103    5.3514 +#> 137:    94.0915   -0.2096    2.0859    5.6044    0.4159    0.2008    5.2755 +#> 138:    94.2452   -0.1983    2.1055    6.0837    0.4213    0.2185    5.0580 +#> 139:    94.5460   -0.1876    2.1093    6.8410    0.4301    0.2288    5.0840 +#> 140:    94.6905   -0.1863    2.1167    7.4689    0.4313    0.2173    5.0868 +#> 141:    94.6425   -0.1703    2.1240    7.0955    0.4522    0.2065    4.9715 +#> 142:    94.2538   -0.1632    2.1514    6.7407    0.4499    0.2059    5.0853 +#> 143:    94.3098   -0.1625    2.1567    6.4037    0.4499    0.2115    5.5860 +#> 144:    94.2802   -0.1716    2.1510    6.0835    0.4535    0.2081    5.1989 +#> 145:    94.1169   -0.1707    2.1523    5.7793    0.4531    0.2109    5.1407 +#> 146:    94.2558   -0.1579    2.1623    5.4903    0.4654    0.2427    5.2652 +#> 147:    93.9440   -0.1587    2.1673    5.2158    0.4611    0.2537    5.2699 +#> 148:    94.4271   -0.1587    2.1586    4.9550    0.4611    0.2595    5.1280 +#> 149:    94.2734   -0.1768    2.1160    4.7073    0.4809    0.2802    4.9251 +#> 150:    94.2406   -0.1928    2.0941    5.4176    0.4626    0.2662    5.0837 +#> 151:    94.4217   -0.1884    2.0965    5.1467    0.4677    0.2538    5.1728 +#> 152:    94.4856   -0.1826    2.1127    5.6736    0.4646    0.2373    5.1522 +#> 153:    94.3458   -0.1686    2.1381    6.3603    0.4760    0.2028    5.2197 +#> 154:    94.3945   -0.1633    2.1370    5.1586    0.4402    0.1955    5.3770 +#> 155:    94.6367   -0.1520    2.1596    6.4738    0.4533    0.1882    5.3345 +#> 156:    94.9050   -0.1521    2.1417    6.8382    0.4532    0.1729    5.2770 +#> 157:    94.5823   -0.1540    2.1326    5.5745    0.4487    0.1813    5.2760 +#> 158:    94.8355   -0.1691    2.1357    5.2979    0.4296    0.1990    5.3177 +#> 159:    94.7330   -0.1740    2.1148    4.0960    0.4476    0.1820    5.3001 +#> 160:    94.4926   -0.1731    2.1123    4.3550    0.4666    0.1817    5.1849 +#> 161:    94.4953   -0.1758    2.1063    4.0311    0.4698    0.1929    5.1371 +#> 162:    94.5639   -0.1753    2.1064    4.3044    0.4692    0.1911    5.1437 +#> 163:    94.5477   -0.1798    2.1041    4.1393    0.4804    0.2002    5.3561 +#> 164:    94.3812   -0.1934    2.1019    3.5760    0.4689    0.1908    5.3231 +#> 165:    94.0978   -0.1924    2.0973    2.2052    0.4743    0.1962    5.2813 +#> 166:    94.1374   -0.2043    2.0834    2.5477    0.4639    0.1904    5.3277 +#> 167:    94.1587   -0.2036    2.0797    2.7035    0.4561    0.1951    5.3106 +#> 168:    94.1518   -0.2166    2.0654    2.4969    0.4405    0.2090    5.3148 +#> 169:    94.3328   -0.2164    2.0652    2.3067    0.4455    0.1993    5.2385 +#> 170:    94.6029   -0.2176    2.0456    1.7913    0.4478    0.2085    5.4589 +#> 171:    94.2690   -0.2189    2.0635    1.8133    0.4496    0.1999    5.4918 +#> 172:    94.3227   -0.2120    2.0643    1.7763    0.4337    0.2063    5.4992 +#> 173:    94.3099   -0.2039    2.0892    1.1103    0.4350    0.2201    5.5148 +#> 174:    94.3192   -0.1895    2.1140    0.9817    0.4454    0.2078    5.5249 +#> 175:    94.2327   -0.1967    2.0939    0.9890    0.4361    0.1876    5.6321 +#> 176:    94.2707   -0.1989    2.0958    1.3001    0.4405    0.1790    5.6494 +#> 177:    94.0762   -0.2024    2.0908    0.9179    0.4426    0.1778    5.7085 +#> 178:    94.1807   -0.2074    2.0761    1.2663    0.4237    0.2064    5.5157 +#> 179:    94.2221   -0.2029    2.1083    2.0148    0.4270    0.2023    5.6770 +#> 180:    94.5889   -0.1975    2.0974    1.5302    0.4223    0.1778    5.7495 +#> 181:    94.4280   -0.2163    2.0648    1.8829    0.3908    0.1994    5.3948 +#> 182:    94.7076   -0.2247    2.0340    2.1148    0.4238    0.2062    5.4167 +#> 183:    94.5127   -0.2292    2.0317    3.0950    0.4302    0.2160    5.5009 +#> 184:    94.2522   -0.2335    2.0515    2.8900    0.4265    0.2038    5.2995 +#> 185:    94.2331   -0.2330    2.0431    3.3282    0.4276    0.2044    5.2220 +#> 186:    94.2207   -0.2259    2.0512    4.0568    0.4253    0.2008    5.2307 +#> 187:    94.5124   -0.2188    2.0603    3.0941    0.4381    0.1962    5.6927 +#> 188:    94.7691   -0.2454    2.0193    3.1090    0.4409    0.2012    5.5051 +#> 189:    94.5693   -0.2399    2.0169    3.1069    0.4292    0.1883    5.4354 +#> 190:    94.5742   -0.2318    2.0256    4.4216    0.4200    0.1932    5.3851 +#> 191:    94.3882   -0.2475    1.9949    4.5490    0.4366    0.1972    5.2470 +#> 192:    94.4267   -0.2478    1.9943    4.3327    0.4281    0.1995    5.2792 +#> 193:    94.6313   -0.2522    1.9703    3.5911    0.4321    0.1944    5.6218 +#> 194:    94.4345   -0.2616    1.9704    3.2209    0.4260    0.1925    5.5199 +#> 195:    94.6135   -0.2614    1.9622    2.1481    0.4264    0.1879    5.5750 +#> 196:    94.7574   -0.2324    2.0049    1.3351    0.4661    0.1738    5.6590 +#> 197:    94.8293   -0.2064    2.0452    1.6807    0.4904    0.1600    5.7639 +#> 198:    94.6372   -0.2157    2.0307    1.6350    0.5008    0.1524    5.6539 +#> 199:    94.5600   -0.2145    2.0318    1.5133    0.4982    0.1604    5.7178 +#> 200:    94.6945   -0.2100    2.0475    1.4526    0.5066    0.1649    5.6094 +#> 201:    94.5335   -0.2025    2.0594    1.3754    0.5066    0.1681    5.6560 +#> 202:    94.4663   -0.1992    2.0657    1.3622    0.5074    0.1665    5.6522 +#> 203:    94.4750   -0.1956    2.0762    1.3218    0.5051    0.1648    5.5985 +#> 204:    94.4206   -0.1916    2.0795    1.3219    0.5066    0.1593    5.5864 +#> 205:    94.4408   -0.1891    2.0816    1.2934    0.5089    0.1553    5.5967 +#> 206:    94.4631   -0.1863    2.0859    1.2768    0.5108    0.1522    5.6212 +#> 207:    94.4742   -0.1825    2.0912    1.3219    0.5122    0.1479    5.6704 +#> 208:    94.4802   -0.1789    2.0950    1.3488    0.5137    0.1450    5.7072 +#> 209:    94.4734   -0.1756    2.1019    1.3165    0.5155    0.1423    5.7458 +#> 210:    94.4589   -0.1742    2.1056    1.3379    0.5156    0.1409    5.7722 +#> 211:    94.4513   -0.1727    2.1083    1.3395    0.5192    0.1395    5.7707 +#> 212:    94.4422   -0.1718    2.1096    1.3506    0.5219    0.1384    5.7602 +#> 213:    94.4503   -0.1704    2.1112    1.3519    0.5233    0.1377    5.7705 +#> 214:    94.4387   -0.1688    2.1143    1.3620    0.5238    0.1374    5.7627 +#> 215:    94.4468   -0.1677    2.1171    1.3815    0.5236    0.1366    5.7552 +#> 216:    94.4314   -0.1671    2.1191    1.4034    0.5217    0.1362    5.7279 +#> 217:    94.4134   -0.1669    2.1206    1.4118    0.5197    0.1363    5.7109 +#> 218:    94.3896   -0.1665    2.1219    1.3959    0.5181    0.1381    5.6979 +#> 219:    94.3836   -0.1667    2.1226    1.3965    0.5160    0.1402    5.6829 +#> 220:    94.3740   -0.1674    2.1219    1.4130    0.5144    0.1419    5.6839 +#> 221:    94.3663   -0.1677    2.1216    1.4134    0.5131    0.1436    5.6717 +#> 222:    94.3498   -0.1683    2.1212    1.4170    0.5117    0.1453    5.6595 +#> 223:    94.3416   -0.1687    2.1219    1.4195    0.5105    0.1467    5.6587 +#> 224:    94.3412   -0.1687    2.1222    1.4245    0.5097    0.1474    5.6517 +#> 225:    94.3323   -0.1685    2.1235    1.4231    0.5093    0.1484    5.6419 +#> 226:    94.3228   -0.1686    2.1239    1.4167    0.5088    0.1493    5.6305 +#> 227:    94.3135   -0.1688    2.1241    1.4162    0.5084    0.1502    5.6197 +#> 228:    94.3088   -0.1686    2.1251    1.4170    0.5088    0.1515    5.6124 +#> 229:    94.2995   -0.1685    2.1257    1.4316    0.5092    0.1527    5.6079 +#> 230:    94.2864   -0.1690    2.1256    1.4492    0.5088    0.1534    5.6042 +#> 231:    94.2783   -0.1688    2.1260    1.4606    0.5085    0.1548    5.6037 +#> 232:    94.2725   -0.1687    2.1267    1.4571    0.5083    0.1557    5.6020 +#> 233:    94.2692   -0.1682    2.1279    1.4649    0.5076    0.1570    5.6027 +#> 234:    94.2697   -0.1678    2.1292    1.4540    0.5070    0.1584    5.5990 +#> 235:    94.2623   -0.1673    2.1302    1.4424    0.5064    0.1593    5.5919 +#> 236:    94.2610   -0.1667    2.1313    1.4255    0.5055    0.1599    5.5953 +#> 237:    94.2660   -0.1663    2.1322    1.4242    0.5053    0.1605    5.5922 +#> 238:    94.2753   -0.1666    2.1320    1.4370    0.5044    0.1611    5.5891 +#> 239:    94.2821   -0.1662    2.1326    1.4395    0.5036    0.1629    5.5864 +#> 240:    94.2886   -0.1661    2.1330    1.4375    0.5028    0.1644    5.5815 +#> 241:    94.2934   -0.1664    2.1329    1.4276    0.5020    0.1661    5.5777 +#> 242:    94.2963   -0.1664    2.1329    1.4247    0.5012    0.1677    5.5704 +#> 243:    94.2931   -0.1666    2.1328    1.4269    0.5008    0.1690    5.5631 +#> 244:    94.2919   -0.1667    2.1326    1.4279    0.5003    0.1701    5.5610 +#> 245:    94.2959   -0.1675    2.1316    1.4289    0.4993    0.1705    5.5524 +#> 246:    94.2992   -0.1683    2.1305    1.4378    0.4986    0.1706    5.5436 +#> 247:    94.2997   -0.1689    2.1296    1.4461    0.4977    0.1707    5.5383 +#> 248:    94.2978   -0.1693    2.1290    1.4430    0.4970    0.1714    5.5362 +#> 249:    94.2991   -0.1697    2.1285    1.4495    0.4963    0.1720    5.5379 +#> 250:    94.3068   -0.1702    2.1279    1.4556    0.4954    0.1723    5.5390 +#> 251:    94.3097   -0.1707    2.1272    1.4588    0.4936    0.1729    5.5342 +#> 252:    94.3104   -0.1711    2.1267    1.4582    0.4919    0.1739    5.5310 +#> 253:    94.3099   -0.1715    2.1262    1.4551    0.4903    0.1746    5.5279 +#> 254:    94.3110   -0.1721    2.1255    1.4592    0.4886    0.1758    5.5223 +#> 255:    94.3111   -0.1731    2.1236    1.4755    0.4878    0.1775    5.5175 +#> 256:    94.3096   -0.1735    2.1227    1.4971    0.4875    0.1784    5.5162 +#> 257:    94.3079   -0.1738    2.1222    1.5277    0.4874    0.1795    5.5132 +#> 258:    94.3103   -0.1741    2.1217    1.5521    0.4872    0.1806    5.5112 +#> 259:    94.3148   -0.1745    2.1212    1.5788    0.4868    0.1817    5.5066 +#> 260:    94.3170   -0.1750    2.1205    1.6038    0.4863    0.1832    5.5007 +#> 261:    94.3158   -0.1756    2.1197    1.6324    0.4857    0.1849    5.4968 +#> 262:    94.3141   -0.1763    2.1186    1.6503    0.4850    0.1866    5.4918 +#> 263:    94.3135   -0.1764    2.1184    1.6658    0.4849    0.1879    5.4910 +#> 264:    94.3121   -0.1767    2.1183    1.6841    0.4848    0.1893    5.4875 +#> 265:    94.3098   -0.1769    2.1184    1.7115    0.4847    0.1903    5.4832 +#> 266:    94.3087   -0.1768    2.1188    1.7162    0.4845    0.1911    5.4783 +#> 267:    94.3082   -0.1767    2.1191    1.7209    0.4842    0.1920    5.4735 +#> 268:    94.3094   -0.1764    2.1198    1.7314    0.4837    0.1926    5.4720 +#> 269:    94.3074   -0.1764    2.1199    1.7340    0.4831    0.1938    5.4718 +#> 270:    94.3025   -0.1764    2.1200    1.7440    0.4832    0.1949    5.4720 +#> 271:    94.3025   -0.1769    2.1194    1.7538    0.4829    0.1958    5.4748 +#> 272:    94.3039   -0.1772    2.1191    1.7664    0.4829    0.1966    5.4773 +#> 273:    94.3046   -0.1773    2.1192    1.7820    0.4826    0.1976    5.4754 +#> 274:    94.3051   -0.1774    2.1193    1.7895    0.4823    0.1988    5.4735 +#> 275:    94.3026   -0.1773    2.1193    1.7891    0.4819    0.1998    5.4749 +#> 276:    94.3034   -0.1771    2.1195    1.7875    0.4812    0.2010    5.4829 +#> 277:    94.3047   -0.1771    2.1197    1.7843    0.4805    0.2026    5.4878 +#> 278:    94.3067   -0.1771    2.1197    1.7747    0.4799    0.2039    5.4888 +#> 279:    94.3066   -0.1768    2.1202    1.7772    0.4795    0.2049    5.4889 +#> 280:    94.3035   -0.1768    2.1203    1.7797    0.4788    0.2062    5.4888 +#> 281:    94.2961   -0.1771    2.1203    1.7789    0.4782    0.2068    5.4874 +#> 282:    94.2893   -0.1772    2.1203    1.7797    0.4777    0.2072    5.4865 +#> 283:    94.2880   -0.1776    2.1198    1.7743    0.4772    0.2074    5.4856 +#> 284:    94.2897   -0.1779    2.1195    1.7717    0.4768    0.2076    5.4836 +#> 285:    94.2922   -0.1781    2.1194    1.7756    0.4765    0.2075    5.4818 +#> 286:    94.2964   -0.1783    2.1190    1.7759    0.4763    0.2074    5.4798 +#> 287:    94.2991   -0.1787    2.1181    1.7884    0.4761    0.2075    5.4769 +#> 288:    94.2980   -0.1793    2.1171    1.7901    0.4756    0.2077    5.4772 +#> 289:    94.2948   -0.1797    2.1166    1.7957    0.4752    0.2077    5.4763 +#> 290:    94.2922   -0.1801    2.1161    1.8012    0.4749    0.2074    5.4752 +#> 291:    94.2891   -0.1803    2.1157    1.8016    0.4747    0.2073    5.4743 +#> 292:    94.2890   -0.1805    2.1155    1.8012    0.4746    0.2072    5.4743 +#> 293:    94.2874   -0.1808    2.1152    1.8012    0.4743    0.2073    5.4743 +#> 294:    94.2841   -0.1811    2.1148    1.8003    0.4740    0.2075    5.4758 +#> 295:    94.2834   -0.1813    2.1143    1.7982    0.4743    0.2075    5.4766 +#> 296:    94.2817   -0.1816    2.1138    1.7997    0.4745    0.2074    5.4756 +#> 297:    94.2772   -0.1820    2.1131    1.8025    0.4747    0.2074    5.4778 +#> 298:    94.2759   -0.1822    2.1125    1.8097    0.4747    0.2073    5.4781 +#> 299:    94.2752   -0.1825    2.1120    1.8176    0.4748    0.2071    5.4784 +#> 300:    94.2758   -0.1828    2.1115    1.8353    0.4750    0.2069    5.4771 +#> 301:    94.2789   -0.1829    2.1113    1.8511    0.4749    0.2066    5.4767 +#> 302:    94.2808   -0.1833    2.1107    1.8541    0.4747    0.2065    5.4785 +#> 303:    94.2832   -0.1836    2.1103    1.8571    0.4745    0.2064    5.4789 +#> 304:    94.2838   -0.1840    2.1097    1.8584    0.4743    0.2064    5.4792 +#> 305:    94.2835   -0.1843    2.1090    1.8633    0.4741    0.2066    5.4790 +#> 306:    94.2868   -0.1847    2.1083    1.8633    0.4738    0.2069    5.4802 +#> 307:    94.2909   -0.1851    2.1076    1.8702    0.4737    0.2072    5.4787 +#> 308:    94.2916   -0.1857    2.1067    1.8754    0.4735    0.2075    5.4773 +#> 309:    94.2889   -0.1860    2.1062    1.8785    0.4732    0.2078    5.4774 +#> 310:    94.2875   -0.1863    2.1059    1.8854    0.4727    0.2082    5.4763 +#> 311:    94.2889   -0.1867    2.1053    1.8873    0.4722    0.2087    5.4746 +#> 312:    94.2889   -0.1870    2.1047    1.8956    0.4717    0.2090    5.4748 +#> 313:    94.2836   -0.1873    2.1044    1.8980    0.4711    0.2093    5.4721 +#> 314:    94.2801   -0.1876    2.1041    1.8924    0.4706    0.2096    5.4718 +#> 315:    94.2768   -0.1880    2.1038    1.8875    0.4701    0.2096    5.4727 +#> 316:    94.2766   -0.1883    2.1035    1.8854    0.4697    0.2097    5.4730 +#> 317:    94.2779   -0.1886    2.1030    1.8808    0.4693    0.2099    5.4725 +#> 318:    94.2806   -0.1889    2.1024    1.8789    0.4688    0.2101    5.4713 +#> 319:    94.2853   -0.1891    2.1018    1.8852    0.4684    0.2104    5.4690 +#> 320:    94.2867   -0.1894    2.1016    1.8898    0.4680    0.2106    5.4677 +#> 321:    94.2883   -0.1897    2.1013    1.8975    0.4676    0.2108    5.4656 +#> 322:    94.2864   -0.1899    2.1011    1.9078    0.4672    0.2109    5.4622 +#> 323:    94.2831   -0.1902    2.1009    1.9181    0.4668    0.2109    5.4593 +#> 324:    94.2799   -0.1904    2.1008    1.9355    0.4665    0.2109    5.4599 +#> 325:    94.2802   -0.1905    2.1007    1.9474    0.4660    0.2112    5.4608 +#> 326:    94.2808   -0.1907    2.1006    1.9656    0.4654    0.2114    5.4606 +#> 327:    94.2815   -0.1907    2.1006    1.9851    0.4649    0.2118    5.4596 +#> 328:    94.2805   -0.1908    2.1007    2.0051    0.4644    0.2120    5.4584 +#> 329:    94.2810   -0.1909    2.1004    2.0162    0.4638    0.2124    5.4566 +#> 330:    94.2812   -0.1912    2.0999    2.0210    0.4632    0.2131    5.4548 +#> 331:    94.2830   -0.1915    2.0994    2.0253    0.4625    0.2136    5.4520 +#> 332:    94.2835   -0.1920    2.0987    2.0288    0.4619    0.2142    5.4493 +#> 333:    94.2832   -0.1924    2.0981    2.0365    0.4615    0.2148    5.4463 +#> 334:    94.2845   -0.1928    2.0976    2.0433    0.4611    0.2153    5.4436 +#> 335:    94.2856   -0.1931    2.0971    2.0423    0.4607    0.2158    5.4405 +#> 336:    94.2886   -0.1936    2.0963    2.0400    0.4606    0.2165    5.4386 +#> 337:    94.2888   -0.1939    2.0957    2.0352    0.4604    0.2171    5.4376 +#> 338:    94.2879   -0.1944    2.0950    2.0360    0.4600    0.2179    5.4361 +#> 339:    94.2860   -0.1947    2.0946    2.0418    0.4599    0.2186    5.4342 +#> 340:    94.2842   -0.1951    2.0940    2.0455    0.4597    0.2192    5.4324 +#> 341:    94.2804   -0.1954    2.0934    2.0535    0.4596    0.2199    5.4310 +#> 342:    94.2772   -0.1958    2.0928    2.0586    0.4594    0.2204    5.4310 +#> 343:    94.2753   -0.1962    2.0921    2.0604    0.4592    0.2209    5.4304 +#> 344:    94.2749   -0.1965    2.0916    2.0591    0.4589    0.2214    5.4305 +#> 345:    94.2757   -0.1969    2.0911    2.0582    0.4586    0.2220    5.4302 +#> 346:    94.2774   -0.1972    2.0906    2.0554    0.4584    0.2225    5.4301 +#> 347:    94.2772   -0.1974    2.0901    2.0533    0.4583    0.2230    5.4298 +#> 348:    94.2769   -0.1977    2.0895    2.0497    0.4581    0.2235    5.4302 +#> 349:    94.2792   -0.1980    2.0890    2.0439    0.4579    0.2241    5.4327 +#> 350:    94.2825   -0.1983    2.0884    2.0391    0.4577    0.2245    5.4358 +#> 351:    94.2849   -0.1985    2.0879    2.0352    0.4576    0.2251    5.4399 +#> 352:    94.2871   -0.1988    2.0874    2.0396    0.4576    0.2257    5.4414 +#> 353:    94.2888   -0.1991    2.0869    2.0407    0.4573    0.2262    5.4417 +#> 354:    94.2914   -0.1994    2.0863    2.0383    0.4571    0.2268    5.4417 +#> 355:    94.2933   -0.1996    2.0859    2.0385    0.4570    0.2275    5.4418 +#> 356:    94.2932   -0.1999    2.0853    2.0377    0.4569    0.2284    5.4426 +#> 357:    94.2944   -0.2001    2.0850    2.0362    0.4566    0.2292    5.4423 +#> 358:    94.2948   -0.2003    2.0847    2.0415    0.4562    0.2299    5.4409 +#> 359:    94.2950   -0.2005    2.0843    2.0452    0.4558    0.2304    5.4393 +#> 360:    94.2967   -0.2008    2.0840    2.0514    0.4554    0.2307    5.4385 +#> 361:    94.2983   -0.2009    2.0839    2.0676    0.4551    0.2308    5.4386 +#> 362:    94.2992   -0.2009    2.0840    2.0770    0.4549    0.2307    5.4370 +#> 363:    94.2991   -0.2008    2.0841    2.0831    0.4550    0.2306    5.4348 +#> 364:    94.2982   -0.2007    2.0843    2.0892    0.4549    0.2304    5.4348 +#> 365:    94.2951   -0.2005    2.0847    2.1002    0.4551    0.2302    5.4347 +#> 366:    94.2938   -0.2004    2.0850    2.1176    0.4553    0.2300    5.4343 +#> 367:    94.2945   -0.2003    2.0850    2.1310    0.4553    0.2298    5.4346 +#> 368:    94.2956   -0.2003    2.0851    2.1436    0.4554    0.2295    5.4323 +#> 369:    94.2960   -0.2003    2.0850    2.1526    0.4555    0.2293    5.4309 +#> 370:    94.2964   -0.2003    2.0848    2.1577    0.4555    0.2292    5.4295 +#> 371:    94.2965   -0.2004    2.0847    2.1621    0.4555    0.2290    5.4278 +#> 372:    94.2972   -0.2004    2.0847    2.1635    0.4556    0.2285    5.4275 +#> 373:    94.2975   -0.2003    2.0848    2.1643    0.4556    0.2282    5.4275 +#> 374:    94.2985   -0.2004    2.0847    2.1648    0.4556    0.2277    5.4270 +#> 375:    94.3001   -0.2004    2.0846    2.1682    0.4555    0.2273    5.4255 +#> 376:    94.3024   -0.2005    2.0845    2.1692    0.4555    0.2268    5.4246 +#> 377:    94.3050   -0.2005    2.0843    2.1700    0.4555    0.2264    5.4239 +#> 378:    94.3041   -0.2005    2.0843    2.1680    0.4555    0.2258    5.4242 +#> 379:    94.3034   -0.2006    2.0842    2.1688    0.4554    0.2255    5.4233 +#> 380:    94.3027   -0.2007    2.0840    2.1754    0.4554    0.2250    5.4222 +#> 381:    94.3015   -0.2008    2.0839    2.1806    0.4553    0.2246    5.4205 +#> 382:    94.3006   -0.2009    2.0837    2.1812    0.4552    0.2242    5.4194 +#> 383:    94.3004   -0.2010    2.0835    2.1835    0.4551    0.2236    5.4178 +#> 384:    94.3001   -0.2011    2.0834    2.1895    0.4550    0.2232    5.4159 +#> 385:    94.3005   -0.2012    2.0834    2.1910    0.4547    0.2228    5.4148 +#> 386:    94.2993   -0.2013    2.0834    2.1926    0.4545    0.2224    5.4139 +#> 387:    94.2974   -0.2014    2.0834    2.1956    0.4543    0.2221    5.4135 +#> 388:    94.2964   -0.2014    2.0835    2.1979    0.4541    0.2218    5.4124 +#> 389:    94.2956   -0.2013    2.0837    2.1974    0.4540    0.2215    5.4117 +#> 390:    94.2962   -0.2013    2.0838    2.1995    0.4538    0.2213    5.4115 +#> 391:    94.2962   -0.2013    2.0838    2.1987    0.4537    0.2211    5.4116 +#> 392:    94.2956   -0.2013    2.0839    2.2007    0.4536    0.2209    5.4111 +#> 393:    94.2954   -0.2012    2.0839    2.2041    0.4535    0.2207    5.4106 +#> 394:    94.2953   -0.2012    2.0840    2.2033    0.4535    0.2205    5.4103 +#> 395:    94.2964   -0.2012    2.0841    2.2052    0.4533    0.2203    5.4098 +#> 396:    94.2950   -0.2012    2.0841    2.2123    0.4532    0.2202    5.4081 +#> 397:    94.2940   -0.2011    2.0843    2.2227    0.4533    0.2201    5.4070 +#> 398:    94.2938   -0.2011    2.0842    2.2283    0.4534    0.2201    5.4065 +#> 399:    94.2930   -0.2012    2.0842    2.2296    0.4535    0.2201    5.4066 +#> 400:    94.2931   -0.2011    2.0844    2.2345    0.4537    0.2199    5.4071 +#> 401:    94.2926   -0.2009    2.0846    2.2414    0.4539    0.2198    5.4067 +#> 402:    94.2916   -0.2008    2.0848    2.2478    0.4541    0.2196    5.4070 +#> 403:    94.2902   -0.2007    2.0849    2.2543    0.4544    0.2194    5.4071 +#> 404:    94.2895   -0.2007    2.0851    2.2578    0.4546    0.2192    5.4079 +#> 405:    94.2896   -0.2006    2.0853    2.2600    0.4548    0.2190    5.4082 +#> 406:    94.2897   -0.2004    2.0855    2.2636    0.4550    0.2188    5.4086 +#> 407:    94.2880   -0.2002    2.0859    2.2670    0.4554    0.2188    5.4079 +#> 408:    94.2883   -0.1999    2.0861    2.2735    0.4556    0.2189    5.4076 +#> 409:    94.2874   -0.1997    2.0865    2.2822    0.4559    0.2190    5.4073 +#> 410:    94.2861   -0.1995    2.0867    2.2861    0.4563    0.2190    5.4062 +#> 411:    94.2861   -0.1993    2.0869    2.2883    0.4566    0.2190    5.4049 +#> 412:    94.2869   -0.1991    2.0872    2.2926    0.4570    0.2190    5.4039 +#> 413:    94.2874   -0.1990    2.0873    2.2936    0.4574    0.2190    5.4031 +#> 414:    94.2881   -0.1988    2.0874    2.2972    0.4577    0.2189    5.4019 +#> 415:    94.2895   -0.1987    2.0876    2.2999    0.4580    0.2188    5.4004 +#> 416:    94.2900   -0.1985    2.0878    2.3003    0.4582    0.2186    5.3997 +#> 417:    94.2917   -0.1984    2.0880    2.2986    0.4583    0.2185    5.3993 +#> 418:    94.2937   -0.1982    2.0882    2.2986    0.4584    0.2183    5.3995 +#> 419:    94.2947   -0.1981    2.0885    2.2993    0.4584    0.2182    5.3995 +#> 420:    94.2954   -0.1979    2.0886    2.2993    0.4585    0.2180    5.3996 +#> 421:    94.2963   -0.1978    2.0888    2.3029    0.4587    0.2180    5.3992 +#> 422:    94.2982   -0.1976    2.0890    2.3074    0.4588    0.2178    5.4000 +#> 423:    94.3001   -0.1975    2.0891    2.3099    0.4589    0.2178    5.3999 +#> 424:    94.3007   -0.1974    2.0891    2.3106    0.4589    0.2177    5.4001 +#> 425:    94.3016   -0.1973    2.0893    2.3107    0.4589    0.2176    5.3997 +#> 426:    94.3021   -0.1972    2.0894    2.3119    0.4590    0.2175    5.3990 +#> 427:    94.3009   -0.1972    2.0894    2.3100    0.4590    0.2175    5.3971 +#> 428:    94.2998   -0.1972    2.0895    2.3070    0.4590    0.2175    5.3966 +#> 429:    94.2988   -0.1973    2.0895    2.3033    0.4590    0.2175    5.3958 +#> 430:    94.2968   -0.1973    2.0895    2.3028    0.4590    0.2174    5.3955 +#> 431:    94.2950   -0.1973    2.0895    2.3004    0.4589    0.2174    5.3954 +#> 432:    94.2944   -0.1973    2.0896    2.2966    0.4589    0.2174    5.3956 +#> 433:    94.2950   -0.1972    2.0897    2.2942    0.4589    0.2176    5.3959 +#> 434:    94.2949   -0.1972    2.0898    2.2911    0.4589    0.2177    5.3955 +#> 435:    94.2943   -0.1971    2.0900    2.2914    0.4588    0.2179    5.3943 +#> 436:    94.2943   -0.1970    2.0902    2.2895    0.4586    0.2180    5.3948 +#> 437:    94.2955   -0.1970    2.0903    2.2890    0.4585    0.2181    5.3954 +#> 438:    94.2961   -0.1969    2.0905    2.2918    0.4584    0.2183    5.3958 +#> 439:    94.2954   -0.1968    2.0906    2.2943    0.4583    0.2185    5.3953 +#> 440:    94.2944   -0.1968    2.0906    2.2977    0.4581    0.2187    5.3949 +#> 441:    94.2931   -0.1968    2.0907    2.2991    0.4578    0.2188    5.3952 +#> 442:    94.2926   -0.1968    2.0908    2.2990    0.4575    0.2188    5.3951 +#> 443:    94.2922   -0.1968    2.0909    2.2990    0.4573    0.2188    5.3938 +#> 444:    94.2917   -0.1969    2.0909    2.2995    0.4571    0.2188    5.3927 +#> 445:    94.2901   -0.1969    2.0910    2.3067    0.4568    0.2187    5.3911 +#> 446:    94.2898   -0.1969    2.0910    2.3082    0.4566    0.2187    5.3891 +#> 447:    94.2897   -0.1969    2.0910    2.3121    0.4564    0.2187    5.3871 +#> 448:    94.2883   -0.1970    2.0911    2.3180    0.4562    0.2188    5.3858 +#> 449:    94.2879   -0.1970    2.0912    2.3210    0.4561    0.2188    5.3851 +#> 450:    94.2874   -0.1970    2.0914    2.3243    0.4559    0.2188    5.3841 +#> 451:    94.2873   -0.1969    2.0915    2.3247    0.4557    0.2188    5.3834 +#> 452:    94.2873   -0.1969    2.0917    2.3249    0.4555    0.2187    5.3839 +#> 453:    94.2868   -0.1968    2.0920    2.3257    0.4554    0.2187    5.3831 +#> 454:    94.2857   -0.1967    2.0922    2.3240    0.4552    0.2187    5.3824 +#> 455:    94.2848   -0.1965    2.0925    2.3214    0.4551    0.2186    5.3822 +#> 456:    94.2838   -0.1964    2.0929    2.3204    0.4550    0.2185    5.3822 +#> 457:    94.2831   -0.1962    2.0932    2.3202    0.4549    0.2184    5.3819 +#> 458:    94.2831   -0.1961    2.0935    2.3174    0.4548    0.2183    5.3810 +#> 459:    94.2829   -0.1960    2.0938    2.3183    0.4546    0.2183    5.3807 +#> 460:    94.2818   -0.1958    2.0941    2.3213    0.4545    0.2183    5.3802 +#> 461:    94.2812   -0.1956    2.0945    2.3292    0.4544    0.2182    5.3785 +#> 462:    94.2813   -0.1955    2.0948    2.3328    0.4544    0.2182    5.3778 +#> 463:    94.2816   -0.1953    2.0951    2.3364    0.4543    0.2181    5.3770 +#> 464:    94.2810   -0.1952    2.0954    2.3365    0.4542    0.2180    5.3764 +#> 465:    94.2797   -0.1950    2.0957    2.3341    0.4541    0.2179    5.3756 +#> 466:    94.2777   -0.1949    2.0960    2.3368    0.4541    0.2178    5.3750 +#> 467:    94.2755   -0.1949    2.0962    2.3417    0.4539    0.2178    5.3738 +#> 468:    94.2741   -0.1948    2.0965    2.3426    0.4537    0.2177    5.3731 +#> 469:    94.2735   -0.1947    2.0967    2.3410    0.4535    0.2175    5.3729 +#> 470:    94.2731   -0.1946    2.0970    2.3440    0.4534    0.2173    5.3733 +#> 471:    94.2727   -0.1945    2.0972    2.3505    0.4533    0.2171    5.3724 +#> 472:    94.2734   -0.1944    2.0973    2.3550    0.4533    0.2169    5.3719 +#> 473:    94.2745   -0.1944    2.0974    2.3593    0.4533    0.2167    5.3715 +#> 474:    94.2746   -0.1944    2.0975    2.3622    0.4533    0.2166    5.3708 +#> 475:    94.2753   -0.1943    2.0975    2.3673    0.4533    0.2165    5.3701 +#> 476:    94.2760   -0.1943    2.0976    2.3745    0.4534    0.2166    5.3698 +#> 477:    94.2771   -0.1942    2.0978    2.3812    0.4535    0.2166    5.3695 +#> 478:    94.2767   -0.1941    2.0981    2.3891    0.4535    0.2166    5.3691 +#> 479:    94.2762   -0.1940    2.0984    2.3931    0.4534    0.2166    5.3691 +#> 480:    94.2754   -0.1939    2.0986    2.3958    0.4533    0.2166    5.3685 +#> 481:    94.2743   -0.1938    2.0987    2.3990    0.4532    0.2165    5.3677 +#> 482:    94.2733   -0.1937    2.0988    2.3996    0.4531    0.2164    5.3670 +#> 483:    94.2724   -0.1937    2.0989    2.4031    0.4531    0.2163    5.3659 +#> 484:    94.2726   -0.1937    2.0989    2.4035    0.4530    0.2162    5.3651 +#> 485:    94.2722   -0.1937    2.0989    2.4033    0.4530    0.2162    5.3649 +#> 486:    94.2716   -0.1936    2.0991    2.4046    0.4529    0.2163    5.3645 +#> 487:    94.2710   -0.1936    2.0992    2.4078    0.4527    0.2165    5.3643 +#> 488:    94.2693   -0.1936    2.0992    2.4088    0.4525    0.2167    5.3653 +#> 489:    94.2689   -0.1936    2.0993    2.4116    0.4523    0.2170    5.3645 +#> 490:    94.2686   -0.1936    2.0993    2.4105    0.4520    0.2172    5.3644 +#> 491:    94.2685   -0.1935    2.0994    2.4097    0.4518    0.2174    5.3651 +#> 492:    94.2677   -0.1935    2.0995    2.4103    0.4517    0.2175    5.3657 +#> 493:    94.2670   -0.1935    2.0996    2.4112    0.4515    0.2177    5.3661 +#> 494:    94.2668   -0.1935    2.0996    2.4140    0.4514    0.2178    5.3662 +#> 495:    94.2667   -0.1936    2.0996    2.4157    0.4513    0.2179    5.3660 +#> 496:    94.2670   -0.1936    2.0996    2.4163    0.4511    0.2180    5.3668 +#> 497:    94.2664   -0.1936    2.0996    2.4170    0.4510    0.2181    5.3676 +#> 498:    94.2654   -0.1937    2.0996    2.4128    0.4509    0.2181    5.3683 +#> 499:    94.2643   -0.1937    2.0996    2.4109    0.4508    0.2181    5.3679 +#> 500:    94.2635   -0.1938    2.0995    2.4122    0.4508    0.2181    5.3682</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_focei</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation +#> F: Forward difference gradient approximation +#> C: Central difference gradient approximation +#> M: Mixed forward and central difference gradient approximation +#> Unscaled parameters for Omegas=chol(solve(omega)); +#> Diagonals are transformed, as specified by foceiControl(diagXform=) +#> |-----+---------------+-----------+-----------+-----------+-----------| +#> |    #| Objective Fun |  parent_0 | log_alpha |  log_beta |     sigma | +#> <span style='text-decoration: underline;'>|.....................|        o1 |        o2 |        o3 |...........|</span> +#> |<span style='font-weight: bold;'>    1</span>|     296.31831 |     1.000 |    -1.000 |   -0.9520 |   -0.9547 | +#> |.....................|   -0.9791 |   -0.9725 |   -0.9706 |...........| +#> |    U|     296.31831 |     94.44 |   -0.2226 |     2.048 |     1.920 | +#> |.....................|    0.7656 |     1.078 |     1.168 |...........| +#> |    X|<span style='font-weight: bold;'>     296.31831</span> |     94.44 |    0.8004 |     7.754 |     1.920 | +#> <span style='text-decoration: underline;'>|.....................|    0.7656 |     1.078 |     1.168 |...........|</span> +#> |    G|    Gill Diff. |     9.126 |  0.009097 |  -0.01177 |    -32.33 | +#> <span style='text-decoration: underline;'>|.....................|     6.099 |    -8.436 |    -11.35 |...........|</span> +#> |<span style='font-weight: bold;'>    2</span>|     594.25462 |    0.7531 |    -1.000 |   -0.9517 |  -0.07988 | +#> |.....................|    -1.144 |   -0.7442 |   -0.6636 |...........| +#> |    U|     594.25462 |     71.12 |   -0.2229 |     2.049 |     2.760 | +#> |.....................|    0.6392 |     1.324 |     1.526 |...........| +#> |    X|<span style='font-weight: bold;'>     594.25462</span> |     71.12 |    0.8002 |     7.756 |     2.760 | +#> <span style='text-decoration: underline;'>|.....................|    0.6392 |     1.324 |     1.526 |...........|</span> +#> |<span style='font-weight: bold;'>    3</span>|     298.71818 |    0.9753 |    -1.000 |   -0.9520 |   -0.8672 | +#> |.....................|   -0.9956 |   -0.9497 |   -0.9399 |...........| +#> |    U|     298.71818 |     92.11 |   -0.2226 |     2.048 |     2.004 | +#> |.....................|    0.7529 |     1.103 |     1.204 |...........| +#> |    X|<span style='font-weight: bold;'>     298.71818</span> |     92.11 |    0.8004 |     7.754 |     2.004 | +#> <span style='text-decoration: underline;'>|.....................|    0.7529 |     1.103 |     1.204 |...........|</span> +#> |<span style='font-weight: bold;'>    4</span>|     295.79061 |    0.9925 |    -1.000 |   -0.9520 |   -0.9282 | +#> |.....................|   -0.9841 |   -0.9656 |   -0.9613 |...........| +#> |    U|     295.79061 |     93.73 |   -0.2226 |     2.048 |     1.945 | +#> |.....................|    0.7617 |     1.086 |     1.179 |...........| +#> |    X|<span style='font-weight: bold;'>     295.79061</span> |     93.73 |    0.8004 |     7.754 |     1.945 | +#> <span style='text-decoration: underline;'>|.....................|    0.7617 |     1.086 |     1.179 |...........|</span> +#> |    F| Forward Diff. |    -134.6 |  -0.07715 |   -0.3541 |    -29.37 | +#> <span style='text-decoration: underline;'>|.....................|     6.863 |    -7.752 |    -10.79 |...........|</span> +#> |<span style='font-weight: bold;'>    5</span>|     294.44078 |     1.001 |    -1.000 |   -0.9520 |   -0.9020 | +#> |.....................|   -0.9892 |   -0.9588 |   -0.9521 |...........| +#> |    U|     294.44078 |     94.55 |   -0.2226 |     2.048 |     1.970 | +#> |.....................|    0.7578 |     1.093 |     1.189 |...........| +#> |    X|<span style='font-weight: bold;'>     294.44078</span> |     94.55 |    0.8004 |     7.754 |     1.970 | +#> <span style='text-decoration: underline;'>|.....................|    0.7578 |     1.093 |     1.189 |...........|</span> +#> |    F| Forward Diff. |     30.39 |   0.01643 |   0.02646 |    -26.06 | +#> <span style='text-decoration: underline;'>|.....................|     5.336 |    -7.397 |    -10.44 |...........|</span> +#> |<span style='font-weight: bold;'>    6</span>|     293.62741 |    0.9971 |    -1.000 |   -0.9519 |   -0.8750 | +#> |.....................|   -0.9945 |   -0.9516 |   -0.9423 |...........| +#> |    U|     293.62741 |     94.17 |   -0.2226 |     2.048 |     1.996 | +#> |.....................|    0.7538 |     1.101 |     1.201 |...........| +#> |    X|<span style='font-weight: bold;'>     293.62741</span> |     94.17 |    0.8004 |     7.754 |     1.996 | +#> <span style='text-decoration: underline;'>|.....................|    0.7538 |     1.101 |     1.201 |...........|</span> +#> |<span style='font-weight: bold;'>    7</span>|     292.50099 |    0.9961 |    -1.000 |   -0.9519 |   -0.8316 | +#> |.....................|    -1.003 |   -0.9401 |   -0.9267 |...........| +#> |    U|     292.50099 |     94.07 |   -0.2226 |     2.048 |     2.038 | +#> |.....................|    0.7474 |     1.113 |     1.219 |...........| +#> |    X|<span style='font-weight: bold;'>     292.50099</span> |     94.07 |    0.8004 |     7.755 |     2.038 | +#> <span style='text-decoration: underline;'>|.....................|    0.7474 |     1.113 |     1.219 |...........|</span> +#> |<span style='font-weight: bold;'>    8</span>|     290.76125 |    0.9939 |    -1.000 |   -0.9518 |   -0.7361 | +#> |.....................|    -1.021 |   -0.9149 |   -0.8925 |...........| +#> |    U|     290.76125 |     93.87 |   -0.2226 |     2.048 |     2.130 | +#> |.....................|    0.7332 |     1.140 |     1.259 |...........| +#> |    X|<span style='font-weight: bold;'>     290.76125</span> |     93.87 |    0.8004 |     7.756 |     2.130 | +#> <span style='text-decoration: underline;'>|.....................|    0.7332 |     1.140 |     1.259 |...........|</span> +#> |    F| Forward Diff. |    -91.20 |  -0.08176 |   -0.4010 |    -10.74 | +#> <span style='text-decoration: underline;'>|.....................|     3.658 |    -4.872 |    -7.770 |...........|</span> +#> |<span style='font-weight: bold;'>    9</span>|     293.40175 |     1.024 |   -0.9990 |   -0.9455 |   -0.7012 | +#> |.....................|    -1.060 |   -0.8302 |   -0.7398 |...........| +#> |    U|     293.40175 |     96.67 |   -0.2216 |     2.055 |     2.163 | +#> |.....................|    0.7035 |     1.231 |     1.437 |...........| +#> |    X|<span style='font-weight: bold;'>     293.40175</span> |     96.67 |    0.8012 |     7.804 |     2.163 | +#> <span style='text-decoration: underline;'>|.....................|    0.7035 |     1.231 |     1.437 |...........|</span> +#> |<span style='font-weight: bold;'>   10</span>|     292.85583 |     1.019 |   -0.9997 |   -0.9499 |   -0.7242 | +#> |.....................|    -1.033 |   -0.8898 |   -0.8474 |...........| +#> |    U|     292.85583 |     96.21 |   -0.2223 |     2.050 |     2.141 | +#> |.....................|    0.7242 |     1.167 |     1.312 |...........| +#> |    X|<span style='font-weight: bold;'>     292.85583</span> |     96.21 |    0.8007 |     7.770 |     2.141 | +#> <span style='text-decoration: underline;'>|.....................|    0.7242 |     1.167 |     1.312 |...........|</span> +#> |<span style='font-weight: bold;'>   11</span>|     291.55187 |     1.011 |    -1.000 |   -0.9517 |   -0.7341 | +#> |.....................|    -1.022 |   -0.9140 |   -0.8910 |...........| +#> |    U|     291.55187 |     95.48 |   -0.2226 |     2.048 |     2.132 | +#> |.....................|    0.7326 |     1.141 |     1.261 |...........| +#> |    X|<span style='font-weight: bold;'>     291.55187</span> |     95.48 |    0.8004 |     7.756 |     2.132 | +#> <span style='text-decoration: underline;'>|.....................|    0.7326 |     1.141 |     1.261 |...........|</span> +#> |<span style='font-weight: bold;'>   12</span>|     290.49268 |    0.9997 |    -1.000 |   -0.9518 |   -0.7354 | +#> |.....................|    -1.022 |   -0.9146 |   -0.8920 |...........| +#> |    U|     290.49268 |     94.41 |   -0.2226 |     2.048 |     2.130 | +#> |.....................|    0.7330 |     1.141 |     1.259 |...........| +#> |    X|<span style='font-weight: bold;'>     290.49268</span> |     94.41 |    0.8004 |     7.756 |     2.130 | +#> <span style='text-decoration: underline;'>|.....................|    0.7330 |     1.141 |     1.259 |...........|</span> +#> |    F| Forward Diff. |     2.619 | -0.007793 |  -0.07320 |    -10.57 | +#> <span style='text-decoration: underline;'>|.....................|     3.077 |    -4.876 |    -7.795 |...........|</span> +#> |<span style='font-weight: bold;'>   13</span>|     290.41825 |    0.9986 |    -1.000 |   -0.9517 |   -0.7312 | +#> |.....................|    -1.023 |   -0.9126 |   -0.8889 |...........| +#> |    U|     290.41825 |     94.31 |   -0.2226 |     2.048 |     2.134 | +#> |.....................|    0.7321 |     1.143 |     1.263 |...........| +#> |    X|<span style='font-weight: bold;'>     290.41825</span> |     94.31 |    0.8004 |     7.756 |     2.134 | +#> <span style='text-decoration: underline;'>|.....................|    0.7321 |     1.143 |     1.263 |...........|</span> +#> |<span style='font-weight: bold;'>   14</span>|     290.31205 |    0.9955 |    -1.000 |   -0.9517 |   -0.7186 | +#> |.....................|    -1.027 |   -0.9068 |   -0.8796 |...........| +#> |    U|     290.31205 |     94.01 |   -0.2226 |     2.049 |     2.146 | +#> |.....................|    0.7292 |     1.149 |     1.274 |...........| +#> |    X|<span style='font-weight: bold;'>     290.31205</span> |     94.01 |    0.8004 |     7.757 |     2.146 | +#> <span style='text-decoration: underline;'>|.....................|    0.7292 |     1.149 |     1.274 |...........|</span> +#> |    F| Forward Diff. |    -64.45 |  -0.06351 |   -0.3251 |    -9.485 | +#> <span style='text-decoration: underline;'>|.....................|     2.861 |    -4.414 |    -7.225 |...........|</span> +#> |<span style='font-weight: bold;'>   15</span>|     290.00198 |     1.000 |   -0.9999 |   -0.9510 |   -0.7191 | +#> |.....................|    -1.030 |   -0.8965 |   -0.8595 |...........| +#> |    U|     290.00198 |     94.46 |   -0.2225 |     2.049 |     2.146 | +#> |.....................|    0.7268 |     1.160 |     1.297 |...........| +#> |    X|<span style='font-weight: bold;'>     290.00198</span> |     94.46 |    0.8005 |     7.762 |     2.146 | +#> <span style='text-decoration: underline;'>|.....................|    0.7268 |     1.160 |     1.297 |...........|</span> +#> |    F| Forward Diff. |     11.27 | -0.003123 |  -0.03408 |    -9.156 | +#> <span style='text-decoration: underline;'>|.....................|     2.235 |    -3.823 |    -6.423 |...........|</span> +#> |<span style='font-weight: bold;'>   16</span>|     289.83558 |    0.9983 |   -0.9998 |   -0.9502 |   -0.7180 | +#> |.....................|    -1.031 |   -0.8872 |   -0.8384 |...........| +#> |    U|     289.83558 |     94.28 |   -0.2224 |     2.050 |     2.147 | +#> |.....................|    0.7259 |     1.170 |     1.322 |...........| +#> |    X|<span style='font-weight: bold;'>     289.83558</span> |     94.28 |    0.8006 |     7.768 |     2.147 | +#> <span style='text-decoration: underline;'>|.....................|    0.7259 |     1.170 |     1.322 |...........|</span> +#> |<span style='font-weight: bold;'>   17</span>|     289.63307 |    0.9979 |   -0.9995 |   -0.9489 |   -0.7184 | +#> |.....................|    -1.032 |   -0.8720 |   -0.8037 |...........| +#> |    U|     289.63307 |     94.24 |   -0.2221 |     2.051 |     2.147 | +#> |.....................|    0.7248 |     1.186 |     1.363 |...........| +#> |    X|<span style='font-weight: bold;'>     289.63307</span> |     94.24 |    0.8008 |     7.778 |     2.147 | +#> <span style='text-decoration: underline;'>|.....................|    0.7248 |     1.186 |     1.363 |...........|</span> +#> |<span style='font-weight: bold;'>   18</span>|     289.44450 |    0.9972 |   -0.9991 |   -0.9468 |   -0.7190 | +#> |.....................|    -1.035 |   -0.8473 |   -0.7469 |...........| +#> |    U|      289.4445 |     94.18 |   -0.2217 |     2.053 |     2.146 | +#> |.....................|    0.7231 |     1.213 |     1.429 |...........| +#> |    X|<span style='font-weight: bold;'>      289.4445</span> |     94.18 |    0.8011 |     7.794 |     2.146 | +#> <span style='text-decoration: underline;'>|.....................|    0.7231 |     1.213 |     1.429 |...........|</span> +#> |    F| Forward Diff. |    -36.76 |  -0.05208 |   -0.1861 |    -9.057 | +#> <span style='text-decoration: underline;'>|.....................|     2.429 |   -0.6853 |    -1.924 |...........|</span> +#> |<span style='font-weight: bold;'>   19</span>|     288.93351 |    0.9984 |   -0.9961 |   -0.9370 |   -0.6306 | +#> |.....................|    -1.080 |   -0.9120 |   -0.7149 |...........| +#> |    U|     288.93351 |     94.29 |   -0.2187 |     2.063 |     2.231 | +#> |.....................|    0.6885 |     1.143 |     1.466 |...........| +#> |    X|<span style='font-weight: bold;'>     288.93351</span> |     94.29 |    0.8035 |     7.871 |     2.231 | +#> <span style='text-decoration: underline;'>|.....................|    0.6885 |     1.143 |     1.466 |...........|</span> +#> |    F| Forward Diff. |    -14.48 |  -0.02726 |    0.2181 |    -3.062 | +#> <span style='text-decoration: underline;'>|.....................|   -0.1976 |    -4.306 |   -0.8806 |...........|</span> +#> |<span style='font-weight: bold;'>   20</span>|     288.85238 |     1.002 |   -0.9934 |   -0.9444 |   -0.5654 | +#> |.....................|    -1.062 |   -0.8288 |   -0.7747 |...........| +#> |    U|     288.85238 |     94.67 |   -0.2160 |     2.056 |     2.293 | +#> |.....................|    0.7024 |     1.233 |     1.396 |...........| +#> |    X|<span style='font-weight: bold;'>     288.85238</span> |     94.67 |    0.8057 |     7.813 |     2.293 | +#> <span style='text-decoration: underline;'>|.....................|    0.7024 |     1.233 |     1.396 |...........|</span> +#> |    F| Forward Diff. |     40.49 |    0.1537 |    0.2940 |    0.6524 | +#> <span style='text-decoration: underline;'>|.....................|    0.4942 |    0.3489 |    -3.099 |...........|</span> +#> |<span style='font-weight: bold;'>   21</span>|     289.09335 |    0.9960 |    -1.025 |    -1.050 |   -0.5645 | +#> |.....................|    -1.111 |   -0.8117 |   -0.7552 |...........| +#> |    U|     289.09335 |     94.07 |   -0.2476 |     1.951 |     2.294 | +#> |.....................|    0.6648 |     1.251 |     1.419 |...........| +#> |    X|<span style='font-weight: bold;'>     289.09335</span> |     94.07 |    0.7806 |     7.034 |     2.294 | +#> <span style='text-decoration: underline;'>|.....................|    0.6648 |     1.251 |     1.419 |...........|</span> +#> |<span style='font-weight: bold;'>   22</span>|     288.97418 |    0.9945 |    -1.003 |   -0.9755 |   -0.5652 | +#> |.....................|    -1.076 |   -0.8238 |   -0.7685 |...........| +#> |    U|     288.97418 |     93.92 |   -0.2254 |     2.025 |     2.294 | +#> |.....................|    0.6912 |     1.238 |     1.404 |...........| +#> |    X|<span style='font-weight: bold;'>     288.97418</span> |     93.92 |    0.7982 |     7.574 |     2.294 | +#> <span style='text-decoration: underline;'>|.....................|    0.6912 |     1.238 |     1.404 |...........|</span> +#> |<span style='font-weight: bold;'>   23</span>|     288.99640 |    0.9941 |   -0.9963 |   -0.9538 |   -0.5655 | +#> |.....................|    -1.066 |   -0.8273 |   -0.7723 |...........| +#> |    U|      288.9964 |     93.88 |   -0.2189 |     2.046 |     2.293 | +#> |.....................|    0.6990 |     1.235 |     1.399 |...........| +#> |    X|<span style='font-weight: bold;'>      288.9964</span> |     93.88 |    0.8034 |     7.740 |     2.293 | +#> <span style='text-decoration: underline;'>|.....................|    0.6990 |     1.235 |     1.399 |...........|</span> +#> |<span style='font-weight: bold;'>   24</span>|     288.82158 |    0.9975 |   -0.9934 |   -0.9445 |   -0.5655 | +#> |.....................|    -1.062 |   -0.8288 |   -0.7743 |...........| +#> |    U|     288.82158 |     94.20 |   -0.2160 |     2.056 |     2.293 | +#> |.....................|    0.7023 |     1.233 |     1.397 |...........| +#> |    X|<span style='font-weight: bold;'>     288.82158</span> |     94.20 |    0.8057 |     7.813 |     2.293 | +#> <span style='text-decoration: underline;'>|.....................|    0.7023 |     1.233 |     1.397 |...........|</span> +#> |    F| Forward Diff. |    -27.98 |   0.07663 |  -0.09902 |    0.6250 | +#> <span style='text-decoration: underline;'>|.....................|    0.3387 |    0.3777 |    -3.049 |...........|</span> +#> |<span style='font-weight: bold;'>   25</span>|     288.78525 |    0.9995 |   -0.9943 |   -0.9465 |   -0.5657 | +#> |.....................|    -1.059 |   -0.8303 |   -0.7716 |...........| +#> |    U|     288.78525 |     94.39 |   -0.2169 |     2.054 |     2.293 | +#> |.....................|    0.7042 |     1.231 |     1.400 |...........| +#> |    X|<span style='font-weight: bold;'>     288.78525</span> |     94.39 |    0.8050 |     7.797 |     2.293 | +#> <span style='text-decoration: underline;'>|.....................|    0.7042 |     1.231 |     1.400 |...........|</span> +#> |    F| Forward Diff. |   -0.7037 |   0.08814 | -0.009566 |    0.5597 | +#> <span style='text-decoration: underline;'>|.....................|    0.2999 |    0.2778 |    -2.968 |...........|</span> +#> |<span style='font-weight: bold;'>   26</span>|     288.77680 |     1.000 |   -0.9946 |   -0.9467 |   -0.5664 | +#> |.....................|    -1.059 |   -0.8311 |   -0.7670 |...........| +#> |    U|      288.7768 |     94.48 |   -0.2172 |     2.053 |     2.292 | +#> |.....................|    0.7047 |     1.231 |     1.405 |...........| +#> |    X|<span style='font-weight: bold;'>      288.7768</span> |     94.48 |    0.8048 |     7.795 |     2.292 | +#> <span style='text-decoration: underline;'>|.....................|    0.7047 |     1.231 |     1.405 |...........|</span> +#> |    F| Forward Diff. |     12.46 |   0.09472 |   0.05753 |    0.4960 | +#> <span style='text-decoration: underline;'>|.....................|    0.3156 |    0.2411 |    -2.796 |...........|</span> +#> |<span style='font-weight: bold;'>   27</span>|     288.76499 |    0.9995 |   -0.9954 |   -0.9482 |   -0.5665 | +#> |.....................|    -1.055 |   -0.8326 |   -0.7642 |...........| +#> |    U|     288.76499 |     94.39 |   -0.2180 |     2.052 |     2.292 | +#> |.....................|    0.7071 |     1.229 |     1.409 |...........| +#> |    X|<span style='font-weight: bold;'>     288.76499</span> |     94.39 |    0.8042 |     7.783 |     2.292 | +#> <span style='text-decoration: underline;'>|.....................|    0.7071 |     1.229 |     1.409 |...........|</span> +#> |    F| Forward Diff. |   -0.8358 |   0.06465 |  -0.06858 |    0.5747 | +#> <span style='text-decoration: underline;'>|.....................|    0.6430 |    0.1630 |    -2.683 |...........|</span> +#> |<span style='font-weight: bold;'>   28</span>|     288.75697 |     1.000 |   -0.9957 |   -0.9484 |   -0.5681 | +#> |.....................|    -1.059 |   -0.8325 |   -0.7609 |...........| +#> |    U|     288.75697 |     94.45 |   -0.2183 |     2.052 |     2.291 | +#> |.....................|    0.7046 |     1.229 |     1.413 |...........| +#> |    X|<span style='font-weight: bold;'>     288.75697</span> |     94.45 |    0.8039 |     7.782 |     2.291 | +#> <span style='text-decoration: underline;'>|.....................|    0.7046 |     1.229 |     1.413 |...........|</span> +#> |    F| Forward Diff. |     8.673 |   0.06496 |  -0.02049 |    0.4885 | +#> <span style='text-decoration: underline;'>|.....................|    0.5066 |    0.1747 |    -2.560 |...........|</span> +#> |<span style='font-weight: bold;'>   29</span>|     288.75050 |    0.9994 |   -0.9958 |   -0.9480 |   -0.5696 | +#> |.....................|    -1.063 |   -0.8317 |   -0.7600 |...........| +#> |    U|      288.7505 |     94.38 |   -0.2184 |     2.052 |     2.289 | +#> |.....................|    0.7012 |     1.230 |     1.414 |...........| +#> |    X|<span style='font-weight: bold;'>      288.7505</span> |     94.38 |    0.8038 |     7.785 |     2.289 | +#> <span style='text-decoration: underline;'>|.....................|    0.7012 |     1.230 |     1.414 |...........|</span> +#> |    F| Forward Diff. |    -2.463 |   0.04955 |  -0.07455 |    0.3979 | +#> <span style='text-decoration: underline;'>|.....................|    0.1788 |    0.2263 |    -2.511 |...........|</span> +#> |<span style='font-weight: bold;'>   30</span>|     288.74110 |    0.9997 |   -0.9954 |   -0.9459 |   -0.5705 | +#> |.....................|    -1.061 |   -0.8331 |   -0.7562 |...........| +#> |    U|      288.7411 |     94.41 |   -0.2180 |     2.054 |     2.289 | +#> |.....................|    0.7025 |     1.228 |     1.418 |...........| +#> |    X|<span style='font-weight: bold;'>      288.7411</span> |     94.41 |    0.8041 |     7.801 |     2.289 | +#> <span style='text-decoration: underline;'>|.....................|    0.7025 |     1.228 |     1.418 |...........|</span> +#> |<span style='font-weight: bold;'>   31</span>|     288.72064 |    0.9993 |   -0.9939 |   -0.9392 |   -0.5730 | +#> |.....................|    -1.056 |   -0.8374 |   -0.7455 |...........| +#> |    U|     288.72064 |     94.37 |   -0.2166 |     2.061 |     2.286 | +#> |.....................|    0.7068 |     1.224 |     1.431 |...........| +#> |    X|<span style='font-weight: bold;'>     288.72064</span> |     94.37 |    0.8053 |     7.854 |     2.286 | +#> <span style='text-decoration: underline;'>|.....................|    0.7068 |     1.224 |     1.431 |...........|</span> +#> |<span style='font-weight: bold;'>   32</span>|     288.70690 |    0.9989 |   -0.9915 |   -0.9277 |   -0.5774 | +#> |.....................|    -1.046 |   -0.8449 |   -0.7267 |...........| +#> |    U|      288.7069 |     94.33 |   -0.2141 |     2.072 |     2.282 | +#> |.....................|    0.7141 |     1.216 |     1.453 |...........| +#> |    X|<span style='font-weight: bold;'>      288.7069</span> |     94.33 |    0.8073 |     7.944 |     2.282 | +#> <span style='text-decoration: underline;'>|.....................|    0.7141 |     1.216 |     1.453 |...........|</span> +#> |    F| Forward Diff. |    -8.246 |   0.08782 |    0.6230 |   -0.2261 | +#> <span style='text-decoration: underline;'>|.....................|    0.9054 |   -0.5290 |    -1.268 |...........|</span> +#> |<span style='font-weight: bold;'>   33</span>|     288.68146 |     1.000 |   -0.9932 |   -0.9567 |   -0.5899 | +#> |.....................|    -1.067 |   -0.8479 |   -0.7019 |...........| +#> |    U|     288.68146 |     94.46 |   -0.2158 |     2.043 |     2.270 | +#> |.....................|    0.6982 |     1.212 |     1.481 |...........| +#> |    X|<span style='font-weight: bold;'>     288.68146</span> |     94.46 |    0.8059 |     7.717 |     2.270 | +#> <span style='text-decoration: underline;'>|.....................|    0.6982 |     1.212 |     1.481 |...........|</span> +#> |    F| Forward Diff. |     8.603 |    0.1068 |   -0.4021 |   -0.6499 | +#> <span style='text-decoration: underline;'>|.....................|    0.1745 |   -0.5873 |   -0.4459 |...........|</span> +#> |<span style='font-weight: bold;'>   34</span>|     288.70236 |     1.001 |    -1.018 |   -0.9264 |   -0.5930 | +#> |.....................|    -1.088 |   -0.8392 |   -0.6985 |...........| +#> |    U|     288.70236 |     94.50 |   -0.2403 |     2.074 |     2.267 | +#> |.....................|    0.6822 |     1.222 |     1.485 |...........| +#> |    X|<span style='font-weight: bold;'>     288.70236</span> |     94.50 |    0.7864 |     7.955 |     2.267 | +#> <span style='text-decoration: underline;'>|.....................|    0.6822 |     1.222 |     1.485 |...........|</span> +#> |<span style='font-weight: bold;'>   35</span>|     288.67546 |    0.9997 |   -0.9992 |   -0.9493 |   -0.5906 | +#> |.....................|    -1.072 |   -0.8457 |   -0.7010 |...........| +#> |    U|     288.67546 |     94.41 |   -0.2218 |     2.051 |     2.269 | +#> |.....................|    0.6943 |     1.215 |     1.482 |...........| +#> |    X|<span style='font-weight: bold;'>     288.67546</span> |     94.41 |    0.8011 |     7.775 |     2.269 | +#> <span style='text-decoration: underline;'>|.....................|    0.6943 |     1.215 |     1.482 |...........|</span> +#> |    F| Forward Diff. |     1.309 |  -0.03968 |   -0.1448 |   -0.6596 | +#> <span style='text-decoration: underline;'>|.....................|   0.05856 |   -0.4617 |   -0.3123 |...........|</span> +#> |<span style='font-weight: bold;'>   36</span>|     288.67323 |    0.9995 |   -0.9891 |   -0.9462 |   -0.5890 | +#> |.....................|    -1.074 |   -0.8436 |   -0.6999 |...........| +#> |    U|     288.67323 |     94.40 |   -0.2117 |     2.054 |     2.271 | +#> |.....................|    0.6929 |     1.217 |     1.484 |...........| +#> |    X|<span style='font-weight: bold;'>     288.67323</span> |     94.40 |    0.8092 |     7.800 |     2.271 | +#> <span style='text-decoration: underline;'>|.....................|    0.6929 |     1.217 |     1.484 |...........|</span> +#> |    F| Forward Diff. |   -0.3529 |    0.1695 |  -0.04594 |   -0.6688 | +#> <span style='text-decoration: underline;'>|.....................|   -0.2932 |   -0.3576 |   -0.2566 |...........|</span> +#> |<span style='font-weight: bold;'>   37</span>|     288.67323 |    0.9995 |   -0.9891 |   -0.9462 |   -0.5890 | +#> |.....................|    -1.074 |   -0.8436 |   -0.6999 |...........| +#> |    U|     288.67323 |     94.40 |   -0.2117 |     2.054 |     2.271 | +#> |.....................|    0.6929 |     1.217 |     1.484 |...........| +#> |    X|<span style='font-weight: bold;'>     288.67323</span> |     94.40 |    0.8092 |     7.800 |     2.271 | +#> <span style='text-decoration: underline;'>|.....................|    0.6929 |     1.217 |     1.484 |...........|</span> +#> calculating covariance matrix +#> done</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#> <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#> <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#> <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'> +<span class='va'>f_nlmixr_dfop_saem</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> 1:    93.2375   -1.6690   -4.0126    0.0336    3.3441    0.9789    2.1220    0.5342   18.1447 +#> 2:    92.9778   -1.6369   -3.9297    0.0067    3.1769    1.2515    2.0460    0.5166   11.1022 +#> 3:    92.9382   -1.6747   -3.9496   -0.0050    3.0181    1.1889    1.9437    0.4908    9.5980 +#> 4:    93.4481   -1.8083   -3.9734   -0.0250    2.8672    1.1295    1.8797    0.4662    8.6240 +#> 5:    93.4584   -1.8288   -4.0221    0.0414    2.7238    1.0730    1.8467    0.5161    8.1404 +#> 6:    93.7533   -1.8675   -4.0215    0.0158    2.5876    1.0194    1.8017    0.4911    7.5848 +#> 7:    93.6006   -1.8542   -4.0241   -0.0026    2.4582    0.9684    1.7860    0.4916    7.0796 +#> 8:    93.6918   -1.8416   -3.9940    0.0121    2.3353    0.9200    1.7061    0.4681    6.9985 +#> 9:    93.4789   -1.8738   -3.9845    0.0318    3.1307    0.8740    1.7845    0.4553    6.8335 +#> 10:    93.6048   -1.8723   -4.0154    0.0112    3.1962    0.8303    1.7434    0.4325    7.0681 +#> 11:    93.5135   -1.8675   -3.9905    0.0295    3.2177    0.7888    1.6910    0.4619    6.9572 +#> 12:    93.4407   -1.8790   -3.9877    0.0509    3.4194    0.7493    1.6324    0.5060    6.5755 +#> 13:    93.5033   -1.9250   -4.0416    0.0734    3.2485    0.7295    1.7369    0.4807    6.3881 +#> 14:    93.4276   -1.9082   -4.0516    0.0558    3.0860    0.7281    1.7241    0.4567    5.9840 +#> 15:    93.3041   -1.9256   -4.0718    0.0854    3.4389    0.7293    1.7446    0.4524    5.8195 +#> 16:    93.2979   -1.9297   -4.0624    0.0730    3.2670    0.7239    1.7476    0.4298    5.7629 +#> 17:    93.3522   -1.9570   -4.0876    0.1304    3.3053    0.7020    1.7402    0.4083    5.6926 +#> 18:    93.3500   -1.9652   -4.0816    0.1350    3.1400    0.7130    1.7217    0.3879    5.5714 +#> 19:    93.3822   -1.9519   -4.0961    0.1322    2.9830    0.7087    1.7228    0.3745    5.4176 +#> 20:    93.2823   -1.9490   -4.0841    0.1238    2.8339    0.6988    1.7659    0.3753    5.5279 +#> 21:    93.5951   -1.9298   -4.0874    0.1345    2.6922    0.6665    1.7724    0.3645    5.4414 +#> 22:    93.5052   -1.9469   -4.0739    0.1260    3.1244    0.6776    1.7629    0.3618    5.5395 +#> 23:    93.4734   -1.9952   -4.0909    0.1472    3.0340    0.7225    1.8104    0.3437    5.5072 +#> 24:    93.8816   -1.9639   -4.0914    0.1511    2.8824    0.7215    1.8586    0.3324    5.6009 +#> 25:    93.5874   -1.9750   -4.1026    0.1296    2.7383    0.7178    1.8209    0.3680    5.6274 +#> 26:    93.4057   -1.9316   -4.0922    0.1224    3.8103    0.7331    1.7796    0.3639    5.6861 +#> 27:    93.5013   -1.9188   -4.0698    0.0758    3.7127    0.7670    1.8750    0.3457    5.6624 +#> 28:    93.5703   -1.9523   -4.0758    0.0731    4.6390    0.7489    1.8583    0.3445    5.8077 +#> 29:    93.4694   -1.9559   -4.0566    0.0444    5.1290    0.8062    1.9344    0.3273    5.8688 +#> 30:    93.2290   -1.9824   -4.0475    0.0674    4.8726    0.8702    2.0343    0.3109    5.7579 +#> 31:    93.8652   -1.9771   -4.0510    0.0679    4.6289    0.8565    2.0529    0.2954    5.5526 +#> 32:    93.5854   -1.9573   -4.0510    0.0643    5.1320    0.8417    2.0138    0.2806    5.4199 +#> 33:    93.9870   -1.9503   -4.0513    0.0542    4.8754    0.8412    2.0433    0.2666    5.6945 +#> 34:    93.6884   -1.9172   -4.0633    0.0556    4.6317    0.8847    2.0861    0.2702    5.2687 +#> 35:    94.0375   -1.9365   -4.0576    0.0753    5.2320    0.8404    2.0791    0.2582    5.2760 +#> 36:    94.1588   -1.9423   -4.0499    0.0792    4.9704    0.8221    2.1145    0.2669    5.2050 +#> 37:    93.8626   -1.9356   -4.0538    0.0591    5.2723    0.8360    2.1407    0.2536    5.3218 +#> 38:    93.7237   -1.9357   -4.0611    0.0543    5.0087    0.8361    2.0788    0.2710    5.2866 +#> 39:    93.6513   -1.9327   -4.0408    0.0712    4.7582    0.8408    2.0051    0.2899    5.4693 +#> 40:    93.4619   -1.9634   -4.0360    0.1232    4.5203    0.8317    2.0367    0.3288    5.4324 +#> 41:    93.4809   -1.9601   -4.0351    0.1261    4.2943    0.8424    2.0081    0.3306    5.4573 +#> 42:    93.5851   -1.9745   -4.0428    0.1250    4.9744    0.8003    1.9818    0.3141    5.5168 +#> 43:    93.7820   -1.9597   -4.0401    0.1305    5.9118    0.7603    2.1332    0.2984    5.4899 +#> 44:    93.7419   -1.9509   -4.0495    0.1345    5.6162    0.7743    2.0459    0.2998    5.5344 +#> 45:    93.6967   -1.9366   -4.0522    0.1215    5.3354    0.7968    2.0566    0.2848    5.7738 +#> 46:    93.3665   -1.9553   -4.0018    0.0951    5.0686    0.7583    2.1124    0.2706    5.3850 +#> 47:    93.2974   -1.9332   -4.0091    0.0869    5.2792    0.8149    2.1009    0.2597    5.6743 +#> 48:    93.3967   -1.9540   -4.0218    0.0623    5.0152    0.8006    2.1538    0.2467    5.5889 +#> 49:    93.1652   -1.9724   -4.0350    0.0506    4.7645    0.8055    2.1445    0.2344    5.3586 +#> 50:    93.1464   -1.9377   -4.0185    0.0591    5.3658    0.8149    2.1523    0.2226    5.2483 +#> 51:    93.5217   -1.9246   -4.0272    0.0423    5.8579    0.8368    2.1596    0.2115    5.2746 +#> 52:    93.5512   -1.9257   -4.0204    0.0307    7.2345    0.8463    2.1903    0.2065    5.2405 +#> 53:    93.5400   -1.9428   -4.0300    0.0572    6.8728    0.8268    2.0807    0.2139    5.4127 +#> 54:    93.9868   -1.9502   -4.0129    0.0282    9.6651    0.8468    2.0823    0.2032    5.0396 +#> 55:    94.0505   -1.9393   -4.0073    0.0390   10.0994    0.8375    2.1018    0.2016    4.9147 +#> 56:    93.8010   -1.9493   -4.0026    0.0415   10.1741    0.8816    2.1117    0.2207    5.0723 +#> 57:    93.7596   -1.9762   -4.0154    0.0651    9.6654    0.8952    2.1662    0.2096    5.2311 +#> 58:    94.3399   -1.9353   -4.0095    0.0446    9.1821    0.9498    2.2103    0.1991    5.1009 +#> 59:    94.4036   -1.9283   -4.0279    0.0475    8.7230    0.9480    2.3209    0.1892    4.9930 +#> 60:    94.6395   -1.9260   -4.0348    0.0457    8.8651    0.9006    2.2565    0.1797    5.1751 +#> 61:    94.6499   -1.9291   -4.0216    0.0297    8.4218    0.9206    2.2220    0.1843    5.1124 +#> 62:    94.3847   -1.9010   -4.0300    0.0257    9.0591    0.9331    2.2795    0.1816    5.0834 +#> 63:    94.5510   -1.9120   -4.0116    0.0179    8.6061    0.9256    2.1791    0.1736    5.1513 +#> 64:    94.2510   -1.9213   -4.0184    0.0204    8.1758    0.9124    2.2131    0.1682    5.0698 +#> 65:    94.1173   -1.9044   -4.0279    0.0286    8.6773    0.9211    2.2202    0.1598    5.1120 +#> 66:    94.2093   -1.9098   -4.0206    0.0160    8.2435    0.9230    2.2475    0.1750    5.0175 +#> 67:    94.2814   -1.9339   -4.0041    0.0146    7.8313    0.9377    2.2350    0.1709    5.1478 +#> 68:    94.3001   -1.9079   -4.0127   -0.0103    7.4397    0.9163    2.2245    0.1640    5.2529 +#> 69:    94.3820   -1.9167   -4.0176    0.0296    7.0678    0.8704    2.2236    0.1888    5.2574 +#> 70:    94.2691   -1.9037   -4.0156    0.0388    6.7144    0.8601    2.1833    0.2128    5.0230 +#> 71:    94.3827   -1.9183   -4.0056    0.0485    6.3786    0.8491    2.2147    0.2345    5.1212 +#> 72:    94.3104   -1.9291   -4.0099    0.0330    6.0597    0.9007    2.2316    0.2255    5.3748 +#> 73:    94.1778   -1.9238   -4.0054    0.0222    5.7567    0.9479    2.2969    0.2142    5.2827 +#> 74:    94.1022   -1.9149   -4.0017    0.0497    5.4689    0.9305    2.3058    0.2035    5.3117 +#> 75:    94.2343   -1.9045   -4.0141    0.0189    5.1954    0.9141    2.3227    0.1933    5.1047 +#> 76:    94.0905   -1.9019   -4.0166    0.0170    5.5411    0.8978    2.3315    0.1836    5.1233 +#> 77:    94.2772   -1.9117   -4.0053    0.0584    5.2641    0.9238    2.3678    0.1866    4.9803 +#> 78:    94.7235   -1.9141   -4.0464    0.0758    5.0735    0.9308    2.3720    0.2062    5.0544 +#> 79:    94.4674   -1.9287   -4.0494    0.0724    5.7355    0.9063    2.3680    0.1959    5.0910 +#> 80:    93.9895   -1.9271   -4.0456    0.0366    7.2150    0.8857    2.4000    0.1861    5.0612 +#> 81:    94.3190   -1.9358   -4.0402    0.0506    7.5591    0.8891    2.3317    0.1814    4.8617 +#> 82:    94.1898   -1.9126   -4.0552    0.0595    7.6462    0.9157    2.3848    0.1854    4.7335 +#> 83:    94.2044   -1.9145   -4.0359    0.0295    7.8610    0.9451    2.4305    0.1871    4.9258 +#> 84:    93.8197   -1.9058   -3.9879   -0.0409   10.4218    0.9604    2.3848    0.2177    5.0619 +#> 85:    94.0219   -1.8957   -3.9753   -0.0441    9.9007    0.9637    2.4476    0.2219    5.0532 +#> 86:    94.0737   -1.8889   -3.9753   -0.0220    9.4056    0.9675    2.4476    0.2284    5.2694 +#> 87:    93.8548   -1.8755   -3.9707   -0.0024    8.9354    1.0066    2.4895    0.2340    5.4019 +#> 88:    93.7578   -1.9046   -3.9804   -0.0042    8.4886    0.9656    2.5006    0.2271    5.3724 +#> 89:    93.6848   -1.8936   -3.9689   -0.0396   10.6813    0.9805    2.4561    0.2254    5.2615 +#> 90:    93.3617   -1.9167   -3.9801   -0.0221   10.1472    1.0147    2.3589    0.2141    5.4193 +#> 91:    93.7419   -1.8964   -3.9888   -0.0363    9.6398    1.0077    2.3748    0.2066    5.3463 +#> 92:    93.8635   -1.8994   -3.9783   -0.0625    9.1578    1.0028    2.3282    0.2239    5.3026 +#> 93:    94.0864   -1.8648   -3.9426   -0.0813    8.8693    1.0348    2.3654    0.2127    5.2637 +#> 94:    93.9789   -1.8949   -3.9840   -0.0549   10.0871    1.0752    2.4551    0.2021    5.4225 +#> 95:    93.9008   -1.9141   -4.0080   -0.0644    9.8584    1.1599    2.4184    0.1920    5.2179 +#> 96:    93.6926   -2.0270   -3.8911   -0.0777   10.3968    1.1019    3.0518    0.1824    5.3163 +#> 97:    93.2478   -2.0074   -3.9034   -0.0427   10.7200    1.0468    2.9960    0.1732    5.5172 +#> 98:    93.4556   -2.0118   -3.9034   -0.0294   10.1840    1.0007    2.9960    0.1646    5.5887 +#> 99:    93.7548   -2.0076   -3.8894   -0.0157    9.7519    0.9507    3.0357    0.1569    5.7139 +#> 100:    93.8962   -2.0112   -3.8887   -0.0406    9.2643    0.9048    3.0369    0.1491    5.6145 +#> 101:    94.0889   -2.0221   -3.8612   -0.0145    8.8011    0.8728    3.1466    0.1499    5.4224 +#> 102:    94.5428   -2.0206   -3.8489    0.0115    8.3611    0.8292    3.1577    0.1473    5.6634 +#> 103:    94.4882   -2.0447   -3.8594    0.0514    7.9430    0.8202    3.1812    0.1562    5.5136 +#> 104:    94.3185   -2.0389   -3.8584    0.0258    8.3364    0.8346    3.1801    0.1484    5.3612 +#> 105:    94.2858   -2.0345   -3.8738   -0.0001   10.6008    0.8415    3.2251    0.1410    5.3359 +#> 106:    94.1264   -2.0415   -3.8756    0.0411   10.0707    0.8554    3.2182    0.1658    5.2280 +#> 107:    93.9801   -2.0574   -3.8674    0.0403   10.0269    0.8807    3.2628    0.1744    5.0299 +#> 108:    93.6911   -2.0295   -3.8693    0.0355    9.5255    0.8683    3.2708    0.1803    5.1880 +#> 109:    94.0646   -2.0260   -3.8806    0.0506    9.0493    0.8729    3.3140    0.1759    5.1927 +#> 110:    94.4591   -2.0378   -3.8962    0.0360    8.5968    0.8890    3.3076    0.1675    4.8961 +#> 111:    94.3748   -2.0319   -3.9053    0.0397    8.1670    0.8995    3.3254    0.1591    4.8066 +#> 112:    94.2370   -2.0338   -3.9017    0.0603    7.7586    0.8545    3.2484    0.1512    4.8856 +#> 113:    94.1242   -2.0237   -3.8954    0.0795    7.3707    0.8980    3.2127    0.1530    5.1859 +#> 114:    94.1452   -2.0298   -3.9197    0.0530    7.0021    0.8771    3.0744    0.1628    5.1303 +#> 115:    94.1403   -2.0410   -3.9093    0.0476    6.9173    0.9383    3.0223    0.1621    5.2563 +#> 116:    94.1612   -2.0424   -3.9063    0.0593    7.6367    0.8914    3.0420    0.1856    5.1566 +#> 117:    94.2018   -2.0488   -3.9041    0.0539    7.2549    0.8549    3.0204    0.1796    5.2119 +#> 118:    94.1315   -2.0579   -3.9139    0.0564    6.8922    0.8121    3.0180    0.1948    5.0302 +#> 119:    93.7398   -2.0747   -3.9202    0.0570    6.7510    0.7838    3.0084    0.1906    5.0863 +#> 120:    93.5945   -2.0511   -3.9388    0.0534    6.4134    0.7885    3.0100    0.2128    5.0597 +#> 121:    93.9845   -2.0613   -3.9338    0.0568    6.0928    0.7793    2.9944    0.2022    5.3179 +#> 122:    93.7779   -2.0831   -3.9338    0.0630    5.7881    0.7778    2.9944    0.1921    5.2399 +#> 123:    93.9128   -2.0623   -3.9135    0.0493    5.4987    0.8329    2.9729    0.1825    5.0752 +#> 124:    93.5190   -2.0804   -3.9315    0.0538    5.2238    0.8581    3.0220    0.1733    4.9713 +#> 125:    93.7427   -2.0649   -3.9309    0.0499    4.9626    0.8431    3.0260    0.1882    5.0718 +#> 126:    9.3540e+01  -2.0238e+00  -3.9006e+00  -6.8989e-05   4.7145e+00   8.3548e-01   2.9498e+00   1.9993e-01   5.2080e+00 +#> 127:    93.4310   -2.0496   -3.8898   -0.0173    4.4788    0.8864    2.9614    0.2302    5.6432 +#> 128:    93.7512   -2.0285   -3.9180   -0.0096    4.2548    0.8653    3.0768    0.2312    5.3906 +#> 129:    93.6908   -2.0718   -3.9113   -0.0194    4.0421    0.9022    3.0506    0.2386    5.3278 +#> 130:    93.5805   -1.9753   -4.0480    0.0065    3.8400    1.0388    2.8980    0.2276    5.2583 +#> 131:    93.8050   -1.9501   -4.0447    0.0040    3.8738    1.0957    2.7531    0.2162    5.3026 +#> 132:    93.6470   -1.9322   -4.0411    0.0048    3.6801    1.0618    2.6155    0.2159    5.2552 +#> 133:    94.2927   -1.9445   -4.0067   -0.0040    5.6903    1.0378    2.5425    0.2094    5.2430 +#> 134:    94.2814   -1.9286   -4.0021   -0.0144    6.9123    1.1316    2.5172    0.1990    5.3877 +#> 135:    94.0440   -1.9285   -4.0415    0.0254    6.5667    1.1416    2.4394    0.1975    5.3248 +#> 136:    94.0122   -1.9256   -4.0542    0.0156    6.6147    1.1511    2.4728    0.1954    5.2109 +#> 137:    93.8613   -1.9095   -4.0629   -0.0007    6.2840    1.1789    2.5078    0.2045    5.2876 +#> 138:    93.7410   -1.9345   -4.0788   -0.0005    6.0718    1.1507    2.5026    0.2086    5.3284 +#> 139:    93.6437   -1.9499   -4.0788    0.0159    5.7682    1.0932    2.5026    0.1982    5.4211 +#> 140:    93.4066   -1.9591   -4.0720    0.0472    6.9432    1.0883    2.4756    0.1947    5.4439 +#> 141:    93.6086   -1.9625   -4.1026    0.0785    7.7204    1.1027    2.3974    0.2084    5.6595 +#> 142:    93.8693   -1.9640   -4.1003    0.0670   10.1206    1.1196    2.2775    0.1980    5.4918 +#> 143:    93.6954   -1.9890   -4.0792    0.0824    9.6146    1.0636    2.3366    0.1881    5.2818 +#> 144:    93.5119   -1.9888   -4.0603    0.0645    9.1339    1.0557    2.3380    0.1787    5.3491 +#> 145:    93.3539   -1.9874   -4.0563    0.0764    8.6772    1.0340    2.3573    0.1697    5.4214 +#> 146:    93.2812   -1.9734   -4.0620    0.0674    8.4698    1.0504    2.3604    0.1641    5.5968 +#> 147:    93.8919   -1.9657   -4.0863    0.0596    8.0463    1.0288    2.4569    0.1668    5.3476 +#> 148:    93.7841   -1.9719   -4.0688    0.0880    9.4571    1.0719    2.4020    0.1692    5.1664 +#> 149:    93.6361   -1.9912   -4.0523    0.0895    8.9842    1.0183    2.5236    0.1671    5.5060 +#> 150:    93.6402   -1.9940   -4.0365    0.0730    9.1100    0.9674    2.3974    0.1669    5.5402 +#> 151:    93.4283   -1.9861   -4.0594    0.0805    8.6545    0.9567    2.4304    0.1652    5.3571 +#> 152:    93.7431   -1.9444   -4.0833    0.0612    9.2738    0.9789    2.3602    0.1571    5.0632 +#> 153:    93.7239   -1.9307   -4.0780    0.0780    8.9915    0.9995    2.3398    0.1600    5.1077 +#> 154:    94.0115   -1.9655   -4.0978    0.0859    9.0507    0.9894    2.3313    0.1628    5.2272 +#> 155:    94.3207   -1.9792   -4.0905    0.1114    8.5756    0.9988    2.3790    0.1873    5.0916 +#> 156:    94.3160   -1.9811   -4.0894    0.0906    5.0717    0.9968    2.3662    0.2003    4.9973 +#> 157:    94.3042   -1.9641   -4.1031    0.0966    5.1875    0.9911    2.3908    0.1943    4.9993 +#> 158:    94.0102   -1.9635   -4.1047    0.1003    5.2398    0.9834    2.3905    0.1809    5.2765 +#> 159:    94.5686   -2.0012   -4.1459    0.1212    6.8800    1.0317    2.5969    0.1215    5.3943 +#> 160:    94.2433   -1.9673   -4.1420    0.1165    8.0930    1.0286    2.5827    0.1092    5.2904 +#> 161:    94.1327   -1.9644   -4.1595    0.1196    9.5810    1.0786    2.7063    0.1123    5.1723 +#> 162:    94.0779   -1.9525   -4.1608    0.1103    6.6456    1.0562    2.7111    0.1277    5.0224 +#> 163:    94.0995   -1.9687   -4.1910    0.1320    8.2582    1.0701    2.8394    0.1232    5.1593 +#> 164:    94.4575   -1.9800   -4.1936    0.1208    6.4860    1.1603    2.8332    0.1254    5.1325 +#> 165:    94.3298   -1.9968   -4.1963    0.1506    5.7592    1.1484    2.9143    0.1196    5.3059 +#> 166:    94.2531   -1.9977   -4.1748    0.1566    5.3810    1.1262    2.8044    0.1142    5.2569 +#> 167:    94.4593   -1.9985   -4.1758    0.1435    7.0082    1.1247    2.8542    0.1125    5.4332 +#> 168:    94.0868   -2.0117   -4.2259    0.1345    7.5364    1.1395    3.0314    0.1137    5.2790 +#> 169:    93.7927   -2.0072   -4.2177    0.1276    6.7023    1.1292    3.0535    0.1135    5.1357 +#> 170:    93.8094   -2.0309   -4.2244    0.1298    6.7343    1.0975    3.2542    0.1065    5.2372 +#> 171:    93.7263   -2.0349   -4.2115    0.1204    8.2555    1.0626    3.2292    0.1020    5.4467 +#> 172:    93.3380   -2.0022   -4.2262    0.1193    6.6891    1.0822    3.2762    0.0989    5.3641 +#> 173:    93.5334   -2.0224   -4.2488    0.1145    6.0685    1.0328    3.4694    0.0978    5.4780 +#> 174:    93.1805   -2.0207   -4.2344    0.1025    6.1648    1.0612    3.2079    0.0976    5.2570 +#> 175:    93.3423   -2.0255   -4.1644    0.1070    5.9418    1.0701    2.8555    0.1059    5.3415 +#> 176:    93.3387   -2.0192   -4.1473    0.0786    4.7649    1.0508    2.9102    0.1101    5.3381 +#> 177:    93.4640   -2.0177   -4.1504    0.0709    4.5672    1.0590    2.9447    0.1103    5.3245 +#> 178:    93.4930   -2.0147   -4.1568    0.0777    4.5325    1.1063    2.7902    0.1247    5.2036 +#> 179:    93.7455   -2.0101   -4.1580    0.0823    4.2094    1.1020    2.8075    0.1246    5.1184 +#> 180:    93.4838   -1.9989   -4.1631    0.0868    3.6999    1.0782    2.8790    0.1280    5.2677 +#> 181:    93.5207   -1.9975   -4.1926    0.1013    4.5693    1.0706    2.9216    0.1375    5.3783 +#> 182:    93.6695   -2.0251   -4.1717    0.0809    3.8373    1.0341    2.9954    0.1328    5.3774 +#> 183:    93.7238   -2.0095   -4.1222    0.0861    3.8354    1.0138    2.7536    0.1512    5.2600 +#> 184:    93.7106   -2.0032   -4.1244    0.0853    4.1968    1.0250    2.6849    0.1590    5.1996 +#> 185:    93.2862   -2.0028   -4.1628    0.0743    5.4347    1.0373    2.6528    0.1640    5.3269 +#> 186:    93.5567   -2.0040   -4.1438    0.0807    6.5150    1.0562    2.6486    0.1589    5.4158 +#> 187:    93.7894   -2.0023   -4.1137    0.1288    5.1401    1.0207    2.5217    0.1745    5.6484 +#> 188:    93.4911   -1.8872   -4.2405    0.1324    4.3165    0.8176    2.2483    0.1870    5.5214 +#> 189:    93.9184   -1.8982   -4.2936    0.1606    3.7995    0.8383    2.2555    0.1766    5.6320 +#> 190:    93.7487   -1.8878   -4.2872    0.1651    3.6764    0.8860    2.2088    0.1748    5.4829 +#> 191:    93.8940   -1.8715   -4.3244    0.1650    2.8119    0.9024    2.1141    0.1903    5.7768 +#> 192:    93.9378   -1.9105   -4.3010    0.1954    2.5239    0.8232    2.1331    0.1831    5.8507 +#> 193:    94.5609   -1.8766   -4.3303    0.2042    3.9595    0.8413    2.0662    0.2095    5.6119 +#> 194:    94.7465   -1.9036   -4.3363    0.2112    5.0784    0.8176    2.1071    0.2149    5.6051 +#> 195:    94.4761   -1.8852   -4.3375    0.2021    4.7026    0.7615    2.0556    0.2333    5.3997 +#> 196:    93.7678   -1.9037   -4.3676    0.2273    5.6976    0.7824    2.1487    0.2478    5.2531 +#> 197:    94.0788   -1.9208   -4.3670    0.2203    3.8352    0.7644    2.0893    0.2354    5.2196 +#> 198:    94.3424   -1.8825   -4.3288    0.2075    4.9447    0.7304    1.9525    0.2502    5.1387 +#> 199:    94.0613   -1.9911   -4.1676    0.2379    3.6248    0.6126    2.8184    0.2801    5.3421 +#> 200:    94.4814   -2.0045   -4.1782    0.2245    3.5637    0.6427    2.7132    0.3014    5.3984 +#> 201:    94.3903   -1.9973   -4.1773    0.2165    3.4686    0.6525    2.7040    0.2901    5.4178 +#> 202:    94.1840   -1.9928   -4.1742    0.2117    3.6920    0.6576    2.7046    0.2870    5.3743 +#> 203:    94.1832   -1.9865   -4.1670    0.2025    3.8180    0.6618    2.7097    0.2758    5.3389 +#> 204:    94.1550   -1.9832   -4.1631    0.1955    3.9449    0.6613    2.6998    0.2691    5.2948 +#> 205:    94.1853   -1.9824   -4.1602    0.1948    4.1753    0.6598    2.6909    0.2695    5.2556 +#> 206:    94.1775   -1.9800   -4.1564    0.1918    4.1962    0.6581    2.6778    0.2678    5.2316 +#> 207:    94.1754   -1.9736   -4.1532    0.1864    4.2107    0.6580    2.6645    0.2694    5.2553 +#> 208:    94.1591   -1.9695   -4.1498    0.1811    4.2621    0.6596    2.6537    0.2712    5.2543 +#> 209:    94.1225   -1.9675   -4.1454    0.1744    4.1977    0.6651    2.6519    0.2687    5.3075 +#> 210:    94.1047   -1.9628   -4.1424    0.1666    4.1981    0.6663    2.6570    0.2717    5.3160 +#> 211:    94.1161   -1.9587   -4.1398    0.1600    4.1858    0.6674    2.6614    0.2728    5.3307 +#> 212:    94.0976   -1.9551   -4.1379    0.1529    4.2002    0.6693    2.6737    0.2709    5.3288 +#> 213:    94.0845   -1.9511   -4.1365    0.1449    4.1381    0.6710    2.6727    0.2680    5.3322 +#> 214:    94.0582   -1.9493   -4.1351    0.1394    4.0630    0.6733    2.6729    0.2663    5.3504 +#> 215:    94.0449   -1.9493   -4.1338    0.1340    3.9607    0.6733    2.6719    0.2641    5.3681 +#> 216:    94.0030   -1.9496   -4.1321    0.1299    4.0200    0.6742    2.6727    0.2622    5.3619 +#> 217:    93.9560   -1.9514   -4.1315    0.1267    4.0642    0.6778    2.6764    0.2612    5.3584 +#> 218:    93.9485   -1.9520   -4.1297    0.1235    4.1822    0.6795    2.6745    0.2599    5.3471 +#> 219:    93.9650   -1.9523   -4.1289    0.1211    4.3244    0.6807    2.6851    0.2591    5.3531 +#> 220:    93.9961   -1.9519   -4.1284    0.1193    4.4276    0.6837    2.6936    0.2577    5.3528 +#> 221:    94.0080   -1.9517   -4.1275    0.1183    4.5303    0.6866    2.6979    0.2578    5.3538 +#> 222:    94.0143   -1.9505   -4.1272    0.1159    4.5882    0.6887    2.7039    0.2570    5.3489 +#> 223:    94.0189   -1.9491   -4.1269    0.1138    4.5674    0.6910    2.7092    0.2562    5.3424 +#> 224:    94.0136   -1.9464   -4.1270    0.1126    4.5582    0.6923    2.7161    0.2548    5.3421 +#> 225:    94.0118   -1.9444   -4.1276    0.1112    4.6000    0.6929    2.7269    0.2533    5.3525 +#> 226:    93.9884   -1.9428   -4.1260    0.1099    4.6720    0.6935    2.7428    0.2530    5.3427 +#> 227:    93.9657   -1.9416   -4.1247    0.1097    4.7197    0.6937    2.7581    0.2529    5.3455 +#> 228:    93.9586   -1.9410   -4.1234    0.1105    4.7731    0.6945    2.7801    0.2528    5.3408 +#> 229:    93.9574   -1.9409   -4.1215    0.1102    4.7898    0.6963    2.7970    0.2518    5.3366 +#> 230:    93.9495   -1.9410   -4.1201    0.1096    4.7966    0.6982    2.8117    0.2505    5.3301 +#> 231:    93.9378   -1.9416   -4.1193    0.1093    4.7947    0.6993    2.8274    0.2492    5.3270 +#> 232:    93.9362   -1.9421   -4.1184    0.1086    4.8132    0.7011    2.8411    0.2477    5.3191 +#> 233:    93.9412   -1.9424   -4.1167    0.1074    4.8188    0.7028    2.8514    0.2459    5.3134 +#> 234:    93.9436   -1.9424   -4.1152    0.1061    4.7865    0.7040    2.8618    0.2440    5.3153 +#> 235:    93.9413   -1.9425   -4.1134    0.1051    4.8017    0.7062    2.8679    0.2426    5.3137 +#> 236:    93.9480   -1.9423   -4.1119    0.1033    4.8537    0.7085    2.8730    0.2416    5.3089 +#> 237:    93.9560   -1.9408   -4.1105    0.1020    4.9091    0.7098    2.8777    0.2411    5.2970 +#> 238:    93.9610   -1.9393   -4.1091    0.1003    4.9394    0.7113    2.8824    0.2409    5.2902 +#> 239:    93.9634   -1.9378   -4.1080    0.0993    4.9304    0.7121    2.8875    0.2407    5.2868 +#> 240:    93.9727   -1.9360   -4.1063    0.0980    4.9651    0.7128    2.8918    0.2404    5.2825 +#> 241:    93.9736   -1.9348   -4.1045    0.0969    5.0080    0.7139    2.8917    0.2395    5.2751 +#> 242:    93.9779   -1.9334   -4.1030    0.0959    5.0856    0.7150    2.8923    0.2389    5.2656 +#> 243:    93.9807   -1.9322   -4.1015    0.0953    5.1490    0.7158    2.8929    0.2385    5.2560 +#> 244:    93.9858   -1.9317   -4.0998    0.0942    5.2172    0.7171    2.8922    0.2380    5.2514 +#> 245:    93.9798   -1.9309   -4.0984    0.0920    5.2903    0.7172    2.8892    0.2383    5.2502 +#> 246:    93.9782   -1.9296   -4.0971    0.0903    5.3132    0.7180    2.8866    0.2384    5.2482 +#> 247:    93.9809   -1.9290   -4.0958    0.0886    5.3342    0.7188    2.8839    0.2386    5.2466 +#> 248:    93.9731   -1.9281   -4.0944    0.0873    5.3438    0.7187    2.8812    0.2393    5.2480 +#> 249:    93.9594   -1.9273   -4.0932    0.0852    5.3449    0.7181    2.8781    0.2401    5.2489 +#> 250:    93.9508   -1.9261   -4.0919    0.0835    5.3194    0.7173    2.8752    0.2406    5.2495 +#> 251:    93.9421   -1.9248   -4.0903    0.0812    5.3051    0.7180    2.8714    0.2410    5.2480 +#> 252:    93.9291   -1.9240   -4.0888    0.0793    5.3122    0.7175    2.8681    0.2415    5.2447 +#> 253:    93.9233   -1.9232   -4.0876    0.0777    5.3289    0.7170    2.8636    0.2420    5.2423 +#> 254:    93.9189   -1.9217   -4.0863    0.0760    5.3708    0.7165    2.8593    0.2425    5.2395 +#> 255:    93.9130   -1.9205   -4.0850    0.0743    5.4093    0.7157    2.8548    0.2428    5.2393 +#> 256:    93.9031   -1.9195   -4.0837    0.0731    5.4400    0.7153    2.8501    0.2432    5.2417 +#> 257:    93.9079   -1.9183   -4.0821    0.0720    5.4612    0.7138    2.8454    0.2434    5.2469 +#> 258:    93.9117   -1.9173   -4.0807    0.0711    5.4979    0.7126    2.8412    0.2439    5.2491 +#> 259:    93.9199   -1.9164   -4.0797    0.0708    5.5145    0.7107    2.8364    0.2449    5.2481 +#> 260:    93.9300   -1.9150   -4.0782    0.0699    5.5067    0.7086    2.8316    0.2453    5.2501 +#> 261:    93.9382   -1.9140   -4.0768    0.0689    5.5191    0.7070    2.8271    0.2455    5.2518 +#> 262:    93.9467   -1.9126   -4.0755    0.0681    5.5261    0.7049    2.8227    0.2454    5.2564 +#> 263:    93.9594   -1.9110   -4.0739    0.0667    5.5365    0.7039    2.8196    0.2455    5.2613 +#> 264:    93.9697   -1.9096   -4.0718    0.0650    5.5589    0.7033    2.8174    0.2459    5.2628 +#> 265:    93.9784   -1.9080   -4.0698    0.0631    5.5668    0.7025    2.8153    0.2458    5.2627 +#> 266:    93.9865   -1.9068   -4.0686    0.0615    5.5819    0.7012    2.8114    0.2456    5.2638 +#> 267:    93.9940   -1.9055   -4.0673    0.0599    5.5887    0.7000    2.8076    0.2452    5.2644 +#> 268:    93.9991   -1.9045   -4.0660    0.0584    5.5989    0.6986    2.8039    0.2453    5.2657 +#> 269:    94.0034   -1.9036   -4.0649    0.0573    5.6276    0.6972    2.7990    0.2453    5.2648 +#> 270:    94.0104   -1.9028   -4.0639    0.0561    5.6456    0.6959    2.7945    0.2453    5.2614 +#> 271:    94.0190   -1.9022   -4.0629    0.0550    5.6409    0.6950    2.7900    0.2451    5.2606 +#> 272:    94.0244   -1.9017   -4.0623    0.0542    5.6452    0.6944    2.7863    0.2449    5.2626 +#> 273:    94.0312   -1.9010   -4.0620    0.0531    5.6581    0.6939    2.7821    0.2450    5.2620 +#> 274:    94.0387   -1.9004   -4.0615    0.0520    5.6569    0.6932    2.7774    0.2456    5.2657 +#> 275:    94.0381   -1.9000   -4.0611    0.0510    5.6525    0.6938    2.7727    0.2463    5.2662 +#> 276:    94.0426   -1.8994   -4.0606    0.0498    5.6664    0.6955    2.7682    0.2472    5.2687 +#> 277:    94.0437   -1.8988   -4.0604    0.0486    5.6705    0.6969    2.7646    0.2479    5.2699 +#> 278:    94.0470   -1.8982   -4.0606    0.0476    5.6495    0.6983    2.7620    0.2487    5.2741 +#> 279:    94.0475   -1.8980   -4.0608    0.0470    5.6561    0.6990    2.7590    0.2494    5.2749 +#> 280:    94.0485   -1.8977   -4.0609    0.0462    5.6510    0.6997    2.7565    0.2501    5.2755 +#> 281:    94.0473   -1.8975   -4.0609    0.0456    5.6493    0.6998    2.7529    0.2504    5.2764 +#> 282:    94.0448   -1.8972   -4.0608    0.0448    5.6523    0.7003    2.7495    0.2506    5.2773 +#> 283:    94.0392   -1.8975   -4.0608    0.0440    5.6543    0.7011    2.7463    0.2507    5.2772 +#> 284:    94.0315   -1.8976   -4.0609    0.0432    5.6575    0.7017    2.7431    0.2506    5.2792 +#> 285:    94.0262   -1.8980   -4.0611    0.0427    5.6632    0.7018    2.7402    0.2505    5.2805 +#> 286:    94.0255   -1.8986   -4.0615    0.0427    5.6683    0.7018    2.7371    0.2507    5.2795 +#> 287:    94.0234   -1.8992   -4.0619    0.0427    5.6533    0.7014    2.7340    0.2513    5.2803 +#> 288:    94.0227   -1.9000   -4.0631    0.0431    5.6485    0.7016    2.7352    0.2517    5.2802 +#> 289:    94.0179   -1.9008   -4.0641    0.0433    5.6553    0.7016    2.7358    0.2523    5.2808 +#> 290:    94.0135   -1.9017   -4.0650    0.0435    5.6776    0.7015    2.7363    0.2528    5.2839 +#> 291:    94.0101   -1.9025   -4.0660    0.0440    5.7028    0.7012    2.7372    0.2531    5.2883 +#> 292:    94.0066   -1.9034   -4.0672    0.0442    5.7277    0.7007    2.7369    0.2536    5.2890 +#> 293:    94.0002   -1.9042   -4.0681    0.0441    5.7462    0.7004    2.7366    0.2538    5.2906 +#> 294:    93.9917   -1.9049   -4.0690    0.0440    5.7707    0.7001    2.7363    0.2539    5.2927 +#> 295:    93.9864   -1.9055   -4.0703    0.0440    5.7816    0.7001    2.7362    0.2542    5.2950 +#> 296:    93.9807   -1.9060   -4.0716    0.0441    5.7884    0.7000    2.7362    0.2545    5.2974 +#> 297:    93.9749   -1.9063   -4.0729    0.0442    5.7926    0.7005    2.7362    0.2548    5.3032 +#> 298:    93.9700   -1.9070   -4.0735    0.0442    5.7850    0.7005    2.7323    0.2553    5.3067 +#> 299:    93.9668   -1.9075   -4.0740    0.0442    5.7688    0.7000    2.7293    0.2558    5.3100 +#> 300:    93.9654   -1.9080   -4.0742    0.0441    5.7541    0.6993    2.7260    0.2563    5.3123 +#> 301:    93.9678   -1.9082   -4.0744    0.0439    5.7383    0.6980    2.7217    0.2568    5.3165 +#> 302:    93.9687   -1.9087   -4.0747    0.0435    5.7262    0.6977    2.7175    0.2574    5.3179 +#> 303:    93.9675   -1.9090   -4.0751    0.0430    5.7050    0.6966    2.7137    0.2580    5.3197 +#> 304:    93.9641   -1.9092   -4.0755    0.0428    5.6977    0.6954    2.7097    0.2583    5.3215 +#> 305:    93.9624   -1.9095   -4.0759    0.0427    5.6986    0.6947    2.7061    0.2585    5.3200 +#> 306:    93.9623   -1.9098   -4.0763    0.0428    5.7065    0.6941    2.7025    0.2587    5.3174 +#> 307:    93.9635   -1.9105   -4.0767    0.0430    5.7229    0.6938    2.6992    0.2585    5.3153 +#> 308:    93.9658   -1.9112   -4.0778    0.0435    5.7340    0.6935    2.6992    0.2580    5.3131 +#> 309:    93.9671   -1.9119   -4.0784    0.0440    5.7510    0.6929    2.6990    0.2576    5.3113 +#> 310:    93.9669   -1.9124   -4.0791    0.0441    5.7560    0.6926    2.6988    0.2569    5.3128 +#> 311:    93.9670   -1.9129   -4.0795    0.0443    5.7557    0.6922    2.6972    0.2563    5.3134 +#> 312:    93.9689   -1.9132   -4.0799    0.0446    5.7554    0.6921    2.6959    0.2559    5.3125 +#> 313:    93.9685   -1.9136   -4.0806    0.0448    5.7489    0.6921    2.6960    0.2553    5.3110 +#> 314:    93.9673   -1.9138   -4.0812    0.0447    5.7562    0.6925    2.6964    0.2545    5.3107 +#> 315:    93.9635   -1.9139   -4.0818    0.0447    5.7392    0.6931    2.6971    0.2539    5.3127 +#> 316:    93.9581   -1.9139   -4.0823    0.0442    5.7376    0.6937    2.6974    0.2532    5.3140 +#> 317:    93.9541   -1.9140   -4.0826    0.0437    5.7426    0.6946    2.6968    0.2526    5.3155 +#> 318:    93.9521   -1.9141   -4.0829    0.0432    5.7378    0.6951    2.6970    0.2521    5.3158 +#> 319:    93.9520   -1.9139   -4.0829    0.0423    5.7366    0.6959    2.6977    0.2516    5.3138 +#> 320:    93.9538   -1.9136   -4.0828    0.0414    5.7416    0.6964    2.6980    0.2510    5.3135 +#> 321:    93.9557   -1.9132   -4.0827    0.0406    5.7539    0.6969    2.6983    0.2503    5.3141 +#> 322:    93.9568   -1.9130   -4.0825    0.0399    5.7460    0.6971    2.6988    0.2497    5.3155 +#> 323:    93.9594   -1.9125   -4.0824    0.0393    5.7274    0.6972    2.6993    0.2492    5.3166 +#> 324:    93.9608   -1.9122   -4.0823    0.0386    5.7161    0.6973    2.7006    0.2487    5.3156 +#> 325:    93.9601   -1.9120   -4.0822    0.0379    5.7036    0.6973    2.7019    0.2483    5.3161 +#> 326:    93.9602   -1.9118   -4.0822    0.0372    5.6817    0.6977    2.7023    0.2480    5.3182 +#> 327:    93.9615   -1.9115   -4.0820    0.0364    5.6682    0.6986    2.7024    0.2476    5.3203 +#> 328:    93.9601   -1.9114   -4.0814    0.0355    5.6746    0.6999    2.7012    0.2472    5.3224 +#> 329:    93.9580   -1.9112   -4.0809    0.0348    5.6670    0.7014    2.7003    0.2469    5.3229 +#> 330:    93.9577   -1.9111   -4.0808    0.0341    5.6613    0.7023    2.7007    0.2466    5.3224 +#> 331:    93.9570   -1.9109   -4.0808    0.0334    5.6607    0.7029    2.7020    0.2463    5.3223 +#> 332:    93.9599   -1.9106   -4.0806    0.0328    5.6610    0.7037    2.7023    0.2459    5.3212 +#> 333:    93.9638   -1.9102   -4.0806    0.0320    5.6751    0.7043    2.7029    0.2458    5.3187 +#> 334:    93.9672   -1.9096   -4.0805    0.0311    5.6801    0.7051    2.7033    0.2456    5.3168 +#> 335:    93.9714   -1.9093   -4.0805    0.0302    5.6855    0.7058    2.7038    0.2453    5.3156 +#> 336:    93.9755   -1.9090   -4.0804    0.0294    5.6979    0.7062    2.7040    0.2452    5.3158 +#> 337:    93.9796   -1.9088   -4.0803    0.0286    5.7025    0.7069    2.7038    0.2447    5.3159 +#> 338:    93.9845   -1.9087   -4.0803    0.0278    5.7100    0.7074    2.7042    0.2443    5.3166 +#> 339:    93.9889   -1.9084   -4.0803    0.0273    5.7123    0.7080    2.7045    0.2438    5.3165 +#> 340:    93.9916   -1.9082   -4.0801    0.0267    5.7289    0.7086    2.7045    0.2434    5.3167 +#> 341:    93.9938   -1.9080   -4.0800    0.0263    5.7602    0.7091    2.7048    0.2430    5.3173 +#> 342:    93.9971   -1.9076   -4.0799    0.0257    5.7951    0.7096    2.7046    0.2427    5.3171 +#> 343:    93.9979   -1.9073   -4.0794    0.0251    5.8156    0.7101    2.7044    0.2424    5.3157 +#> 344:    94.0015   -1.9070   -4.0792    0.0246    5.8378    0.7105    2.7047    0.2420    5.3153 +#> 345:    94.0040   -1.9067   -4.0789    0.0241    5.8559    0.7111    2.7046    0.2414    5.3149 +#> 346:    94.0073   -1.9066   -4.0787    0.0237    5.8810    0.7119    2.7045    0.2409    5.3131 +#> 347:    94.0084   -1.9066   -4.0785    0.0232    5.8815    0.7127    2.7044    0.2406    5.3125 +#> 348:    94.0084   -1.9067   -4.0785    0.0229    5.8870    0.7132    2.7051    0.2403    5.3110 +#> 349:    94.0079   -1.9068   -4.0785    0.0225    5.8882    0.7136    2.7048    0.2401    5.3127 +#> 350:    94.0075   -1.9067   -4.0785    0.0220    5.8857    0.7137    2.7045    0.2396    5.3133 +#> 351:    94.0068   -1.9068   -4.0786    0.0218    5.8849    0.7140    2.7041    0.2393    5.3135 +#> 352:    94.0059   -1.9067   -4.0788    0.0216    5.8778    0.7141    2.7039    0.2390    5.3139 +#> 353:    94.0073   -1.9067   -4.0792    0.0215    5.8709    0.7140    2.7047    0.2388    5.3129 +#> 354:    94.0078   -1.9065   -4.0795    0.0214    5.8623    0.7139    2.7054    0.2386    5.3135 +#> 355:    94.0065   -1.9064   -4.0795    0.0211    5.8637    0.7137    2.7048    0.2383    5.3122 +#> 356:    94.0080   -1.9063   -4.0796    0.0209    5.8613    0.7134    2.7041    0.2380    5.3121 +#> 357:    94.0105   -1.9061   -4.0797    0.0206    5.8613    0.7132    2.7036    0.2379    5.3119 +#> 358:    94.0114   -1.9059   -4.0798    0.0205    5.8539    0.7130    2.7029    0.2377    5.3107 +#> 359:    94.0154   -1.9058   -4.0799    0.0203    5.8559    0.7126    2.7024    0.2374    5.3112 +#> 360:    94.0165   -1.9057   -4.0800    0.0201    5.8544    0.7124    2.7020    0.2372    5.3099 +#> 361:    94.0198   -1.9056   -4.0802    0.0199    5.8511    0.7121    2.7018    0.2370    5.3089 +#> 362:    94.0224   -1.9054   -4.0811    0.0198    5.8509    0.7122    2.7071    0.2368    5.3077 +#> 363:    94.0241   -1.9053   -4.0821    0.0197    5.8582    0.7121    2.7135    0.2366    5.3073 +#> 364:    94.0254   -1.9052   -4.0824    0.0195    5.8606    0.7122    2.7147    0.2362    5.3079 +#> 365:    94.0276   -1.9052   -4.0831    0.0195    5.8668    0.7119    2.7197    0.2359    5.3081 +#> 366:    94.0276   -1.9052   -4.0836    0.0195    5.8765    0.7121    2.7217    0.2357    5.3074 +#> 367:    94.0276   -1.9051   -4.0842    0.0194    5.8627    0.7120    2.7240    0.2354    5.3083 +#> 368:    94.0292   -1.9050   -4.0847    0.0195    5.8579    0.7120    2.7254    0.2352    5.3096 +#> 369:    94.0289   -1.9049   -4.0852    0.0195    5.8590    0.7122    2.7271    0.2350    5.3095 +#> 370:    94.0300   -1.9049   -4.0855    0.0194    5.8712    0.7123    2.7284    0.2348    5.3094 +#> 371:    94.0309   -1.9050   -4.0858    0.0194    5.8766    0.7122    2.7295    0.2346    5.3095 +#> 372:    94.0306   -1.9050   -4.0860    0.0196    5.8800    0.7121    2.7306    0.2344    5.3101 +#> 373:    94.0315   -1.9051   -4.0861    0.0196    5.8840    0.7120    2.7305    0.2341    5.3091 +#> 374:    94.0323   -1.9052   -4.0862    0.0194    5.8755    0.7120    2.7301    0.2337    5.3101 +#> 375:    94.0344   -1.9055   -4.0863    0.0193    5.8744    0.7122    2.7308    0.2333    5.3121 +#> 376:    94.0341   -1.9056   -4.0865    0.0191    5.8738    0.7122    2.7311    0.2327    5.3136 +#> 377:    94.0320   -1.9055   -4.0868    0.0188    5.8703    0.7121    2.7311    0.2322    5.3161 +#> 378:    94.0291   -1.9058   -4.0869    0.0186    5.8771    0.7124    2.7311    0.2317    5.3187 +#> 379:    94.0273   -1.9062   -4.0872    0.0184    5.8829    0.7127    2.7316    0.2312    5.3206 +#> 380:    94.0259   -1.9067   -4.0875    0.0181    5.8786    0.7130    2.7321    0.2306    5.3235 +#> 381:    94.0231   -1.9068   -4.0877    0.0178    5.8716    0.7132    2.7331    0.2300    5.3231 +#> 382:    94.0210   -1.9069   -4.0879    0.0172    5.8636    0.7134    2.7340    0.2294    5.3240 +#> 383:    94.0189   -1.9070   -4.0880    0.0167    5.8596    0.7140    2.7351    0.2287    5.3246 +#> 384:    94.0171   -1.9070   -4.0882    0.0161    5.8588    0.7147    2.7365    0.2281    5.3251 +#> 385:    94.0141   -1.9070   -4.0880    0.0154    5.8659    0.7152    2.7365    0.2276    5.3263 +#> 386:    94.0116   -1.9070   -4.0879    0.0148    5.8785    0.7158    2.7364    0.2270    5.3272 +#> 387:    94.0090   -1.9070   -4.0877    0.0142    5.8874    0.7164    2.7363    0.2264    5.3286 +#> 388:    94.0068   -1.9069   -4.0875    0.0136    5.9016    0.7169    2.7364    0.2258    5.3299 +#> 389:    94.0063   -1.9067   -4.0873    0.0131    5.9114    0.7175    2.7363    0.2253    5.3332 +#> 390:    94.0074   -1.9064   -4.0872    0.0126    5.9258    0.7175    2.7362    0.2249    5.3353 +#> 391:    94.0092   -1.9061   -4.0870    0.0121    5.9426    0.7174    2.7359    0.2245    5.3370 +#> 392:    94.0112   -1.9060   -4.0870    0.0119    5.9499    0.7175    2.7358    0.2242    5.3375 +#> 393:    94.0120   -1.9058   -4.0869    0.0116    5.9514    0.7177    2.7351    0.2237    5.3364 +#> 394:    94.0137   -1.9056   -4.0867    0.0112    5.9560    0.7179    2.7342    0.2234    5.3371 +#> 395:    94.0150   -1.9054   -4.0866    0.0109    5.9566    0.7184    2.7340    0.2229    5.3376 +#> 396:    94.0175   -1.9054   -4.0866    0.0106    5.9564    0.7189    2.7341    0.2226    5.3370 +#> 397:    94.0195   -1.9055   -4.0866    0.0104    5.9447    0.7193    2.7344    0.2223    5.3378 +#> 398:    94.0201   -1.9056   -4.0867    0.0102    5.9353    0.7197    2.7348    0.2220    5.3380 +#> 399:    94.0204   -1.9056   -4.0868    0.0101    5.9282    0.7201    2.7350    0.2217    5.3387 +#> 400:    94.0198   -1.9058   -4.0867    0.0099    5.9243    0.7206    2.7348    0.2214    5.3383 +#> 401:    94.0194   -1.9059   -4.0867    0.0097    5.9225    0.7210    2.7345    0.2211    5.3379 +#> 402:    94.0176   -1.9060   -4.0868    0.0096    5.9237    0.7215    2.7342    0.2209    5.3370 +#> 403:    94.0172   -1.9061   -4.0869    0.0095    5.9259    0.7220    2.7337    0.2206    5.3371 +#> 404:    94.0147   -1.9062   -4.0870    0.0093    5.9322    0.7226    2.7330    0.2203    5.3382 +#> 405:    94.0131   -1.9065   -4.0872    0.0092    5.9354    0.7232    2.7326    0.2202    5.3385 +#> 406:    94.0117   -1.9066   -4.0872    0.0091    5.9399    0.7237    2.7318    0.2200    5.3388 +#> 407:    94.0114   -1.9069   -4.0871    0.0090    5.9495    0.7238    2.7314    0.2199    5.3397 +#> 408:    94.0133   -1.9071   -4.0870    0.0089    5.9505    0.7238    2.7310    0.2197    5.3401 +#> 409:    94.0159   -1.9074   -4.0868    0.0090    5.9523    0.7237    2.7309    0.2196    5.3417 +#> 410:    94.0171   -1.9076   -4.0864    0.0087    5.9503    0.7235    2.7307    0.2195    5.3449 +#> 411:    94.0193   -1.9078   -4.0862    0.0086    5.9528    0.7234    2.7304    0.2194    5.3476 +#> 412:    94.0193   -1.9082   -4.0860    0.0088    5.9516    0.7236    2.7303    0.2195    5.3509 +#> 413:    94.0192   -1.9085   -4.0859    0.0087    5.9491    0.7235    2.7302    0.2195    5.3517 +#> 414:    94.0175   -1.9086   -4.0860    0.0087    5.9453    0.7237    2.7297    0.2196    5.3523 +#> 415:    94.0156   -1.9088   -4.0861    0.0088    5.9408    0.7238    2.7289    0.2196    5.3528 +#> 416:    94.0145   -1.9090   -4.0861    0.0088    5.9442    0.7236    2.7281    0.2197    5.3540 +#> 417:    94.0140   -1.9093   -4.0862    0.0092    5.9459    0.7235    2.7274    0.2198    5.3549 +#> 418:    94.0144   -1.9097   -4.0864    0.0095    5.9495    0.7233    2.7269    0.2199    5.3551 +#> 419:    94.0142   -1.9102   -4.0866    0.0099    5.9425    0.7233    2.7265    0.2200    5.3555 +#> 420:    94.0134   -1.9107   -4.0867    0.0102    5.9338    0.7234    2.7260    0.2200    5.3563 +#> 421:    94.0096   -1.9113   -4.0869    0.0105    5.9272    0.7236    2.7260    0.2200    5.3571 +#> 422:    94.0069   -1.9118   -4.0872    0.0108    5.9238    0.7238    2.7261    0.2200    5.3576 +#> 423:    94.0034   -1.9124   -4.0874    0.0111    5.9217    0.7240    2.7260    0.2200    5.3579 +#> 424:    94.0009   -1.9129   -4.0876    0.0114    5.9258    0.7240    2.7259    0.2200    5.3578 +#> 425:    94.0000   -1.9134   -4.0879    0.0119    5.9330    0.7240    2.7258    0.2199    5.3572 +#> 426:    93.9991   -1.9138   -4.0881    0.0122    5.9526    0.7243    2.7256    0.2198    5.3572 +#> 427:    93.9969   -1.9140   -4.0882    0.0124    5.9692    0.7247    2.7258    0.2196    5.3587 +#> 428:    93.9940   -1.9143   -4.0883    0.0124    5.9777    0.7247    2.7259    0.2194    5.3591 +#> 429:    93.9935   -1.9145   -4.0882    0.0123    5.9781    0.7247    2.7260    0.2192    5.3601 +#> 430:    93.9925   -1.9147   -4.0881    0.0122    5.9772    0.7247    2.7260    0.2190    5.3606 +#> 431:    93.9928   -1.9150   -4.0879    0.0120    5.9824    0.7249    2.7262    0.2189    5.3616 +#> 432:    93.9930   -1.9152   -4.0879    0.0120    5.9797    0.7251    2.7267    0.2188    5.3618 +#> 433:    93.9930   -1.9154   -4.0878    0.0119    5.9785    0.7254    2.7271    0.2187    5.3626 +#> 434:    93.9930   -1.9156   -4.0878    0.0120    5.9711    0.7255    2.7273    0.2186    5.3638 +#> 435:    93.9935   -1.9157   -4.0878    0.0120    5.9659    0.7255    2.7269    0.2186    5.3643 +#> 436:    93.9951   -1.9158   -4.0876    0.0120    5.9570    0.7253    2.7263    0.2184    5.3667 +#> 437:    93.9980   -1.9158   -4.0874    0.0119    5.9492    0.7252    2.7259    0.2182    5.3680 +#> 438:    93.9999   -1.9158   -4.0872    0.0117    5.9361    0.7250    2.7255    0.2179    5.3700 +#> 439:    93.9990   -1.9159   -4.0868    0.0115    5.9312    0.7249    2.7247    0.2177    5.3700 +#> 440:    93.9986   -1.9160   -4.0865    0.0114    5.9280    0.7248    2.7235    0.2175    5.3698 +#> 441:    93.9996   -1.9160   -4.0863    0.0114    5.9248    0.7246    2.7222    0.2173    5.3696 +#> 442:    94.0001   -1.9160   -4.0861    0.0114    5.9266    0.7243    2.7213    0.2171    5.3702 +#> 443:    94.0004   -1.9159   -4.0859    0.0113    5.9228    0.7241    2.7202    0.2169    5.3707 +#> 444:    93.9989   -1.9161   -4.0858    0.0113    5.9200    0.7239    2.7194    0.2166    5.3722 +#> 445:    93.9971   -1.9162   -4.0857    0.0114    5.9257    0.7238    2.7182    0.2165    5.3736 +#> 446:    93.9970   -1.9164   -4.0858    0.0114    5.9286    0.7238    2.7177    0.2164    5.3738 +#> 447:    93.9959   -1.9163   -4.0858    0.0113    5.9407    0.7237    2.7166    0.2165    5.3731 +#> 448:    93.9947   -1.9163   -4.0856    0.0113    5.9442    0.7237    2.7159    0.2167    5.3723 +#> 449:    93.9948   -1.9164   -4.0854    0.0114    5.9386    0.7234    2.7151    0.2170    5.3730 +#> 450:    93.9937   -1.9164   -4.0853    0.0115    5.9368    0.7231    2.7142    0.2172    5.3732 +#> 451:    93.9929   -1.9164   -4.0851    0.0114    5.9312    0.7229    2.7135    0.2173    5.3735 +#> 452:    93.9923   -1.9163   -4.0850    0.0112    5.9288    0.7227    2.7121    0.2175    5.3747 +#> 453:    93.9918   -1.9162   -4.0849    0.0111    5.9339    0.7225    2.7112    0.2178    5.3759 +#> 454:    93.9912   -1.9164   -4.0849    0.0111    5.9355    0.7224    2.7103    0.2181    5.3777 +#> 455:    93.9902   -1.9164   -4.0849    0.0111    5.9412    0.7223    2.7097    0.2183    5.3784 +#> 456:    93.9894   -1.9164   -4.0848    0.0110    5.9554    0.7223    2.7076    0.2186    5.3801 +#> 457:    93.9902   -1.9161   -4.0846    0.0110    5.9675    0.7219    2.7054    0.2188    5.3807 +#> 458:    93.9907   -1.9159   -4.0845    0.0109    5.9710    0.7216    2.7032    0.2191    5.3815 +#> 459:    93.9926   -1.9157   -4.0844    0.0108    5.9751    0.7213    2.7011    0.2193    5.3817 +#> 460:    93.9930   -1.9155   -4.0845    0.0107    5.9788    0.7210    2.6985    0.2197    5.3818 +#> 461:    93.9933   -1.9153   -4.0845    0.0106    5.9809    0.7208    2.6959    0.2200    5.3822 +#> 462:    93.9941   -1.9153   -4.0845    0.0105    5.9904    0.7205    2.6935    0.2203    5.3820 +#> 463:    93.9945   -1.9152   -4.0844    0.0105    5.9971    0.7201    2.6913    0.2206    5.3817 +#> 464:    93.9942   -1.9151   -4.0844    0.0104    6.0010    0.7198    2.6892    0.2209    5.3818 +#> 465:    93.9931   -1.9152   -4.0843    0.0103    6.0113    0.7193    2.6872    0.2212    5.3823 +#> 466:    93.9937   -1.9152   -4.0840    0.0101    6.0145    0.7188    2.6853    0.2215    5.3828 +#> 467:    93.9939   -1.9152   -4.0838    0.0099    6.0189    0.7182    2.6835    0.2218    5.3832 +#> 468:    93.9933   -1.9153   -4.0835    0.0097    6.0247    0.7177    2.6818    0.2221    5.3830 +#> 469:    93.9933   -1.9153   -4.0832    0.0095    6.0251    0.7173    2.6801    0.2224    5.3822 +#> 470:    93.9914   -1.9153   -4.0829    0.0092    6.0332    0.7169    2.6785    0.2226    5.3823 +#> 471:    93.9894   -1.9153   -4.0826    0.0089    6.0455    0.7165    2.6769    0.2230    5.3822 +#> 472:    93.9869   -1.9152   -4.0824    0.0086    6.0454    0.7161    2.6754    0.2232    5.3836 +#> 473:    93.9852   -1.9152   -4.0822    0.0084    6.0501    0.7159    2.6740    0.2234    5.3832 +#> 474:    93.9829   -1.9152   -4.0821    0.0082    6.0579    0.7155    2.6725    0.2235    5.3831 +#> 475:    93.9826   -1.9152   -4.0819    0.0082    6.0661    0.7150    2.6711    0.2238    5.3829 +#> 476:    93.9837   -1.9152   -4.0819    0.0082    6.0774    0.7147    2.6696    0.2241    5.3824 +#> 477:    93.9852   -1.9151   -4.0819    0.0081    6.0890    0.7145    2.6681    0.2244    5.3817 +#> 478:    93.9851   -1.9151   -4.0820    0.0080    6.0957    0.7144    2.6665    0.2246    5.3827 +#> 479:    93.9857   -1.9150   -4.0820    0.0079    6.0981    0.7144    2.6651    0.2250    5.3838 +#> 480:    93.9856   -1.9151   -4.0821    0.0080    6.0944    0.7144    2.6638    0.2255    5.3854 +#> 481:    93.9864   -1.9152   -4.0823    0.0081    6.0912    0.7144    2.6624    0.2258    5.3865 +#> 482:    93.9870   -1.9153   -4.0825    0.0081    6.0954    0.7142    2.6613    0.2262    5.3864 +#> 483:    93.9888   -1.9153   -4.0826    0.0081    6.0888    0.7141    2.6602    0.2267    5.3870 +#> 484:    93.9903   -1.9154   -4.0828    0.0082    6.0848    0.7139    2.6592    0.2272    5.3861 +#> 485:    93.9914   -1.9154   -4.0831    0.0085    6.0851    0.7138    2.6586    0.2275    5.3858 +#> 486:    93.9909   -1.9154   -4.0834    0.0088    6.0824    0.7137    2.6581    0.2278    5.3850 +#> 487:    93.9899   -1.9155   -4.0838    0.0091    6.0870    0.7137    2.6577    0.2281    5.3838 +#> 488:    93.9882   -1.9156   -4.0842    0.0095    6.0877    0.7135    2.6574    0.2284    5.3835 +#> 489:    93.9865   -1.9163   -4.0841    0.0099    6.0839    0.7139    2.6581    0.2287    5.3835 +#> 490:    93.9859   -1.9170   -4.0841    0.0104    6.0783    0.7143    2.6587    0.2290    5.3830 +#> 491:    93.9847   -1.9177   -4.0838    0.0108    6.0773    0.7148    2.6596    0.2293    5.3824 +#> 492:    93.9840   -1.9183   -4.0836    0.0110    6.0833    0.7152    2.6606    0.2295    5.3817 +#> 493:    93.9832   -1.9188   -4.0834    0.0113    6.0832    0.7157    2.6613    0.2297    5.3814 +#> 494:    93.9824   -1.9195   -4.0832    0.0115    6.0859    0.7163    2.6620    0.2299    5.3819 +#> 495:    93.9813   -1.9200   -4.0830    0.0117    6.0878    0.7169    2.6633    0.2300    5.3820 +#> 496:    93.9798   -1.9206   -4.0827    0.0118    6.0871    0.7173    2.6644    0.2302    5.3825 +#> 497:    93.9787   -1.9213   -4.0824    0.0120    6.0856    0.7178    2.6653    0.2304    5.3834 +#> 498:    93.9771   -1.9220   -4.0822    0.0123    6.0759    0.7181    2.6660    0.2308    5.3850 +#> 499:    93.9744   -1.9225   -4.0819    0.0125    6.0692    0.7183    2.6666    0.2311    5.3868 +#> 500:    93.9728   -1.9229   -4.0816    0.0129    6.0609    0.7184    2.6675    0.2314    5.3884</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_dfop_focei</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation +#> F: Forward difference gradient approximation +#> C: Central difference gradient approximation +#> M: Mixed forward and central difference gradient approximation +#> Unscaled parameters for Omegas=chol(solve(omega)); +#> Diagonals are transformed, as specified by foceiControl(diagXform=) +#> |-----+---------------+-----------+-----------+-----------+-----------| +#> |    #| Objective Fun |  parent_0 |    log_k1 |    log_k2 |  g_qlogis | +#> |.....................|     sigma |        o1 |        o2 |        o3 | +#> <span style='text-decoration: underline;'>|.....................|        o4 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    1</span>|     319.20504 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     319.20504 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     319.20504</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    G|    Gill Diff. |     17.25 |  -0.06517 |   -0.2231 |   0.05323 | +#> |.....................|    -31.06 |     10.54 |    -5.521 |     3.149 | +#> <span style='text-decoration: underline;'>|.....................|    -10.19 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    2</span>|     930.59637 |    0.5572 |   -0.9500 |   -0.9943 |   -0.9135 | +#> |.....................|  -0.07749 |    -1.170 |   -0.7520 |   -0.9767 | +#> <span style='text-decoration: underline;'>|.....................|   -0.6292 |...........|...........|...........|</span> +#> |    U|     930.59637 |     52.42 |    -1.832 |    -4.205 |    0.1099 | +#> |.....................|     2.723 |    0.5378 |     1.159 |    0.8352 | +#> <span style='text-decoration: underline;'>|.....................|     1.457 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     930.59637</span> |     52.42 |    0.1600 |   0.01492 |    0.5274 | +#> |.....................|     2.723 |    0.5378 |     1.159 |    0.8352 | +#> <span style='text-decoration: underline;'>|.....................|     1.457 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    3</span>|     366.81009 |    0.9557 |   -0.9515 |   -0.9994 |   -0.9122 | +#> |.....................|   -0.7950 |   -0.9264 |   -0.8795 |   -0.9039 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8647 |...........|...........|...........|</span> +#> |    U|     366.81009 |     89.92 |    -1.834 |    -4.210 |    0.1100 | +#> |.....................|     2.024 |    0.7174 |     1.030 |    0.9013 | +#> <span style='text-decoration: underline;'>|.....................|     1.185 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     366.81009</span> |     89.92 |    0.1598 |   0.01484 |    0.5275 | +#> |.....................|     2.024 |    0.7174 |     1.030 |    0.9013 | +#> <span style='text-decoration: underline;'>|.....................|     1.185 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    4</span>|     354.05577 |    0.9956 |   -0.9516 |   -0.9999 |   -0.9121 | +#> |.....................|   -0.8667 |   -0.9020 |   -0.8922 |   -0.8966 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8882 |...........|...........|...........|</span> +#> |    U|     354.05577 |     93.67 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.954 |    0.7353 |     1.017 |    0.9079 | +#> <span style='text-decoration: underline;'>|.....................|     1.158 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.05577</span> |     93.67 |    0.1597 |   0.01484 |    0.5275 | +#> |.....................|     1.954 |    0.7353 |     1.017 |    0.9079 | +#> <span style='text-decoration: underline;'>|.....................|     1.158 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    5</span>|     354.18966 |    0.9996 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8739 |   -0.8996 |   -0.8935 |   -0.8959 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8906 |...........|...........|...........|</span> +#> |    U|     354.18966 |     94.04 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7371 |     1.015 |    0.9086 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.18966</span> |     94.04 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7371 |     1.015 |    0.9086 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    6</span>|     354.21855 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8746 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     354.21855 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.21855</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    7</span>|     354.22159 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     354.22159 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.22159</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    8</span>|     354.22201 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     354.22201 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.22201</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    9</span>|     354.22204 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     354.22204 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.22204</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   10</span>|     354.22204 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     354.22204 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.22204</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   11</span>|     354.22204 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     354.22204 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.22204</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   12</span>|     354.22204 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     354.22204 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.22204</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   13</span>|     354.22204 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     354.22204 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.22204</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   14</span>|     354.22204 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|     354.22204 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     354.22204</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   15</span>|     354.22200 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|       354.222 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>       354.222</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   16</span>|     354.22200 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|       354.222 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>       354.222</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   17</span>|     354.22200 |     1.000 |   -0.9516 |    -1.000 |   -0.9121 | +#> |.....................|   -0.8747 |   -0.8993 |   -0.8937 |   -0.8958 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8908 |...........|...........|...........|</span> +#> |    U|       354.222 |     94.08 |    -1.834 |    -4.211 |    0.1100 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>       354.222</span> |     94.08 |    0.1597 |   0.01483 |    0.5275 | +#> |.....................|     1.947 |    0.7373 |     1.015 |    0.9087 | +#> <span style='text-decoration: underline;'>|.....................|     1.155 |...........|...........|...........|</span> +#> calculating covariance matrix +#> done</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#> <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#> <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'> +<span class='va'>f_nlmixr_hs_saem</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"HS"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> 1:    93.5894   -2.4029   -3.9815    2.0318    3.0448    0.8581    1.0844    0.3182   21.0327 +#> 2:    93.5363   -2.3652   -3.9374    1.9473    2.8925    0.8152    1.0302    0.3023   14.7642 +#> 3:    93.3061   -2.3950   -3.8630    1.9537    2.7479    0.7744    1.0729    0.2872   12.2332 +#> 4:    93.4757   -2.3967   -3.8509    1.9504    2.6105    0.7357    1.1580    0.2729   11.6140 +#> 5:    93.6045   -2.3957   -3.8593    1.9732    2.4800    0.6989    1.1001    0.2592   11.0776 +#> 6:    93.6138   -2.4089   -3.9577    1.9557    2.8119    0.6640    1.0451    0.2463   11.5001 +#> 7:    93.4125   -2.3879   -3.8924    1.9950    3.1015    0.6308    1.0649    0.2339   10.6133 +#> 8:    93.5798   -2.3850   -3.9314    1.9888    3.0019    0.5992    1.0116    0.2222   10.4278 +#> 9:    93.1493   -2.3918   -3.9011    2.0040    4.3802    0.5693    1.0723    0.2111   10.2172 +#> 10:    93.5411   -2.3906   -3.8778    1.9664    4.5606    0.5408    1.0616    0.2006   10.1244 +#> 11:    93.3749   -2.4011   -3.8586    1.9682    4.3326    0.5138    1.0696    0.1905   10.1145 +#> 12:    93.0136   -2.3943   -3.8530    1.9633    4.1160    0.4881    1.0606    0.1810   10.0091 +#> 13:    93.1809   -2.4059   -3.9088    1.9821    3.9102    0.5448    1.0076    0.1720    9.8058 +#> 14:    93.3891   -2.4107   -3.9285    1.9894    3.7147    0.5504    0.9810    0.1634   10.2784 +#> 15:    93.4041   -2.4114   -3.9711    2.0216    4.4250    0.6070    0.9495    0.1552    9.4036 +#> 16:    93.4244   -2.4191   -4.0366    2.0511    4.2037    0.6035    0.9020    0.1474   10.0835 +#> 17:    93.6295   -2.4103   -4.0143    2.0509    4.0926    0.5997    0.8599    0.1401    9.7686 +#> 18:    93.6653   -2.4165   -3.9724    2.0405    3.8880    0.5979    0.9046    0.1331    9.6299 +#> 19:    93.6510   -2.4088   -3.9969    2.0328    3.6936    0.5934    0.9181    0.1264    9.3236 +#> 20:    93.6048   -2.4117   -3.9552    2.0268    3.9084    0.5879    1.0078    0.1201    9.6618 +#> 21:    94.0961   -2.4193   -3.9812    2.0552    3.7456    0.5743    0.9574    0.1141    9.6510 +#> 22:    93.9157   -2.4202   -3.9102    2.0263    5.0447    0.6198    0.9742    0.1294    9.6463 +#> 23:    94.1580   -2.4286   -3.9223    2.0441    4.7925    0.5981    0.9312    0.1230    9.8346 +#> 24:    94.4405   -2.4141   -3.9564    2.0383    4.5529    0.5925    0.9173    0.1168   10.6161 +#> 25:    93.8846   -2.3958   -4.0122    2.0053    4.9956    0.5677    0.8715    0.1173   10.3823 +#> 26:    93.6815   -2.3835   -3.9801    1.9872    5.6625    0.5514    0.8368    0.1114    9.8283 +#> 27:    93.6463   -2.3779   -3.9731    1.9833    5.3794    0.5566    0.8650    0.1059    9.5439 +#> 28:    93.7974   -2.3980   -3.9583    1.9657    6.4804    0.5366    0.8756    0.1006    9.7998 +#> 29:    93.6921   -2.4221   -3.8982    1.9701    6.1564    0.6070    0.9713    0.0955    9.2988 +#> 30:    93.3112   -2.4200   -3.8916    1.9702    6.6968    0.6110    0.9538    0.0908    9.1812 +#> 31:    93.9900   -2.4282   -3.9448    2.0257    6.3620    0.6071    0.9061    0.0862    9.4865 +#> 32:    93.8014   -2.4241   -3.9364    2.0053    6.8497    0.6173    0.8608    0.0819    9.5589 +#> 33:    94.0330   -2.4215   -3.9888    2.0034    6.5072    0.6142    0.8178    0.0778   10.2023 +#> 34:    93.5811   -2.4215   -3.9917    2.0170    6.1819    0.5907    0.8314    0.0842   10.2204 +#> 35:    93.9308   -2.4210   -3.8798    2.0046    6.7593    0.5877    1.1132    0.0800    9.2384 +#> 36:    94.0000   -2.4325   -3.8970    2.0457    6.4213    0.5886    1.0731    0.0835    8.8987 +#> 37:    93.4010   -2.4325   -3.9306    2.0550    7.2268    0.5886    1.0220    0.0969    9.1261 +#> 38:    93.3896   -2.4291   -3.9250    2.0148    6.8655    0.5885    0.9709    0.1039    9.2989 +#> 39:    93.3821   -2.4349   -3.9148    2.0368    6.5222    0.6059    0.9647    0.1095    9.2864 +#> 40:    93.1382   -2.4685   -3.9384    2.1083    8.6249    0.6287    1.0265    0.1066    9.6411 +#> 41:    92.7963   -2.4643   -3.8992    2.0585    8.1937    0.6376    1.1117    0.1234    9.4738 +#> 42:    92.7160   -2.4545   -3.9652    2.0680    7.7840    0.6068    1.0561    0.1173    9.4776 +#> 43:    93.0070   -2.4360   -4.0223    2.0624    7.9556    0.5840    1.0033    0.1114    9.7197 +#> 44:    93.3836   -2.4207   -4.0739    2.0872    7.5578    0.5788    0.9531    0.1058   10.3515 +#> 45:    93.3240   -2.4382   -4.0210    2.1103    7.1799    0.6211    0.9055    0.1165   10.5050 +#> 46:    93.1921   -2.4438   -4.0330    2.0842    7.3884    0.6159    0.8602    0.1107   10.7251 +#> 47:    92.9710   -2.4351   -4.0155    2.1117    7.0189    0.5998    0.8519    0.1091   10.2972 +#> 48:    93.0129   -2.4395   -3.9677    2.0986    6.6680    0.5804    0.8775    0.1058   10.8515 +#> 49:    92.6562   -2.4474   -4.0295    2.0877    6.3346    0.6338    0.8723    0.1155   10.0641 +#> 50:    92.5101   -2.4612   -4.0295    2.0845    6.0179    0.6197    0.8742    0.1097    9.9048 +#> 51:    92.9446   -2.4615   -3.9927    2.1199    5.7170    0.6165    0.9311    0.1042    9.8383 +#> 52:    92.8362   -2.4525   -3.9682    2.0787    5.4311    0.6329    0.9647    0.0990    9.0726 +#> 53:    92.8579   -2.4598   -3.9324    2.0529    5.1596    0.6057    0.9192    0.0940    9.5677 +#> 54:    92.8667   -2.4858   -3.9104    2.0454    5.0661    0.6304    1.0025    0.0893    9.0977 +#> 55:    93.2327   -2.4650   -3.8323    2.0628    6.8188    0.6499    1.1366    0.0852    8.5677 +#> 56:    92.9319   -2.4794   -3.8376    2.0490    6.4778    0.6635    1.1141    0.1064    9.0723 +#> 57:    93.1126   -2.5128   -3.8223    2.0834    6.1539    0.6637    1.1361    0.1010    9.2678 +#> 58:    93.5085   -2.4894   -3.8723    2.0650    5.8462    0.6745    1.0793    0.0960    9.0367 +#> 59:    93.7882   -2.4614   -3.9241    2.0707    5.5539    0.6898    1.0254    0.0912    8.7466 +#> 60:    94.1492   -2.4386   -3.9415    2.0599    5.2762    0.6711    0.9741    0.0932    8.4466 +#> 61:    94.4215   -2.4272   -3.9647    2.0482    5.0124    0.6549    0.9254    0.0911    8.7870 +#> 62:    94.3607   -2.4053   -3.9633    1.9966    4.7618    0.6534    0.8878    0.1221    9.0404 +#> 63:    94.3958   -2.4179   -3.9386    2.0041    4.5237    0.6462    0.9360    0.1245    9.0491 +#> 64:    94.5204   -2.4175   -3.9411    2.0106    4.2975    0.6532    0.9657    0.1183    8.9115 +#> 65:    94.5674   -2.4117   -3.9701    2.0546    4.0826    0.6438    0.9238    0.1247    8.7293 +#> 66:    94.2199   -2.4337   -3.9298    2.0287    4.7686    0.6582    0.9262    0.1185    9.0519 +#> 67:    94.2756   -2.4305   -3.9706    2.0782    4.5301    0.6512    0.8799    0.1126    9.1397 +#> 68:    94.4195   -2.4193   -4.0049    2.0643    4.3036    0.6804    0.8359    0.1220    9.5306 +#> 69:    94.5255   -2.4183   -4.0119    2.0733    4.0884    0.6784    0.8577    0.1297    9.4535 +#> 70:    94.5668   -2.4117   -3.9662    2.0762    4.2149    0.6511    0.9325    0.1475    9.1637 +#> 71:    94.7464   -2.4147   -3.9937    2.0942    4.2418    0.6571    0.9524    0.1540    9.6576 +#> 72:    94.4869   -2.4160   -4.0050    2.1075    4.8520    0.6687    1.0119    0.1488    9.4234 +#> 73:    94.3747   -2.4423   -4.0072    2.1484    6.4364    0.6948    1.0011    0.1438    9.1490 +#> 74:    94.3997   -2.4464   -4.0147    2.1965    6.1146    0.7030    1.0566    0.1521    9.0697 +#> 75:    94.4187   -2.4566   -3.9611    2.1337    5.8089    0.6866    1.1666    0.1656    8.9436 +#> 76:    94.4381   -2.4502   -3.9816    2.1209    5.6488    0.7266    1.1449    0.1573    8.9289 +#> 77:    94.6421   -2.4446   -3.9603    2.1544    5.3663    0.6968    1.2087    0.1662    8.5186 +#> 78:    94.8397   -2.4420   -3.9690    2.1380    5.0980    0.6969    1.1833    0.1578    8.9071 +#> 79:    94.4296   -2.4547   -3.9576    2.1569    6.3095    0.6829    1.1850    0.1544    9.1345 +#> 80:    93.9628   -2.4530   -3.9312    2.0956    8.5844    0.6880    1.2548    0.1835    8.6936 +#> 81:    94.2900   -2.4687   -3.8570    2.0779    9.0596    0.6993    1.2012    0.1743    8.9092 +#> 82:    93.9652   -2.4742   -3.9261    2.0913    8.6066    0.6970    1.1667    0.1656    8.4359 +#> 83:    94.0828   -2.4739   -3.8603    2.0587    8.1763    0.7123    1.2575    0.1638    8.5431 +#> 84:    93.5926   -2.4645   -3.8993    2.0391    9.8721    0.7178    1.1947    0.1556    8.5623 +#> 85:    93.7052   -2.4692   -3.8411    2.0448    9.3785    0.7251    1.1349    0.1478    8.5558 +#> 86:    93.8043   -2.4726   -3.9028    2.0745    8.9096    0.7064    1.0782    0.1404    9.1308 +#> 87:    93.5704   -2.4836   -3.8694    2.0999   12.3224    0.7284    1.0922    0.1334    8.8645 +#> 88:    93.5715   -2.4827   -3.9202    2.0861   11.7063    0.7541    1.0376    0.1267    9.2433 +#> 89:    93.6894   -2.4720   -3.8964    2.1093   12.4610    0.7727    1.0218    0.1325    9.0321 +#> 90:    93.2881   -2.4787   -3.9464    2.1137   11.8380    0.7850    0.9707    0.1258    8.8265 +#> 91:    93.8454   -2.4626   -3.9566    2.1181   11.2461    0.7620    0.9579    0.1396    8.8279 +#> 92:    93.8268   -2.4639   -3.8951    2.0936   10.6838    0.7618    1.1083    0.1553    8.4609 +#> 93:    94.0622   -2.4853   -3.8531    2.0740   10.1496    0.7493    1.1237    0.1596    8.2057 +#> 94:    93.6190   -2.4843   -3.8857    2.0625    9.6421    0.7596    1.1104    0.1686    8.3522 +#> 95:    93.6352   -2.4725   -3.9243    2.0582    9.1600    0.7732    1.0549    0.1694    8.3993 +#> 96:    93.5291   -2.4707   -3.9318    2.0612    8.7020    0.7853    1.0639    0.1609    8.2908 +#> 97:    93.0626   -2.4639   -3.9255    2.0887    8.4092    0.7717    1.1477    0.1685    8.2710 +#> 98:    93.3712   -2.4677   -3.9642    2.1350    7.9888    0.7703    1.0903    0.1921    8.5468 +#> 99:    93.7108   -2.4848   -3.9775    2.1733    7.5893    0.7490    1.0367    0.1825    8.5629 +#> 100:    94.1114   -2.4867   -4.0111    2.1705    7.2099    0.7446    0.9849    0.1832    8.6964 +#> 101:    93.7547   -2.4897   -3.9793    2.1817    7.1755    0.7513    0.9899    0.1774    8.5077 +#> 102:    93.8818   -2.5029   -3.9929    2.2028    6.8167    0.7137    1.0045    0.1685    8.3706 +#> 103:    94.0026   -2.5094   -3.9680    2.2059    6.4759    0.7073    1.0498    0.1601    8.3087 +#> 104:    93.5946   -2.5260   -3.9640    2.2209    6.2674    0.7688    1.0548    0.1531    8.3444 +#> 105:    93.3863   -2.5431   -4.0087    2.2211    7.1040    0.7987    1.0020    0.1454    8.2210 +#> 106:    93.1536   -2.5365   -4.0243    2.2457    6.7488    0.7909    0.9519    0.1389    8.0950 +#> 107:    93.2220   -2.5446   -4.0016    2.2508    6.4114    0.8108    0.9483    0.1364    8.5629 +#> 108:    93.0778   -2.5470   -3.9678    2.2329    6.4774    0.8077    1.0081    0.1850    9.2740 +#> 109:    93.8925   -2.5453   -3.9560    2.2193    6.1535    0.8079    1.0608    0.2111    9.2651 +#> 110:    94.3171   -2.5179   -4.0040    2.2145    5.8458    0.7874    1.0520    0.2135    8.9788 +#> 111:    94.0655   -2.5069   -3.9752    2.2009    5.5536    0.8056    1.1206    0.2192    8.9410 +#> 112:    93.8552   -2.4994   -3.9791    2.1597    5.2759    0.8012    1.0646    0.2365    8.9570 +#> 113:    93.5190   -2.5053   -3.9760    2.1727    5.0121    0.8326    1.0114    0.2246    9.2154 +#> 114:    93.5531   -2.5083   -3.9569    2.1636    4.7615    0.8255    0.9879    0.2134    9.1197 +#> 115:    93.4780   -2.5217   -3.9467    2.1529    4.5234    0.8314    1.0392    0.2027    8.7850 +#> 116:    93.5707   -2.5216   -3.9098    2.1667    4.2972    0.8261    1.1213    0.1926    9.2991 +#> 117:    93.6610   -2.5445   -3.8775    2.1473    4.0824    0.8122    1.1232    0.1830    9.2054 +#> 118:    93.4315   -2.5251   -3.9166    2.1365    4.6012    0.7933    1.0690    0.1738    8.8061 +#> 119:    93.2491   -2.5265   -3.9236    2.1671    5.0672    0.8046    1.0711    0.1709    8.2293 +#> 120:    93.2605   -2.5327   -3.9714    2.1984    4.8138    0.8025    1.0176    0.1623    7.9088 +#> 121:    93.5831   -2.5448   -3.9669    2.2195    4.5731    0.8079    0.9921    0.1542    8.2211 +#> 122:    93.3408   -2.5460   -3.9710    2.2235    4.6838    0.8053    1.0377    0.1658    8.2934 +#> 123:    93.4581   -2.5395   -3.9487    2.2279    4.4496    0.8298    1.0338    0.1732    8.2859 +#> 124:    93.0562   -2.5565   -3.9587    2.2299    4.2272    0.8590    1.0531    0.1964    8.1244 +#> 125:    93.0576   -2.5660   -3.9434    2.2457    4.0158    0.8564    1.0768    0.1866    8.3730 +#> 126:    92.8366   -2.5571   -3.9463    2.2096    3.8150    0.8551    1.0476    0.1773    8.3820 +#> 127:    92.9607   -2.5595   -3.9773    2.2325    3.6243    0.8497    0.9952    0.1684    9.2276 +#> 128:    93.0655   -2.5463   -3.9731    2.1901    3.4430    0.8903    0.9454    0.1600    8.8096 +#> 129:    93.0669   -2.5467   -3.9713    2.2204    3.2709    0.8905    0.9234    0.1520    8.8686 +#> 130:    93.2036   -2.5524   -3.9702    2.2070    3.1073    0.8719    0.9514    0.1578    8.8433 +#> 131:    93.3565   -2.5544   -3.9809    2.1654    2.9520    0.8777    0.9117    0.1764    8.9770 +#> 132:    93.0371   -2.5364   -3.9250    2.1761    2.8044    0.8338    1.0518    0.1731    8.5405 +#> 133:    93.5727   -2.5388   -3.8759    2.1580    3.6769    0.8616    1.0981    0.1858    8.5303 +#> 134:    93.4962   -2.5341   -3.9006    2.1394    4.3695    0.8904    1.0432    0.1765    8.7067 +#> 135:    93.3219   -2.5413   -3.8922    2.1888    4.1510    0.8971    1.0435    0.1857    8.4977 +#> 136:    93.3582   -2.5477   -3.8412    2.1957    3.9435    0.8816    1.1954    0.2102    8.1330 +#> 137:    93.2791   -2.5313   -3.8936    2.1570    3.7463    0.8875    1.1356    0.1997    8.3094 +#> 138:    93.0890   -2.5428   -3.8910    2.1414    3.5590    0.8826    1.1008    0.2120    8.2653 +#> 139:    93.2404   -2.5407   -3.8926    2.1727    3.3810    0.8829    1.1068    0.2014    8.3739 +#> 140:    93.0870   -2.5514   -3.9131    2.2182    3.2120    0.8712    1.0870    0.1914    8.6179 +#> 141:    93.2715   -2.5499   -3.9460    2.2216    3.4383    0.8470    1.0662    0.1900    8.4034 +#> 142:    93.1915   -2.5583   -3.9990    2.2475    5.2653    0.8607    1.0129    0.2061    7.9891 +#> 143:    93.3709   -2.5650   -3.9422    2.2369    5.0020    0.8748    1.2043    0.2248    8.0084 +#> 144:    93.2092   -2.5706   -3.9016    2.1930    4.7519    0.8667    1.1977    0.2179    8.2733 +#> 145:    92.6640   -2.5733   -3.9225    2.1859    4.5143    0.8636    1.1695    0.2070    8.6212 +#> 146:    92.7581   -2.5695   -3.9055    2.1801    5.4209    0.8589    1.1678    0.1967    8.9378 +#> 147:    93.1089   -2.5707   -3.9825    2.2113    7.6640    0.8710    1.1094    0.1934    9.0543 +#> 148:    93.0803   -2.5672   -3.9461    2.2066    9.9043    0.8648    1.1043    0.1863    8.6209 +#> 149:    92.6332   -2.5468   -3.9425    2.1881    9.4091    0.8278    1.1313    0.1769    8.4652 +#> 150:    92.9068   -2.5440   -3.9531    2.2005    8.9386    0.8189    1.1104    0.1681    8.4196 +#> 151:    92.7324   -2.5497   -3.9648    2.2387    8.4917    0.8205    1.1421    0.1597    8.4228 +#> 152:    93.0394   -2.5282   -3.9916    2.2251    3.9029    0.8190    1.0320    0.1612    8.3453 +#> 153:    93.3137   -2.5268   -3.9993    2.2294    3.7951    0.8187    1.0311    0.1780    8.4258 +#> 154:    93.6677   -2.5264   -3.9756    2.2615    4.8704    0.8177    1.1355    0.1799    8.7204 +#> 155:    94.0822   -2.5409   -4.0456    2.2507    5.1202    0.8032    0.9930    0.1613    8.8844 +#> 156:    93.6289   -2.5388   -4.1150    2.2777    4.6367    0.8080    0.8336    0.1817    8.4370 +#> 157:    93.9171   -2.5327   -4.0218    2.2696    3.1121    0.8069    1.0394    0.1800    8.5006 +#> 158:    94.0010   -2.5357   -4.0036    2.2695    3.1485    0.8087    1.1132    0.2048    8.7160 +#> 159:    94.1277   -2.5541   -3.9717    2.2773    5.1432    0.8088    1.0732    0.1980    8.5378 +#> 160:    94.0075   -2.5436   -3.9550    2.2796    4.7826    0.8286    1.0820    0.1953    8.3885 +#> 161:    93.6793   -2.5471   -3.9675    2.2713    3.9366    0.8603    1.0682    0.1972    8.3026 +#> 162:    93.2649   -2.5429   -3.9564    2.2406    2.7349    0.8469    1.0889    0.1929    8.3765 +#> 163:    93.2072   -2.5519   -3.9786    2.2535    3.1500    0.8361    1.1240    0.1997    8.4527 +#> 164:    93.4059   -2.5471   -4.0398    2.2257    2.8708    0.8284    1.0541    0.2105    8.4984 +#> 165:    93.2579   -2.5407   -3.9665    2.2305    2.7397    0.8251    1.1355    0.2302    7.9794 +#> 166:    93.4900   -2.5465   -3.9565    2.2316    1.9775    0.8359    1.0939    0.2243    8.1279 +#> 167:    93.3825   -2.5567   -3.9784    2.2276    2.3737    0.8251    1.0894    0.2254    8.6657 +#> 168:    93.2568   -2.5681   -3.9993    2.2818    2.6721    0.8237    1.1398    0.2207    8.4894 +#> 169:    93.0484   -2.5468   -3.9693    2.2586    1.9105    0.8518    1.1911    0.1917    8.5627 +#> 170:    93.2703   -2.5730   -3.9059    2.2512    2.1481    0.8068    1.3267    0.2198    8.2260 +#> 171:    93.2041   -2.5720   -3.8992    2.2227    2.7790    0.8045    1.2387    0.2059    8.1401 +#> 172:    92.7596   -2.5722   -3.8802    2.2537    2.9977    0.8049    1.2807    0.1831    8.3375 +#> 173:    92.7734   -2.5716   -3.8811    2.1987    3.0176    0.8063    1.3070    0.2285    8.5061 +#> 174:    92.5561   -2.5700   -3.9236    2.2351    3.0286    0.8250    1.2000    0.2200    8.0725 +#> 175:    92.5072   -2.5724   -3.9968    2.2479    2.4287    0.8333    1.0169    0.2235    8.2600 +#> 176:    92.3531   -2.5787   -3.9977    2.2407    2.9999    0.8167    0.9813    0.2451    8.7505 +#> 177:    92.4672   -2.5746   -4.0095    2.2733    2.8040    0.8361    0.9794    0.2363    8.5176 +#> 178:    92.5747   -2.5981   -3.9921    2.2835    1.8203    0.8411    0.9795    0.2112    8.8034 +#> 179:    92.7101   -2.5766   -3.9697    2.2337    1.7808    0.8348    1.0402    0.2247    8.3952 +#> 180:    92.5348   -2.5714   -3.9595    2.2236    1.2661    0.8361    1.0107    0.2375    8.7156 +#> 181:    92.7241   -2.5730   -3.9205    2.2162    1.1047    0.8321    1.1192    0.2147    8.8821 +#> 182:    92.9177   -2.5864   -3.9351    2.2280    1.2069    0.8108    1.1022    0.2163    8.5703 +#> 183:    92.8646   -2.5704   -3.9755    2.2192    1.5680    0.8232    0.9400    0.1848    8.6586 +#> 184:    92.8081   -2.5759   -3.9981    2.2411    1.7739    0.8394    0.8711    0.1788    8.6327 +#> 185:    92.6830   -2.5700   -4.0110    2.2360    1.5375    0.8093    0.9114    0.1782    8.6703 +#> 186:    92.7691   -2.5764   -3.9671    2.2148    1.8813    0.8117    0.9794    0.1901    8.4813 +#> 187:    92.7540   -2.5659   -3.9695    2.2543    1.3755    0.8130    1.0332    0.1960    8.5371 +#> 188:    92.5722   -2.5650   -3.9527    2.2552    1.4000    0.8142    1.1013    0.1881    8.2025 +#> 189:    92.9404   -2.5644   -3.9446    2.2579    1.3589    0.8157    1.1262    0.1741    8.2347 +#> 190:    92.8142   -2.5628   -3.9397    2.2549    1.1871    0.8241    1.1571    0.1728    8.1590 +#> 191:    92.7352   -2.5682   -3.9476    2.2502    0.8302    0.7954    1.1448    0.1859    8.6148 +#> 192:    92.7380   -2.5574   -3.9273    2.2318    0.6692    0.8185    1.1124    0.1932    8.5279 +#> 193:    92.9199   -2.5652   -3.9586    2.2184    0.9877    0.8097    1.1689    0.1709    8.7071 +#> 194:    93.0042   -2.5651   -3.9699    2.2302    1.3311    0.8135    1.1202    0.1832    8.8051 +#> 195:    92.8090   -2.5890   -3.9799    2.2360    0.9251    0.8313    1.0192    0.1806    9.3110 +#> 196:    92.5114   -2.5894   -3.9883    2.2553    0.8504    0.8299    1.0665    0.1855    8.9668 +#> 197:    92.6704   -2.5845   -3.9577    2.2490    0.3567    0.8365    1.0893    0.1896    8.5856 +#> 198:    92.7249   -2.5753   -3.9775    2.2327    0.4282    0.8506    1.0736    0.2003    8.7110 +#> 199:    92.5538   -2.5696   -3.9550    2.2382    0.3177    0.8550    1.1060    0.2132    8.5431 +#> 200:    92.6352   -2.5716   -3.9921    2.2372    0.2500    0.8592    1.0083    0.2057    8.5811 +#> 201:    92.6440   -2.5663   -3.9931    2.2219    0.2611    0.8647    1.0130    0.1931    8.6428 +#> 202:    92.6090   -2.5633   -3.9837    2.2198    0.2389    0.8680    1.0373    0.1958    8.6818 +#> 203:    92.6180   -2.5627   -3.9823    2.2185    0.2315    0.8627    1.0398    0.1939    8.6310 +#> 204:    92.6140   -2.5628   -3.9783    2.2176    0.2289    0.8588    1.0462    0.1923    8.5391 +#> 205:    92.6337   -2.5619   -3.9802    2.2190    0.2227    0.8579    1.0407    0.1965    8.5514 +#> 206:    92.6373   -2.5615   -3.9835    2.2175    0.2313    0.8580    1.0330    0.2006    8.5635 +#> 207:    92.6403   -2.5594   -3.9836    2.2189    0.2365    0.8608    1.0282    0.2017    8.5721 +#> 208:    92.6415   -2.5587   -3.9862    2.2192    0.2480    0.8615    1.0221    0.2001    8.5738 +#> 209:    92.6303   -2.5586   -3.9872    2.2180    0.2544    0.8608    1.0127    0.1966    8.6159 +#> 210:    92.6278   -2.5584   -3.9829    2.2178    0.2577    0.8576    1.0149    0.1932    8.6336 +#> 211:    92.6320   -2.5580   -3.9844    2.2163    0.2614    0.8544    1.0057    0.1902    8.6594 +#> 212:    92.6266   -2.5576   -3.9802    2.2140    0.2554    0.8515    1.0125    0.1891    8.6549 +#> 213:    92.6226   -2.5570   -3.9771    2.2114    0.2491    0.8468    1.0201    0.1879    8.6612 +#> 214:    92.6217   -2.5570   -3.9759    2.2119    0.2430    0.8429    1.0289    0.1859    8.6700 +#> 215:    92.6212   -2.5573   -3.9743    2.2121    0.2354    0.8394    1.0383    0.1853    8.6796 +#> 216:    92.6151   -2.5566   -3.9736    2.2125    0.2329    0.8378    1.0446    0.1850    8.7036 +#> 217:    92.6073   -2.5558   -3.9759    2.2133    0.2311    0.8373    1.0459    0.1854    8.7185 +#> 218:    92.6090   -2.5556   -3.9771    2.2142    0.2312    0.8373    1.0499    0.1866    8.7181 +#> 219:    92.6166   -2.5553   -3.9764    2.2142    0.2358    0.8376    1.0624    0.1882    8.7228 +#> 220:    92.6268   -2.5549   -3.9770    2.2150    0.2404    0.8395    1.0671    0.1899    8.7325 +#> 221:    92.6337   -2.5548   -3.9765    2.2172    0.2460    0.8412    1.0713    0.1900    8.7409 +#> 222:    92.6383   -2.5563   -3.9796    2.2211    0.2499    0.8412    1.0667    0.1898    8.7456 +#> 223:    92.6399   -2.5575   -3.9806    2.2259    0.2494    0.8406    1.0665    0.1898    8.7564 +#> 224:    92.6424   -2.5589   -3.9840    2.2296    0.2451    0.8412    1.0624    0.1894    8.7571 +#> 225:    92.6431   -2.5599   -3.9883    2.2336    0.2427    0.8423    1.0555    0.1885    8.7754 +#> 226:    92.6393   -2.5612   -3.9919    2.2371    0.2384    0.8431    1.0488    0.1886    8.7904 +#> 227:    92.6354   -2.5630   -3.9918    2.2406    0.2361    0.8432    1.0501    0.1892    8.8070 +#> 228:    92.6328   -2.5650   -3.9926    2.2437    0.2336    0.8434    1.0524    0.1908    8.8133 +#> 229:    92.6328   -2.5672   -3.9913    2.2462    0.2318    0.8439    1.0578    0.1926    8.8314 +#> 230:    92.6322   -2.5684   -3.9911    2.2482    0.2269    0.8426    1.0621    0.1952    8.8464 +#> 231:    92.6263   -2.5698   -3.9910    2.2500    0.2240    0.8418    1.0628    0.1963    8.8734 +#> 232:    92.6228   -2.5710   -3.9908    2.2515    0.2218    0.8411    1.0644    0.1977    8.9056 +#> 233:    92.6235   -2.5721   -3.9919    2.2545    0.2192    0.8409    1.0649    0.1983    8.9192 +#> 234:    92.6232   -2.5727   -3.9927    2.2551    0.2171    0.8397    1.0649    0.1981    8.9294 +#> 235:    92.6219   -2.5733   -3.9924    2.2562    0.2155    0.8390    1.0646    0.1978    8.9242 +#> 236:    92.6212   -2.5737   -3.9924    2.2574    0.2145    0.8384    1.0639    0.1975    8.9292 +#> 237:    92.6211   -2.5738   -3.9938    2.2588    0.2142    0.8379    1.0607    0.1970    8.9400 +#> 238:    92.6194   -2.5735   -3.9931    2.2589    0.2155    0.8373    1.0630    0.1969    8.9371 +#> 239:    92.6175   -2.5734   -3.9928    2.2593    0.2155    0.8371    1.0648    0.1967    8.9315 +#> 240:    92.6175   -2.5729   -3.9923    2.2593    0.2143    0.8367    1.0673    0.1963    8.9180 +#> 241:    92.6155   -2.5728   -3.9917    2.2591    0.2133    0.8372    1.0695    0.1960    8.9139 +#> 242:    92.6135   -2.5726   -3.9923    2.2588    0.2136    0.8375    1.0681    0.1965    8.9191 +#> 243:    92.6115   -2.5726   -3.9930    2.2592    0.2127    0.8375    1.0683    0.1969    8.9117 +#> 244:    92.6106   -2.5726   -3.9925    2.2588    0.2123    0.8381    1.0704    0.1975    8.9124 +#> 245:    92.6065   -2.5730   -3.9930    2.2586    0.2127    0.8388    1.0691    0.1982    8.9140 +#> 246:    92.6046   -2.5734   -3.9931    2.2588    0.2109    0.8397    1.0701    0.1986    8.9132 +#> 247:    92.6048   -2.5737   -3.9938    2.2597    0.2081    0.8404    1.0708    0.1989    8.9224 +#> 248:    92.6029   -2.5739   -3.9932    2.2599    0.2056    0.8410    1.0718    0.1993    8.9198 +#> 249:    92.6006   -2.5743   -3.9934    2.2598    0.2052    0.8419    1.0705    0.1996    8.9244 +#> 250:    92.5984   -2.5740   -3.9930    2.2595    0.2037    0.8417    1.0709    0.1997    8.9208 +#> 251:    92.5967   -2.5739   -3.9932    2.2595    0.2018    0.8418    1.0700    0.1996    8.9143 +#> 252:    92.5943   -2.5737   -3.9920    2.2594    0.2009    0.8412    1.0734    0.1992    8.9090 +#> 253:    92.5944   -2.5736   -3.9904    2.2588    0.1997    0.8405    1.0769    0.1995    8.9035 +#> 254:    92.5941   -2.5732   -3.9896    2.2582    0.1987    0.8394    1.0788    0.1993    8.8940 +#> 255:    92.5916   -2.5728   -3.9892    2.2571    0.1983    0.8387    1.0794    0.1988    8.8894 +#> 256:    92.5889   -2.5724   -3.9880    2.2562    0.1988    0.8382    1.0813    0.1992    8.8834 +#> 257:    92.5889   -2.5719   -3.9872    2.2557    0.2003    0.8378    1.0831    0.1995    8.8806 +#> 258:    92.5889   -2.5717   -3.9866    2.2556    0.2021    0.8377    1.0858    0.1995    8.8792 +#> 259:    92.5898   -2.5715   -3.9867    2.2556    0.2033    0.8373    1.0884    0.1999    8.8785 +#> 260:    92.5924   -2.5709   -3.9868    2.2556    0.2033    0.8367    1.0891    0.2006    8.8743 +#> 261:    92.5956   -2.5703   -3.9866    2.2552    0.2045    0.8360    1.0908    0.2014    8.8635 +#> 262:    92.5985   -2.5698   -3.9859    2.2546    0.2054    0.8354    1.0940    0.2022    8.8551 +#> 263:    92.6014   -2.5694   -3.9857    2.2544    0.2067    0.8347    1.0964    0.2028    8.8479 +#> 264:    92.6041   -2.5690   -3.9858    2.2543    0.2069    0.8338    1.0977    0.2028    8.8421 +#> 265:    92.6063   -2.5687   -3.9861    2.2541    0.2079    0.8327    1.0976    0.2029    8.8394 +#> 266:    92.6087   -2.5684   -3.9867    2.2540    0.2107    0.8318    1.0968    0.2027    8.8351 +#> 267:    92.6108   -2.5682   -3.9863    2.2534    0.2118    0.8314    1.0970    0.2032    8.8283 +#> 268:    92.6130   -2.5680   -3.9860    2.2530    0.2131    0.8309    1.0970    0.2034    8.8263 +#> 269:    92.6139   -2.5678   -3.9851    2.2526    0.2155    0.8306    1.0979    0.2040    8.8240 +#> 270:    92.6144   -2.5676   -3.9851    2.2521    0.2176    0.8303    1.0972    0.2044    8.8283 +#> 271:    92.6153   -2.5675   -3.9855    2.2518    0.2190    0.8305    1.0961    0.2049    8.8310 +#> 272:    92.6163   -2.5674   -3.9859    2.2521    0.2196    0.8305    1.0965    0.2051    8.8378 +#> 273:    92.6178   -2.5672   -3.9862    2.2520    0.2198    0.8302    1.0959    0.2051    8.8421 +#> 274:    92.6193   -2.5670   -3.9870    2.2524    0.2195    0.8299    1.0955    0.2051    8.8441 +#> 275:    92.6197   -2.5669   -3.9874    2.2526    0.2194    0.8295    1.0947    0.2052    8.8477 +#> 276:    92.6215   -2.5665   -3.9875    2.2523    0.2206    0.8288    1.0956    0.2058    8.8462 +#> 277:    92.6225   -2.5660   -3.9878    2.2522    0.2231    0.8282    1.0974    0.2064    8.8450 +#> 278:    92.6237   -2.5655   -3.9883    2.2522    0.2240    0.8277    1.0988    0.2074    8.8501 +#> 279:    92.6249   -2.5651   -3.9888    2.2524    0.2244    0.8274    1.0994    0.2083    8.8504 +#> 280:    92.6259   -2.5647   -3.9891    2.2523    0.2235    0.8270    1.0992    0.2087    8.8514 +#> 281:    92.6264   -2.5643   -3.9889    2.2522    0.2225    0.8262    1.1001    0.2090    8.8559 +#> 282:    92.6270   -2.5639   -3.9889    2.2516    0.2223    0.8255    1.0997    0.2090    8.8593 +#> 283:    92.6280   -2.5633   -3.9885    2.2503    0.2214    0.8248    1.0999    0.2101    8.8586 +#> 284:    92.6281   -2.5627   -3.9883    2.2491    0.2212    0.8241    1.0993    0.2110    8.8580 +#> 285:    92.6283   -2.5621   -3.9881    2.2481    0.2213    0.8235    1.0986    0.2118    8.8590 +#> 286:    92.6288   -2.5615   -3.9886    2.2475    0.2219    0.8231    1.0973    0.2123    8.8602 +#> 287:    92.6291   -2.5611   -3.9890    2.2470    0.2217    0.8230    1.0961    0.2133    8.8577 +#> 288:    92.6292   -2.5607   -3.9893    2.2468    0.2202    0.8229    1.0960    0.2142    8.8570 +#> 289:    92.6275   -2.5602   -3.9895    2.2464    0.2192    0.8226    1.0964    0.2151    8.8554 +#> 290:    92.6262   -2.5598   -3.9892    2.2457    0.2189    0.8223    1.0977    0.2161    8.8578 +#> 291:    92.6246   -2.5596   -3.9890    2.2454    0.2183    0.8218    1.0999    0.2165    8.8596 +#> 292:    92.6223   -2.5593   -3.9892    2.2451    0.2183    0.8213    1.1003    0.2173    8.8575 +#> 293:    92.6201   -2.5590   -3.9896    2.2447    0.2193    0.8209    1.1003    0.2175    8.8569 +#> 294:    92.6169   -2.5587   -3.9902    2.2445    0.2202    0.8204    1.0998    0.2176    8.8568 +#> 295:    92.6144   -2.5584   -3.9906    2.2442    0.2217    0.8197    1.0994    0.2176    8.8565 +#> 296:    92.6126   -2.5581   -3.9913    2.2441    0.2223    0.8188    1.0983    0.2175    8.8585 +#> 297:    92.6112   -2.5576   -3.9920    2.2439    0.2235    0.8182    1.0969    0.2175    8.8600 +#> 298:    92.6108   -2.5572   -3.9921    2.2433    0.2250    0.8174    1.0964    0.2177    8.8612 +#> 299:    92.6101   -2.5567   -3.9919    2.2425    0.2254    0.8169    1.0960    0.2178    8.8626 +#> 300:    92.6097   -2.5562   -3.9913    2.2415    0.2257    0.8163    1.0974    0.2182    8.8632 +#> 301:    92.6102   -2.5556   -3.9913    2.2407    0.2255    0.8156    1.0972    0.2183    8.8600 +#> 302:    92.6102   -2.5551   -3.9916    2.2400    0.2252    0.8156    1.0966    0.2186    8.8586 +#> 303:    92.6099   -2.5546   -3.9915    2.2391    0.2250    0.8152    1.0978    0.2189    8.8589 +#> 304:    92.6096   -2.5541   -3.9913    2.2387    0.2242    0.8149    1.0987    0.2194    8.8570 +#> 305:    92.6100   -2.5538   -3.9914    2.2383    0.2247    0.8144    1.0995    0.2202    8.8553 +#> 306:    92.6109   -2.5533   -3.9915    2.2378    0.2255    0.8144    1.1001    0.2212    8.8531 +#> 307:    92.6119   -2.5529   -3.9913    2.2371    0.2252    0.8143    1.1007    0.2217    8.8498 +#> 308:    92.6128   -2.5525   -3.9912    2.2366    0.2249    0.8142    1.1012    0.2219    8.8490 +#> 309:    92.6143   -2.5519   -3.9905    2.2357    0.2251    0.8138    1.1018    0.2224    8.8449 +#> 310:    92.6160   -2.5513   -3.9900    2.2346    0.2255    0.8136    1.1020    0.2230    8.8403 +#> 311:    92.6177   -2.5506   -3.9891    2.2333    0.2258    0.8132    1.1031    0.2236    8.8392 +#> 312:    92.6190   -2.5499   -3.9881    2.2319    0.2267    0.8130    1.1047    0.2242    8.8382 +#> 313:    92.6192   -2.5493   -3.9872    2.2305    0.2273    0.8127    1.1057    0.2249    8.8350 +#> 314:    92.6196   -2.5490   -3.9864    2.2300    0.2279    0.8129    1.1067    0.2257    8.8315 +#> 315:    92.6197   -2.5488   -3.9858    2.2295    0.2277    0.8132    1.1072    0.2266    8.8285 +#> 316:    92.6192   -2.5485   -3.9850    2.2284    0.2276    0.8133    1.1087    0.2275    8.8278 +#> 317:    92.6190   -2.5482   -3.9840    2.2275    0.2278    0.8135    1.1105    0.2282    8.8296 +#> 318:    92.6193   -2.5480   -3.9833    2.2266    0.2274    0.8133    1.1120    0.2289    8.8313 +#> 319:    92.6200   -2.5476   -3.9827    2.2257    0.2265    0.8129    1.1133    0.2297    8.8326 +#> 320:    92.6211   -2.5472   -3.9820    2.2250    0.2260    0.8124    1.1150    0.2302    8.8359 +#> 321:    92.6226   -2.5468   -3.9816    2.2246    0.2254    0.8118    1.1158    0.2308    8.8396 +#> 322:    92.6238   -2.5464   -3.9808    2.2238    0.2249    0.8114    1.1169    0.2316    8.8424 +#> 323:    92.6248   -2.5461   -3.9805    2.2231    0.2241    0.8109    1.1173    0.2320    8.8458 +#> 324:    92.6252   -2.5458   -3.9801    2.2224    0.2233    0.8103    1.1182    0.2324    8.8474 +#> 325:    92.6248   -2.5455   -3.9799    2.2216    0.2225    0.8096    1.1192    0.2328    8.8507 +#> 326:    92.6247   -2.5451   -3.9802    2.2209    0.2216    0.8091    1.1186    0.2331    8.8519 +#> 327:    92.6248   -2.5446   -3.9806    2.2203    0.2203    0.8088    1.1179    0.2335    8.8535 +#> 328:    92.6242   -2.5442   -3.9808    2.2198    0.2196    0.8084    1.1175    0.2339    8.8533 +#> 329:    92.6234   -2.5437   -3.9809    2.2192    0.2188    0.8081    1.1176    0.2342    8.8550 +#> 330:    92.6229   -2.5433   -3.9806    2.2187    0.2182    0.8078    1.1187    0.2346    8.8574 +#> 331:    92.6220   -2.5429   -3.9801    2.2181    0.2183    0.8075    1.1210    0.2352    8.8599 +#> 332:    92.6214   -2.5425   -3.9796    2.2175    0.2185    0.8072    1.1235    0.2360    8.8612 +#> 333:    92.6215   -2.5421   -3.9794    2.2170    0.2184    0.8068    1.1248    0.2365    8.8660 +#> 334:    92.6218   -2.5417   -3.9795    2.2168    0.2180    0.8065    1.1257    0.2369    8.8675 +#> 335:    92.6220   -2.5413   -3.9793    2.2164    0.2177    0.8062    1.1269    0.2374    8.8683 +#> 336:    92.6228   -2.5410   -3.9792    2.2159    0.2173    0.8059    1.1275    0.2378    8.8707 +#> 337:    92.6244   -2.5405   -3.9792    2.2153    0.2175    0.8057    1.1278    0.2387    8.8734 +#> 338:    92.6266   -2.5401   -3.9792    2.2146    0.2184    0.8057    1.1283    0.2396    8.8757 +#> 339:    92.6290   -2.5398   -3.9790    2.2144    0.2191    0.8060    1.1294    0.2403    8.8770 +#> 340:    92.6309   -2.5396   -3.9790    2.2142    0.2200    0.8061    1.1295    0.2405    8.8766 +#> 341:    92.6328   -2.5394   -3.9788    2.2142    0.2211    0.8061    1.1300    0.2406    8.8752 +#> 342:    92.6347   -2.5392   -3.9788    2.2140    0.2223    0.8062    1.1291    0.2405    8.8744 +#> 343:    92.6365   -2.5390   -3.9787    2.2139    0.2233    0.8063    1.1288    0.2405    8.8732 +#> 344:    92.6383   -2.5388   -3.9785    2.2136    0.2242    0.8060    1.1295    0.2404    8.8730 +#> 345:    92.6392   -2.5386   -3.9781    2.2133    0.2248    0.8055    1.1303    0.2401    8.8737 +#> 346:    92.6401   -2.5384   -3.9780    2.2129    0.2249    0.8051    1.1302    0.2399    8.8739 +#> 347:    92.6411   -2.5381   -3.9777    2.2124    0.2248    0.8049    1.1302    0.2399    8.8794 +#> 348:    92.6427   -2.5380   -3.9777    2.2122    0.2251    0.8047    1.1306    0.2398    8.8814 +#> 349:    92.6444   -2.5378   -3.9777    2.2119    0.2252    0.8047    1.1304    0.2397    8.8834 +#> 350:    92.6462   -2.5376   -3.9776    2.2115    0.2260    0.8043    1.1300    0.2395    8.8859 +#> 351:    92.6470   -2.5375   -3.9772    2.2110    0.2265    0.8041    1.1303    0.2392    8.8883 +#> 352:    92.6478   -2.5373   -3.9772    2.2106    0.2266    0.8037    1.1293    0.2386    8.8926 +#> 353:    92.6493   -2.5373   -3.9772    2.2103    0.2268    0.8032    1.1285    0.2381    8.8928 +#> 354:    92.6504   -2.5372   -3.9772    2.2100    0.2264    0.8028    1.1274    0.2376    8.8946 +#> 355:    92.6512   -2.5370   -3.9771    2.2096    0.2267    0.8023    1.1273    0.2373    8.8951 +#> 356:    92.6522   -2.5367   -3.9767    2.2089    0.2275    0.8018    1.1272    0.2370    8.8947 +#> 357:    92.6534   -2.5364   -3.9765    2.2080    0.2290    0.8015    1.1268    0.2369    8.8932 +#> 358:    92.6545   -2.5362   -3.9761    2.2072    0.2301    0.8011    1.1270    0.2368    8.8919 +#> 359:    92.6566   -2.5360   -3.9757    2.2064    0.2310    0.8008    1.1269    0.2369    8.8928 +#> 360:    92.6584   -2.5358   -3.9751    2.2059    0.2311    0.8005    1.1272    0.2368    8.8924 +#> 361:    92.6611   -2.5356   -3.9744    2.2051    0.2317    0.8004    1.1280    0.2369    8.8932 +#> 362:    92.6639   -2.5353   -3.9740    2.2043    0.2321    0.8003    1.1284    0.2370    8.8914 +#> 363:    92.6662   -2.5349   -3.9733    2.2033    0.2328    0.8001    1.1289    0.2371    8.8902 +#> 364:    92.6679   -2.5345   -3.9729    2.2025    0.2325    0.7998    1.1292    0.2372    8.8883 +#> 365:    92.6695   -2.5341   -3.9725    2.2019    0.2321    0.7994    1.1297    0.2373    8.8865 +#> 366:    92.6709   -2.5337   -3.9722    2.2011    0.2321    0.7990    1.1297    0.2373    8.8860 +#> 367:    92.6724   -2.5334   -3.9720    2.2005    0.2317    0.7987    1.1295    0.2372    8.8848 +#> 368:    92.6736   -2.5330   -3.9719    2.1999    0.2314    0.7985    1.1288    0.2371    8.8844 +#> 369:    92.6745   -2.5326   -3.9717    2.1994    0.2310    0.7982    1.1283    0.2371    8.8840 +#> 370:    92.6758   -2.5323   -3.9714    2.1990    0.2312    0.7980    1.1283    0.2370    8.8854 +#> 371:    92.6776   -2.5321   -3.9708    2.1984    0.2313    0.7977    1.1286    0.2369    8.8852 +#> 372:    92.6791   -2.5317   -3.9704    2.1978    0.2311    0.7973    1.1282    0.2367    8.8865 +#> 373:    92.6804   -2.5312   -3.9701    2.1969    0.2308    0.7969    1.1280    0.2366    8.8884 +#> 374:    92.6814   -2.5308   -3.9699    2.1962    0.2305    0.7965    1.1279    0.2364    8.8898 +#> 375:    92.6827   -2.5304   -3.9698    2.1954    0.2305    0.7961    1.1271    0.2360    8.8938 +#> 376:    92.6832   -2.5301   -3.9695    2.1947    0.2301    0.7957    1.1268    0.2359    8.8930 +#> 377:    92.6835   -2.5298   -3.9692    2.1941    0.2300    0.7953    1.1269    0.2357    8.8933 +#> 378:    92.6831   -2.5295   -3.9693    2.1935    0.2303    0.7950    1.1266    0.2357    8.8990 +#> 379:    92.6827   -2.5293   -3.9694    2.1933    0.2307    0.7948    1.1265    0.2356    8.9027 +#> 380:    92.6826   -2.5291   -3.9695    2.1931    0.2307    0.7947    1.1262    0.2356    8.9045 +#> 381:    92.6822   -2.5290   -3.9695    2.1929    0.2307    0.7945    1.1259    0.2355    8.9040 +#> 382:    92.6817   -2.5289   -3.9694    2.1925    0.2305    0.7943    1.1258    0.2357    8.9033 +#> 383:    92.6812   -2.5288   -3.9695    2.1922    0.2305    0.7942    1.1255    0.2358    8.9045 +#> 384:    92.6810   -2.5288   -3.9695    2.1920    0.2302    0.7940    1.1253    0.2360    8.9058 +#> 385:    92.6806   -2.5287   -3.9694    2.1918    0.2301    0.7938    1.1254    0.2361    8.9052 +#> 386:    92.6801   -2.5286   -3.9692    2.1914    0.2298    0.7936    1.1256    0.2362    8.9039 +#> 387:    92.6800   -2.5285   -3.9687    2.1914    0.2294    0.7934    1.1261    0.2361    8.9032 +#> 388:    92.6801   -2.5284   -3.9683    2.1913    0.2293    0.7931    1.1267    0.2360    8.9027 +#> 389:    92.6802   -2.5283   -3.9684    2.1912    0.2288    0.7928    1.1261    0.2360    8.9028 +#> 390:    92.6805   -2.5281   -3.9684    2.1910    0.2283    0.7925    1.1258    0.2360    8.9044 +#> 391:    92.6806   -2.5280   -3.9685    2.1908    0.2285    0.7921    1.1254    0.2360    8.9047 +#> 392:    92.6810   -2.5278   -3.9682    2.1907    0.2288    0.7918    1.1257    0.2360    8.9057 +#> 393:    92.6810   -2.5275   -3.9681    2.1906    0.2290    0.7916    1.1257    0.2360    8.9049 +#> 394:    92.6811   -2.5272   -3.9682    2.1904    0.2292    0.7913    1.1253    0.2360    8.9056 +#> 395:    92.6812   -2.5269   -3.9682    2.1900    0.2295    0.7911    1.1251    0.2362    8.9044 +#> 396:    92.6817   -2.5269   -3.9683    2.1901    0.2292    0.7911    1.1251    0.2361    8.9031 +#> 397:    92.6824   -2.5269   -3.9686    2.1903    0.2292    0.7911    1.1250    0.2361    8.9043 +#> 398:    92.6828   -2.5270   -3.9688    2.1907    0.2291    0.7913    1.1248    0.2359    8.9035 +#> 399:    92.6829   -2.5271   -3.9689    2.1909    0.2292    0.7916    1.1248    0.2358    8.9043 +#> 400:    92.6829   -2.5273   -3.9688    2.1909    0.2295    0.7919    1.1250    0.2356    8.9037 +#> 401:    92.6827   -2.5274   -3.9687    2.1910    0.2299    0.7922    1.1249    0.2356    8.9035 +#> 402:    92.6822   -2.5276   -3.9687    2.1911    0.2303    0.7926    1.1248    0.2355    8.9033 +#> 403:    92.6821   -2.5277   -3.9686    2.1913    0.2307    0.7929    1.1250    0.2354    8.9009 +#> 404:    92.6817   -2.5279   -3.9684    2.1914    0.2314    0.7930    1.1249    0.2352    8.9012 +#> 405:    92.6813   -2.5281   -3.9683    2.1915    0.2318    0.7930    1.1252    0.2349    8.9015 +#> 406:    92.6811   -2.5283   -3.9680    2.1916    0.2321    0.7930    1.1255    0.2345    8.9019 +#> 407:    92.6817   -2.5285   -3.9677    2.1918    0.2329    0.7930    1.1255    0.2343    8.9014 +#> 408:    92.6824   -2.5287   -3.9675    2.1919    0.2330    0.7930    1.1253    0.2341    8.9019 +#> 409:    92.6833   -2.5289   -3.9674    2.1922    0.2331    0.7931    1.1249    0.2338    8.9031 +#> 410:    92.6840   -2.5291   -3.9673    2.1924    0.2331    0.7930    1.1245    0.2335    8.9054 +#> 411:    92.6848   -2.5292   -3.9672    2.1926    0.2333    0.7929    1.1243    0.2333    8.9083 +#> 412:    92.6852   -2.5293   -3.9671    2.1928    0.2333    0.7931    1.1243    0.2333    8.9107 +#> 413:    92.6858   -2.5293   -3.9671    2.1929    0.2332    0.7932    1.1246    0.2332    8.9119 +#> 414:    92.6863   -2.5293   -3.9671    2.1928    0.2332    0.7934    1.1252    0.2333    8.9112 +#> 415:    92.6868   -2.5293   -3.9671    2.1928    0.2330    0.7935    1.1253    0.2332    8.9109 +#> 416:    92.6872   -2.5293   -3.9672    2.1928    0.2327    0.7935    1.1247    0.2330    8.9101 +#> 417:    92.6875   -2.5293   -3.9674    2.1929    0.2324    0.7934    1.1241    0.2330    8.9126 +#> 418:    92.6881   -2.5294   -3.9675    2.1929    0.2322    0.7935    1.1238    0.2332    8.9148 +#> 419:    92.6885   -2.5295   -3.9674    2.1929    0.2322    0.7936    1.1236    0.2331    8.9179 +#> 420:    92.6890   -2.5297   -3.9674    2.1929    0.2322    0.7936    1.1235    0.2331    8.9194 +#> 421:    92.6891   -2.5299   -3.9672    2.1930    0.2318    0.7937    1.1236    0.2330    8.9192 +#> 422:    92.6894   -2.5301   -3.9670    2.1930    0.2318    0.7937    1.1239    0.2329    8.9183 +#> 423:    92.6898   -2.5302   -3.9667    2.1931    0.2318    0.7937    1.1242    0.2327    8.9190 +#> 424:    92.6905   -2.5304   -3.9667    2.1931    0.2316    0.7937    1.1243    0.2326    8.9190 +#> 425:    92.6910   -2.5305   -3.9667    2.1932    0.2316    0.7936    1.1240    0.2327    8.9203 +#> 426:    92.6917   -2.5306   -3.9668    2.1935    0.2318    0.7937    1.1237    0.2326    8.9200 +#> 427:    92.6918   -2.5308   -3.9671    2.1939    0.2322    0.7938    1.1227    0.2326    8.9224 +#> 428:    92.6912   -2.5310   -3.9670    2.1941    0.2319    0.7939    1.1225    0.2325    8.9268 +#> 429:    92.6912   -2.5312   -3.9670    2.1944    0.2316    0.7939    1.1225    0.2324    8.9301 +#> 430:    92.6910   -2.5314   -3.9674    2.1948    0.2314    0.7940    1.1217    0.2322    8.9314 +#> 431:    92.6911   -2.5315   -3.9675    2.1950    0.2314    0.7942    1.1210    0.2320    8.9320 +#> 432:    92.6911   -2.5316   -3.9677    2.1953    0.2312    0.7944    1.1204    0.2320    8.9327 +#> 433:    92.6910   -2.5317   -3.9681    2.1955    0.2309    0.7946    1.1196    0.2320    8.9336 +#> 434:    92.6910   -2.5318   -3.9683    2.1957    0.2306    0.7949    1.1188    0.2320    8.9337 +#> 435:    92.6912   -2.5319   -3.9687    2.1960    0.2302    0.7951    1.1178    0.2319    8.9343 +#> 436:    92.6914   -2.5320   -3.9688    2.1961    0.2300    0.7953    1.1173    0.2319    8.9345 +#> 437:    92.6919   -2.5321   -3.9688    2.1962    0.2299    0.7955    1.1168    0.2318    8.9335 +#> 438:    92.6920   -2.5323   -3.9688    2.1964    0.2296    0.7957    1.1164    0.2318    8.9334 +#> 439:    92.6917   -2.5324   -3.9689    2.1965    0.2292    0.7959    1.1165    0.2317    8.9322 +#> 440:    92.6910   -2.5326   -3.9688    2.1969    0.2289    0.7960    1.1170    0.2316    8.9319 +#> 441:    92.6907   -2.5328   -3.9688    2.1973    0.2283    0.7961    1.1175    0.2316    8.9317 +#> 442:    92.6909   -2.5330   -3.9689    2.1976    0.2280    0.7962    1.1174    0.2315    8.9326 +#> 443:    92.6911   -2.5332   -3.9689    2.1980    0.2277    0.7963    1.1180    0.2315    8.9338 +#> 444:    92.6906   -2.5332   -3.9690    2.1981    0.2275    0.7963    1.1181    0.2315    8.9354 +#> 445:    92.6897   -2.5333   -3.9691    2.1982    0.2276    0.7962    1.1181    0.2315    8.9364 +#> 446:    92.6896   -2.5333   -3.9692    2.1982    0.2272    0.7962    1.1176    0.2314    8.9363 +#> 447:    92.6893   -2.5334   -3.9693    2.1982    0.2272    0.7961    1.1173    0.2313    8.9365 +#> 448:    92.6890   -2.5334   -3.9693    2.1982    0.2271    0.7961    1.1173    0.2313    8.9364 +#> 449:    92.6888   -2.5335   -3.9693    2.1982    0.2267    0.7961    1.1170    0.2313    8.9372 +#> 450:    92.6884   -2.5335   -3.9693    2.1982    0.2262    0.7959    1.1166    0.2312    8.9364 +#> 451:    92.6885   -2.5335   -3.9691    2.1981    0.2261    0.7958    1.1167    0.2312    8.9350 +#> 452:    92.6887   -2.5335   -3.9691    2.1980    0.2260    0.7957    1.1164    0.2311    8.9349 +#> 453:    92.6888   -2.5335   -3.9691    2.1979    0.2258    0.7957    1.1163    0.2310    8.9375 +#> 454:    92.6890   -2.5335   -3.9689    2.1977    0.2258    0.7957    1.1160    0.2308    8.9385 +#> 455:    92.6894   -2.5334   -3.9687    2.1975    0.2259    0.7956    1.1158    0.2307    8.9382 +#> 456:    92.6898   -2.5334   -3.9685    2.1974    0.2261    0.7957    1.1154    0.2306    8.9380 +#> 457:    92.6904   -2.5334   -3.9685    2.1975    0.2265    0.7956    1.1146    0.2304    8.9391 +#> 458:    92.6908   -2.5334   -3.9687    2.1975    0.2266    0.7956    1.1137    0.2303    8.9418 +#> 459:    92.6911   -2.5335   -3.9689    2.1975    0.2270    0.7956    1.1129    0.2303    8.9442 +#> 460:    92.6912   -2.5335   -3.9687    2.1976    0.2274    0.7957    1.1126    0.2301    8.9461 +#> 461:    92.6913   -2.5336   -3.9687    2.1975    0.2276    0.7958    1.1125    0.2300    8.9463 +#> 462:    92.6914   -2.5336   -3.9686    2.1974    0.2280    0.7959    1.1126    0.2299    8.9456 +#> 463:    92.6917   -2.5336   -3.9684    2.1973    0.2280    0.7960    1.1127    0.2297    8.9452 +#> 464:    92.6918   -2.5336   -3.9683    2.1970    0.2280    0.7961    1.1127    0.2295    8.9444 +#> 465:    92.6921   -2.5336   -3.9682    2.1967    0.2277    0.7962    1.1127    0.2294    8.9447 +#> 466:    92.6924   -2.5336   -3.9679    2.1967    0.2275    0.7964    1.1127    0.2291    8.9454 +#> 467:    92.6930   -2.5336   -3.9677    2.1966    0.2273    0.7967    1.1128    0.2290    8.9453 +#> 468:    92.6935   -2.5337   -3.9675    2.1966    0.2275    0.7970    1.1128    0.2289    8.9458 +#> 469:    92.6937   -2.5338   -3.9676    2.1967    0.2278    0.7972    1.1123    0.2287    8.9455 +#> 470:    92.6938   -2.5338   -3.9677    2.1967    0.2283    0.7974    1.1122    0.2285    8.9451 +#> 471:    92.6940   -2.5339   -3.9676    2.1969    0.2290    0.7976    1.1124    0.2283    8.9448 +#> 472:    92.6938   -2.5339   -3.9676    2.1972    0.2293    0.7977    1.1125    0.2281    8.9460 +#> 473:    92.6937   -2.5340   -3.9676    2.1972    0.2298    0.7978    1.1121    0.2278    8.9461 +#> 474:    92.6934   -2.5341   -3.9677    2.1974    0.2308    0.7978    1.1118    0.2276    8.9470 +#> 475:    92.6936   -2.5342   -3.9677    2.1978    0.2316    0.7979    1.1113    0.2273    8.9486 +#> 476:    92.6940   -2.5345   -3.9679    2.1983    0.2324    0.7981    1.1106    0.2271    8.9491 +#> 477:    92.6945   -2.5347   -3.9681    2.1989    0.2332    0.7983    1.1099    0.2269    8.9502 +#> 478:    92.6951   -2.5349   -3.9682    2.1992    0.2344    0.7986    1.1093    0.2267    8.9502 +#> 479:    92.6958   -2.5352   -3.9683    2.1995    0.2357    0.7987    1.1088    0.2266    8.9521 +#> 480:    92.6967   -2.5354   -3.9684    2.1998    0.2370    0.7988    1.1083    0.2265    8.9524 +#> 481:    92.6977   -2.5355   -3.9685    2.2001    0.2383    0.7990    1.1079    0.2263    8.9521 +#> 482:    92.6985   -2.5357   -3.9687    2.2004    0.2395    0.7992    1.1073    0.2262    8.9518 +#> 483:    92.6992   -2.5359   -3.9690    2.2008    0.2403    0.7995    1.1066    0.2262    8.9524 +#> 484:    92.7000   -2.5361   -3.9691    2.2010    0.2406    0.7998    1.1061    0.2260    8.9516 +#> 485:    92.7009   -2.5362   -3.9693    2.2015    0.2410    0.8001    1.1057    0.2261    8.9508 +#> 486:    92.7010   -2.5363   -3.9695    2.2019    0.2412    0.8004    1.1051    0.2261    8.9502 +#> 487:    92.7008   -2.5365   -3.9698    2.2023    0.2413    0.8009    1.1048    0.2260    8.9502 +#> 488:    92.7006   -2.5366   -3.9700    2.2026    0.2411    0.8012    1.1044    0.2260    8.9501 +#> 489:    92.7006   -2.5367   -3.9701    2.2029    0.2410    0.8015    1.1041    0.2261    8.9504 +#> 490:    92.7006   -2.5368   -3.9702    2.2031    0.2407    0.8015    1.1043    0.2260    8.9498 +#> 491:    92.7007   -2.5369   -3.9701    2.2034    0.2405    0.8016    1.1047    0.2261    8.9484 +#> 492:    92.7008   -2.5370   -3.9702    2.2035    0.2406    0.8017    1.1046    0.2261    8.9473 +#> 493:    92.7010   -2.5370   -3.9704    2.2037    0.2406    0.8018    1.1044    0.2261    8.9469 +#> 494:    92.7015   -2.5371   -3.9707    2.2038    0.2408    0.8019    1.1040    0.2261    8.9453 +#> 495:    92.7017   -2.5371   -3.9708    2.2039    0.2407    0.8021    1.1042    0.2262    8.9447 +#> 496:    92.7016   -2.5371   -3.9708    2.2039    0.2407    0.8022    1.1042    0.2262    8.9433 +#> 497:    92.7015   -2.5371   -3.9709    2.2039    0.2408    0.8023    1.1044    0.2262    8.9431 +#> 498:    92.7013   -2.5371   -3.9709    2.2040    0.2409    0.8024    1.1047    0.2262    8.9452 +#> 499:    92.7011   -2.5371   -3.9710    2.2039    0.2409    0.8023    1.1049    0.2261    8.9481 +#> 500:    92.7010   -2.5371   -3.9712    2.2040    0.2412    0.8022    1.1049    0.2260    8.9498</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_hs_focei</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"HS"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation +#> F: Forward difference gradient approximation +#> C: Central difference gradient approximation +#> M: Mixed forward and central difference gradient approximation +#> Unscaled parameters for Omegas=chol(solve(omega)); +#> Diagonals are transformed, as specified by foceiControl(diagXform=) +#> |-----+---------------+-----------+-----------+-----------+-----------| +#> |    #| Objective Fun |  parent_0 |    log_k1 |    log_k2 |    log_tb | +#> |.....................|     sigma |        o1 |        o2 |        o3 | +#> <span style='text-decoration: underline;'>|.....................|        o4 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    1</span>|     360.27275 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     360.27275 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     360.27275</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    G|    Gill Diff. |     106.2 |    0.7918 |   0.06750 |     10.50 | +#> |.....................|    -26.04 |     2.358 |    -5.196 |    -2.491 | +#> <span style='text-decoration: underline;'>|.....................|    -12.13 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    2</span>|     7055.7467 |   0.04059 |   -0.9733 |    -1.001 |   -0.9739 | +#> |.....................|   -0.6317 |   -0.9263 |   -0.8528 |   -0.8784 | +#> <span style='text-decoration: underline;'>|.....................|   -0.7843 |...........|...........|...........|</span> +#> |    U|     7055.7467 |     3.818 |    -2.236 |    -3.887 |     1.944 | +#> |.....................|     2.941 |    0.7466 |     1.074 |    0.9892 | +#> <span style='text-decoration: underline;'>|.....................|     1.458 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     7055.7467</span> |     3.818 |    0.1069 |   0.02050 |     6.988 | +#> |.....................|     2.941 |    0.7466 |     1.074 |    0.9892 | +#> <span style='text-decoration: underline;'>|.....................|     1.458 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    3</span>|     499.76989 |    0.9041 |   -0.9669 |    -1.000 |   -0.8885 | +#> |.....................|   -0.8434 |   -0.9072 |   -0.8950 |   -0.8986 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8828 |...........|...........|...........|</span> +#> |    U|     499.76989 |     85.03 |    -2.229 |    -3.887 |     2.030 | +#> |.....................|     2.663 |    0.7612 |     1.031 |    0.9696 | +#> <span style='text-decoration: underline;'>|.....................|     1.329 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     499.76989</span> |     85.03 |    0.1076 |   0.02051 |     7.611 | +#> |.....................|     2.663 |    0.7612 |     1.031 |    0.9696 | +#> <span style='text-decoration: underline;'>|.....................|     1.329 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    4</span>|     360.48011 |    0.9904 |   -0.9662 |    -1.000 |   -0.8799 | +#> |.....................|   -0.8645 |   -0.9053 |   -0.8992 |   -0.9007 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8927 |...........|...........|...........|</span> +#> |    U|     360.48011 |     93.15 |    -2.229 |    -3.887 |     2.038 | +#> |.....................|     2.635 |    0.7627 |     1.026 |    0.9677 | +#> <span style='text-decoration: underline;'>|.....................|     1.316 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     360.48011</span> |     93.15 |    0.1077 |   0.02051 |     7.676 | +#> |.....................|     2.635 |    0.7627 |     1.026 |    0.9677 | +#> <span style='text-decoration: underline;'>|.....................|     1.316 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    5</span>|     360.80998 |    0.9960 |   -0.9662 |    -1.000 |   -0.8794 | +#> |.....................|   -0.8659 |   -0.9051 |   -0.8995 |   -0.9008 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8933 |...........|...........|...........|</span> +#> |    U|     360.80998 |     93.68 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.633 |    0.7628 |     1.026 |    0.9676 | +#> <span style='text-decoration: underline;'>|.....................|     1.315 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     360.80998</span> |     93.68 |    0.1077 |   0.02051 |     7.680 | +#> |.....................|     2.633 |    0.7628 |     1.026 |    0.9676 | +#> <span style='text-decoration: underline;'>|.....................|     1.315 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    6</span>|     361.20154 |    0.9991 |   -0.9661 |    -1.000 |   -0.8791 | +#> |.....................|   -0.8667 |   -0.9051 |   -0.8996 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8937 |...........|...........|...........|</span> +#> |    U|     361.20154 |     93.97 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.315 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.20154</span> |     93.97 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.315 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    7</span>|     361.33469 |    0.9999 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.33469 |     94.05 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.33469</span> |     94.05 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    8</span>|     361.34878 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.34878 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.34878</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>    9</span>|     361.35091 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35091 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35091</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   10</span>|     361.35004 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35004 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35004</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   11</span>|     361.35006 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35006 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35006</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   12</span>|     361.35006 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35006 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35006</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   13</span>|     361.35006 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35006 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35006</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   14</span>|     361.35006 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35006 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35006</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   15</span>|     361.35006 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35006 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35006</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   16</span>|     361.35006 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35006 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35006</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   17</span>|     361.35006 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35006 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35006</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |<span style='font-weight: bold;'>   18</span>|     361.35006 |     1.000 |   -0.9661 |    -1.000 |   -0.8790 | +#> |.....................|   -0.8669 |   -0.9051 |   -0.8997 |   -0.9009 | +#> <span style='text-decoration: underline;'>|.....................|   -0.8938 |...........|...........|...........|</span> +#> |    U|     361.35006 |     94.06 |    -2.229 |    -3.887 |     2.039 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> |    X|<span style='font-weight: bold;'>     361.35006</span> |     94.06 |    0.1077 |   0.02051 |     7.683 | +#> |.....................|     2.632 |    0.7629 |     1.026 |    0.9675 | +#> <span style='text-decoration: underline;'>|.....................|     1.314 |...........|...........|...........|</span> +#> calculating covariance matrix +#> done</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#> <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#> <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'> +<span class='va'>f_nlmixr_fomc_saem_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent_tc</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> 1:    92.2167    0.0936    1.9256    3.3974    0.7958    0.7197   11.8539    0.0004 +#> 2:    92.5446    0.0892    2.4952    3.3516    0.8528    0.6837    4.5197    0.0001 +#> 3:    9.2720e+01   1.3849e-01   2.5917e+00   3.9204e+00   9.5883e-01   6.4953e-01   4.0268e+00   5.9554e-05 +#> 4:    92.6098    0.1052    2.5494    5.0533    1.0968    0.6171    3.2396    0.0200 +#> 5:    92.6795    0.0406    2.4151    5.6729    1.0420    0.5862    3.1558    0.0183 +#> 6:    92.6580    0.0258    2.3640    5.7014    0.9899    0.5569    3.0212    0.0140 +#> 7:    93.0532   -0.0754    2.2262    7.3582    0.9404    0.5291    2.5591    0.0180 +#> 8:    92.8372   -0.0760    2.2080    6.9903    0.8934    0.5026    2.5653    0.0187 +#> 9:    93.0757   -0.1322    2.1663    6.6408    0.8487    0.4775    2.4943    0.0182 +#> 10:    93.0704   -0.1520    2.1410    6.3087    0.8063    0.4536    2.4004    0.0225 +#> 11:    93.1611   -0.1366    2.1740    5.9933    0.7659    0.4309    2.4242    0.0199 +#> 12:    92.7195   -0.0787    2.2947    5.6936    0.7277    0.4094    2.4532    0.0205 +#> 13:    92.6573   -0.1543    2.1929    5.4089    0.6913    0.3889    2.3750    0.0244 +#> 14:    93.1138   -0.1547    2.1924    5.1385    0.6567    0.3695    2.3590    0.0187 +#> 15:    93.5083   -0.1625    2.1831    4.8816    0.6239    0.3510    2.4420    0.0125 +#> 16:    93.2086   -0.1667    2.1516    4.6375    0.5927    0.3334    2.4527    0.0004 +#> 17:    93.3988   -0.1766    2.1521    4.4056    0.5630    0.3168    2.4527    0.0004 +#> 18:    93.4526   -0.1748    2.1461    4.1853    0.5349    0.3009    2.3775    0.0116 +#> 19:    93.5953   -0.1963    2.1167    3.9761    0.5081    0.2859    2.4693    0.0031 +#> 20:    9.3404e+01  -2.4408e-01   2.0453e+00   3.7773e+00   4.8274e-01   2.7158e-01   2.4789e+00   2.0760e-05 +#> 21:    9.3624e+01  -2.4691e-01   2.0524e+00   3.5884e+00   4.5860e-01   2.5800e-01   2.4789e+00   2.0760e-05 +#> 22:    9.3821e+01  -2.5932e-01   2.0021e+00   3.4090e+00   4.3567e-01   2.8670e-01   2.4182e+00   9.3297e-06 +#> 23:    9.3572e+01  -2.3703e-01   2.0725e+00   3.2385e+00   4.4889e-01   2.7237e-01   2.4525e+00   1.5592e-06 +#> 24:    9.3496e+01  -2.2704e-01   2.0746e+00   3.0766e+00   4.3674e-01   2.5875e-01   2.4569e+00   6.1365e-05 +#> 25:    9.3772e+01  -2.2211e-01   2.0762e+00   2.9228e+00   4.4843e-01   2.6194e-01   2.4015e+00   8.3288e-05 +#> 26:    9.3266e+01  -1.9408e-01   2.1345e+00   2.7766e+00   4.6952e-01   2.4885e-01   2.3827e+00   2.9029e-05 +#> 27:    9.3472e+01  -1.9793e-01   2.1141e+00   3.5922e+00   4.7687e-01   2.3640e-01   2.3827e+00   2.9029e-05 +#> 28:    9.3411e+01  -1.7721e-01   2.1334e+00   3.4125e+00   4.8209e-01   2.2458e-01   2.3864e+00   6.5503e-06 +#> 29:    93.6868   -0.1863    2.1258    4.5379    0.4744    0.2134    2.3001    0.0045 +#> 30:    9.4054e+01  -1.8122e-01   2.1287e+00   4.9729e+00   4.7945e-01   2.0269e-01   2.2979e+00   5.8327e-05 +#> 31:    9.3955e+01  -1.9131e-01   2.1202e+00   5.6375e+00   4.7965e-01   1.9255e-01   2.2671e+00   1.6931e-05 +#> 32:    9.4376e+01  -1.6810e-01   2.1287e+00   5.3556e+00   4.7567e-01   1.8972e-01   2.2483e+00   1.1778e-05 +#> 33:    9.4067e+01  -1.5819e-01   2.1656e+00   5.0878e+00   4.5710e-01   1.9389e-01   2.2696e+00   2.4282e-05 +#> 34:    9.4526e+01  -1.6367e-01   2.1473e+00   4.8334e+00   4.7085e-01   1.8419e-01   2.2919e+00   8.8644e-06 +#> 35:    9.4972e+01  -1.6784e-01   2.1353e+00   4.5917e+00   4.7510e-01   1.7498e-01   2.3129e+00   2.2851e-05 +#> 36:    9.4744e+01  -1.5973e-01   2.1281e+00   5.2356e+00   4.5695e-01   1.8499e-01   2.2896e+00   6.8824e-05 +#> 37:    9.4721e+01  -1.6756e-01   2.1168e+00   5.1111e+00   4.6804e-01   1.8407e-01   2.3035e+00   1.5534e-06 +#> 38:    9.4613e+01  -1.5952e-01   2.1385e+00   4.8555e+00   4.6107e-01   1.7720e-01   2.2650e+00   1.2489e-05 +#> 39:    9.4787e+01  -1.6113e-01   2.1458e+00   4.6128e+00   4.6317e-01   1.8378e-01   2.2831e+00   1.3668e-05 +#> 40:    94.5315   -0.1765    2.1186    4.3821    0.4428    0.1902    2.3132    0.0001 +#> 41:    9.4336e+01  -1.8333e-01   2.1285e+00   4.1630e+00   4.4521e-01   1.9913e-01   2.3092e+00   1.3482e-05 +#> 42:    94.0780   -0.2031    2.0724    3.9549    0.4405    0.1892    2.2704    0.0056 +#> 43:    93.9276   -0.1896    2.1191    3.7571    0.4590    0.1797    2.2396    0.0080 +#> 44:    94.2491   -0.1896    2.1006    3.8473    0.4590    0.1764    2.2774    0.0083 +#> 45:    94.4073   -0.1811    2.1156    3.6550    0.4519    0.1676    2.2682    0.0078 +#> 46:    93.9736   -0.1882    2.1196    3.4722    0.4545    0.1633    2.2775    0.0035 +#> 47:    94.1930   -0.1965    2.1102    3.2986    0.4599    0.1664    2.3243    0.0005 +#> 48:    9.4147e+01  -1.9494e-01   2.1118e+00   3.3188e+00   4.7005e-01   1.7181e-01   2.3345e+00   1.1669e-05 +#> 49:    9.4139e+01  -1.7920e-01   2.1199e+00   3.1528e+00   4.7417e-01   1.6322e-01   2.2794e+00   3.5582e-05 +#> 50:    9.4031e+01  -1.9074e-01   2.1098e+00   2.9952e+00   4.7498e-01   1.6695e-01   2.2574e+00   2.7302e-06 +#> 51:    9.3982e+01  -1.9369e-01   2.1058e+00   2.8848e+00   4.8158e-01   1.8408e-01   2.2447e+00   1.8188e-05 +#> 52:    9.3924e+01  -2.0726e-01   2.0809e+00   3.6064e+00   4.7008e-01   2.0029e-01   2.2319e+00   6.8301e-06 +#> 53:    9.4094e+01  -1.9609e-01   2.0780e+00   4.4341e+00   4.7556e-01   1.9742e-01   2.2701e+00   2.1343e-06 +#> 54:    9.4351e+01  -1.9839e-01   2.0746e+00   4.2124e+00   4.7456e-01   1.8866e-01   2.2778e+00   4.8058e-06 +#> 55:    93.9450   -0.1876    2.1059    4.0017    0.4892    0.1792    2.2720    0.0001 +#> 56:    9.3741e+01  -1.8208e-01   2.1172e+00   3.8017e+00   4.7696e-01   1.7027e-01   2.2332e+00   2.1237e-05 +#> 57:    9.3668e+01  -1.8580e-01   2.1181e+00   3.9224e+00   4.7704e-01   1.7425e-01   2.2512e+00   2.2766e-05 +#> 58:    9.3811e+01  -1.8324e-01   2.1178e+00   3.7263e+00   4.7945e-01   1.7939e-01   2.2512e+00   2.2766e-05 +#> 59:    9.3800e+01  -1.6691e-01   2.1250e+00   3.8213e+00   4.9353e-01   1.8464e-01   2.2763e+00   4.6129e-06 +#> 60:    9.3997e+01  -1.5920e-01   2.1489e+00   3.6303e+00   5.0788e-01   1.7541e-01   2.2466e+00   4.1975e-06 +#> 61:    9.4215e+01  -1.6445e-01   2.1482e+00   3.9303e+00   5.1966e-01   1.6664e-01   2.3053e+00   5.8982e-07 +#> 62:    9.3936e+01  -1.6721e-01   2.1376e+00   4.0316e+00   5.3719e-01   1.7228e-01   2.2841e+00   7.8603e-05 +#> 63:    9.3832e+01  -1.6209e-01   2.1334e+00   3.8698e+00   5.4370e-01   1.7064e-01   2.3046e+00   6.4415e-07 +#> 64:    93.9042   -0.1617    2.1563    5.5384    0.5430    0.1622    2.2988    0.0002 +#> 65:    93.8613   -0.1723    2.1239    6.2143    0.5304    0.1541    2.2949    0.0001 +#> 66:    9.4113e+01  -1.9168e-01   2.1019e+00   7.3588e+00   5.1287e-01   1.4641e-01   2.3164e+00   1.2580e-05 +#> 67:    9.3954e+01  -1.8141e-01   2.1199e+00   6.9909e+00   5.0278e-01   1.4993e-01   2.2676e+00   1.1126e-05 +#> 68:    93.8741   -0.1852    2.1343    6.6414    0.4997    0.1493    2.2706    0.0001 +#> 69:    9.3657e+01  -1.8345e-01   2.1375e+00   6.3093e+00   5.0292e-01   1.6326e-01   2.2809e+00   1.7299e-07 +#> 70:    9.3762e+01  -1.7493e-01   2.1512e+00   5.9938e+00   5.1042e-01   1.5509e-01   2.2837e+00   4.5745e-05 +#> 71:    9.4060e+01  -1.6516e-01   2.1440e+00   5.6941e+00   5.1615e-01   1.4734e-01   2.3001e+00   3.9993e-07 +#> 72:    9.3927e+01  -1.7365e-01   2.1347e+00   5.4094e+00   5.2582e-01   1.3997e-01   2.3075e+00   6.3748e-06 +#> 73:    9.4049e+01  -1.8080e-01   2.1254e+00   5.1390e+00   5.1154e-01   1.3297e-01   2.3042e+00   9.5858e-06 +#> 74:    9.3917e+01  -1.9083e-01   2.1051e+00   4.8820e+00   5.0104e-01   1.4605e-01   2.2733e+00   7.4923e-05 +#> 75:    9.4271e+01  -1.8281e-01   2.1059e+00   5.0872e+00   5.0773e-01   1.5322e-01   2.2387e+00   1.4240e-05 +#> 76:    9.4205e+01  -1.8352e-01   2.1160e+00   4.8328e+00   5.0684e-01   1.5669e-01   2.2708e+00   3.6346e-05 +#> 77:    9.4480e+01  -1.8352e-01   2.0942e+00   4.9009e+00   5.0684e-01   1.4885e-01   2.3098e+00   1.8186e-06 +#> 78:    9.4699e+01  -1.9686e-01   2.0671e+00   4.6559e+00   4.9182e-01   1.4503e-01   2.2806e+00   7.9443e-08 +#> 79:    9.4785e+01  -2.0649e-01   2.0500e+00   6.0608e+00   4.6723e-01   1.6185e-01   2.2607e+00   2.1557e-07 +#> 80:    9.4782e+01  -2.0045e-01   2.0680e+00   5.7578e+00   4.5759e-01   1.5747e-01   2.2926e+00   8.6381e-06 +#> 81:    9.4339e+01  -2.0435e-01   2.0885e+00   6.9051e+00   4.5054e-01   1.7410e-01   2.2796e+00   1.5517e-05 +#> 82:    9.4805e+01  -2.1032e-01   2.0658e+00   7.1580e+00   4.7091e-01   1.6539e-01   2.3013e+00   1.3893e-05 +#> 83:    9.4650e+01  -2.0507e-01   2.0485e+00   6.8001e+00   4.7624e-01   1.5938e-01   2.3104e+00   6.6569e-06 +#> 84:    9.4766e+01  -1.9959e-01   2.0667e+00   6.4601e+00   4.7322e-01   1.5619e-01   2.3359e+00   1.8890e-09 +#> 85:    9.4714e+01  -1.9959e-01   2.0756e+00   6.1371e+00   4.7322e-01   1.6894e-01   2.2738e+00   4.9578e-06 +#> 86:    9.4466e+01  -2.0544e-01   2.0626e+00   5.8302e+00   4.6340e-01   1.6050e-01   2.2773e+00   3.6221e-07 +#> 87:    9.4786e+01  -1.9292e-01   2.0703e+00   5.5387e+00   4.6881e-01   1.5641e-01   2.2746e+00   2.3326e-05 +#> 88:    9.4573e+01  -1.9488e-01   2.0597e+00   5.2618e+00   4.6538e-01   1.5079e-01   2.3225e+00   4.7054e-05 +#> 89:    94.8466   -0.2040    2.0603    4.9987    0.4620    0.1456    2.2807    0.0002 +#> 90:    9.4839e+01  -2.0359e-01   2.0673e+00   4.7488e+00   4.5379e-01   1.4729e-01   2.3099e+00   2.7922e-05 +#> 91:    9.4897e+01  -2.0635e-01   2.0496e+00   4.5113e+00   4.4018e-01   1.3993e-01   2.2924e+00   1.7074e-05 +#> 92:    9.4740e+01  -2.0567e-01   2.0518e+00   4.2858e+00   4.6190e-01   1.3293e-01   2.3396e+00   9.0471e-05 +#> 93:    94.9558   -0.2033    2.0824    4.0715    0.4877    0.1263    2.3785    0.0082 +#> 94:    95.1673   -0.1801    2.0900    3.8679    0.5150    0.1200    2.4128    0.0106 +#> 95:    95.3129   -0.1686    2.1057    3.6745    0.4892    0.1140    2.4135    0.0147 +#> 96:    9.5235e+01  -1.6834e-01   2.1069e+00   3.4908e+00   4.9584e-01   1.0827e-01   2.4408e+00   2.5829e-06 +#> 97:    9.4892e+01  -1.5911e-01   2.1277e+00   3.3162e+00   4.7518e-01   1.0286e-01   2.4658e+00   1.8589e-05 +#> 98:    9.4749e+01  -1.6133e-01   2.1204e+00   4.5926e+00   4.6435e-01   1.0192e-01   2.4716e+00   5.8808e-09 +#> 99:    9.4546e+01  -1.5627e-01   2.1358e+00   5.5648e+00   4.8843e-01   1.0047e-01   2.5033e+00   2.5865e-05 +#> 100:    9.4544e+01  -1.6341e-01   2.1317e+00   5.2974e+00   4.7076e-01   1.1065e-01   2.4711e+00   4.4438e-05 +#> 101:    94.2461   -0.1640    2.1458    5.0325    0.4750    0.1107    2.5297    0.0002 +#> 102:    9.4039e+01  -1.6946e-01   2.1490e+00   4.9929e+00   4.7265e-01   1.2109e-01   2.3907e+00   2.3093e-05 +#> 103:    9.4132e+01  -1.6840e-01   2.1250e+00   5.3879e+00   4.7062e-01   1.2389e-01   2.3401e+00   5.4840e-07 +#> 104:    9.4376e+01  -1.6842e-01   2.1239e+00   7.9826e+00   4.7053e-01   1.1769e-01   2.3663e+00   1.9617e-05 +#> 105:    9.4370e+01  -1.7024e-01   2.1187e+00   7.5834e+00   4.6738e-01   1.1683e-01   2.3471e+00   1.4035e-05 +#> 106:    9.4462e+01  -1.6562e-01   2.1406e+00   7.5466e+00   4.6364e-01   1.2640e-01   2.3140e+00   4.7933e-05 +#> 107:    9.4541e+01  -1.6582e-01   2.1308e+00   7.1692e+00   4.6457e-01   1.2964e-01   2.3395e+00   1.8489e-05 +#> 108:    9.4709e+01  -1.6157e-01   2.1484e+00   6.8108e+00   4.5925e-01   1.3393e-01   2.3340e+00   1.5230e-06 +#> 109:    9.4450e+01  -1.8900e-01   2.0799e+00   6.4702e+00   4.4801e-01   1.4728e-01   2.3847e+00   3.2613e-05 +#> 110:    9.4180e+01  -1.9104e-01   2.1172e+00   6.1467e+00   4.5389e-01   1.4273e-01   2.3775e+00   6.0285e-05 +#> 111:    9.4366e+01  -1.8908e-01   2.1031e+00   5.8394e+00   4.4875e-01   1.4983e-01   2.3898e+00   7.2653e-05 +#> 112:    9.4008e+01  -1.8144e-01   2.1008e+00   5.5474e+00   4.6433e-01   1.4234e-01   2.3705e+00   9.9395e-06 +#> 113:    9.4372e+01  -1.8885e-01   2.1154e+00   5.2700e+00   4.7983e-01   1.3522e-01   2.3641e+00   1.8643e-05 +#> 114:    94.1292   -0.1872    2.1134    5.0065    0.4824    0.1285    2.3163    0.0001 +#> 115:    9.4510e+01  -1.7805e-01   2.1185e+00   4.7562e+00   4.8451e-01   1.2204e-01   2.3568e+00   1.6277e-07 +#> 116:    9.4234e+01  -1.8613e-01   2.1214e+00   4.5184e+00   4.7967e-01   1.2275e-01   2.3388e+00   3.4361e-05 +#> 117:    9.4438e+01  -1.7276e-01   2.1218e+00   4.2925e+00   4.6200e-01   1.1662e-01   2.3686e+00   5.6594e-06 +#> 118:    9.4498e+01  -1.7628e-01   2.1143e+00   6.2395e+00   4.5445e-01   1.2378e-01   2.3303e+00   6.5645e-05 +#> 119:    9.4303e+01  -1.8107e-01   2.1120e+00   7.5774e+00   4.6102e-01   1.2829e-01   2.3595e+00   9.4057e-06 +#> 120:    9.4022e+01  -1.7626e-01   2.1258e+00   9.9044e+00   4.6505e-01   1.5188e-01   2.3582e+00   3.6907e-05 +#> 121:    9.4103e+01  -1.5976e-01   2.1354e+00   9.4091e+00   4.7792e-01   1.5429e-01   2.3729e+00   4.6749e-05 +#> 122:    9.4727e+01  -1.9092e-01   2.0956e+00   8.9387e+00   4.5402e-01   1.6371e-01   2.3118e+00   6.8573e-06 +#> 123:    9.4447e+01  -1.9139e-01   2.0898e+00   8.4918e+00   4.3317e-01   1.7569e-01   2.3083e+00   4.4068e-05 +#> 124:    9.4422e+01  -1.9130e-01   2.0920e+00   8.0672e+00   4.3952e-01   1.7160e-01   2.3003e+00   1.7162e-05 +#> 125:    9.4608e+01  -1.7777e-01   2.1007e+00   7.6638e+00   4.8253e-01   1.6302e-01   2.3244e+00   1.9896e-05 +#> 126:    9.4512e+01  -1.6596e-01   2.1139e+00   7.2806e+00   4.7648e-01   1.7588e-01   2.2913e+00   4.9747e-05 +#> 127:    9.4983e+01  -1.6562e-01   2.1290e+00   6.9166e+00   4.7028e-01   1.6709e-01   2.3141e+00   3.3357e-05 +#> 128:    94.3910   -0.1728    2.1159    6.5708    0.4914    0.1850    2.3173    0.0001 +#> 129:    9.4578e+01  -1.7211e-01   2.1177e+00   6.2422e+00   4.8295e-01   1.7709e-01   2.2815e+00   4.8158e-05 +#> 130:    9.4646e+01  -1.6785e-01   2.1333e+00   5.9301e+00   4.6360e-01   1.6823e-01   2.3140e+00   2.1204e-05 +#> 131:    9.4670e+01  -1.4897e-01   2.1480e+00   5.6336e+00   4.8826e-01   1.5982e-01   2.3436e+00   1.3221e-05 +#> 132:    9.4625e+01  -1.6160e-01   2.1599e+00   5.3519e+00   4.6385e-01   1.6125e-01   2.2830e+00   9.6815e-06 +#> 133:    9.3985e+01  -1.7636e-01   2.1299e+00   5.8178e+00   4.4885e-01   1.5389e-01   2.2810e+00   6.7789e-06 +#> 134:    9.4105e+01  -1.7389e-01   2.1199e+00   5.5269e+00   4.5848e-01   1.4628e-01   2.2992e+00   7.6542e-06 +#> 135:    9.4387e+01  -1.5936e-01   2.1418e+00   5.2506e+00   4.5002e-01   1.6349e-01   2.3403e+00   7.6250e-05 +#> 136:    94.3595   -0.1696    2.1493    4.9880    0.4407    0.1722    2.3121    0.0001 +#> 137:    9.4056e+01  -1.6030e-01   2.1720e+00   5.5600e+00   4.4954e-01   1.8233e-01   2.3099e+00   2.1195e-05 +#> 138:    9.4043e+01  -1.4848e-01   2.1876e+00   5.2820e+00   4.5696e-01   1.8542e-01   2.2876e+00   8.7271e-06 +#> 139:    94.3020   -0.1374    2.1965    5.6428    0.4668    0.1927    2.3341    0.0001 +#> 140:    9.4260e+01  -1.3603e-01   2.2014e+00   5.7727e+00   4.6823e-01   1.8302e-01   2.3248e+00   1.4731e-06 +#> 141:    9.4302e+01  -1.2134e-01   2.1992e+00   5.4841e+00   4.8967e-01   1.7947e-01   2.3212e+00   1.6339e-05 +#> 142:    94.0970   -0.1143    2.2570    5.4173    0.4766    0.1726    2.3581    0.0077 +#> 143:    94.2078   -0.1162    2.2460    5.1464    0.4745    0.1874    2.3551    0.0152 +#> 144:    94.2085   -0.0953    2.2685    4.8891    0.5010    0.1780    2.3881    0.0095 +#> 145:    94.1483   -0.0906    2.2751    5.0705    0.4959    0.1770    2.3103    0.0143 +#> 146:    94.4257   -0.0859    2.2735    5.0201    0.5331    0.2050    2.3104    0.0160 +#> 147:    93.8072   -0.0887    2.2766    4.7691    0.5253    0.2200    2.2903    0.0180 +#> 148:    94.4354   -0.0901    2.2770    4.5306    0.5237    0.2147    2.3108    0.0150 +#> 149:    94.1171   -0.1126    2.2342    4.3041    0.5412    0.2300    2.3454    0.0126 +#> 150:    94.0704   -0.1267    2.2071    4.0889    0.5324    0.2185    2.3673    0.0097 +#> 151:    93.9860   -0.1480    2.1852    3.8844    0.5101    0.2529    2.3280    0.0056 +#> 152:    93.9500   -0.1419    2.1940    4.4687    0.5066    0.2371    2.3617    0.0002 +#> 153:    93.8058   -0.1368    2.1917    4.2493    0.5068    0.2057    2.3481    0.0002 +#> 154:    9.4043e+01  -1.3331e-01   2.1972e+00   4.3921e+00   4.7605e-01   1.9689e-01   2.3952e+00   9.5657e-05 +#> 155:    94.2500   -0.1223    2.2260    5.7786    0.4848    0.1829    2.3361    0.0075 +#> 156:    94.5035   -0.1223    2.2091    6.1344    0.4848    0.1558    2.3951    0.0048 +#> 157:    9.4448e+01  -1.3268e-01   2.1797e+00   6.4746e+00   4.6934e-01   1.6035e-01   2.3496e+00   5.2771e-05 +#> 158:    94.7438   -0.1401    2.1904    6.0162    0.4589    0.1692    2.3444    0.0001 +#> 159:    94.2681   -0.1430    2.1852    4.6165    0.4774    0.1617    2.3601    0.0001 +#> 160:    9.3911e+01  -1.1659e-01   2.2267e+00   4.9756e+00   4.9349e-01   1.7150e-01   2.3500e+00   9.0374e-06 +#> 161:    9.3914e+01  -1.1938e-01   2.2233e+00   4.8238e+00   4.9674e-01   1.8358e-01   2.3536e+00   1.1877e-06 +#> 162:    93.9974   -0.1188    2.2349    5.1092    0.4967    0.1714    2.3237    0.0041 +#> 163:    9.3939e+01  -1.2170e-01   2.2147e+00   4.8315e+00   5.0622e-01   1.8195e-01   2.3823e+00   2.4030e-05 +#> 164:    93.8015   -0.1362    2.2166    3.9112    0.4958    0.1684    2.3488    0.0072 +#> 165:    93.4082   -0.1398    2.2132    3.2992    0.5087    0.1734    2.2861    0.0125 +#> 166:    93.4680   -0.1421    2.2077    3.3232    0.5075    0.1643    2.2792    0.0149 +#> 167:    93.5455   -0.1443    2.2080    3.7465    0.4972    0.1685    2.2194    0.0191 +#> 168:    93.5603   -0.1711    2.1421    3.2407    0.5201    0.1940    2.3029    0.0198 +#> 169:    93.7281   -0.1578    2.1553    2.5110    0.4988    0.1836    2.3343    0.0134 +#> 170:    93.9675   -0.1564    2.1532    2.2507    0.5049    0.1753    2.3089    0.0110 +#> 171:    93.8255   -0.1543    2.1647    2.7302    0.5114    0.1691    2.2959    0.0113 +#> 172:    93.8071   -0.1536    2.1689    2.5849    0.5069    0.1751    2.3047    0.0099 +#> 173:    93.7137   -0.1403    2.2096    1.5160    0.5204    0.1622    2.3452    0.0155 +#> 174:    93.7182   -0.1376    2.1975    1.3366    0.5222    0.1700    2.3311    0.0149 +#> 175:    93.5957   -0.1587    2.1613    1.3539    0.5321    0.1470    2.3893    0.0156 +#> 176:    93.6058   -0.1587    2.1602    1.4588    0.5321    0.1412    2.4323    0.0116 +#> 177:    93.4496   -0.1858    2.1323    1.2423    0.4987    0.1460    2.3491    0.0167 +#> 178:    93.5894   -0.1935    2.1217    1.7812    0.4776    0.1643    2.3046    0.0168 +#> 179:    93.6386   -0.1887    2.1445    2.8813    0.4808    0.1585    2.2689    0.0192 +#> 180:    93.9288   -0.1950    2.1015    2.0905    0.4681    0.1557    2.2783    0.0170 +#> 181:    93.8165   -0.1950    2.0840    2.6302    0.4681    0.1592    2.3643    0.0173 +#> 182:    94.2132   -0.1936    2.0866    3.0185    0.5131    0.1712    2.3164    0.0147 +#> 183:    94.0929   -0.1896    2.0782    3.0716    0.5288    0.1644    2.5169    0.0066 +#> 184:    93.8694   -0.1968    2.0946    2.4734    0.5121    0.1709    2.3795    0.0071 +#> 185:    93.8138   -0.1970    2.0987    2.9707    0.4957    0.1500    2.3995    0.0034 +#> 186:    9.4047e+01  -2.1045e-01   2.0791e+00   3.6686e+00   4.8764e-01   1.4347e-01   2.3654e+00   3.8127e-05 +#> 187:    9.4498e+01  -1.9649e-01   2.0949e+00   2.0912e+00   4.7479e-01   1.6122e-01   2.3873e+00   4.7739e-06 +#> 188:    9.4650e+01  -1.8508e-01   2.1132e+00   2.1529e+00   4.6244e-01   1.4403e-01   2.3367e+00   3.5345e-06 +#> 189:    9.4301e+01  -1.8137e-01   2.1132e+00   2.6433e+00   4.4894e-01   1.3537e-01   2.3145e+00   9.6836e-06 +#> 190:    9.4501e+01  -1.8209e-01   2.0962e+00   3.1460e+00   4.4908e-01   1.2006e-01   2.3563e+00   3.3387e-05 +#> 191:    9.4156e+01  -2.0214e-01   2.0803e+00   3.2334e+00   4.7635e-01   1.1917e-01   2.3782e+00   6.6641e-06 +#> 192:    9.3981e+01  -2.1562e-01   2.0492e+00   3.0526e+00   5.0505e-01   1.3669e-01   2.3412e+00   7.3871e-05 +#> 193:    9.4085e+01  -2.2693e-01   2.0318e+00   2.9855e+00   4.9563e-01   1.4371e-01   2.3727e+00   8.6443e-05 +#> 194:    9.3922e+01  -2.3089e-01   2.0323e+00   2.9709e+00   4.9151e-01   1.4470e-01   2.3667e+00   3.5941e-05 +#> 195:    9.4180e+01  -2.2865e-01   2.0284e+00   2.2426e+00   4.8793e-01   1.5283e-01   2.3442e+00   1.8882e-05 +#> 196:    9.4259e+01  -2.0053e-01   2.0541e+00   1.5155e+00   5.1571e-01   1.5596e-01   2.3638e+00   2.9015e-05 +#> 197:    9.4225e+01  -2.0144e-01   2.0551e+00   1.6032e+00   5.0920e-01   1.6454e-01   2.3564e+00   2.7823e-05 +#> 198:    9.4166e+01  -1.9411e-01   2.0602e+00   1.8793e+00   5.5190e-01   1.8338e-01   2.3611e+00   1.6669e-05 +#> 199:    9.4230e+01  -1.9621e-01   2.0737e+00   1.8847e+00   5.4082e-01   1.7340e-01   2.3488e+00   5.8282e-07 +#> 200:    9.4215e+01  -1.9629e-01   2.0888e+00   1.9185e+00   5.4293e-01   1.7502e-01   2.3563e+00   5.7303e-06 +#> 201:    94.0654   -0.1931    2.0901    1.8074    0.5373    0.1886    2.3869    0.0025 +#> 202:    93.9801   -0.1898    2.0990    1.6823    0.5318    0.1841    2.4043    0.0016 +#> 203:    94.0246   -0.1893    2.1004    1.6503    0.5286    0.1855    2.3971    0.0012 +#> 204:    93.9893   -0.1870    2.1014    1.6166    0.5276    0.1846    2.3900    0.0010 +#> 205:    94.0154   -0.1854    2.1006    1.5294    0.5286    0.1828    2.3939    0.0009 +#> 206:    94.0468   -0.1833    2.1024    1.5102    0.5295    0.1807    2.3967    0.0007 +#> 207:    94.0641   -0.1810    2.1049    1.5136    0.5289    0.1798    2.4037    0.0008 +#> 208:    94.0794   -0.1790    2.1062    1.5078    0.5286    0.1790    2.4139    0.0007 +#> 209:    94.0892   -0.1799    2.1049    1.4549    0.5261    0.1793    2.4144    0.0006 +#> 210:    94.0911   -0.1817    2.1042    1.4537    0.5217    0.1810    2.4069    0.0012 +#> 211:    94.1011   -0.1828    2.1016    1.4582    0.5235    0.1825    2.4049    0.0011 +#> 212:    94.1081   -0.1839    2.0989    1.4657    0.5255    0.1838    2.4031    0.0010 +#> 213:    94.1264   -0.1842    2.0973    1.4527    0.5263    0.1851    2.4026    0.0010 +#> 214:    94.1287   -0.1844    2.0974    1.4405    0.5270    0.1869    2.4006    0.0009 +#> 215:    94.1440   -0.1850    2.0973    1.4556    0.5269    0.1876    2.3985    0.0009 +#> 216:    94.1352   -0.1863    2.0970    1.4698    0.5258    0.1885    2.3977    0.0008 +#> 217:    94.1261   -0.1868    2.0962    1.4850    0.5244    0.1897    2.3946    0.0008 +#> 218:    94.1100   -0.1858    2.0987    1.4673    0.5230    0.1934    2.3924    0.0007 +#> 219:    94.1073   -0.1845    2.1013    1.4630    0.5218    0.1993    2.3890    0.0011 +#> 220:    94.1026   -0.1836    2.1030    1.4705    0.5205    0.2028    2.3904    0.0010 +#> 221:    94.0972   -0.1824    2.1046    1.4732    0.5198    0.2065    2.3907    0.0010 +#> 222:    94.0898   -0.1824    2.1052    1.4952    0.5180    0.2083    2.3892    0.0010 +#> 223:    94.0975   -0.1830    2.1050    1.5035    0.5161    0.2107    2.3888    0.0011 +#> 224:    94.1027   -0.1831    2.1050    1.5196    0.5148    0.2124    2.3878    0.0011 +#> 225:    94.0977   -0.1828    2.1065    1.5153    0.5142    0.2141    2.3856    0.0013 +#> 226:    94.0907   -0.1831    2.1066    1.5287    0.5130    0.2151    2.3828    0.0014 +#> 227:    94.0831   -0.1833    2.1065    1.5535    0.5119    0.2159    2.3814    0.0014 +#> 228:    94.0834   -0.1832    2.1072    1.5713    0.5114    0.2174    2.3813    0.0014 +#> 229:    94.0793   -0.1832    2.1076    1.6041    0.5111    0.2184    2.3811    0.0015 +#> 230:    94.0701   -0.1843    2.1064    1.6177    0.5096    0.2181    2.3803    0.0017 +#> 231:    94.0598   -0.1853    2.1052    1.6254    0.5085    0.2180    2.3818    0.0016 +#> 232:    94.0539   -0.1862    2.1045    1.6254    0.5074    0.2175    2.3824    0.0017 +#> 233:    94.0498   -0.1869    2.1034    1.6380    0.5065    0.2169    2.3826    0.0017 +#> 234:    94.0514   -0.1872    2.1035    1.6300    0.5050    0.2160    2.3829    0.0017 +#> 235:    94.0521   -0.1876    2.1026    1.6263    0.5041    0.2148    2.3825    0.0018 +#> 236:    94.0587   -0.1876    2.1024    1.6277    0.5023    0.2134    2.3834    0.0020 +#> 237:    94.0741   -0.1873    2.1025    1.6349    0.5013    0.2120    2.3828    0.0019 +#> 238:    94.0898   -0.1876    2.1022    1.6509    0.4997    0.2107    2.3837    0.0019 +#> 239:    94.1055   -0.1880    2.1016    1.6596    0.4979    0.2098    2.3836    0.0018 +#> 240:    94.1209   -0.1885    2.1007    1.6627    0.4958    0.2092    2.3831    0.0018 +#> 241:    94.1322   -0.1893    2.0992    1.6563    0.4945    0.2085    2.3825    0.0017 +#> 242:    94.1404   -0.1904    2.0976    1.6574    0.4930    0.2082    2.3814    0.0017 +#> 243:    94.1428   -0.1914    2.0961    1.6412    0.4918    0.2078    2.3800    0.0017 +#> 244:    94.1477   -0.1923    2.0945    1.6287    0.4907    0.2071    2.3795    0.0016 +#> 245:    94.1525   -0.1931    2.0933    1.6225    0.4897    0.2064    2.3791    0.0016 +#> 246:    94.1557   -0.1938    2.0927    1.6243    0.4890    0.2048    2.3780    0.0016 +#> 247:    94.1576   -0.1943    2.0919    1.6333    0.4881    0.2034    2.3777    0.0015 +#> 248:    94.1603   -0.1951    2.0909    1.6328    0.4863    0.2026    2.3775    0.0015 +#> 249:    94.1648   -0.1957    2.0898    1.6427    0.4847    0.2018    2.3774    0.0015 +#> 250:    94.1766   -0.1963    2.0889    1.6482    0.4829    0.2012    2.3770    0.0015 +#> 251:    94.1854   -0.1971    2.0875    1.6536    0.4806    0.2011    2.3769    0.0016 +#> 252:    94.1906   -0.1980    2.0861    1.6527    0.4785    0.2013    2.3763    0.0017 +#> 253:    94.1913   -0.1982    2.0857    1.6459    0.4772    0.2014    2.3751    0.0019 +#> 254:    94.1945   -0.1985    2.0852    1.6413    0.4759    0.2019    2.3755    0.0019 +#> 255:    94.1972   -0.1989    2.0837    1.6451    0.4754    0.2027    2.3753    0.0018 +#> 256:    94.1994   -0.1989    2.0833    1.6548    0.4758    0.2024    2.3752    0.0018 +#> 257:    94.2014   -0.1987    2.0833    1.6708    0.4765    0.2024    2.3752    0.0018 +#> 258:    94.2081   -0.1984    2.0836    1.6903    0.4768    0.2023    2.3749    0.0017 +#> 259:    94.2151   -0.1982    2.0839    1.7169    0.4767    0.2023    2.3737    0.0017 +#> 260:    94.2212   -0.1980    2.0838    1.7426    0.4766    0.2031    2.3725    0.0017 +#> 261:    94.2229   -0.1981    2.0835    1.7696    0.4764    0.2038    2.3714    0.0017 +#> 262:    94.2213   -0.1983    2.0832    1.7977    0.4762    0.2045    2.3704    0.0016 +#> 263:    94.2220   -0.1984    2.0830    1.8277    0.4764    0.2051    2.3700    0.0016 +#> 264:    94.2230   -0.1983    2.0830    1.8430    0.4766    0.2057    2.3690    0.0016 +#> 265:    94.2235   -0.1983    2.0832    1.8679    0.4768    0.2060    2.3674    0.0016 +#> 266:    94.2242   -0.1982    2.0833    1.8705    0.4769    0.2064    2.3658    0.0015 +#> 267:    94.2267   -0.1982    2.0832    1.8715    0.4769    0.2070    2.3643    0.0015 +#> 268:    94.2312   -0.1980    2.0834    1.8824    0.4769    0.2074    2.3631    0.0015 +#> 269:    94.2329   -0.1981    2.0829    1.8843    0.4766    0.2084    2.3628    0.0015 +#> 270:    94.2321   -0.1982    2.0825    1.8904    0.4770    0.2093    2.3629    0.0015 +#> 271:    94.2349   -0.1985    2.0820    1.8942    0.4769    0.2101    2.3633    0.0016 +#> 272:    94.2388   -0.1989    2.0818    1.9099    0.4767    0.2110    2.3634    0.0018 +#> 273:    94.2420   -0.1992    2.0816    1.9259    0.4765    0.2118    2.3632    0.0018 +#> 274:    94.2454   -0.1994    2.0813    1.9330    0.4763    0.2128    2.3629    0.0017 +#> 275:    94.2456   -0.1997    2.0810    1.9316    0.4761    0.2138    2.3624    0.0018 +#> 276:    94.2472   -0.1999    2.0807    1.9306    0.4758    0.2146    2.3624    0.0019 +#> 277:    94.2492   -0.2001    2.0808    1.9326    0.4756    0.2153    2.3623    0.0020 +#> 278:    94.2493   -0.2003    2.0807    1.9225    0.4752    0.2163    2.3628    0.0020 +#> 279:    94.2481   -0.2002    2.0808    1.9206    0.4750    0.2168    2.3628    0.0019 +#> 280:    94.2433   -0.2002    2.0810    1.9257    0.4749    0.2173    2.3626    0.0019 +#> 281:    94.2358   -0.2004    2.0809    1.9217    0.4748    0.2173    2.3620    0.0019 +#> 282:    94.2307   -0.2005    2.0807    1.9209    0.4748    0.2172    2.3617    0.0019 +#> 283:    94.2302   -0.2008    2.0803    1.9131    0.4748    0.2172    2.3615    0.0019 +#> 284:    94.2309   -0.2009    2.0802    1.9085    0.4749    0.2171    2.3610    0.0018 +#> 285:    94.2344   -0.2010    2.0799    1.9135    0.4749    0.2170    2.3603    0.0018 +#> 286:    94.2381   -0.2013    2.0794    1.9099    0.4749    0.2167    2.3596    0.0018 +#> 287:    94.2420   -0.2016    2.0786    1.9105    0.4749    0.2164    2.3596    0.0018 +#> 288:    94.2425   -0.2020    2.0778    1.9081    0.4749    0.2161    2.3590    0.0019 +#> 289:    94.2386   -0.2023    2.0773    1.9136    0.4749    0.2158    2.3586    0.0019 +#> 290:    94.2357   -0.2026    2.0768    1.9171    0.4750    0.2154    2.3581    0.0019 +#> 291:    94.2326   -0.2026    2.0765    1.9162    0.4750    0.2150    2.3577    0.0019 +#> 292:    94.2305   -0.2026    2.0766    1.9178    0.4753    0.2144    2.3577    0.0020 +#> 293:    94.2268   -0.2023    2.0771    1.9257    0.4754    0.2138    2.3574    0.0022 +#> 294:    94.2216   -0.2023    2.0773    1.9326    0.4754    0.2132    2.3565    0.0023 +#> 295:    94.2193   -0.2024    2.0769    1.9378    0.4762    0.2125    2.3565    0.0024 +#> 296:    94.2160   -0.2025    2.0765    1.9463    0.4771    0.2117    2.3565    0.0025 +#> 297:    94.2106   -0.2026    2.0761    1.9523    0.4779    0.2109    2.3569    0.0026 +#> 298:    94.2089   -0.2028    2.0756    1.9622    0.4787    0.2099    2.3578    0.0025 +#> 299:    94.2077   -0.2029    2.0753    1.9721    0.4794    0.2090    2.3586    0.0026 +#> 300:    94.2064   -0.2030    2.0749    1.9838    0.4802    0.2080    2.3589    0.0026 +#> 301:    94.2086   -0.2029    2.0747    1.9942    0.4806    0.2071    2.3587    0.0025 +#> 302:    94.2111   -0.2031    2.0744    1.9938    0.4810    0.2063    2.3593    0.0025 +#> 303:    94.2133   -0.2031    2.0743    1.9923    0.4811    0.2056    2.3593    0.0025 +#> 304:    94.2151   -0.2032    2.0739    1.9885    0.4811    0.2049    2.3595    0.0025 +#> 305:    94.2159   -0.2035    2.0735    1.9872    0.4813    0.2044    2.3594    0.0024 +#> 306:    94.2192   -0.2038    2.0729    1.9806    0.4813    0.2041    2.3592    0.0024 +#> 307:    94.2226   -0.2040    2.0724    1.9796    0.4814    0.2038    2.3588    0.0024 +#> 308:    94.2224   -0.2042    2.0723    1.9828    0.4814    0.2036    2.3589    0.0024 +#> 309:    94.2200   -0.2043    2.0723    1.9859    0.4812    0.2034    2.3587    0.0024 +#> 310:    94.2183   -0.2044    2.0723    1.9892    0.4810    0.2034    2.3583    0.0023 +#> 311:    94.2175   -0.2044    2.0724    1.9895    0.4805    0.2033    2.3580    0.0023 +#> 312:    94.2171   -0.2044    2.0725    1.9977    0.4800    0.2032    2.3581    0.0023 +#> 313:    94.2108   -0.2044    2.0728    1.9995    0.4795    0.2030    2.3578    0.0023 +#> 314:    94.2068   -0.2045    2.0730    1.9929    0.4790    0.2029    2.3576    0.0024 +#> 315:    94.2031   -0.2047    2.0730    1.9884    0.4784    0.2028    2.3579    0.0024 +#> 316:    94.2018   -0.2048    2.0731    1.9860    0.4779    0.2026    2.3582    0.0024 +#> 317:    94.2015   -0.2050    2.0729    1.9836    0.4773    0.2025    2.3582    0.0024 +#> 318:    94.2025   -0.2052    2.0728    1.9814    0.4768    0.2024    2.3580    0.0023 +#> 319:    94.2066   -0.2053    2.0726    1.9867    0.4764    0.2024    2.3577    0.0023 +#> 320:    94.2074   -0.2055    2.0727    1.9896    0.4760    0.2024    2.3575    0.0023 +#> 321:    94.2097   -0.2055    2.0728    1.9985    0.4758    0.2026    2.3573    0.0023 +#> 322:    94.2080   -0.2054    2.0731    2.0108    0.4759    0.2028    2.3570    0.0023 +#> 323:    94.2042   -0.2054    2.0732    2.0253    0.4762    0.2030    2.3566    0.0023 +#> 324:    94.2005   -0.2054    2.0733    2.0514    0.4765    0.2032    2.3566    0.0023 +#> 325:    94.2000   -0.2053    2.0735    2.0719    0.4767    0.2034    2.3570    0.0023 +#> 326:    94.2002   -0.2052    2.0738    2.0907    0.4769    0.2034    2.3573    0.0023 +#> 327:    94.1997   -0.2051    2.0741    2.1140    0.4770    0.2035    2.3571    0.0023 +#> 328:    94.1976   -0.2050    2.0743    2.1379    0.4770    0.2035    2.3569    0.0023 +#> 329:    94.1969   -0.2051    2.0741    2.1485    0.4769    0.2038    2.3566    0.0022 +#> 330:    94.1959   -0.2053    2.0738    2.1533    0.4767    0.2042    2.3561    0.0022 +#> 331:    94.1962   -0.2055    2.0733    2.1588    0.4763    0.2046    2.3555    0.0022 +#> 332:    94.1967   -0.2059    2.0727    2.1626    0.4760    0.2051    2.3551    0.0022 +#> 333:    94.1964   -0.2062    2.0721    2.1666    0.4757    0.2056    2.3547    0.0022 +#> 334:    94.1978   -0.2064    2.0718    2.1703    0.4756    0.2063    2.3543    0.0022 +#> 335:    94.1985   -0.2066    2.0715    2.1698    0.4755    0.2068    2.3538    0.0021 +#> 336:    94.1999   -0.2068    2.0711    2.1705    0.4757    0.2075    2.3534    0.0021 +#> 337:    94.1990   -0.2069    2.0708    2.1690    0.4759    0.2080    2.3530    0.0021 +#> 338:    94.1965   -0.2071    2.0706    2.1708    0.4760    0.2085    2.3525    0.0021 +#> 339:    94.1934   -0.2071    2.0704    2.1769    0.4761    0.2088    2.3518    0.0021 +#> 340:    94.1908   -0.2072    2.0704    2.1794    0.4763    0.2091    2.3515    0.0021 +#> 341:    94.1875   -0.2072    2.0706    2.1859    0.4762    0.2092    2.3512    0.0021 +#> 342:    94.1840   -0.2071    2.0707    2.1903    0.4762    0.2093    2.3513    0.0021 +#> 343:    94.1816   -0.2072    2.0706    2.1909    0.4761    0.2093    2.3512    0.0020 +#> 344:    94.1815   -0.2070    2.0708    2.1877    0.4758    0.2091    2.3514    0.0021 +#> 345:    94.1839   -0.2070    2.0710    2.1844    0.4757    0.2090    2.3517    0.0021 +#> 346:    94.1868   -0.2068    2.0713    2.1787    0.4756    0.2088    2.3520    0.0020 +#> 347:    94.1871   -0.2066    2.0717    2.1762    0.4756    0.2086    2.3519    0.0020 +#> 348:    94.1868   -0.2064    2.0722    2.1724    0.4756    0.2084    2.3521    0.0020 +#> 349:    94.1892   -0.2062    2.0725    2.1673    0.4755    0.2080    2.3524    0.0020 +#> 350:    94.1921   -0.2060    2.0726    2.1632    0.4754    0.2076    2.3527    0.0020 +#> 351:    94.1947   -0.2060    2.0726    2.1613    0.4752    0.2073    2.3530    0.0020 +#> 352:    94.1988   -0.2060    2.0725    2.1647    0.4751    0.2069    2.3530    0.0020 +#> 353:    94.2036   -0.2061    2.0721    2.1684    0.4749    0.2067    2.3530    0.0020 +#> 354:    94.2082   -0.2061    2.0719    2.1670    0.4747    0.2063    2.3529    0.0020 +#> 355:    94.2111   -0.2061    2.0718    2.1645    0.4747    0.2062    2.3526    0.0020 +#> 356:    94.2123   -0.2061    2.0717    2.1628    0.4747    0.2063    2.3525    0.0020 +#> 357:    94.2146   -0.2062    2.0716    2.1610    0.4746    0.2064    2.3523    0.0020 +#> 358:    94.2161   -0.2062    2.0715    2.1656    0.4744    0.2065    2.3520    0.0020 +#> 359:    94.2178   -0.2063    2.0714    2.1684    0.4743    0.2065    2.3516    0.0020 +#> 360:    94.2194   -0.2063    2.0713    2.1687    0.4742    0.2065    2.3512    0.0019 +#> 361:    94.2191   -0.2064    2.0713    2.1738    0.4741    0.2065    2.3508    0.0019 +#> 362:    94.2186   -0.2064    2.0713    2.1762    0.4740    0.2065    2.3502    0.0019 +#> 363:    94.2179   -0.2064    2.0714    2.1754    0.4740    0.2065    2.3495    0.0019 +#> 364:    94.2165   -0.2063    2.0715    2.1740    0.4741    0.2064    2.3495    0.0019 +#> 365:    94.2149   -0.2063    2.0716    2.1736    0.4741    0.2062    2.3495    0.0020 +#> 366:    94.2141   -0.2062    2.0717    2.1813    0.4740    0.2064    2.3490    0.0020 +#> 367:    94.2158   -0.2062    2.0717    2.1905    0.4739    0.2063    2.3491    0.0019 +#> 368:    94.2173   -0.2062    2.0718    2.1963    0.4737    0.2063    2.3485    0.0019 +#> 369:    94.2183   -0.2062    2.0717    2.2005    0.4736    0.2064    2.3481    0.0019 +#> 370:    94.2194   -0.2062    2.0716    2.2016    0.4735    0.2063    2.3477    0.0019 +#> 371:    94.2192   -0.2063    2.0715    2.1997    0.4733    0.2064    2.3476    0.0019 +#> 372:    94.2202   -0.2062    2.0716    2.1957    0.4733    0.2065    2.3479    0.0019 +#> 373:    94.2208   -0.2061    2.0717    2.1913    0.4733    0.2065    2.3480    0.0019 +#> 374:    94.2209   -0.2061    2.0719    2.1870    0.4731    0.2065    2.3479    0.0019 +#> 375:    94.2219   -0.2061    2.0719    2.1864    0.4729    0.2064    2.3477    0.0019 +#> 376:    94.2231   -0.2061    2.0720    2.1849    0.4726    0.2063    2.3473    0.0019 +#> 377:    94.2251   -0.2061    2.0720    2.1835    0.4724    0.2063    2.3471    0.0019 +#> 378:    94.2238   -0.2062    2.0719    2.1777    0.4721    0.2062    2.3472    0.0018 +#> 379:    94.2226   -0.2064    2.0717    2.1741    0.4717    0.2063    2.3471    0.0018 +#> 380:    94.2216   -0.2066    2.0714    2.1759    0.4714    0.2063    2.3468    0.0018 +#> 381:    94.2206   -0.2068    2.0711    2.1784    0.4711    0.2063    2.3465    0.0018 +#> 382:    94.2200   -0.2071    2.0707    2.1753    0.4707    0.2062    2.3462    0.0018 +#> 383:    94.2205   -0.2073    2.0704    2.1757    0.4703    0.2061    2.3461    0.0018 +#> 384:    94.2201   -0.2076    2.0702    2.1802    0.4698    0.2060    2.3458    0.0018 +#> 385:    94.2210   -0.2078    2.0701    2.1795    0.4693    0.2061    2.3457    0.0018 +#> 386:    94.2199   -0.2079    2.0700    2.1788    0.4688    0.2061    2.3455    0.0018 +#> 387:    94.2181   -0.2081    2.0699    2.1801    0.4683    0.2061    2.3454    0.0018 +#> 388:    94.2169   -0.2082    2.0699    2.1850    0.4679    0.2061    2.3452    0.0017 +#> 389:    94.2158   -0.2083    2.0699    2.1881    0.4674    0.2063    2.3449    0.0017 +#> 390:    94.2162   -0.2084    2.0696    2.1928    0.4671    0.2064    2.3447    0.0017 +#> 391:    94.2172   -0.2085    2.0696    2.1921    0.4669    0.2063    2.3444    0.0017 +#> 392:    94.2175   -0.2085    2.0695    2.1933    0.4667    0.2063    2.3442    0.0017 +#> 393:    94.2174   -0.2086    2.0695    2.1972    0.4666    0.2062    2.3440    0.0017 +#> 394:    94.2179   -0.2087    2.0694    2.1972    0.4664    0.2061    2.3439    0.0017 +#> 395:    94.2200   -0.2087    2.0694    2.2009    0.4663    0.2059    2.3438    0.0017 +#> 396:    94.2189   -0.2086    2.0695    2.2062    0.4662    0.2058    2.3434    0.0017 +#> 397:    94.2183   -0.2085    2.0696    2.2151    0.4663    0.2056    2.3431    0.0017 +#> 398:    94.2186   -0.2085    2.0696    2.2200    0.4664    0.2056    2.3430    0.0017 +#> 399:    94.2183   -0.2084    2.0698    2.2204    0.4664    0.2056    2.3428    0.0017 +#> 400:    94.2184   -0.2082    2.0703    2.2252    0.4665    0.2054    2.3428    0.0016 +#> 401:    94.2176   -0.2080    2.0707    2.2323    0.4666    0.2052    2.3427    0.0016 +#> 402:    94.2167   -0.2078    2.0712    2.2397    0.4668    0.2050    2.3426    0.0016 +#> 403:    94.2157   -0.2075    2.0716    2.2464    0.4669    0.2049    2.3426    0.0016 +#> 404:    94.2152   -0.2074    2.0719    2.2508    0.4670    0.2047    2.3427    0.0016 +#> 405:    94.2152   -0.2072    2.0723    2.2537    0.4671    0.2046    2.3427    0.0016 +#> 406:    94.2151   -0.2070    2.0726    2.2565    0.4672    0.2044    2.3427    0.0016 +#> 407:    94.2132   -0.2067    2.0731    2.2568    0.4673    0.2044    2.3426    0.0016 +#> 408:    94.2142   -0.2065    2.0734    2.2579    0.4674    0.2046    2.3424    0.0016 +#> 409:    94.2136   -0.2063    2.0738    2.2630    0.4674    0.2046    2.3420    0.0016 +#> 410:    94.2125   -0.2062    2.0739    2.2635    0.4674    0.2047    2.3417    0.0016 +#> 411:    94.2131   -0.2061    2.0741    2.2634    0.4674    0.2048    2.3413    0.0016 +#> 412:    94.2132   -0.2060    2.0742    2.2662    0.4674    0.2048    2.3409    0.0016 +#> 413:    94.2143   -0.2059    2.0743    2.2666    0.4673    0.2048    2.3407    0.0016 +#> 414:    94.2156   -0.2058    2.0743    2.2710    0.4672    0.2048    2.3404    0.0015 +#> 415:    94.2174   -0.2057    2.0745    2.2751    0.4671    0.2049    2.3400    0.0015 +#> 416:    94.2185   -0.2057    2.0746    2.2762    0.4669    0.2049    2.3399    0.0015 +#> 417:    94.2208   -0.2056    2.0748    2.2759    0.4667    0.2049    2.3397    0.0015 +#> 418:    94.2231   -0.2054    2.0751    2.2772    0.4664    0.2050    2.3398    0.0015 +#> 419:    94.2249   -0.2053    2.0754    2.2783    0.4663    0.2050    2.3396    0.0015 +#> 420:    94.2255   -0.2052    2.0757    2.2798    0.4660    0.2050    2.3395    0.0015 +#> 421:    94.2265   -0.2051    2.0759    2.2848    0.4659    0.2050    2.3392    0.0016 +#> 422:    94.2288   -0.2049    2.0761    2.2929    0.4659    0.2050    2.3390    0.0016 +#> 423:    94.2307   -0.2048    2.0762    2.2988    0.4657    0.2051    2.3390    0.0016 +#> 424:    94.2313   -0.2047    2.0764    2.3017    0.4656    0.2051    2.3391    0.0016 +#> 425:    94.2322   -0.2046    2.0765    2.3028    0.4655    0.2050    2.3388    0.0016 +#> 426:    94.2327   -0.2046    2.0765    2.3049    0.4654    0.2050    2.3386    0.0016 +#> 427:    94.2323   -0.2045    2.0768    2.3053    0.4655    0.2049    2.3386    0.0016 +#> 428:    94.2324   -0.2044    2.0770    2.3016    0.4655    0.2048    2.3387    0.0017 +#> 429:    94.2322   -0.2043    2.0772    2.2984    0.4656    0.2047    2.3386    0.0017 +#> 430:    94.2306   -0.2042    2.0774    2.2971    0.4656    0.2046    2.3384    0.0017 +#> 431:    94.2295   -0.2042    2.0775    2.2931    0.4657    0.2044    2.3384    0.0017 +#> 432:    94.2298   -0.2040    2.0778    2.2896    0.4656    0.2044    2.3383    0.0018 +#> 433:    94.2311   -0.2039    2.0780    2.2885    0.4656    0.2044    2.3383    0.0018 +#> 434:    94.2311   -0.2037    2.0783    2.2854    0.4655    0.2044    2.3381    0.0018 +#> 435:    94.2314   -0.2036    2.0786    2.2838    0.4654    0.2044    2.3378    0.0018 +#> 436:    94.2315   -0.2035    2.0788    2.2817    0.4653    0.2044    2.3377    0.0018 +#> 437:    94.2326   -0.2034    2.0790    2.2801    0.4652    0.2044    2.3378    0.0018 +#> 438:    94.2338   -0.2034    2.0791    2.2802    0.4650    0.2046    2.3380    0.0018 +#> 439:    94.2340   -0.2033    2.0791    2.2810    0.4649    0.2046    2.3377    0.0018 +#> 440:    94.2330   -0.2034    2.0791    2.2822    0.4646    0.2046    2.3376    0.0018 +#> 441:    94.2323   -0.2035    2.0790    2.2818    0.4644    0.2046    2.3375    0.0018 +#> 442:    94.2321   -0.2034    2.0792    2.2804    0.4642    0.2043    2.3375    0.0018 +#> 443:    94.2313   -0.2033    2.0794    2.2812    0.4641    0.2041    2.3372    0.0018 +#> 444:    94.2301   -0.2032    2.0796    2.2820    0.4640    0.2040    2.3369    0.0018 +#> 445:    94.2279   -0.2031    2.0799    2.2872    0.4639    0.2039    2.3366    0.0018 +#> 446:    94.2272   -0.2030    2.0801    2.2874    0.4639    0.2037    2.3363    0.0018 +#> 447:    94.2262   -0.2029    2.0803    2.2881    0.4639    0.2036    2.3359    0.0018 +#> 448:    94.2248   -0.2028    2.0806    2.2905    0.4639    0.2036    2.3358    0.0018 +#> 449:    94.2245   -0.2027    2.0808    2.2914    0.4638    0.2035    2.3356    0.0018 +#> 450:    94.2237   -0.2027    2.0809    2.2928    0.4638    0.2035    2.3356    0.0018 +#> 451:    94.2233   -0.2025    2.0813    2.2917    0.4639    0.2033    2.3355    0.0018 +#> 452:    94.2232   -0.2023    2.0816    2.2898    0.4640    0.2031    2.3356    0.0018 +#> 453:    94.2230   -0.2021    2.0819    2.2890    0.4641    0.2030    2.3356    0.0018 +#> 454:    94.2222   -0.2020    2.0822    2.2851    0.4641    0.2029    2.3357    0.0018 +#> 455:    94.2214   -0.2018    2.0824    2.2820    0.4640    0.2028    2.3357    0.0017 +#> 456:    94.2212   -0.2017    2.0827    2.2797    0.4640    0.2026    2.3357    0.0017 +#> 457:    94.2216   -0.2016    2.0829    2.2771    0.4640    0.2024    2.3358    0.0017 +#> 458:    94.2220   -0.2015    2.0831    2.2740    0.4639    0.2022    2.3358    0.0017 +#> 459:    94.2229   -0.2013    2.0834    2.2765    0.4638    0.2021    2.3358    0.0017 +#> 460:    94.2226   -0.2012    2.0837    2.2810    0.4637    0.2020    2.3359    0.0017 +#> 461:    94.2227   -0.2009    2.0841    2.2893    0.4637    0.2018    2.3358    0.0017 +#> 462:    94.2235   -0.2007    2.0844    2.2942    0.4637    0.2016    2.3357    0.0017 +#> 463:    94.2241   -0.2005    2.0848    2.2971    0.4637    0.2014    2.3358    0.0017 +#> 464:    94.2236   -0.2002    2.0853    2.2953    0.4637    0.2012    2.3360    0.0017 +#> 465:    94.2230   -0.2000    2.0858    2.2946    0.4638    0.2010    2.3360    0.0017 +#> 466:    94.2215   -0.1997    2.0863    2.2995    0.4638    0.2009    2.3363    0.0017 +#> 467:    94.2193   -0.1995    2.0868    2.3051    0.4637    0.2008    2.3363    0.0017 +#> 468:    94.2174   -0.1992    2.0874    2.3086    0.4636    0.2006    2.3363    0.0018 +#> 469:    94.2160   -0.1989    2.0881    2.3072    0.4636    0.2006    2.3361    0.0018 +#> 470:    94.2152   -0.1985    2.0887    2.3075    0.4637    0.2005    2.3363    0.0018 +#> 471:    94.2139   -0.1982    2.0891    2.3126    0.4638    0.2004    2.3361    0.0018 +#> 472:    94.2134   -0.1980    2.0895    2.3151    0.4640    0.2002    2.3360    0.0018 +#> 473:    94.2141   -0.1979    2.0897    2.3149    0.4640    0.2001    2.3360    0.0018 +#> 474:    94.2144   -0.1978    2.0900    2.3140    0.4640    0.2001    2.3358    0.0018 +#> 475:    94.2151   -0.1977    2.0901    2.3151    0.4640    0.2000    2.3358    0.0018 +#> 476:    94.2154   -0.1975    2.0903    2.3195    0.4641    0.2001    2.3357    0.0018 +#> 477:    94.2167   -0.1974    2.0905    2.3253    0.4642    0.2002    2.3358    0.0018 +#> 478:    94.2163   -0.1972    2.0909    2.3324    0.4641    0.2004    2.3357    0.0017 +#> 479:    94.2156   -0.1970    2.0912    2.3364    0.4640    0.2006    2.3355    0.0017 +#> 480:    94.2149   -0.1969    2.0915    2.3395    0.4638    0.2007    2.3353    0.0017 +#> 481:    94.2140   -0.1968    2.0918    2.3431    0.4637    0.2008    2.3350    0.0017 +#> 482:    94.2137   -0.1967    2.0919    2.3440    0.4635    0.2010    2.3349    0.0017 +#> 483:    94.2139   -0.1966    2.0920    2.3468    0.4634    0.2011    2.3348    0.0017 +#> 484:    94.2149   -0.1966    2.0921    2.3488    0.4633    0.2012    2.3346    0.0017 +#> 485:    94.2153   -0.1966    2.0921    2.3486    0.4632    0.2012    2.3345    0.0017 +#> 486:    94.2148   -0.1965    2.0923    2.3483    0.4631    0.2015    2.3345    0.0017 +#> 487:    94.2140   -0.1965    2.0923    2.3492    0.4628    0.2018    2.3345    0.0017 +#> 488:    94.2121   -0.1965    2.0923    2.3489    0.4625    0.2020    2.3347    0.0017 +#> 489:    94.2119   -0.1966    2.0923    2.3497    0.4622    0.2023    2.3346    0.0017 +#> 490:    94.2120   -0.1966    2.0923    2.3476    0.4618    0.2025    2.3346    0.0017 +#> 491:    94.2124   -0.1966    2.0923    2.3462    0.4615    0.2028    2.3346    0.0017 +#> 492:    94.2118   -0.1966    2.0923    2.3453    0.4613    0.2029    2.3346    0.0017 +#> 493:    94.2113   -0.1967    2.0923    2.3452    0.4610    0.2030    2.3347    0.0017 +#> 494:    94.2118   -0.1968    2.0922    2.3488    0.4608    0.2030    2.3347    0.0017 +#> 495:    94.2122   -0.1969    2.0920    2.3530    0.4605    0.2029    2.3347    0.0017 +#> 496:    94.2138   -0.1969    2.0919    2.3540    0.4603    0.2028    2.3350    0.0017 +#> 497:    94.2148   -0.1970    2.0917    2.3554    0.4601    0.2029    2.3352    0.0017 +#> 498:    94.2152   -0.1971    2.0916    2.3534    0.4600    0.2029    2.3356    0.0017 +#> 499:    94.2157   -0.1972    2.0914    2.3519    0.4598    0.2029    2.3357    0.0016 +#> 500:    94.2162   -0.1973    2.0912    2.3498    0.4596    0.2030    2.3358    0.0016</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_focei_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent_tc</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation +#> F: Forward difference gradient approximation +#> C: Central difference gradient approximation +#> M: Mixed forward and central difference gradient approximation +#> Unscaled parameters for Omegas=chol(solve(omega)); +#> Diagonals are transformed, as specified by foceiControl(diagXform=) +#> |-----+---------------+-----------+-----------+-----------+-----------| +#> |    #| Objective Fun |  parent_0 | log_alpha |  log_beta | sigma_low | +#> |.....................|  rsd_high |        o1 |        o2 |        o3 | +#> |<span style='font-weight: bold;'>    1</span>|     356.08238 |     1.000 |    -1.000 |   -0.9495 |   -0.9739 | +#> |.....................|   -0.9969 |   -0.9818 |   -0.9750 |   -0.9744 | +#> |    U|     356.08238 |     93.10 |   -0.1209 |     2.232 |     1.095 | +#> |.....................|   0.02509 |    0.7272 |     1.045 |     1.072 | +#> |    X|<span style='font-weight: bold;'>     356.08238</span> |     93.10 |    0.8861 |     9.321 |     1.095 | +#> |.....................|   0.02509 |    0.7272 |     1.045 |     1.072 | +#> |    G|    Gill Diff. |    -85.81 |    0.5929 |    0.9043 |    -97.79 | +#> |.....................|    -28.71 |  -0.07427 |    -8.550 |    -12.99 | +#> |<span style='font-weight: bold;'>    2</span>|     1940.7752 |     1.640 |    -1.004 |   -0.9563 |   -0.2449 | +#> |.....................|   -0.7829 |   -0.9813 |   -0.9112 |   -0.8775 | +#> |    U|     1940.7752 |     152.7 |   -0.1253 |     2.226 |     1.495 | +#> |.....................|   0.02778 |    0.7276 |     1.112 |     1.176 | +#> |    X|<span style='font-weight: bold;'>     1940.7752</span> |     152.7 |    0.8822 |     9.258 |     1.495 | +#> |.....................|   0.02778 |    0.7276 |     1.112 |     1.176 | +#> |<span style='font-weight: bold;'>    3</span>|     370.78508 |     1.064 |    -1.000 |   -0.9502 |   -0.9010 | +#> |.....................|   -0.9755 |   -0.9817 |   -0.9686 |   -0.9647 | +#> |    U|     370.78508 |     99.05 |   -0.1213 |     2.232 |     1.135 | +#> |.....................|   0.02536 |    0.7272 |     1.052 |     1.082 | +#> |    X|<span style='font-weight: bold;'>     370.78508</span> |     99.05 |    0.8857 |     9.315 |     1.135 | +#> |.....................|   0.02536 |    0.7272 |     1.052 |     1.082 | +#> |<span style='font-weight: bold;'>    4</span>|     354.52588 |     1.015 |    -1.000 |   -0.9497 |   -0.9565 | +#> |.....................|   -0.9918 |   -0.9818 |   -0.9735 |   -0.9721 | +#> |    U|     354.52588 |     94.52 |   -0.1210 |     2.232 |     1.105 | +#> |.....................|   0.02516 |    0.7272 |     1.047 |     1.074 | +#> |    X|<span style='font-weight: bold;'>     354.52588</span> |     94.52 |    0.8860 |     9.319 |     1.105 | +#> |.....................|   0.02516 |    0.7272 |     1.047 |     1.074 | +#> |    F| Forward Diff. |     126.3 |    0.7329 |     1.391 |    -95.71 | +#> |.....................|    -26.58 |    0.4812 |    -8.528 |    -12.76 | +#> |<span style='font-weight: bold;'>    5</span>|     352.43362 |    0.9998 |    -1.000 |   -0.9499 |   -0.9392 | +#> |.....................|   -0.9869 |   -0.9819 |   -0.9719 |   -0.9698 | +#> |    U|     352.43362 |     93.08 |   -0.1211 |     2.232 |     1.114 | +#> |.....................|   0.02522 |    0.7271 |     1.048 |     1.077 | +#> |    X|<span style='font-weight: bold;'>     352.43362</span> |     93.08 |    0.8859 |     9.317 |     1.114 | +#> |.....................|   0.02522 |    0.7271 |     1.048 |     1.077 | +#> |    F| Forward Diff. |    -88.58 |    0.5971 |    0.9141 |    -92.65 | +#> |.....................|    -26.61 |  -0.01862 |    -8.458 |    -12.78 | +#> |<span style='font-weight: bold;'>    6</span>|     350.82994 |     1.015 |    -1.000 |   -0.9501 |   -0.9214 | +#> |.....................|   -0.9818 |   -0.9819 |   -0.9703 |   -0.9673 | +#> |    U|     350.82994 |     94.46 |   -0.1213 |     2.232 |     1.124 | +#> |.....................|   0.02528 |    0.7271 |     1.050 |     1.079 | +#> |    X|<span style='font-weight: bold;'>     350.82994</span> |     94.46 |    0.8858 |     9.315 |     1.124 | +#> |.....................|   0.02528 |    0.7271 |     1.050 |     1.079 | +#> |    F| Forward Diff. |     115.7 |    0.7442 |     1.407 |    -90.51 | +#> |.....................|    -24.67 |    0.2416 |    -8.378 |    -12.59 | +#> |<span style='font-weight: bold;'>    7</span>|     348.85697 |     1.000 |    -1.000 |   -0.9503 |   -0.9035 | +#> |.....................|   -0.9769 |   -0.9819 |   -0.9686 |   -0.9649 | +#> |    U|     348.85697 |     93.10 |   -0.1214 |     2.231 |     1.134 | +#> |.....................|   0.02534 |    0.7271 |     1.052 |     1.082 | +#> |    X|<span style='font-weight: bold;'>     348.85697</span> |     93.10 |    0.8857 |     9.313 |     1.134 | +#> |.....................|   0.02534 |    0.7271 |     1.052 |     1.082 | +#> |    F| Forward Diff. |    -86.89 |    0.6078 |    0.9395 |    -87.49 | +#> |.....................|    -24.70 |   -0.2033 |    -8.301 |    -12.59 | +#> |<span style='font-weight: bold;'>    8</span>|     347.23757 |     1.014 |    -1.001 |   -0.9506 |   -0.8852 | +#> |.....................|   -0.9717 |   -0.9819 |   -0.9669 |   -0.9622 | +#> |    U|     347.23757 |     94.41 |   -0.1215 |     2.231 |     1.144 | +#> |.....................|   0.02541 |    0.7271 |     1.054 |     1.085 | +#> |    X|<span style='font-weight: bold;'>     347.23757</span> |     94.41 |    0.8856 |     9.311 |     1.144 | +#> |.....................|   0.02541 |    0.7271 |     1.054 |     1.085 | +#> |    F| Forward Diff. |     106.0 |    0.7499 |     1.419 |    -85.67 | +#> |.....................|    -22.89 |  -0.09812 |    -8.213 |    -12.39 | +#> |<span style='font-weight: bold;'>    9</span>|     345.37317 |     1.000 |    -1.001 |   -0.9508 |   -0.8667 | +#> |.....................|   -0.9667 |   -0.9818 |   -0.9651 |   -0.9596 | +#> |    U|     345.37317 |     93.12 |   -0.1217 |     2.231 |     1.154 | +#> |.....................|   0.02547 |    0.7272 |     1.056 |     1.088 | +#> |    X|<span style='font-weight: bold;'>     345.37317</span> |     93.12 |    0.8854 |     9.308 |     1.154 | +#> |.....................|   0.02547 |    0.7272 |     1.056 |     1.088 | +#> |    F| Forward Diff. |    -84.47 |    0.6193 |    0.9668 |    -82.72 | +#> |.....................|    -22.87 |   -0.2860 |    -8.128 |    -12.38 | +#> |<span style='font-weight: bold;'>   10</span>|     343.77522 |     1.014 |    -1.001 |   -0.9511 |   -0.8479 | +#> |.....................|   -0.9616 |   -0.9818 |   -0.9633 |   -0.9568 | +#> |    U|     343.77522 |     94.37 |   -0.1218 |     2.231 |     1.164 | +#> |.....................|   0.02554 |    0.7272 |     1.057 |     1.091 | +#> |    X|<span style='font-weight: bold;'>     343.77522</span> |     94.37 |    0.8853 |     9.306 |     1.164 | +#> |.....................|   0.02554 |    0.7272 |     1.057 |     1.091 | +#> |    F| Forward Diff. |     98.54 |    0.7582 |     1.440 |    -80.80 | +#> |.....................|    -21.11 |   -0.2480 |    -8.037 |    -12.18 | +#> |<span style='font-weight: bold;'>   11</span>|     342.01002 |     1.000 |    -1.001 |   -0.9514 |   -0.8290 | +#> |.....................|   -0.9566 |   -0.9817 |   -0.9614 |   -0.9539 | +#> |    U|     342.01002 |     93.14 |   -0.1220 |     2.230 |     1.175 | +#> |.....................|   0.02560 |    0.7273 |     1.059 |     1.094 | +#> |    X|<span style='font-weight: bold;'>     342.01002</span> |     93.14 |    0.8852 |     9.303 |     1.175 | +#> |.....................|   0.02560 |    0.7273 |     1.059 |     1.094 | +#> |    F| Forward Diff. |    -81.78 |    0.6281 |    0.9934 |    -78.17 | +#> |.....................|    -21.11 |   -0.4903 |    -7.943 |    -12.16 | +#> |<span style='font-weight: bold;'>   12</span>|     340.43696 |     1.013 |    -1.001 |   -0.9517 |   -0.8098 | +#> |.....................|   -0.9515 |   -0.9816 |   -0.9595 |   -0.9509 | +#> |    U|     340.43696 |     94.32 |   -0.1222 |     2.230 |     1.185 | +#> |.....................|   0.02566 |    0.7274 |     1.062 |     1.097 | +#> |    X|<span style='font-weight: bold;'>     340.43696</span> |     94.32 |    0.8850 |     9.301 |     1.185 | +#> |.....................|   0.02566 |    0.7274 |     1.062 |     1.097 | +#> |    F| Forward Diff. |     90.87 |    0.7671 |     1.462 |    -75.86 | +#> |.....................|    -19.30 |   -0.2119 |    -7.851 |    -11.96 | +#> |<span style='font-weight: bold;'>   13</span>|     338.78414 |     1.001 |    -1.001 |   -0.9520 |   -0.7906 | +#> |.....................|   -0.9465 |   -0.9815 |   -0.9574 |   -0.9478 | +#> |    U|     338.78414 |     93.15 |   -0.1223 |     2.230 |     1.196 | +#> |.....................|   0.02572 |    0.7274 |     1.064 |     1.100 | +#> |    X|<span style='font-weight: bold;'>     338.78414</span> |     93.15 |    0.8848 |     9.298 |     1.196 | +#> |.....................|   0.02572 |    0.7274 |     1.064 |     1.100 | +#> |    F| Forward Diff. |    -80.47 |    0.6431 |     1.023 |    -73.28 | +#> |.....................|    -19.27 |   -0.2791 |    -7.739 |    -11.92 | +#> |<span style='font-weight: bold;'>   14</span>|     337.22825 |     1.013 |    -1.002 |   -0.9523 |   -0.7710 | +#> |.....................|   -0.9415 |   -0.9814 |   -0.9553 |   -0.9445 | +#> |    U|     337.22825 |     94.28 |   -0.1225 |     2.229 |     1.206 | +#> |.....................|   0.02579 |    0.7275 |     1.066 |     1.104 | +#> |    X|<span style='font-weight: bold;'>     337.22825</span> |     94.28 |    0.8847 |     9.295 |     1.206 | +#> |.....................|   0.02579 |    0.7275 |     1.066 |     1.104 | +#> |    F| Forward Diff. |     82.17 |    0.7754 |     1.480 |    -71.69 | +#> |.....................|    -17.81 |   -0.5846 |    -7.635 |    -11.71 | +#> |<span style='font-weight: bold;'>   15</span>|     335.66851 |     1.001 |    -1.002 |   -0.9527 |   -0.7512 | +#> |.....................|   -0.9367 |   -0.9812 |   -0.9531 |   -0.9411 | +#> |    U|     335.66851 |     93.18 |   -0.1228 |     2.229 |     1.217 | +#> |.....................|   0.02585 |    0.7276 |     1.068 |     1.108 | +#> |    X|<span style='font-weight: bold;'>     335.66851</span> |     93.18 |    0.8845 |     9.291 |     1.217 | +#> |.....................|   0.02585 |    0.7276 |     1.068 |     1.108 | +#> |    F| Forward Diff. |    -77.03 |    0.6546 |     1.055 |    -69.28 | +#> |.....................|    -17.76 |   -0.6126 |    -7.531 |    -11.66 | +#> |<span style='font-weight: bold;'>   16</span>|     334.17549 |     1.012 |    -1.002 |   -0.9531 |   -0.7314 | +#> |.....................|   -0.9319 |   -0.9810 |   -0.9509 |   -0.9376 | +#> |    U|     334.17549 |     94.25 |   -0.1230 |     2.229 |     1.228 | +#> |.....................|   0.02591 |    0.7278 |     1.070 |     1.111 | +#> |    X|<span style='font-weight: bold;'>     334.17549</span> |     94.25 |    0.8843 |     9.287 |     1.228 | +#> |.....................|   0.02591 |    0.7278 |     1.070 |     1.111 | +#> |    F| Forward Diff. |     77.34 |    0.7869 |     1.511 |    -67.40 | +#> |.....................|    -16.23 |   -0.6338 |    -7.414 |    -11.45 | +#> |<span style='font-weight: bold;'>   17</span>|     332.70253 |     1.001 |    -1.002 |   -0.9536 |   -0.7113 | +#> |.....................|   -0.9273 |   -0.9807 |   -0.9485 |   -0.9339 | +#> |    U|     332.70253 |     93.20 |   -0.1232 |     2.228 |     1.239 | +#> |.....................|   0.02597 |    0.7280 |     1.073 |     1.115 | +#> |    X|<span style='font-weight: bold;'>     332.70253</span> |     93.20 |    0.8841 |     9.283 |     1.239 | +#> |.....................|   0.02597 |    0.7280 |     1.073 |     1.115 | +#> |    F| Forward Diff. |    -74.42 |    0.6680 |     1.089 |    -65.07 | +#> |.....................|    -16.20 |   -0.6067 |    -7.288 |    -11.39 | +#> |<span style='font-weight: bold;'>   18</span>|     331.26057 |     1.012 |    -1.003 |   -0.9540 |   -0.6912 | +#> |.....................|   -0.9227 |   -0.9804 |   -0.9461 |   -0.9301 | +#> |    U|     331.26057 |     94.22 |   -0.1235 |     2.228 |     1.250 | +#> |.....................|   0.02602 |    0.7282 |     1.076 |     1.119 | +#> |    X|<span style='font-weight: bold;'>     331.26057</span> |     94.22 |    0.8838 |     9.279 |     1.250 | +#> |.....................|   0.02602 |    0.7282 |     1.076 |     1.119 | +#> |    F| Forward Diff. |     71.33 |    0.7962 |     1.537 |    -63.45 | +#> |.....................|    -14.84 |   -0.8466 |    -7.169 |    -11.16 | +#> |<span style='font-weight: bold;'>   19</span>|     329.86877 |     1.001 |    -1.003 |   -0.9546 |   -0.6708 | +#> |.....................|   -0.9184 |   -0.9799 |   -0.9435 |   -0.9260 | +#> |    U|     329.86877 |     93.23 |   -0.1238 |     2.227 |     1.261 | +#> |.....................|   0.02608 |    0.7285 |     1.078 |     1.124 | +#> |    X|<span style='font-weight: bold;'>     329.86877</span> |     93.23 |    0.8836 |     9.273 |     1.261 | +#> |.....................|   0.02608 |    0.7285 |     1.078 |     1.124 | +#> |    F| Forward Diff. |    -70.96 |    0.6825 |     1.126 |    -60.92 | +#> |.....................|    -14.66 |   -0.5289 |    -7.027 |    -11.08 | +#> |<span style='font-weight: bold;'>   20</span>|     328.50031 |     1.012 |    -1.003 |   -0.9552 |   -0.6504 | +#> |.....................|   -0.9143 |   -0.9795 |   -0.9408 |   -0.9217 | +#> |    U|     328.50031 |     94.20 |   -0.1241 |     2.227 |     1.272 | +#> |.....................|   0.02613 |    0.7288 |     1.081 |     1.128 | +#> |    X|<span style='font-weight: bold;'>     328.50031</span> |     94.20 |    0.8833 |     9.268 |     1.272 | +#> |.....................|   0.02613 |    0.7288 |     1.081 |     1.128 | +#> |    F| Forward Diff. |     67.86 |    0.8082 |     1.577 |    -59.49 | +#> |.....................|    -13.42 |   -0.7986 |    -6.899 |    -10.84 | +#> |<span style='font-weight: bold;'>   21</span>|     327.16645 |     1.002 |    -1.004 |   -0.9559 |   -0.6298 | +#> |.....................|   -0.9105 |   -0.9791 |   -0.9380 |   -0.9171 | +#> |    U|     327.16645 |     93.27 |   -0.1245 |     2.226 |     1.284 | +#> |.....................|   0.02618 |    0.7291 |     1.084 |     1.133 | +#> |    X|<span style='font-weight: bold;'>     327.16645</span> |     93.27 |    0.8829 |     9.261 |     1.284 | +#> |.....................|   0.02618 |    0.7291 |     1.084 |     1.133 | +#> |    F| Forward Diff. |    -65.39 |    0.6978 |     1.172 |    -57.48 | +#> |.....................|    -13.36 |   -0.7754 |    -6.743 |    -10.73 | +#> |<span style='font-weight: bold;'>   22</span>|     325.87373 |     1.012 |    -1.004 |   -0.9567 |   -0.6091 | +#> |.....................|   -0.9070 |   -0.9785 |   -0.9351 |   -0.9123 | +#> |    U|     325.87373 |     94.19 |   -0.1249 |     2.225 |     1.295 | +#> |.....................|   0.02622 |    0.7296 |     1.087 |     1.138 | +#> |    X|<span style='font-weight: bold;'>     325.87373</span> |     94.19 |    0.8826 |     9.255 |     1.295 | +#> |.....................|   0.02622 |    0.7296 |     1.087 |     1.138 | +#> |    F| Forward Diff. |     64.00 |    0.8187 |     1.613 |    -55.46 | +#> |.....................|    -12.01 |   -0.6347 |    -6.615 |    -10.48 | +#> |<span style='font-weight: bold;'>   23</span>|     324.62990 |     1.002 |    -1.004 |   -0.9576 |   -0.5884 | +#> |.....................|   -0.9040 |   -0.9780 |   -0.9320 |   -0.9071 | +#> |    U|      324.6299 |     93.29 |   -0.1254 |     2.224 |     1.306 | +#> |.....................|   0.02626 |    0.7300 |     1.090 |     1.144 | +#> |    X|<span style='font-weight: bold;'>      324.6299</span> |     93.29 |    0.8822 |     9.246 |     1.306 | +#> |.....................|   0.02626 |    0.7300 |     1.090 |     1.144 | +#> |    F| Forward Diff. |    -64.25 |    0.7091 |     1.205 |    -53.86 | +#> |.....................|    -12.06 |   -0.7132 |    -6.446 |    -10.35 | +#> |<span style='font-weight: bold;'>   24</span>|     323.37595 |     1.011 |    -1.005 |   -0.9586 |   -0.5676 | +#> |.....................|   -0.9015 |   -0.9774 |   -0.9287 |   -0.9014 | +#> |    U|     323.37595 |     94.14 |   -0.1259 |     2.223 |     1.318 | +#> |.....................|   0.02629 |    0.7304 |     1.094 |     1.150 | +#> |    X|<span style='font-weight: bold;'>     323.37595</span> |     94.14 |    0.8817 |     9.236 |     1.318 | +#> |.....................|   0.02629 |    0.7304 |     1.094 |     1.150 | +#> |    F| Forward Diff. |     56.04 |    0.8254 |     1.637 |    -52.44 | +#> |.....................|    -10.96 |   -0.9420 |    -6.280 |    -10.07 | +#> |<span style='font-weight: bold;'>   25</span>|     322.22752 |     1.002 |    -1.006 |   -0.9598 |   -0.5467 | +#> |.....................|   -0.8995 |   -0.9764 |   -0.9254 |   -0.8957 | +#> |    U|     322.22752 |     93.30 |   -0.1265 |     2.222 |     1.329 | +#> |.....................|   0.02631 |    0.7311 |     1.097 |     1.156 | +#> |    X|<span style='font-weight: bold;'>     322.22752</span> |     93.30 |    0.8812 |     9.225 |     1.329 | +#> |.....................|   0.02631 |    0.7311 |     1.097 |     1.156 | +#> |    F| Forward Diff. |    -62.58 |    0.7198 |     1.238 |    -50.46 | +#> |.....................|    -10.85 |   -0.6563 |    -6.111 |    -9.931 | +#> |<span style='font-weight: bold;'>   26</span>|     321.05050 |     1.011 |    -1.006 |   -0.9612 |   -0.5258 | +#> |.....................|   -0.8983 |   -0.9755 |   -0.9219 |   -0.8894 | +#> |    U|      321.0505 |     94.13 |   -0.1272 |     2.221 |     1.341 | +#> |.....................|   0.02633 |    0.7318 |     1.101 |     1.163 | +#> |    X|<span style='font-weight: bold;'>      321.0505</span> |     94.13 |    0.8805 |     9.213 |     1.341 | +#> |.....................|   0.02633 |    0.7318 |     1.101 |     1.163 | +#> |    F| Forward Diff. |     53.55 |    0.8319 |     1.674 |    -49.18 | +#> |.....................|    -9.827 |   -0.8926 |    -5.944 |    -9.631 | +#> |<span style='font-weight: bold;'>   27</span>|     319.96320 |     1.003 |    -1.007 |   -0.9629 |   -0.5048 | +#> |.....................|   -0.8978 |   -0.9744 |   -0.9184 |   -0.8829 | +#> |    U|      319.9632 |     93.35 |   -0.1280 |     2.219 |     1.352 | +#> |.....................|   0.02633 |    0.7325 |     1.104 |     1.170 | +#> |    X|<span style='font-weight: bold;'>      319.9632</span> |     93.35 |    0.8798 |     9.197 |     1.352 | +#> |.....................|   0.02633 |    0.7325 |     1.104 |     1.170 | +#> |    F| Forward Diff. |    -57.14 |    0.7318 |     1.284 |    -47.52 | +#> |.....................|    -9.778 |   -0.7040 |    -5.744 |    -9.448 | +#> |<span style='font-weight: bold;'>   28</span>|     318.87595 |     1.011 |    -1.008 |   -0.9647 |   -0.4840 | +#> |.....................|   -0.8984 |   -0.9733 |   -0.9148 |   -0.8761 | +#> |    U|     318.87595 |     94.12 |   -0.1289 |     2.217 |     1.364 | +#> |.....................|   0.02633 |    0.7334 |     1.108 |     1.177 | +#> |    X|<span style='font-weight: bold;'>     318.87595</span> |     94.12 |    0.8790 |     9.180 |     1.364 | +#> |.....................|   0.02633 |    0.7334 |     1.108 |     1.177 | +#> |    F| Forward Diff. |     50.84 |    0.8352 |     1.706 |    -46.29 | +#> |.....................|    -8.837 |   -0.9158 |    -5.564 |    -9.134 | +#> |<span style='font-weight: bold;'>   29</span>|     317.86528 |     1.003 |    -1.009 |   -0.9669 |   -0.4631 | +#> |.....................|   -0.9000 |   -0.9719 |   -0.9113 |   -0.8691 | +#> |    U|     317.86528 |     93.39 |   -0.1300 |     2.215 |     1.375 | +#> |.....................|   0.02631 |    0.7344 |     1.112 |     1.185 | +#> |    X|<span style='font-weight: bold;'>     317.86528</span> |     93.39 |    0.8781 |     9.160 |     1.375 | +#> |.....................|   0.02631 |    0.7344 |     1.112 |     1.185 | +#> |    F| Forward Diff. |    -53.64 |    0.7337 |     1.307 |    -44.73 | +#> |.....................|    -8.788 |   -0.7242 |    -5.380 |    -8.940 | +#> |<span style='font-weight: bold;'>   30</span>|     316.86653 |     1.011 |    -1.010 |   -0.9694 |   -0.4424 | +#> |.....................|   -0.9029 |   -0.9703 |   -0.9078 |   -0.8619 | +#> |    U|     316.86653 |     94.11 |   -0.1312 |     2.212 |     1.386 | +#> |.....................|   0.02627 |    0.7355 |     1.115 |     1.192 | +#> |    X|<span style='font-weight: bold;'>     316.86653</span> |     94.11 |    0.8771 |     9.137 |     1.386 | +#> |.....................|   0.02627 |    0.7355 |     1.115 |     1.192 | +#> |    F| Forward Diff. |     47.91 |    0.8298 |     1.717 |    -43.37 | +#> |.....................|    -7.860 |   -0.7095 |    -5.221 |    -8.628 | +#> |<span style='font-weight: bold;'>   31</span>|     315.94581 |     1.003 |    -1.012 |   -0.9723 |   -0.4219 | +#> |.....................|   -0.9070 |   -0.9693 |   -0.9044 |   -0.8547 | +#> |    U|     315.94581 |     93.42 |   -0.1325 |     2.209 |     1.398 | +#> |.....................|   0.02622 |    0.7363 |     1.119 |     1.200 | +#> |    X|<span style='font-weight: bold;'>     315.94581</span> |     93.42 |    0.8759 |     9.111 |     1.398 | +#> |.....................|   0.02622 |    0.7363 |     1.119 |     1.200 | +#> |    F| Forward Diff. |    -50.84 |    0.7268 |     1.307 |    -41.97 | +#> |.....................|    -7.840 |   -0.5502 |    -5.032 |    -8.421 | +#> |<span style='font-weight: bold;'>   32</span>|     315.03994 |     1.011 |    -1.013 |   -0.9754 |   -0.4018 | +#> |.....................|   -0.9129 |   -0.9687 |   -0.9011 |   -0.8473 | +#> |    U|     315.03994 |     94.09 |   -0.1340 |     2.206 |     1.409 | +#> |.....................|   0.02615 |    0.7367 |     1.122 |     1.208 | +#> |    X|<span style='font-weight: bold;'>     315.03994</span> |     94.09 |    0.8746 |     9.082 |     1.409 | +#> |.....................|   0.02615 |    0.7367 |     1.122 |     1.208 | +#> |    F| Forward Diff. |     43.50 |    0.8139 |     1.698 |    -41.38 | +#> |.....................|    -7.196 |   -0.9249 |    -4.882 |    -8.108 | +#> |<span style='font-weight: bold;'>   33</span>|     314.20198 |     1.004 |    -1.015 |   -0.9788 |   -0.3816 | +#> |.....................|   -0.9197 |   -0.9671 |   -0.8983 |   -0.8406 | +#> |    U|     314.20198 |     93.47 |   -0.1355 |     2.203 |     1.420 | +#> |.....................|   0.02606 |    0.7379 |     1.125 |     1.215 | +#> |    X|<span style='font-weight: bold;'>     314.20198</span> |     93.47 |    0.8733 |     9.052 |     1.420 | +#> |.....................|   0.02606 |    0.7379 |     1.125 |     1.215 | +#> |    F| Forward Diff. |    -46.04 |    0.7133 |     1.286 |    -40.35 | +#> |.....................|    -7.243 |   -0.8268 |    -4.724 |    -7.917 | +#> |<span style='font-weight: bold;'>   34</span>|     313.39087 |     1.011 |    -1.016 |   -0.9822 |   -0.3616 | +#> |.....................|   -0.9277 |   -0.9641 |   -0.8960 |   -0.8348 | +#> |    U|     313.39087 |     94.10 |   -0.1371 |     2.200 |     1.431 | +#> |.....................|   0.02596 |    0.7401 |     1.128 |     1.221 | +#> |    X|<span style='font-weight: bold;'>     313.39087</span> |     94.10 |    0.8719 |     9.021 |     1.431 | +#> |.....................|   0.02596 |    0.7401 |     1.128 |     1.221 | +#> |    F| Forward Diff. |     42.44 |    0.7936 |     1.657 |    -38.93 | +#> |.....................|    -6.417 |   -0.6060 |    -4.631 |    -7.687 | +#> |<span style='font-weight: bold;'>   35</span>|     312.65204 |     1.004 |    -1.018 |   -0.9857 |   -0.3421 | +#> |.....................|   -0.9371 |   -0.9626 |   -0.8936 |   -0.8290 | +#> |    U|     312.65204 |     93.49 |   -0.1387 |     2.196 |     1.441 | +#> |.....................|   0.02584 |    0.7411 |     1.130 |     1.228 | +#> |    X|<span style='font-weight: bold;'>     312.65204</span> |     93.49 |    0.8705 |     8.989 |     1.441 | +#> |.....................|   0.02584 |    0.7411 |     1.130 |     1.228 | +#> |    F| Forward Diff. |    -46.74 |    0.6875 |     1.233 |    -38.07 | +#> |.....................|    -6.520 |   -0.5247 |    -4.495 |    -7.518 | +#> |<span style='font-weight: bold;'>   36</span>|     311.92333 |     1.010 |    -1.020 |   -0.9894 |   -0.3235 | +#> |.....................|   -0.9483 |   -0.9627 |   -0.8910 |   -0.8230 | +#> |    U|     311.92333 |     94.07 |   -0.1404 |     2.192 |     1.452 | +#> |.....................|   0.02570 |    0.7411 |     1.133 |     1.234 | +#> |    X|<span style='font-weight: bold;'>     311.92333</span> |     94.07 |    0.8690 |     8.957 |     1.452 | +#> |.....................|   0.02570 |    0.7411 |     1.133 |     1.234 | +#> |    F| Forward Diff. |     35.63 |    0.7624 |     1.583 |    -37.23 | +#> |.....................|    -5.893 |   -0.6222 |    -4.382 |    -7.287 | +#> |<span style='font-weight: bold;'>   37</span>|     311.27355 |     1.004 |    -1.021 |   -0.9929 |   -0.3046 | +#> |.....................|   -0.9595 |   -0.9623 |   -0.8888 |   -0.8177 | +#> |    U|     311.27355 |     93.51 |   -0.1420 |     2.189 |     1.462 | +#> |.....................|   0.02556 |    0.7413 |     1.135 |     1.240 | +#> |    X|<span style='font-weight: bold;'>     311.27355</span> |     93.51 |    0.8676 |     8.925 |     1.462 | +#> |.....................|   0.02556 |    0.7413 |     1.135 |     1.240 | +#> |    F| Forward Diff. |    -45.98 |    0.6631 |     1.170 |    -36.31 | +#> |.....................|    -5.950 |   -0.4376 |    -4.255 |    -7.133 | +#> |<span style='font-weight: bold;'>   38</span>|     310.62439 |     1.010 |    -1.023 |   -0.9963 |   -0.2868 | +#> |.....................|   -0.9728 |   -0.9625 |   -0.8869 |   -0.8128 | +#> |    U|     310.62439 |     94.07 |   -0.1437 |     2.185 |     1.472 | +#> |.....................|   0.02539 |    0.7412 |     1.137 |     1.245 | +#> |    X|<span style='font-weight: bold;'>     310.62439</span> |     94.07 |    0.8661 |     8.895 |     1.472 | +#> |.....................|   0.02539 |    0.7412 |     1.137 |     1.245 | +#> |    F| Forward Diff. |     33.19 |    0.7369 |     1.513 |    -35.63 | +#> |.....................|    -5.399 |   -0.5527 |    -4.174 |    -6.950 | +#> |<span style='font-weight: bold;'>   39</span>|     310.04420 |     1.005 |    -1.024 |   -0.9995 |   -0.2687 | +#> |.....................|   -0.9859 |   -0.9628 |   -0.8850 |   -0.8081 | +#> |    U|      310.0442 |     93.55 |   -0.1453 |     2.182 |     1.482 | +#> |.....................|   0.02523 |    0.7410 |     1.139 |     1.250 | +#> |    X|<span style='font-weight: bold;'>      310.0442</span> |     93.55 |    0.8648 |     8.866 |     1.482 | +#> |.....................|   0.02523 |    0.7410 |     1.139 |     1.250 | +#> |    F| Forward Diff. |    -43.63 |    0.6390 |     1.117 |    -34.92 | +#> |.....................|    -5.491 |   -0.4082 |    -4.072 |    -6.814 | +#> |<span style='font-weight: bold;'>   40</span>|     309.46411 |     1.010 |    -1.026 |    -1.003 |   -0.2518 | +#> |.....................|    -1.001 |   -0.9632 |   -0.8835 |   -0.8040 | +#> |    U|     309.46411 |     94.07 |   -0.1468 |     2.179 |     1.491 | +#> |.....................|   0.02504 |    0.7407 |     1.141 |     1.254 | +#> |    X|<span style='font-weight: bold;'>     309.46411</span> |     94.07 |    0.8634 |     8.839 |     1.491 | +#> |.....................|   0.02504 |    0.7407 |     1.141 |     1.254 | +#> |    F| Forward Diff. |     30.94 |    0.7075 |     1.451 |    -34.14 | +#> |.....................|    -4.970 |   -0.4915 |    -4.021 |    -6.668 | +#> |<span style='font-weight: bold;'>   41</span>|     308.94397 |     1.005 |    -1.027 |    -1.005 |   -0.2344 | +#> |.....................|    -1.015 |   -0.9639 |   -0.8817 |   -0.7999 | +#> |    U|     308.94397 |     93.57 |   -0.1483 |     2.176 |     1.500 | +#> |.....................|   0.02486 |    0.7402 |     1.143 |     1.259 | +#> |    X|<span style='font-weight: bold;'>     308.94397</span> |     93.57 |    0.8622 |     8.814 |     1.500 | +#> |.....................|   0.02486 |    0.7402 |     1.143 |     1.259 | +#> |    F| Forward Diff. |    -43.40 |    0.6150 |     1.062 |    -33.15 | +#> |.....................|    -4.981 |   -0.1275 |    -3.914 |    -6.542 | +#> |<span style='font-weight: bold;'>   42</span>|     308.42636 |     1.010 |    -1.029 |    -1.008 |   -0.2188 | +#> |.....................|    -1.031 |   -0.9663 |   -0.8797 |   -0.7956 | +#> |    U|     308.42636 |     94.07 |   -0.1498 |     2.174 |     1.509 | +#> |.....................|   0.02466 |    0.7384 |     1.145 |     1.264 | +#> |    X|<span style='font-weight: bold;'>     308.42636</span> |     94.07 |    0.8609 |     8.789 |     1.509 | +#> |.....................|   0.02466 |    0.7384 |     1.145 |     1.264 | +#> |    F| Forward Diff. |     28.94 |    0.6832 |     1.395 |    -33.36 | +#> |.....................|    -4.720 |   -0.6585 |    -3.841 |    -6.387 | +#> |<span style='font-weight: bold;'>   43</span>|     307.94294 |     1.006 |    -1.030 |    -1.011 |   -0.2019 | +#> |.....................|    -1.047 |   -0.9672 |   -0.8783 |   -0.7922 | +#> |    U|     307.94294 |     93.62 |   -0.1511 |     2.171 |     1.518 | +#> |.....................|   0.02447 |    0.7378 |     1.146 |     1.267 | +#> |    X|<span style='font-weight: bold;'>     307.94294</span> |     93.62 |    0.8597 |     8.766 |     1.518 | +#> |.....................|   0.02447 |    0.7378 |     1.146 |     1.267 | +#> |    F| Forward Diff. |    -38.44 |    0.5985 |     1.037 |    -32.41 | +#> |.....................|    -4.734 |   -0.3663 |    -3.762 |    -6.284 | +#> |<span style='font-weight: bold;'>   44</span>|     307.46797 |     1.011 |    -1.032 |    -1.013 |   -0.1861 | +#> |.....................|    -1.063 |   -0.9666 |   -0.8774 |   -0.7896 | +#> |    U|     307.46797 |     94.11 |   -0.1524 |     2.169 |     1.527 | +#> |.....................|   0.02426 |    0.7383 |     1.147 |     1.270 | +#> |    X|<span style='font-weight: bold;'>     307.46797</span> |     94.11 |    0.8586 |     8.746 |     1.527 | +#> |.....................|   0.02426 |    0.7383 |     1.147 |     1.270 | +#> |    F| Forward Diff. |     31.70 |    0.6652 |     1.367 |    -32.07 | +#> |.....................|    -4.364 |   -0.4841 |    -3.739 |    -6.200 | +#> |<span style='font-weight: bold;'>   45</span>|     307.02197 |     1.006 |    -1.033 |    -1.016 |   -0.1702 | +#> |.....................|    -1.080 |   -0.9671 |   -0.8762 |   -0.7866 | +#> |    U|     307.02197 |     93.66 |   -0.1537 |     2.166 |     1.536 | +#> |.....................|   0.02405 |    0.7379 |     1.149 |     1.273 | +#> |    X|<span style='font-weight: bold;'>     307.02197</span> |     93.66 |    0.8575 |     8.725 |     1.536 | +#> |.....................|   0.02405 |    0.7379 |     1.149 |     1.273 | +#> |    F| Forward Diff. |    -34.81 |    0.5817 |     1.015 |    -31.25 | +#> |.....................|    -4.413 |   -0.2597 |    -3.670 |    -6.117 | +#> |<span style='font-weight: bold;'>   46</span>|     306.58875 |     1.011 |    -1.034 |    -1.018 |   -0.1551 | +#> |.....................|    -1.097 |   -0.9684 |   -0.8747 |   -0.7833 | +#> |    U|     306.58875 |     94.13 |   -0.1549 |     2.164 |     1.544 | +#> |.....................|   0.02384 |    0.7369 |     1.150 |     1.277 | +#> |    X|<span style='font-weight: bold;'>     306.58875</span> |     94.13 |    0.8565 |     8.705 |     1.544 | +#> |.....................|   0.02384 |    0.7369 |     1.150 |     1.277 | +#> |    F| Forward Diff. |     31.47 |    0.6484 |     1.332 |    -31.08 | +#> |.....................|    -4.101 |   -0.4354 |    -3.617 |    -5.999 | +#> |<span style='font-weight: bold;'>   47</span>|     306.17343 |     1.006 |    -1.035 |    -1.020 |   -0.1399 | +#> |.....................|    -1.114 |   -0.9699 |   -0.8732 |   -0.7802 | +#> |    U|     306.17343 |     93.70 |   -0.1561 |     2.162 |     1.552 | +#> |.....................|   0.02362 |    0.7358 |     1.152 |     1.280 | +#> |    X|<span style='font-weight: bold;'>     306.17343</span> |     93.70 |    0.8554 |     8.686 |     1.552 | +#> |.....................|   0.02362 |    0.7358 |     1.152 |     1.280 | +#> |    F| Forward Diff. |    -31.81 |    0.5683 |    0.9956 |    -30.69 | +#> |.....................|    -4.225 |   -0.4059 |    -3.540 |    -5.903 | +#> |<span style='font-weight: bold;'>   48</span>|     305.76609 |     1.011 |    -1.036 |    -1.022 |   -0.1248 | +#> |.....................|    -1.132 |   -0.9702 |   -0.8722 |   -0.7778 | +#> |    U|     305.76609 |     94.14 |   -0.1573 |     2.160 |     1.560 | +#> |.....................|   0.02340 |    0.7356 |     1.153 |     1.283 | +#> |    X|<span style='font-weight: bold;'>     305.76609</span> |     94.14 |    0.8545 |     8.668 |     1.560 | +#> |.....................|   0.02340 |    0.7356 |     1.153 |     1.283 | +#> |    F| Forward Diff. |     30.78 |    0.6301 |     1.297 |    -30.24 | +#> |.....................|    -3.891 |   -0.4278 |    -3.502 |    -5.825 | +#> |<span style='font-weight: bold;'>   49</span>|     305.37620 |     1.007 |    -1.037 |    -1.024 |   -0.1098 | +#> |.....................|    -1.149 |   -0.9705 |   -0.8714 |   -0.7755 | +#> |    U|      305.3762 |     93.72 |   -0.1584 |     2.158 |     1.569 | +#> |.....................|   0.02318 |    0.7354 |     1.154 |     1.285 | +#> |    X|<span style='font-weight: bold;'>      305.3762</span> |     93.72 |    0.8535 |     8.651 |     1.569 | +#> |.....................|   0.02318 |    0.7354 |     1.154 |     1.285 | +#> |    F| Forward Diff. |    -32.45 |    0.5512 |    0.9611 |    -29.28 | +#> |.....................|    -3.904 |  -0.09870 |    -3.459 |    -5.767 | +#> |<span style='font-weight: bold;'>   50</span>|     304.99974 |     1.011 |    -1.039 |    -1.026 |  -0.09561 | +#> |.....................|    -1.167 |   -0.9731 |   -0.8699 |   -0.7723 | +#> |    U|     304.99974 |     94.15 |   -0.1595 |     2.156 |     1.576 | +#> |.....................|   0.02295 |    0.7335 |     1.155 |     1.288 | +#> |    X|<span style='font-weight: bold;'>     304.99974</span> |     94.15 |    0.8526 |     8.633 |     1.576 | +#> |.....................|   0.02295 |    0.7335 |     1.155 |     1.288 | +#> |    F| Forward Diff. |     30.20 |    0.6130 |     1.265 |    -28.57 | +#> |.....................|    -3.511 |  -0.04200 |    -3.403 |    -5.652 | +#> |<span style='font-weight: bold;'>   51</span>|     304.64794 |     1.007 |    -1.040 |    -1.028 |  -0.08217 | +#> |.....................|    -1.185 |   -0.9783 |   -0.8678 |   -0.7682 | +#> |    U|     304.64794 |     93.75 |   -0.1607 |     2.153 |     1.584 | +#> |.....................|   0.02273 |    0.7297 |     1.157 |     1.293 | +#> |    X|<span style='font-weight: bold;'>     304.64794</span> |     93.75 |    0.8516 |     8.614 |     1.584 | +#> |.....................|   0.02273 |    0.7297 |     1.157 |     1.293 | +#> |    F| Forward Diff. |    -30.08 |    0.5385 |    0.9408 |    -28.96 | +#> |.....................|    -3.779 |   -0.3908 |    -3.281 |    -5.515 | +#> |<span style='font-weight: bold;'>   52</span>|     304.28931 |     1.011 |    -1.041 |    -1.030 |  -0.06828 | +#> |.....................|    -1.203 |   -0.9811 |   -0.8668 |   -0.7655 | +#> |    U|     304.28931 |     94.14 |   -0.1618 |     2.151 |     1.591 | +#> |.....................|   0.02250 |    0.7277 |     1.158 |     1.296 | +#> |    X|<span style='font-weight: bold;'>     304.28931</span> |     94.14 |    0.8506 |     8.597 |     1.591 | +#> |.....................|   0.02250 |    0.7277 |     1.158 |     1.296 | +#> |<span style='font-weight: bold;'>   53</span>|     304.03244 |     1.011 |    -1.042 |    -1.033 |  -0.05709 | +#> |.....................|    -1.225 |   -0.9843 |   -0.8662 |   -0.7633 | +#> |    U|     304.03244 |     94.13 |   -0.1630 |     2.149 |     1.597 | +#> |.....................|   0.02223 |    0.7253 |     1.159 |     1.298 | +#> |    X|<span style='font-weight: bold;'>     304.03244</span> |     94.13 |    0.8496 |     8.578 |     1.597 | +#> |.....................|   0.02223 |    0.7253 |     1.159 |     1.298 | +#> |<span style='font-weight: bold;'>   54</span>|     302.98899 |     1.011 |    -1.047 |    -1.041 |  -0.01055 | +#> |.....................|    -1.314 |   -0.9977 |   -0.8638 |   -0.7544 | +#> |    U|     302.98899 |     94.10 |   -0.1678 |     2.140 |     1.623 | +#> |.....................|   0.02111 |    0.7156 |     1.161 |     1.308 | +#> |    X|<span style='font-weight: bold;'>     302.98899</span> |     94.10 |    0.8455 |     8.503 |     1.623 | +#> |.....................|   0.02111 |    0.7156 |     1.161 |     1.308 | +#> |<span style='font-weight: bold;'>   55</span>|     298.89653 |     1.010 |    -1.068 |    -1.080 |    0.1944 | +#> |.....................|    -1.708 |    -1.057 |   -0.8531 |   -0.7150 | +#> |    U|     298.89653 |     93.99 |   -0.1892 |     2.101 |     1.735 | +#> |.....................|   0.01618 |    0.6726 |     1.173 |     1.350 | +#> |    X|<span style='font-weight: bold;'>     298.89653</span> |     93.99 |    0.8276 |     8.177 |     1.735 | +#> |.....................|   0.01618 |    0.6726 |     1.173 |     1.350 | +#> |<span style='font-weight: bold;'>   56</span>|     292.24425 |     1.012 |    -1.205 |    -1.331 |     1.218 | +#> |.....................|    -2.997 |    -1.313 |   -0.8095 |   -0.4981 | +#> |    U|     292.24425 |     94.21 |   -0.3257 |     1.851 |     2.296 | +#> |.....................| 5.960e-07 |    0.4863 |     1.218 |     1.582 | +#> |    X|<span style='font-weight: bold;'>     292.24425</span> |     94.21 |    0.7221 |     6.365 |     2.296 | +#> |.....................| 5.960e-07 |    0.4863 |     1.218 |     1.582 | +#> |    F| Forward Diff. |    -17.20 |    -1.896 |    -10.23 |    0.3663 | +#> |.....................|  0.002021 |    -17.85 |    0.1528 |     5.292 | +#> |<span style='font-weight: bold;'>   57</span>|     309.71599 |    0.9897 |    -1.187 |   -0.4357 |     2.442 | +#> |.....................|    -2.997 |    0.5394 |   -0.6812 |   -0.7129 | +#> |    U|     309.71599 |     92.14 |   -0.3076 |     2.746 |     2.966 | +#> |.....................| 5.960e-07 |     1.833 |     1.352 |     1.352 | +#> |    X|<span style='font-weight: bold;'>     309.71599</span> |     92.14 |    0.7352 |     15.58 |     2.966 | +#> |.....................| 5.960e-07 |     1.833 |     1.352 |     1.352 | +#> |<span style='font-weight: bold;'>   58</span>|     292.01474 |     1.005 |    -1.198 |    -1.013 |     1.651 | +#> |.....................|    -2.997 |   -0.6561 |   -0.7641 |   -0.5745 | +#> |    U|     292.01474 |     93.60 |   -0.3191 |     2.168 |     2.533 | +#> |.....................| 5.960e-07 |    0.9640 |     1.266 |     1.501 | +#> |    X|<span style='font-weight: bold;'>     292.01474</span> |     93.60 |    0.7268 |     8.745 |     2.533 | +#> |.....................| 5.960e-07 |    0.9640 |     1.266 |     1.501 | +#> |    F| Forward Diff. |    -172.4 |    -2.986 |     3.411 |     4.977 | +#> |.....................|   0.05585 |     3.841 |     3.028 |    0.3322 | +#> |<span style='font-weight: bold;'>   59</span>|     292.30890 |     1.013 |   -0.8632 |    -1.158 |     1.672 | +#> |.....................|    -2.997 |   -0.5770 |   -0.9665 |   -0.6082 | +#> |    U|      292.3089 |     94.28 |   0.01586 |     2.024 |     2.544 | +#> |.....................| 5.960e-07 |     1.022 |     1.054 |     1.464 | +#> |    X|<span style='font-weight: bold;'>      292.3089</span> |     94.28 |     1.016 |     7.565 |     2.544 | +#> |.....................| 5.960e-07 |     1.022 |     1.054 |     1.464 | +#> |<span style='font-weight: bold;'>   60</span>|     291.20170 |     1.015 |    -1.046 |    -1.079 |     1.660 | +#> |.....................|    -2.997 |   -0.6203 |   -0.8561 |   -0.5898 | +#> |    U|      291.2017 |     94.51 |   -0.1669 |     2.103 |     2.538 | +#> |.....................| 5.960e-07 |    0.9900 |     1.170 |     1.484 | +#> |    X|<span style='font-weight: bold;'>      291.2017</span> |     94.51 |    0.8462 |     8.187 |     2.538 | +#> |.....................| 5.960e-07 |    0.9900 |     1.170 |     1.484 | +#> |    F| Forward Diff. |     39.51 |    0.9033 |     2.112 |     5.106 | +#> |.....................|   0.03418 |     2.863 |    -2.696 |   -0.7695 | +#> |<span style='font-weight: bold;'>   61</span>|     291.43833 |     1.017 |    -1.033 |    -1.136 |     1.600 | +#> |.....................|    -2.997 |   -0.6066 |   -0.6851 |   -0.5537 | +#> |    U|     291.43833 |     94.73 |   -0.1542 |     2.046 |     2.505 | +#> |.....................| 5.960e-07 |     1.000 |     1.348 |     1.523 | +#> |    X|<span style='font-weight: bold;'>     291.43833</span> |     94.73 |    0.8571 |     7.739 |     2.505 | +#> |.....................| 5.960e-07 |     1.000 |     1.348 |     1.523 | +#> |<span style='font-weight: bold;'>   62</span>|     290.99248 |     1.014 |    -1.041 |    -1.101 |     1.637 | +#> |.....................|    -2.997 |   -0.6152 |   -0.7907 |   -0.5760 | +#> |    U|     290.99248 |     94.43 |   -0.1621 |     2.081 |     2.525 | +#> |.....................| 5.960e-07 |    0.9938 |     1.238 |     1.499 | +#> |    X|<span style='font-weight: bold;'>     290.99248</span> |     94.43 |    0.8503 |     8.012 |     2.525 | +#> |.....................| 5.960e-07 |    0.9938 |     1.238 |     1.499 | +#> |    F| Forward Diff. |     14.98 |     1.278 |     1.101 |     4.858 | +#> |.....................|   0.03639 |     3.021 |    0.9673 |   -0.2780 | +#> |<span style='font-weight: bold;'>   63</span>|     291.02454 |     1.009 |    -1.102 |    -1.088 |     1.608 | +#> |.....................|    -2.997 |   -0.6330 |   -0.7900 |   -0.5542 | +#> |    U|     291.02454 |     93.95 |   -0.2228 |     2.094 |     2.510 | +#> |.....................| 5.960e-07 |    0.9808 |     1.239 |     1.522 | +#> |    X|<span style='font-weight: bold;'>     291.02454</span> |     93.95 |    0.8003 |     8.118 |     2.510 | +#> |.....................| 5.960e-07 |    0.9808 |     1.239 |     1.522 | +#> |<span style='font-weight: bold;'>   64</span>|     291.12722 |     1.009 |    -1.068 |    -1.095 |     1.623 | +#> |.....................|    -2.997 |   -0.6237 |   -0.7906 |   -0.5663 | +#> |    U|     291.12722 |     93.94 |   -0.1892 |     2.087 |     2.518 | +#> |.....................| 5.960e-07 |    0.9876 |     1.238 |     1.509 | +#> |    X|<span style='font-weight: bold;'>     291.12722</span> |     93.94 |    0.8276 |     8.057 |     2.518 | +#> |.....................| 5.960e-07 |    0.9876 |     1.238 |     1.509 | +#> |<span style='font-weight: bold;'>   65</span>|     291.20836 |     1.009 |    -1.048 |    -1.100 |     1.633 | +#> |.....................|    -2.997 |   -0.6180 |   -0.7910 |   -0.5738 | +#> |    U|     291.20836 |     93.93 |   -0.1686 |     2.082 |     2.523 | +#> |.....................| 5.960e-07 |    0.9918 |     1.238 |     1.501 | +#> |    X|<span style='font-weight: bold;'>     291.20836</span> |     93.93 |    0.8449 |     8.020 |     2.523 | +#> |.....................| 5.960e-07 |    0.9918 |     1.238 |     1.501 | +#> |<span style='font-weight: bold;'>   66</span>|     290.99661 |     1.013 |    -1.041 |    -1.101 |     1.637 | +#> |.....................|    -2.997 |   -0.6156 |   -0.7909 |   -0.5760 | +#> |    U|     290.99661 |     94.27 |   -0.1623 |     2.081 |     2.525 | +#> |.....................| 5.960e-07 |    0.9935 |     1.238 |     1.499 | +#> |    X|<span style='font-weight: bold;'>     290.99661</span> |     94.27 |    0.8502 |     8.011 |     2.525 | +#> |.....................| 5.960e-07 |    0.9935 |     1.238 |     1.499 | +#> |<span style='font-weight: bold;'>   67</span>|     290.98636 |     1.014 |    -1.041 |    -1.101 |     1.637 | +#> |.....................|    -2.997 |   -0.6154 |   -0.7908 |   -0.5760 | +#> |    U|     290.98636 |     94.36 |   -0.1622 |     2.081 |     2.525 | +#> |.....................| 5.960e-07 |    0.9936 |     1.238 |     1.499 | +#> |    X|<span style='font-weight: bold;'>     290.98636</span> |     94.36 |    0.8503 |     8.012 |     2.525 | +#> |.....................| 5.960e-07 |    0.9936 |     1.238 |     1.499 | +#> |    F| Forward Diff. |    -1.956 |     1.256 |    0.9523 |     4.835 | +#> |.....................|   0.03649 |     3.031 |    0.9657 |   -0.2695 | +#> |<span style='font-weight: bold;'>   68</span>|     290.98211 |     1.014 |    -1.041 |    -1.101 |     1.636 | +#> |.....................|    -2.997 |   -0.6157 |   -0.7909 |   -0.5760 | +#> |    U|     290.98211 |     94.38 |   -0.1623 |     2.081 |     2.525 | +#> |.....................| 5.960e-07 |    0.9934 |     1.238 |     1.499 | +#> |    X|<span style='font-weight: bold;'>     290.98211</span> |     94.38 |    0.8502 |     8.011 |     2.525 | +#> |.....................| 5.960e-07 |    0.9934 |     1.238 |     1.499 | +#> |<span style='font-weight: bold;'>   69</span>|     290.97746 |     1.014 |    -1.042 |    -1.101 |     1.635 | +#> |.....................|    -2.997 |   -0.6167 |   -0.7912 |   -0.5759 | +#> |    U|     290.97746 |     94.44 |   -0.1627 |     2.081 |     2.524 | +#> |.....................| 5.960e-07 |    0.9927 |     1.237 |     1.499 | +#> |    X|<span style='font-weight: bold;'>     290.97746</span> |     94.44 |    0.8498 |     8.009 |     2.524 | +#> |.....................| 5.960e-07 |    0.9927 |     1.237 |     1.499 | +#> |    F| Forward Diff. |     17.70 |     1.268 |     1.108 |     4.855 | +#> |.....................|   0.04257 |     3.066 |    0.9427 |   -0.2771 | +#> |<span style='font-weight: bold;'>   70</span>|     290.96180 |     1.014 |    -1.044 |    -1.101 |     1.634 | +#> |.....................|    -2.997 |   -0.6175 |   -0.7910 |   -0.5752 | +#> |    U|      290.9618 |     94.36 |   -0.1647 |     2.081 |     2.523 | +#> |.....................| 5.960e-07 |    0.9921 |     1.238 |     1.500 | +#> |    X|<span style='font-weight: bold;'>      290.9618</span> |     94.36 |    0.8481 |     8.013 |     2.523 | +#> |.....................| 5.960e-07 |    0.9921 |     1.238 |     1.500 | +#> |    F| Forward Diff. |    -1.598 |     1.197 |    0.9704 |     4.824 | +#> |.....................|   0.03731 |     2.941 |    0.9551 |   -0.2334 | +#> |<span style='font-weight: bold;'>   71</span>|     290.95083 |     1.014 |    -1.044 |    -1.101 |     1.632 | +#> |.....................|    -2.997 |   -0.6188 |   -0.7915 |   -0.5751 | +#> |    U|     290.95083 |     94.43 |   -0.1653 |     2.081 |     2.522 | +#> |.....................| 5.960e-07 |    0.9912 |     1.237 |     1.500 | +#> |    X|<span style='font-weight: bold;'>     290.95083</span> |     94.43 |    0.8477 |     8.010 |     2.522 | +#> |.....................| 5.960e-07 |    0.9912 |     1.237 |     1.500 | +#> |    F| Forward Diff. |     14.81 |     1.204 |     1.097 |     4.820 | +#> |.....................|   0.03908 |     3.014 |    0.9116 |   -0.2462 | +#> |<span style='font-weight: bold;'>   72</span>|     290.93714 |     1.014 |    -1.046 |    -1.101 |     1.630 | +#> |.....................|    -2.997 |   -0.6196 |   -0.7913 |   -0.5744 | +#> |    U|     290.93714 |     94.36 |   -0.1673 |     2.081 |     2.522 | +#> |.....................| 5.960e-07 |    0.9906 |     1.237 |     1.501 | +#> |    X|<span style='font-weight: bold;'>     290.93714</span> |     94.36 |    0.8459 |     8.014 |     2.522 | +#> |.....................| 5.960e-07 |    0.9906 |     1.237 |     1.501 | +#> |    F| Forward Diff. |    -1.943 |     1.135 |    0.9791 |     4.793 | +#> |.....................|   0.03360 |     3.051 |    0.9080 |   -0.2200 | +#> |<span style='font-weight: bold;'>   73</span>|     290.92845 |     1.014 |    -1.047 |    -1.101 |     1.628 | +#> |.....................|    -2.997 |   -0.6209 |   -0.7917 |   -0.5743 | +#> |    U|     290.92845 |     94.44 |   -0.1678 |     2.081 |     2.521 | +#> |.....................| 5.960e-07 |    0.9896 |     1.237 |     1.501 | +#> |    X|<span style='font-weight: bold;'>     290.92845</span> |     94.44 |    0.8455 |     8.011 |     2.521 | +#> |.....................| 5.960e-07 |    0.9896 |     1.237 |     1.501 | +#> |    F| Forward Diff. |     17.70 |     1.147 |     1.134 |     4.752 | +#> |.....................|   0.02729 |     3.018 |    0.8867 |   -0.2229 | +#> |<span style='font-weight: bold;'>   74</span>|     290.91300 |     1.014 |    -1.049 |    -1.100 |     1.627 | +#> |.....................|    -2.997 |   -0.6219 |   -0.7915 |   -0.5737 | +#> |    U|       290.913 |     94.36 |   -0.1698 |     2.081 |     2.520 | +#> |.....................| 5.960e-07 |    0.9889 |     1.237 |     1.501 | +#> |    X|<span style='font-weight: bold;'>       290.913</span> |     94.36 |    0.8439 |     8.016 |     2.520 | +#> |.....................| 5.960e-07 |    0.9889 |     1.237 |     1.501 | +#> |    F| Forward Diff. |    -1.940 |     1.078 |    0.9981 |     4.722 | +#> |.....................|   0.04064 |     3.105 |    0.9143 |   -0.1849 | +#> |<span style='font-weight: bold;'>   75</span>|     290.90444 |     1.014 |    -1.049 |    -1.101 |     1.625 | +#> |.....................|    -2.997 |   -0.6232 |   -0.7919 |   -0.5736 | +#> |    U|     290.90444 |     94.44 |   -0.1702 |     2.081 |     2.519 | +#> |.....................| 5.960e-07 |    0.9879 |     1.237 |     1.501 | +#> |    X|<span style='font-weight: bold;'>     290.90444</span> |     94.44 |    0.8435 |     8.013 |     2.519 | +#> |.....................| 5.960e-07 |    0.9879 |     1.237 |     1.501 | +#> |    F| Forward Diff. |     17.76 |     1.091 |     1.153 |     4.713 | +#> |.....................|   0.03198 |     2.950 |    0.8627 |   -0.2001 | +#> |<span style='font-weight: bold;'>   76</span>|     290.88905 |     1.014 |    -1.051 |    -1.100 |     1.624 | +#> |.....................|    -2.997 |   -0.6243 |   -0.7916 |   -0.5732 | +#> |    U|     290.88905 |     94.36 |   -0.1722 |     2.082 |     2.518 | +#> |.....................| 5.960e-07 |    0.9872 |     1.237 |     1.502 | +#> |    X|<span style='font-weight: bold;'>     290.88905</span> |     94.36 |    0.8418 |     8.019 |     2.518 | +#> |.....................| 5.960e-07 |    0.9872 |     1.237 |     1.502 | +#> |    F| Forward Diff. |    -2.112 |     1.022 |     1.016 |     4.749 | +#> |.....................|   0.03990 |     3.117 |    0.8810 |   -0.1779 | +#> |<span style='font-weight: bold;'>   77</span>|     290.87937 |     1.014 |    -1.052 |    -1.100 |     1.622 | +#> |.....................|    -2.997 |   -0.6257 |   -0.7918 |   -0.5730 | +#> |    U|     290.87937 |     94.43 |   -0.1731 |     2.082 |     2.517 | +#> |.....................| 5.960e-07 |    0.9861 |     1.237 |     1.502 | +#> |    X|<span style='font-weight: bold;'>     290.87937</span> |     94.43 |    0.8411 |     8.018 |     2.517 | +#> |.....................| 5.960e-07 |    0.9861 |     1.237 |     1.502 | +#> |    F| Forward Diff. |     15.72 |     1.022 |     1.168 |     4.728 | +#> |.....................|   0.04036 |     3.118 |    0.8621 |   -0.1806 | +#> |<span style='font-weight: bold;'>   78</span>|     290.86528 |     1.014 |    -1.054 |    -1.099 |     1.621 | +#> |.....................|    -2.997 |   -0.6269 |   -0.7915 |   -0.5727 | +#> |    U|     290.86528 |     94.36 |   -0.1749 |     2.083 |     2.516 | +#> |.....................| 5.960e-07 |    0.9853 |     1.237 |     1.502 | +#> |    X|<span style='font-weight: bold;'>     290.86528</span> |     94.36 |    0.8396 |     8.025 |     2.516 | +#> |.....................| 5.960e-07 |    0.9853 |     1.237 |     1.502 | +#> |    F| Forward Diff. |    -2.089 |    0.9583 |     1.055 |     4.711 | +#> |.....................|   0.04161 |     3.089 |    0.8790 |   -0.1555 | +#> |<span style='font-weight: bold;'>   79</span>|     290.85625 |     1.014 |    -1.055 |    -1.099 |     1.619 | +#> |.....................|    -2.997 |   -0.6283 |   -0.7918 |   -0.5726 | +#> |    U|     290.85625 |     94.44 |   -0.1756 |     2.082 |     2.515 | +#> |.....................| 5.960e-07 |    0.9842 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.85625</span> |     94.44 |    0.8389 |     8.023 |     2.515 | +#> |.....................| 5.960e-07 |    0.9842 |     1.237 |     1.503 | +#> |    F| Forward Diff. |     16.77 |    0.9641 |     1.212 |     4.706 | +#> |.....................|   0.04215 |     3.138 |    0.8554 |   -0.1643 | +#> |<span style='font-weight: bold;'>   80</span>|     290.84140 |     1.014 |    -1.056 |    -1.099 |     1.618 | +#> |.....................|    -2.997 |   -0.6296 |   -0.7915 |   -0.5724 | +#> |    U|      290.8414 |     94.36 |   -0.1774 |     2.083 |     2.515 | +#> |.....................| 5.960e-07 |    0.9833 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>      290.8414</span> |     94.36 |    0.8375 |     8.030 |     2.515 | +#> |.....................| 5.960e-07 |    0.9833 |     1.237 |     1.503 | +#> |    F| Forward Diff. |    -1.641 |    0.9006 |     1.093 |     4.694 | +#> |.....................|   0.04205 |     3.147 |    0.8775 |   -0.1452 | +#> |<span style='font-weight: bold;'>   81</span>|     290.83107 |     1.014 |    -1.057 |    -1.099 |     1.616 | +#> |.....................|    -2.997 |   -0.6310 |   -0.7919 |   -0.5723 | +#> |    U|     290.83107 |     94.43 |   -0.1778 |     2.083 |     2.514 | +#> |.....................| 5.960e-07 |    0.9823 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.83107</span> |     94.43 |    0.8371 |     8.026 |     2.514 | +#> |.....................| 5.960e-07 |    0.9823 |     1.237 |     1.503 | +#> |    F| Forward Diff. |     15.22 |    0.9116 |     1.221 |     4.655 | +#> |.....................|   0.04015 |     3.140 |    0.8393 |   -0.1501 | +#> |<span style='font-weight: bold;'>   82</span>|     290.81725 |     1.014 |    -1.059 |    -1.098 |     1.615 | +#> |.....................|    -2.997 |   -0.6323 |   -0.7916 |   -0.5722 | +#> |    U|     290.81725 |     94.36 |   -0.1795 |     2.084 |     2.513 | +#> |.....................| 5.960e-07 |    0.9813 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.81725</span> |     94.36 |    0.8357 |     8.034 |     2.513 | +#> |.....................| 5.960e-07 |    0.9813 |     1.237 |     1.503 | +#> |    F| Forward Diff. |    -2.105 |    0.8517 |     1.114 |     4.660 | +#> |.....................|   0.03878 |     3.162 |    0.8666 |   -0.1313 | +#> |<span style='font-weight: bold;'>   83</span>|     290.80795 |     1.014 |    -1.059 |    -1.098 |     1.613 | +#> |.....................|    -2.997 |   -0.6339 |   -0.7918 |   -0.5722 | +#> |    U|     290.80795 |     94.43 |   -0.1802 |     2.084 |     2.512 | +#> |.....................| 5.960e-07 |    0.9802 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.80795</span> |     94.43 |    0.8351 |     8.033 |     2.512 | +#> |.....................| 5.960e-07 |    0.9802 |     1.237 |     1.503 | +#> |    F| Forward Diff. |     16.11 |    0.8564 |     1.267 |     4.653 | +#> |.....................|   0.04303 |     3.178 |    0.8469 |   -0.1413 | +#> |<span style='font-weight: bold;'>   84</span>|     290.79348 |     1.014 |    -1.061 |    -1.097 |     1.611 | +#> |.....................|    -2.997 |   -0.6353 |   -0.7914 |   -0.5722 | +#> |    U|     290.79348 |     94.36 |   -0.1817 |     2.084 |     2.511 | +#> |.....................| 5.960e-07 |    0.9792 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.79348</span> |     94.36 |    0.8338 |     8.041 |     2.511 | +#> |.....................| 5.960e-07 |    0.9792 |     1.237 |     1.503 | +#> |    F| Forward Diff. |    -1.840 |    0.7976 |     1.155 |     4.587 | +#> |.....................|   0.02723 |     3.115 |    0.8603 |   -0.1275 | +#> |<span style='font-weight: bold;'>   85</span>|     290.78474 |     1.014 |    -1.061 |    -1.098 |     1.609 | +#> |.....................|    -2.997 |   -0.6367 |   -0.7918 |   -0.5721 | +#> |    U|     290.78474 |     94.44 |   -0.1821 |     2.084 |     2.510 | +#> |.....................| 5.960e-07 |    0.9781 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.78474</span> |     94.44 |    0.8335 |     8.036 |     2.510 | +#> |.....................| 5.960e-07 |    0.9781 |     1.237 |     1.503 | +#> |    F| Forward Diff. |     17.19 |    0.8130 |     1.300 |     4.618 | +#> |.....................|   0.03919 |     3.190 |    0.8345 |   -0.1328 | +#> |<span style='font-weight: bold;'>   86</span>|     290.76934 |     1.014 |    -1.063 |    -1.097 |     1.608 | +#> |.....................|    -2.997 |   -0.6382 |   -0.7915 |   -0.5722 | +#> |    U|     290.76934 |     94.36 |   -0.1836 |     2.085 |     2.510 | +#> |.....................| 5.960e-07 |    0.9771 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.76934</span> |     94.36 |    0.8322 |     8.044 |     2.510 | +#> |.....................| 5.960e-07 |    0.9771 |     1.237 |     1.503 | +#> |    F| Forward Diff. |    -1.203 |    0.7543 |     1.182 |     4.565 | +#> |.....................|   0.03490 |     3.166 |    0.8589 |   -0.1256 | +#> |<span style='font-weight: bold;'>   87</span>|     290.75687 |     1.014 |    -1.063 |    -1.097 |     1.606 | +#> |.....................|    -2.997 |   -0.6397 |   -0.7919 |   -0.5722 | +#> |    U|     290.75687 |     94.41 |   -0.1840 |     2.084 |     2.508 | +#> |.....................| 5.960e-07 |    0.9760 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.75687</span> |     94.41 |    0.8319 |     8.039 |     2.508 | +#> |.....................| 5.960e-07 |    0.9760 |     1.237 |     1.503 | +#> |<span style='font-weight: bold;'>   88</span>|     290.75123 |     1.015 |    -1.063 |    -1.098 |     1.604 | +#> |.....................|    -2.997 |   -0.6414 |   -0.7924 |   -0.5721 | +#> |    U|     290.75123 |     94.47 |   -0.1844 |     2.084 |     2.507 | +#> |.....................| 5.960e-07 |    0.9747 |     1.236 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.75123</span> |     94.47 |    0.8316 |     8.034 |     2.507 | +#> |.....................| 5.960e-07 |    0.9747 |     1.236 |     1.503 | +#> |    F| Forward Diff. |     26.23 |    0.7709 |     1.374 |     4.560 | +#> |.....................|   0.04194 |     3.213 |    0.7966 |   -0.1353 | +#> |<span style='font-weight: bold;'>   89</span>|     290.71744 |     1.014 |    -1.067 |    -1.096 |     1.601 | +#> |.....................|    -2.997 |   -0.6448 |   -0.7915 |   -0.5726 | +#> |    U|     290.71744 |     94.37 |   -0.1875 |     2.086 |     2.506 | +#> |.....................| 5.960e-07 |    0.9722 |     1.237 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.71744</span> |     94.37 |    0.8291 |     8.054 |     2.506 | +#> |.....................| 5.960e-07 |    0.9722 |     1.237 |     1.503 | +#> |    F| Forward Diff. |    0.1928 |    0.6670 |     1.256 |     4.555 | +#> |.....................|   0.04212 |     3.227 |    0.8436 |   -0.1302 | +#> |<span style='font-weight: bold;'>   90</span>|     290.68496 |     1.013 |    -1.067 |    -1.097 |     1.597 | +#> |.....................|    -2.997 |   -0.6481 |   -0.7924 |   -0.5725 | +#> |    U|     290.68496 |     94.35 |   -0.1881 |     2.085 |     2.503 | +#> |.....................| 5.960e-07 |    0.9698 |     1.236 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.68496</span> |     94.35 |    0.8285 |     8.044 |     2.503 | +#> |.....................| 5.960e-07 |    0.9698 |     1.236 |     1.503 | +#> |<span style='font-weight: bold;'>   91</span>|     290.59496 |     1.013 |    -1.069 |    -1.101 |     1.583 | +#> |.....................|    -2.997 |   -0.6580 |   -0.7950 |   -0.5721 | +#> |    U|     290.59496 |     94.29 |   -0.1902 |     2.081 |     2.496 | +#> |.....................| 5.960e-07 |    0.9627 |     1.233 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     290.59496</span> |     94.29 |    0.8268 |     8.013 |     2.496 | +#> |.....................| 5.960e-07 |    0.9627 |     1.233 |     1.503 | +#> |<span style='font-weight: bold;'>   92</span>|     290.34408 |     1.010 |    -1.077 |    -1.116 |     1.527 | +#> |.....................|    -2.997 |   -0.6974 |   -0.8053 |   -0.5705 | +#> |    U|     290.34408 |     94.08 |   -0.1983 |     2.066 |     2.465 | +#> |.....................| 5.960e-07 |    0.9340 |     1.223 |     1.505 | +#> |    X|<span style='font-weight: bold;'>     290.34408</span> |     94.08 |    0.8201 |     7.891 |     2.465 | +#> |.....................| 5.960e-07 |    0.9340 |     1.223 |     1.505 | +#> |    F| Forward Diff. |    -74.08 |    0.3588 |   -0.1794 |     3.803 | +#> |.....................|   0.04205 |     3.779 |   0.06785 | -0.005437 | +#> |<span style='font-weight: bold;'>   93</span>|     289.95778 |     1.012 |    -1.081 |    -1.068 |     1.490 | +#> |.....................|    -2.997 |   -0.7670 |   -0.7909 |   -0.5845 | +#> |    U|     289.95778 |     94.18 |   -0.2020 |     2.114 |     2.445 | +#> |.....................| 5.960e-07 |    0.8834 |     1.238 |     1.490 | +#> |    X|<span style='font-weight: bold;'>     289.95778</span> |     94.18 |    0.8171 |     8.282 |     2.445 | +#> |.....................| 5.960e-07 |    0.8834 |     1.238 |     1.490 | +#> |<span style='font-weight: bold;'>   94</span>|     289.83089 |     1.009 |    -1.086 |    -1.006 |     1.442 | +#> |.....................|    -2.997 |   -0.8563 |   -0.7725 |   -0.6025 | +#> |    U|     289.83089 |     93.98 |   -0.2067 |     2.176 |     2.418 | +#> |.....................| 5.960e-07 |    0.8185 |     1.257 |     1.470 | +#> |    X|<span style='font-weight: bold;'>     289.83089</span> |     93.98 |    0.8132 |     8.812 |     2.418 | +#> |.....................| 5.960e-07 |    0.8185 |     1.257 |     1.470 | +#> |    F| Forward Diff. |    -65.01 |  -0.01626 |     4.198 |     3.297 | +#> |.....................|   0.05097 |     3.562 |     1.909 |   -0.3175 | +#> |<span style='font-weight: bold;'>   95</span>|     290.63229 |     1.014 |    -1.226 |    -1.068 |     1.287 | +#> |.....................|    -2.997 |    -1.101 |   -0.7595 |   -0.8853 | +#> |    U|     290.63229 |     94.43 |   -0.3467 |     2.113 |     2.333 | +#> |.....................| 5.960e-07 |    0.6407 |     1.271 |     1.167 | +#> |    X|<span style='font-weight: bold;'>     290.63229</span> |     94.43 |    0.7070 |     8.277 |     2.333 | +#> |.....................| 5.960e-07 |    0.6407 |     1.271 |     1.167 | +#> |<span style='font-weight: bold;'>   96</span>|     289.56584 |     1.017 |    -1.134 |    -1.028 |     1.388 | +#> |.....................|    -2.997 |   -0.9416 |   -0.7681 |   -0.7007 | +#> |    U|     289.56584 |     94.70 |   -0.2554 |     2.154 |     2.389 | +#> |.....................| 5.960e-07 |    0.7564 |     1.261 |     1.365 | +#> |    X|<span style='font-weight: bold;'>     289.56584</span> |     94.70 |    0.7746 |     8.619 |     2.389 | +#> |.....................| 5.960e-07 |    0.7564 |     1.261 |     1.365 | +#> |    F| Forward Diff. |     59.80 |   -0.9076 |     3.450 |     2.884 | +#> |.....................|   0.04168 |     2.247 |     1.868 |    -3.338 | +#> |<span style='font-weight: bold;'>   97</span>|     289.16078 |     1.017 |    -1.094 |    -1.010 |     1.317 | +#> |.....................|    -2.997 |   -0.9798 |   -0.7948 |   -0.5837 | +#> |    U|     289.16078 |     94.64 |   -0.2152 |     2.172 |     2.350 | +#> |.....................| 5.960e-07 |    0.7287 |     1.234 |     1.491 | +#> |    X|<span style='font-weight: bold;'>     289.16078</span> |     94.64 |    0.8063 |     8.773 |     2.350 | +#> |.....................| 5.960e-07 |    0.7287 |     1.234 |     1.491 | +#> |    F| Forward Diff. |     50.77 |  -0.08196 |     5.132 |     1.948 | +#> |.....................|   0.04608 |     1.474 |    0.6389 |    0.4459 | +#> |<span style='font-weight: bold;'>   98</span>|     290.19527 |     1.002 |    -1.018 |    -1.037 |     1.157 | +#> |.....................|    -2.997 |    -1.195 |   -0.7989 |   -0.6967 | +#> |    U|     290.19527 |     93.32 |   -0.1385 |     2.145 |     2.263 | +#> |.....................| 5.960e-07 |    0.5724 |     1.229 |     1.370 | +#> |    X|<span style='font-weight: bold;'>     290.19527</span> |     93.32 |    0.8707 |     8.542 |     2.263 | +#> |.....................| 5.960e-07 |    0.5724 |     1.229 |     1.370 | +#> |<span style='font-weight: bold;'>   99</span>|     289.65582 |     1.003 |    -1.072 |    -1.019 |     1.270 | +#> |.....................|    -2.997 |    -1.043 |   -0.7961 |   -0.6170 | +#> |    U|     289.65582 |     93.34 |   -0.1926 |     2.163 |     2.324 | +#> |.....................| 5.960e-07 |    0.6825 |     1.232 |     1.455 | +#> |    X|<span style='font-weight: bold;'>     289.65582</span> |     93.34 |    0.8248 |     8.696 |     2.324 | +#> |.....................| 5.960e-07 |    0.6825 |     1.232 |     1.455 | +#> |<span style='font-weight: bold;'>  100</span>|     289.77865 |     1.003 |    -1.088 |    -1.014 |     1.303 | +#> |.....................|    -2.997 |   -0.9984 |   -0.7953 |   -0.5934 | +#> |    U|     289.77865 |     93.35 |   -0.2087 |     2.168 |     2.342 | +#> |.....................| 5.960e-07 |    0.7151 |     1.233 |     1.480 | +#> |    X|<span style='font-weight: bold;'>     289.77865</span> |     93.35 |    0.8116 |     8.742 |     2.342 | +#> |.....................| 5.960e-07 |    0.7151 |     1.233 |     1.480 | +#> |<span style='font-weight: bold;'>  101</span>|     289.23886 |     1.008 |    -1.094 |    -1.011 |     1.317 | +#> |.....................|    -2.997 |   -0.9800 |   -0.7949 |   -0.5837 | +#> |    U|     289.23886 |     93.87 |   -0.2152 |     2.171 |     2.350 | +#> |.....................| 5.960e-07 |    0.7285 |     1.234 |     1.491 | +#> |    X|<span style='font-weight: bold;'>     289.23886</span> |     93.87 |    0.8064 |     8.765 |     2.350 | +#> |.....................| 5.960e-07 |    0.7285 |     1.234 |     1.491 | +#> |<span style='font-weight: bold;'>  102</span>|     289.07165 |     1.013 |    -1.094 |    -1.010 |     1.317 | +#> |.....................|    -2.997 |   -0.9799 |   -0.7948 |   -0.5837 | +#> |    U|     289.07165 |     94.31 |   -0.2152 |     2.171 |     2.350 | +#> |.....................| 5.960e-07 |    0.7286 |     1.234 |     1.491 | +#> |    X|<span style='font-weight: bold;'>     289.07165</span> |     94.31 |    0.8063 |     8.770 |     2.350 | +#> |.....................| 5.960e-07 |    0.7286 |     1.234 |     1.491 | +#> |    F| Forward Diff. |   -0.3607 |   -0.1394 |     4.728 |     1.937 | +#> |.....................|   0.04518 |     1.333 |    0.6601 |    0.3686 | +#> |<span style='font-weight: bold;'>  103</span>|     289.05383 |     1.013 |    -1.094 |    -1.014 |     1.315 | +#> |.....................|    -2.997 |   -0.9807 |   -0.7952 |   -0.5839 | +#> |    U|     289.05383 |     94.33 |   -0.2152 |     2.168 |     2.349 | +#> |.....................| 5.960e-07 |    0.7280 |     1.233 |     1.490 | +#> |    X|<span style='font-weight: bold;'>     289.05383</span> |     94.33 |    0.8064 |     8.742 |     2.349 | +#> |.....................| 5.960e-07 |    0.7280 |     1.233 |     1.490 | +#> |<span style='font-weight: bold;'>  104</span>|     289.00706 |     1.014 |    -1.094 |    -1.023 |     1.312 | +#> |.....................|    -2.997 |   -0.9834 |   -0.7965 |   -0.5847 | +#> |    U|     289.00706 |     94.40 |   -0.2149 |     2.159 |     2.347 | +#> |.....................| 5.960e-07 |    0.7260 |     1.232 |     1.490 | +#> |    X|<span style='font-weight: bold;'>     289.00706</span> |     94.40 |    0.8066 |     8.661 |     2.347 | +#> |.....................| 5.960e-07 |    0.7260 |     1.232 |     1.490 | +#> |<span style='font-weight: bold;'>  105</span>|     288.92149 |     1.016 |    -1.093 |    -1.055 |     1.299 | +#> |.....................|    -2.997 |   -0.9924 |   -0.8010 |   -0.5872 | +#> |    U|     288.92149 |     94.63 |   -0.2139 |     2.127 |     2.340 | +#> |.....................| 5.960e-07 |    0.7195 |     1.227 |     1.487 | +#> |    X|<span style='font-weight: bold;'>     288.92149</span> |     94.63 |    0.8074 |     8.388 |     2.340 | +#> |.....................| 5.960e-07 |    0.7195 |     1.227 |     1.487 | +#> |    F| Forward Diff. |     43.21 |   0.03028 |     3.221 |     1.557 | +#> |.....................|  0.008151 |     1.175 |    0.2057 |   -0.1154 | +#> |<span style='font-weight: bold;'>  106</span>|     288.79118 |     1.014 |    -1.096 |    -1.061 |     1.264 | +#> |.....................|    -2.997 |    -1.027 |   -0.7973 |   -0.5956 | +#> |    U|     288.79118 |     94.43 |   -0.2174 |     2.120 |     2.321 | +#> |.....................| 5.960e-07 |    0.6943 |     1.231 |     1.478 | +#> |    X|<span style='font-weight: bold;'>     288.79118</span> |     94.43 |    0.8046 |     8.334 |     2.321 | +#> |.....................| 5.960e-07 |    0.6943 |     1.231 |     1.478 | +#> |    F| Forward Diff. |     10.81 |  -0.06252 |     2.679 |     1.204 | +#> |.....................|   0.03262 |   -0.1240 |    0.4322 |   -0.2470 | +#> |<span style='font-weight: bold;'>  107</span>|     288.75294 |     1.013 |    -1.132 |    -1.081 |     1.252 | +#> |.....................|    -2.997 |    -1.011 |   -0.7930 |   -0.5741 | +#> |    U|     288.75294 |     94.35 |   -0.2531 |     2.101 |     2.314 | +#> |.....................| 5.960e-07 |    0.7060 |     1.235 |     1.501 | +#> |    X|<span style='font-weight: bold;'>     288.75294</span> |     94.35 |    0.7764 |     8.173 |     2.314 | +#> |.....................| 5.960e-07 |    0.7060 |     1.235 |     1.501 | +#> |    F| Forward Diff. |    -3.091 |   -0.8602 |     1.971 |     1.009 | +#> |.....................|   0.04475 |    0.5130 |    0.7746 |    0.2303 | +#> |<span style='font-weight: bold;'>  108</span>|     288.69834 |     1.013 |    -1.093 |    -1.104 |     1.232 | +#> |.....................|    -2.997 |    -1.011 |   -0.7973 |   -0.5721 | +#> |    U|     288.69834 |     94.27 |   -0.2136 |     2.078 |     2.303 | +#> |.....................| 5.960e-07 |    0.7061 |     1.231 |     1.503 | +#> |    X|<span style='font-weight: bold;'>     288.69834</span> |     94.27 |    0.8077 |     7.987 |     2.303 | +#> |.....................| 5.960e-07 |    0.7061 |     1.231 |     1.503 | +#> |    F| Forward Diff. |    -16.61 |   0.06814 |    0.8311 |    0.6184 | +#> |.....................|   0.03151 |    0.5612 |    0.4558 |    0.3067 | +#> |<span style='font-weight: bold;'>  109</span>|     288.67099 |     1.014 |    -1.108 |    -1.122 |     1.197 | +#> |.....................|    -2.997 |    -1.038 |   -0.8030 |   -0.5758 | +#> |    U|     288.67099 |     94.36 |   -0.2285 |     2.060 |     2.284 | +#> |.....................| 5.960e-07 |    0.6866 |     1.225 |     1.499 | +#> |    X|<span style='font-weight: bold;'>     288.67099</span> |     94.36 |    0.7957 |     7.847 |     2.284 | +#> |.....................| 5.960e-07 |    0.6866 |     1.225 |     1.499 | +#> |    F| Forward Diff. |    -4.975 |   -0.2154 |    0.1983 |    0.1047 | +#> |.....................|   0.03564 |   -0.4652 |    0.1266 |    0.2269 | +#> |<span style='font-weight: bold;'>  110</span>|     288.66432 |     1.014 |    -1.097 |    -1.128 |     1.196 | +#> |.....................|    -2.997 |    -1.027 |   -0.8055 |   -0.5813 | +#> |    U|     288.66432 |     94.40 |   -0.2184 |     2.053 |     2.283 | +#> |.....................| 5.960e-07 |    0.6941 |     1.222 |     1.493 | +#> |    X|<span style='font-weight: bold;'>     288.66432</span> |     94.40 |    0.8038 |     7.793 |     2.283 | +#> |.....................| 5.960e-07 |    0.6941 |     1.222 |     1.493 | +#> |    F| Forward Diff. |    0.3927 |   0.02780 |  -0.05986 |   0.04997 | +#> |.....................|   0.03453 |  -0.01180 |  -0.03408 |   0.03556 | +#> |<span style='font-weight: bold;'>  111</span>|     288.66432 |     1.014 |    -1.097 |    -1.128 |     1.196 | +#> |.....................|    -2.997 |    -1.027 |   -0.8055 |   -0.5813 | +#> |    U|     288.66432 |     94.40 |   -0.2184 |     2.053 |     2.283 | +#> |.....................| 5.960e-07 |    0.6941 |     1.222 |     1.493 | +#> |    X|<span style='font-weight: bold;'>     288.66432</span> |     94.40 |    0.8038 |     7.793 |     2.283 | +#> |.....................| 5.960e-07 |    0.6941 |     1.222 |     1.493 | +#> done</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#> <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#> <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#> <span class='warning'>Warning: parameter estimate near boundary; covariance not calculated</span> +#> <span class='warning'> use 'getVarCov' to calculate anyway</span></div><div class='output co'>#> <span class='warning'>Warning: gradient problems with initial estimate; see $scaleInfo</span></div><div class='input'> +<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span> +  <span class='va'>f_nlmixr_sfo_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_sfo_focei</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_fomc_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_fomc_focei</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_dfop_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_dfop_focei</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_hs_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_hs_focei</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_fomc_saem_tc</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_fomc_focei_tc</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#>                           df      AIC +#> f_nlmixr_sfo_saem$nm       5 627.9197 +#> f_nlmixr_sfo_focei$nm      5 625.0512 +#> f_nlmixr_fomc_saem$nm      7 463.7245 +#> f_nlmixr_fomc_focei$nm     7 468.0822 +#> f_nlmixr_dfop_saem$nm      9 518.5794 +#> f_nlmixr_dfop_focei$nm     9 537.6309 +#> f_nlmixr_hs_saem$nm        9 535.9011 +#> f_nlmixr_hs_focei$nm       9 544.7590 +#> f_nlmixr_fomc_saem_tc$nm   8 463.5871 +#> f_nlmixr_fomc_focei_tc$nm  8 470.0733</div><div class='input'> +<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span><span class='op'>)</span><span class='op'>)</span> +</div><div class='output co'>#> [1] 468.0781</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"HS"</span>, <span class='op'>]</span><span class='op'>)</span><span class='op'>)</span> +</div><div class='output co'>#> [1] 535.609</div><div class='input'> +<span class='co'># nlme is comparable to nlmixr with focei, saem finds a better</span> +<span class='co'># solution, the two-component error model does not improve it</span> +<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_saem</span><span class='op'>)</span> +</div><div class='img'><img src='nlmixr.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'> +<span class='va'>sfo_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>, +  A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>fomc_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='st'>"A1"</span><span class='op'>)</span>, +  A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='st'>"A1"</span><span class='op'>)</span>, +  A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'> +<span class='va'>f_mmkin_const</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span> +    <span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>sfo_sfo</span>, <span class='st'>"FOMC-SFO"</span> <span class='op'>=</span> <span class='va'>fomc_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>, +  <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"const"</span><span class='op'>)</span> +<span class='va'>f_mmkin_obs</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span> +    <span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>sfo_sfo</span>, <span class='st'>"FOMC-SFO"</span> <span class='op'>=</span> <span class='va'>fomc_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>, +  <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span> +<span class='va'>f_mmkin_tc</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span> +    <span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>sfo_sfo</span>, <span class='st'>"FOMC-SFO"</span> <span class='op'>=</span> <span class='va'>fomc_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>, +  <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> + +<span class='co'># A single constant variance is currently only possible with est = 'focei' in nlmixr</span> +<span class='va'>f_nlmixr_sfo_sfo_focei_const</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(A1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_10~exp(rx_expr_7);</span> +#> <span class='message'>d/dt(parent)=-rx_expr_10*parent;</span> +#> <span class='message'>rx_expr_8~ETA[3]+THETA[3];</span> +#> <span class='message'>rx_expr_11~exp(rx_expr_8);</span> +#> <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_10*parent*f_parent_to_A1;</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_13~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_13+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_13+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~A1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_9~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_14~rx_expr_9*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_14)*(rx_expr_0)+(rx_expr_4+rx_expr_14)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_expr_12~Rx_pow_di(THETA[5],2);</span> +#> <span class='message'>rx_r_=(rx_expr_0)*rx_expr_12+(rx_expr_2)*(rx_expr_1)*rx_expr_12;</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_parent=THETA[2];</span> +#> <span class='message'>log_k_A1=THETA[3];</span> +#> <span class='message'>f_parent_qlogis=THETA[4];</span> +#> <span class='message'>sigma=THETA[5];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_parent=ETA[2];</span> +#> <span class='message'>eta.log_k_A1=ETA[3];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[4];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_parent=rx_expr_10;</span> +#> <span class='message'>k_A1=rx_expr_11;</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[4]+THETA[4])));</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 5.723 0.414 6.136</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_const</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(A1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span> +#> <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span> +#> <span class='message'>rx_expr_13~exp(-(rx_expr_8));</span> +#> <span class='message'>rx_expr_15~t*rx_expr_13;</span> +#> <span class='message'>rx_expr_16~1+rx_expr_15;</span> +#> <span class='message'>rx_expr_18~rx_expr_7-(rx_expr_8);</span> +#> <span class='message'>rx_expr_20~exp(rx_expr_18);</span> +#> <span class='message'>d/dt(parent)=-rx_expr_20*parent/(rx_expr_16);</span> +#> <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_11~exp(rx_expr_9);</span> +#> <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_20*parent*f_parent_to_A1/(rx_expr_16);</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_14~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_14+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_14+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~A1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_10~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_17~rx_expr_10*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_17)*(rx_expr_0)+(rx_expr_4+rx_expr_17)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_expr_12~Rx_pow_di(THETA[6],2);</span> +#> <span class='message'>rx_r_=(rx_expr_0)*rx_expr_12+(rx_expr_2)*(rx_expr_1)*rx_expr_12;</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_A1=THETA[2];</span> +#> <span class='message'>f_parent_qlogis=THETA[3];</span> +#> <span class='message'>log_alpha=THETA[4];</span> +#> <span class='message'>log_beta=THETA[5];</span> +#> <span class='message'>sigma=THETA[6];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_A1=ETA[2];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[3];</span> +#> <span class='message'>eta.log_alpha=ETA[4];</span> +#> <span class='message'>eta.log_beta=ETA[5];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_A1=rx_expr_11;</span> +#> <span class='message'>alpha=exp(rx_expr_7);</span> +#> <span class='message'>beta=exp(rx_expr_8);</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 6.874 0.399 7.27</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_const</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(A1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span> +#> <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span> +#> <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span> +#> <span class='message'>rx_expr_12~exp(rx_expr_7);</span> +#> <span class='message'>rx_expr_13~exp(rx_expr_9);</span> +#> <span class='message'>rx_expr_15~t*rx_expr_12;</span> +#> <span class='message'>rx_expr_16~t*rx_expr_13;</span> +#> <span class='message'>rx_expr_18~exp(-(rx_expr_8));</span> +#> <span class='message'>rx_expr_20~1+rx_expr_18;</span> +#> <span class='message'>rx_expr_25~1/(rx_expr_20);</span> +#> <span class='message'>rx_expr_27~(rx_expr_25);</span> +#> <span class='message'>rx_expr_28~1-rx_expr_27;</span> +#> <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_20)+exp(rx_expr_9-rx_expr_16)*(rx_expr_28))/(exp(-t*rx_expr_12)/(rx_expr_20)+exp(-t*rx_expr_13)*(rx_expr_28));</span> +#> <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_14~exp(rx_expr_10);</span> +#> <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_20)+exp(rx_expr_9-rx_expr_16)*(rx_expr_28))/(exp(-t*rx_expr_12)/(rx_expr_20)+exp(-t*rx_expr_13)*(rx_expr_28));</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_19~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_19+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_19+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~A1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_11~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_23~rx_expr_11*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_23)*(rx_expr_0)+(rx_expr_4+rx_expr_23)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_expr_17~Rx_pow_di(THETA[7],2);</span> +#> <span class='message'>rx_r_=(rx_expr_0)*rx_expr_17+(rx_expr_2)*(rx_expr_1)*rx_expr_17;</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_A1=THETA[2];</span> +#> <span class='message'>f_parent_qlogis=THETA[3];</span> +#> <span class='message'>log_k1=THETA[4];</span> +#> <span class='message'>log_k2=THETA[5];</span> +#> <span class='message'>g_qlogis=THETA[6];</span> +#> <span class='message'>sigma=THETA[7];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_A1=ETA[2];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[3];</span> +#> <span class='message'>eta.log_k1=ETA[4];</span> +#> <span class='message'>eta.log_k2=ETA[5];</span> +#> <span class='message'>eta.g_qlogis=ETA[6];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_A1=rx_expr_14;</span> +#> <span class='message'>k1=rx_expr_12;</span> +#> <span class='message'>k2=rx_expr_13;</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span> +#> <span class='message'>g=1/(rx_expr_20);</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 14.83 0.382 15.21</span></div><div class='input'> +<span class='co'># Variance by variable is supported by 'saem' and 'focei'</span> +<span class='va'>f_nlmixr_fomc_sfo_saem_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 1.22 0.146 1.365</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(A1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span> +#> <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span> +#> <span class='message'>rx_expr_12~exp(-(rx_expr_8));</span> +#> <span class='message'>rx_expr_14~t*rx_expr_12;</span> +#> <span class='message'>rx_expr_15~1+rx_expr_14;</span> +#> <span class='message'>rx_expr_17~rx_expr_7-(rx_expr_8);</span> +#> <span class='message'>rx_expr_19~exp(rx_expr_17);</span> +#> <span class='message'>d/dt(parent)=-rx_expr_19*parent/(rx_expr_15);</span> +#> <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_11~exp(rx_expr_9);</span> +#> <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_19*parent*f_parent_to_A1/(rx_expr_15);</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_13~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_13+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_13+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~A1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_10~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_16~rx_expr_10*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_r_=(rx_expr_0)*Rx_pow_di(THETA[7],2)+(rx_expr_2)*(rx_expr_1)*Rx_pow_di(THETA[6],2);</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_A1=THETA[2];</span> +#> <span class='message'>f_parent_qlogis=THETA[3];</span> +#> <span class='message'>log_alpha=THETA[4];</span> +#> <span class='message'>log_beta=THETA[5];</span> +#> <span class='message'>sigma_parent=THETA[6];</span> +#> <span class='message'>sigma_A1=THETA[7];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_A1=ETA[2];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[3];</span> +#> <span class='message'>eta.log_alpha=ETA[4];</span> +#> <span class='message'>eta.log_beta=ETA[5];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_A1=rx_expr_11;</span> +#> <span class='message'>alpha=exp(rx_expr_7);</span> +#> <span class='message'>beta=exp(rx_expr_8);</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 6.6 0.416 7.016</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 1.551 0.126 1.673</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(A1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span> +#> <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span> +#> <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span> +#> <span class='message'>rx_expr_12~exp(rx_expr_7);</span> +#> <span class='message'>rx_expr_13~exp(rx_expr_9);</span> +#> <span class='message'>rx_expr_15~t*rx_expr_12;</span> +#> <span class='message'>rx_expr_16~t*rx_expr_13;</span> +#> <span class='message'>rx_expr_17~exp(-(rx_expr_8));</span> +#> <span class='message'>rx_expr_19~1+rx_expr_17;</span> +#> <span class='message'>rx_expr_24~1/(rx_expr_19);</span> +#> <span class='message'>rx_expr_26~(rx_expr_24);</span> +#> <span class='message'>rx_expr_27~1-rx_expr_26;</span> +#> <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span> +#> <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_14~exp(rx_expr_10);</span> +#> <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_18~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_18+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_18+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~A1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_11~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_22~rx_expr_11*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_r_=(rx_expr_0)*Rx_pow_di(THETA[8],2)+(rx_expr_2)*(rx_expr_1)*Rx_pow_di(THETA[7],2);</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_A1=THETA[2];</span> +#> <span class='message'>f_parent_qlogis=THETA[3];</span> +#> <span class='message'>log_k1=THETA[4];</span> +#> <span class='message'>log_k2=THETA[5];</span> +#> <span class='message'>g_qlogis=THETA[6];</span> +#> <span class='message'>sigma_parent=THETA[7];</span> +#> <span class='message'>sigma_A1=THETA[8];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_A1=ETA[2];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[3];</span> +#> <span class='message'>eta.log_k1=ETA[4];</span> +#> <span class='message'>eta.log_k2=ETA[5];</span> +#> <span class='message'>eta.g_qlogis=ETA[6];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_A1=rx_expr_14;</span> +#> <span class='message'>k1=rx_expr_12;</span> +#> <span class='message'>k2=rx_expr_13;</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span> +#> <span class='message'>g=1/(rx_expr_19);</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 15.24 0.429 15.67</span></div><div class='input'> +<span class='co'># Identical two-component error for all variables is only possible with</span> +<span class='co'># est = 'focei' in nlmixr</span> +<span class='va'>f_nlmixr_fomc_sfo_focei_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(A1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span> +#> <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span> +#> <span class='message'>rx_expr_14~exp(-(rx_expr_8));</span> +#> <span class='message'>rx_expr_16~t*rx_expr_14;</span> +#> <span class='message'>rx_expr_17~1+rx_expr_16;</span> +#> <span class='message'>rx_expr_19~rx_expr_7-(rx_expr_8);</span> +#> <span class='message'>rx_expr_21~exp(rx_expr_19);</span> +#> <span class='message'>d/dt(parent)=-rx_expr_21*parent/(rx_expr_17);</span> +#> <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_11~exp(rx_expr_9);</span> +#> <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_21*parent*f_parent_to_A1/(rx_expr_17);</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_15~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_15+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_15+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~A1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_10~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_18~rx_expr_10*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_18)*(rx_expr_0)+(rx_expr_4+rx_expr_18)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_expr_12~Rx_pow_di(THETA[7],2);</span> +#> <span class='message'>rx_expr_13~Rx_pow_di(THETA[6],2);</span> +#> <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_18)*(rx_expr_0)+(rx_expr_4+rx_expr_18)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_12+rx_expr_13)*(rx_expr_0)+(rx_expr_12*Rx_pow_di(((rx_expr_4+rx_expr_18)*(rx_expr_1)),2)+rx_expr_13)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_A1=THETA[2];</span> +#> <span class='message'>f_parent_qlogis=THETA[3];</span> +#> <span class='message'>log_alpha=THETA[4];</span> +#> <span class='message'>log_beta=THETA[5];</span> +#> <span class='message'>sigma_low=THETA[6];</span> +#> <span class='message'>rsd_high=THETA[7];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_A1=ETA[2];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[3];</span> +#> <span class='message'>eta.log_alpha=ETA[4];</span> +#> <span class='message'>eta.log_beta=ETA[5];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_A1=rx_expr_11;</span> +#> <span class='message'>alpha=exp(rx_expr_7);</span> +#> <span class='message'>beta=exp(rx_expr_8);</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 8.644 0.416 9.058</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(A1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span> +#> <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span> +#> <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span> +#> <span class='message'>rx_expr_12~exp(rx_expr_7);</span> +#> <span class='message'>rx_expr_13~exp(rx_expr_9);</span> +#> <span class='message'>rx_expr_15~t*rx_expr_12;</span> +#> <span class='message'>rx_expr_16~t*rx_expr_13;</span> +#> <span class='message'>rx_expr_19~exp(-(rx_expr_8));</span> +#> <span class='message'>rx_expr_21~1+rx_expr_19;</span> +#> <span class='message'>rx_expr_26~1/(rx_expr_21);</span> +#> <span class='message'>rx_expr_28~(rx_expr_26);</span> +#> <span class='message'>rx_expr_29~1-rx_expr_28;</span> +#> <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));</span> +#> <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_14~exp(rx_expr_10);</span> +#> <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_20~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_20+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_20+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~A1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_11~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_24~rx_expr_11*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_expr_17~Rx_pow_di(THETA[8],2);</span> +#> <span class='message'>rx_expr_18~Rx_pow_di(THETA[7],2);</span> +#> <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_17+rx_expr_18)*(rx_expr_0)+(rx_expr_17*Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_1)),2)+rx_expr_18)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_A1=THETA[2];</span> +#> <span class='message'>f_parent_qlogis=THETA[3];</span> +#> <span class='message'>log_k1=THETA[4];</span> +#> <span class='message'>log_k2=THETA[5];</span> +#> <span class='message'>g_qlogis=THETA[6];</span> +#> <span class='message'>sigma_low=THETA[7];</span> +#> <span class='message'>rsd_high=THETA[8];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_A1=ETA[2];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[3];</span> +#> <span class='message'>eta.log_k1=ETA[4];</span> +#> <span class='message'>eta.log_k2=ETA[5];</span> +#> <span class='message'>eta.g_qlogis=ETA[6];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_A1=rx_expr_14;</span> +#> <span class='message'>k1=rx_expr_12;</span> +#> <span class='message'>k2=rx_expr_13;</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span> +#> <span class='message'>g=1/(rx_expr_21);</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 18.76 0.426 19.18</span></div><div class='input'> +<span class='co'># Two-component error by variable is possible with both estimation methods</span> +<span class='co'># Variance by variable is supported by 'saem' and 'focei'</span> +<span class='va'>f_nlmixr_fomc_sfo_saem_obs_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>, +  error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 0.757 0.072 0.829</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>, +  error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(A1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span> +#> <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span> +#> <span class='message'>rx_expr_12~exp(-(rx_expr_8));</span> +#> <span class='message'>rx_expr_14~t*rx_expr_12;</span> +#> <span class='message'>rx_expr_15~1+rx_expr_14;</span> +#> <span class='message'>rx_expr_17~rx_expr_7-(rx_expr_8);</span> +#> <span class='message'>rx_expr_19~exp(rx_expr_17);</span> +#> <span class='message'>d/dt(parent)=-rx_expr_19*parent/(rx_expr_15);</span> +#> <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_11~exp(rx_expr_9);</span> +#> <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_19*parent*f_parent_to_A1/(rx_expr_15);</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_13~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_13+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_13+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~A1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_10~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_16~rx_expr_10*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1)),2)*Rx_pow_di(THETA[9],2)+Rx_pow_di(THETA[8],2))*(rx_expr_0)+(Rx_pow_di(THETA[7],2)*Rx_pow_di(((rx_expr_4+rx_expr_16)*(rx_expr_1)),2)+Rx_pow_di(THETA[6],2))*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_A1=THETA[2];</span> +#> <span class='message'>f_parent_qlogis=THETA[3];</span> +#> <span class='message'>log_alpha=THETA[4];</span> +#> <span class='message'>log_beta=THETA[5];</span> +#> <span class='message'>sigma_low_parent=THETA[6];</span> +#> <span class='message'>rsd_high_parent=THETA[7];</span> +#> <span class='message'>sigma_low_A1=THETA[8];</span> +#> <span class='message'>rsd_high_A1=THETA[9];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_A1=ETA[2];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[3];</span> +#> <span class='message'>eta.log_alpha=ETA[4];</span> +#> <span class='message'>eta.log_beta=ETA[5];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_A1=rx_expr_11;</span> +#> <span class='message'>alpha=exp(rx_expr_7);</span> +#> <span class='message'>beta=exp(rx_expr_8);</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 8.417 0.388 8.803</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>, +  error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 0.82 0.035 0.857</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>, +  error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(A1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span> +#> <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span> +#> <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span> +#> <span class='message'>rx_expr_12~exp(rx_expr_7);</span> +#> <span class='message'>rx_expr_13~exp(rx_expr_9);</span> +#> <span class='message'>rx_expr_15~t*rx_expr_12;</span> +#> <span class='message'>rx_expr_16~t*rx_expr_13;</span> +#> <span class='message'>rx_expr_17~exp(-(rx_expr_8));</span> +#> <span class='message'>rx_expr_19~1+rx_expr_17;</span> +#> <span class='message'>rx_expr_24~1/(rx_expr_19);</span> +#> <span class='message'>rx_expr_26~(rx_expr_24);</span> +#> <span class='message'>rx_expr_27~1-rx_expr_26;</span> +#> <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span> +#> <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_14~exp(rx_expr_10);</span> +#> <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_18~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_18+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_18+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~A1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_11~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_22~rx_expr_11*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_r_=(rx_expr_0)*(Rx_pow_di(((rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1)),2)*Rx_pow_di(THETA[10],2)+Rx_pow_di(THETA[9],2))+(Rx_pow_di(THETA[8],2)*Rx_pow_di(((rx_expr_4+rx_expr_22)*(rx_expr_1)),2)+Rx_pow_di(THETA[7],2))*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_A1=THETA[2];</span> +#> <span class='message'>f_parent_qlogis=THETA[3];</span> +#> <span class='message'>log_k1=THETA[4];</span> +#> <span class='message'>log_k2=THETA[5];</span> +#> <span class='message'>g_qlogis=THETA[6];</span> +#> <span class='message'>sigma_low_parent=THETA[7];</span> +#> <span class='message'>rsd_high_parent=THETA[8];</span> +#> <span class='message'>sigma_low_A1=THETA[9];</span> +#> <span class='message'>rsd_high_A1=THETA[10];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_A1=ETA[2];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[3];</span> +#> <span class='message'>eta.log_k1=ETA[4];</span> +#> <span class='message'>eta.log_k2=ETA[5];</span> +#> <span class='message'>eta.g_qlogis=ETA[6];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_A1=rx_expr_14;</span> +#> <span class='message'>k1=rx_expr_12;</span> +#> <span class='message'>k2=rx_expr_13;</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span> +#> <span class='message'>g=1/(rx_expr_19);</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 17.61 0.452 18.06</span></div><div class='input'> +<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span> +  <span class='va'>f_nlmixr_sfo_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_fomc_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_dfop_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_fomc_sfo_saem_obs</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_fomc_sfo_focei_obs</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_dfop_sfo_saem_obs</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_dfop_sfo_focei_obs</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_fomc_sfo_focei_tc</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_dfop_sfo_focei_tc</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_fomc_sfo_saem_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>, +  <span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span><span class='op'>$</span><span class='va'>nm</span> +<span class='op'>)</span> +</div><div class='output co'>#> <span class='error'>Error in AIC(f_nlmixr_sfo_sfo_focei_const$nm, f_nlmixr_fomc_sfo_focei_const$nm,     f_nlmixr_dfop_sfo_focei_const$nm, f_nlmixr_fomc_sfo_saem_obs$nm,     f_nlmixr_fomc_sfo_focei_obs$nm, f_nlmixr_dfop_sfo_saem_obs$nm,     f_nlmixr_dfop_sfo_focei_obs$nm, f_nlmixr_fomc_sfo_focei_tc$nm,     f_nlmixr_dfop_sfo_focei_tc$nm, f_nlmixr_fomc_sfo_saem_obs_tc$nm,     f_nlmixr_fomc_sfo_focei_obs_tc$nm, f_nlmixr_dfop_sfo_saem_obs_tc$nm,     f_nlmixr_dfop_sfo_focei_obs_tc$nm): object 'f_nlmixr_sfo_sfo_focei_const' not found</span></div><div class='input'><span class='co'># Currently, FOMC-SFO with two-component error by variable fitted by focei gives the</span> +<span class='co'># lowest AIC</span> +<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='error'>Error in plot(f_nlmixr_fomc_sfo_focei_obs_tc): object 'f_nlmixr_fomc_sfo_focei_obs_tc' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='error'>Error in summary(f_nlmixr_fomc_sfo_focei_obs_tc): object 'f_nlmixr_fomc_sfo_focei_obs_tc' not found</span></div><div class='input'><span class='co'># }</span> +</div></pre> +  </div> +  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> +    <nav id="toc" data-toggle="toc" class="sticky-top"> +      <h2 data-toc-skip>Contents</h2> +    </nav> +  </div> +</div> + + +      <footer> +      <div class="copyright"> +  <p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> +  <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p> +</div> + +      </footer> +   </div> + +   + + +  </body> +</html> + + diff --git a/docs/dev/reference/nobs.mkinfit.html b/docs/dev/reference/nobs.mkinfit.html index 621eb622..0b6c963c 100644 --- a/docs/dev/reference/nobs.mkinfit.html +++ b/docs/dev/reference/nobs.mkinfit.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/parms.html b/docs/dev/reference/parms.html index ba0e89bb..9f6f4225 100644 --- a/docs/dev/reference/parms.html +++ b/docs/dev/reference/parms.html @@ -74,7 +74,7 @@ considering the error structure that was assumed for the fit." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -123,7 +123,7 @@ considering the error structure that was assumed for the fit." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -219,10 +219,10 @@ such matrices is returned.</p>  #>   #> $DFOP  #>             Dataset 7 -#> parent_0 91.058971597 +#> parent_0 91.058971589  #> k1        0.044946770  #> k2        0.002868336 -#> g         0.526942414 +#> g         0.526942415  #> sigma     2.221302196  #> </div><div class='input'><span class='fu'>parms</span><span class='op'>(</span><span class='va'>fits</span><span class='op'>)</span>  </div><div class='output co'>#> $SFO @@ -233,17 +233,17 @@ such matrices is returned.</p>  #>   #> $FOMC  #>          Dataset 6  Dataset 7 Dataset 8 Dataset 9 Dataset 10 -#> parent_0 95.558575 92.6837649 90.719787 98.383939 94.8481458 +#> parent_0 95.558575 92.6837649 90.719787 98.383939 94.8481459  #> alpha     1.338667  0.4967832  1.639099  1.074460  0.2805272  #> beta     13.033315 14.1451255  5.007077  4.397126  6.9052224  #> sigma     1.847671  1.9167519  1.066063  3.146056  1.6222778  #>   #> $DFOP  #>            Dataset 6    Dataset 7   Dataset 8   Dataset 9   Dataset 10 -#> parent_0 96.55213663 91.058971597 90.34509493 98.14858820 94.311323733 +#> parent_0 96.55213663 91.058971589 90.34509493 98.14858820 94.311323734  #> k1        0.21954588  0.044946770  0.41232288  0.31697588  0.080663857  #> k2        0.02957934  0.002868336  0.07581766  0.03260384  0.003425417 -#> g         0.44845068  0.526942414  0.66091967  0.65322767  0.342652880 +#> g         0.44845068  0.526942415  0.66091967  0.65322767  0.342652880  #> sigma     1.35690468  2.221302196  1.34169076  2.87159846  1.942067831  #> </div><div class='input'><span class='fu'>parms</span><span class='op'>(</span><span class='va'>fits</span>, transformed <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  </div><div class='output co'>#> $SFO diff --git a/docs/dev/reference/plot.mixed.mmkin-1.png b/docs/dev/reference/plot.mixed.mmkin-1.pngBinary files differ index 5cb33214..be3c664a 100644 --- a/docs/dev/reference/plot.mixed.mmkin-1.png +++ b/docs/dev/reference/plot.mixed.mmkin-1.png diff --git a/docs/dev/reference/plot.mixed.mmkin-2.png b/docs/dev/reference/plot.mixed.mmkin-2.pngBinary files differ index c0d67204..b0e43b11 100644 --- a/docs/dev/reference/plot.mixed.mmkin-2.png +++ b/docs/dev/reference/plot.mixed.mmkin-2.png diff --git a/docs/dev/reference/plot.mixed.mmkin-3.png b/docs/dev/reference/plot.mixed.mmkin-3.pngBinary files differ index 5e00afe6..7e2876b3 100644 --- a/docs/dev/reference/plot.mixed.mmkin-3.png +++ b/docs/dev/reference/plot.mixed.mmkin-3.png diff --git a/docs/dev/reference/plot.mixed.mmkin-4.png b/docs/dev/reference/plot.mixed.mmkin-4.pngBinary files differ index 6a5f3b9c..945c4d41 100644 --- a/docs/dev/reference/plot.mixed.mmkin-4.png +++ b/docs/dev/reference/plot.mixed.mmkin-4.png diff --git a/docs/dev/reference/plot.mixed.mmkin.html b/docs/dev/reference/plot.mixed.mmkin.html index 55c411e7..746a8640 100644 --- a/docs/dev/reference/plot.mixed.mmkin.html +++ b/docs/dev/reference/plot.mixed.mmkin.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -157,11 +157,13 @@    xlim <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/range.html'>range</a></span><span class='op'>(</span><span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>$</span><span class='va'>time</span><span class='op'>)</span>,    resplot <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"predicted"</span>, <span class='st'>"time"</span><span class='op'>)</span>,    pred_over <span class='op'>=</span> <span class='cn'>NULL</span>, +  test_log_parms <span class='op'>=</span> <span class='cn'>FALSE</span>, +  conf.level <span class='op'>=</span> <span class='fl'>0.6</span>,    ymax <span class='op'>=</span> <span class='st'>"auto"</span>,    maxabs <span class='op'>=</span> <span class='st'>"auto"</span>,    ncol.legend <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/ifelse.html'>ifelse</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'><=</span> <span class='fl'>3</span>, <span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>+</span> <span class='fl'>1</span>, <span class='fu'><a href='https://rdrr.io/r/base/ifelse.html'>ifelse</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'><=</span> <span class='fl'>8</span>, <span class='fl'>3</span>, <span class='fl'>4</span><span class='op'>)</span><span class='op'>)</span>,    nrow.legend <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Round.html'>ceiling</a></span><span class='op'>(</span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>+</span> <span class='fl'>1</span><span class='op'>)</span><span class='op'>/</span><span class='va'>ncol.legend</span><span class='op'>)</span>, -  rel.height.legend <span class='op'>=</span> <span class='fl'>0.03</span> <span class='op'>+</span> <span class='fl'>0.08</span> <span class='op'>*</span> <span class='va'>nrow.legend</span>, +  rel.height.legend <span class='op'>=</span> <span class='fl'>0.02</span> <span class='op'>+</span> <span class='fl'>0.07</span> <span class='op'>*</span> <span class='va'>nrow.legend</span>,    rel.height.bottom <span class='op'>=</span> <span class='fl'>1.1</span>,    pch_ds <span class='op'>=</span> <span class='fl'>1</span><span class='op'>:</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span>,    col_ds <span class='op'>=</span> <span class='va'>pch_ds</span> <span class='op'>+</span> <span class='fl'>1</span>, @@ -212,6 +214,16 @@ predicted values?</p></td>  from <a href='mkinpredict.html'>mkinpredict</a> with a compatible <a href='mkinmod.html'>mkinmod</a>.</p></td>      </tr>      <tr> +      <th>test_log_parms</th> +      <td><p>Passed to <a href='mean_degparms.html'>mean_degparms</a> in the case of an +<a href='mixed.html'>mixed.mmkin</a> object</p></td> +    </tr> +    <tr> +      <th>conf.level</th> +      <td><p>Passed to <a href='mean_degparms.html'>mean_degparms</a> in the case of an +<a href='mixed.html'>mixed.mmkin</a> object</p></td> +    </tr> +    <tr>        <th>ymax</th>        <td><p>Vector of maximum y axis values</p></td>      </tr> @@ -278,16 +290,21 @@ corresponding model prediction lines for the different datasets.</p></td>  </div><div class='img'><img src='plot.mixed.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'>  <span class='co'># For this fit we need to increase pnlsMaxiter, and we increase the</span>  <span class='co'># tolerance in order to speed up the fit for this example evaluation</span> +<span class='co'># It still takes 20 seconds to run</span>  <span class='va'>f_nlme</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span>, control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>pnlsMaxIter <span class='op'>=</span> <span class='fl'>120</span>, tolerance <span class='op'>=</span> <span class='fl'>1e-3</span><span class='op'>)</span><span class='op'>)</span>  <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme</span><span class='op'>)</span>  </div><div class='img'><img src='plot.mixed.mmkin-2.png' alt='' width='700' height='433' /></div><div class='input'>  <span class='va'>f_saem</span> <span class='op'><-</span> <span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f</span>, transformations <span class='op'>=</span> <span class='st'>"saemix"</span><span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Mon Dec 21 05:58:23 2020" +#> [1] "Wed Aug  4 16:21:52 2021"  #> ....  #>     Minimisation finished -#> [1] "Mon Dec 21 05:58:30 2020"</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem</span><span class='op'>)</span> +#> [1] "Wed Aug  4 16:22:00 2021"</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem</span><span class='op'>)</span>  </div><div class='img'><img src='plot.mixed.mmkin-3.png' alt='' width='700' height='433' /></div><div class='input'> +<span class='va'>f_obs</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span> +<span class='va'>f_nlmix</span> <span class='op'><-</span> <span class='fu'>nlmix</span><span class='op'>(</span><span class='va'>f_obs</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='error'>Error in nlmix(f_obs): could not find function "nlmix"</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlmix</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='error'>Error in plot(f_nlmix): object 'f_nlmix' not found</span></div><div class='input'>  <span class='co'># We can overlay the two variants if we generate predictions</span>  <span class='va'>pred_nlme</span> <span class='op'><-</span> <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span><span class='op'>(</span><span class='va'>dfop_sfo</span>,    <span class='va'>f_nlme</span><span class='op'>$</span><span class='va'>bparms.optim</span><span class='op'>[</span><span class='op'>-</span><span class='fl'>1</span><span class='op'>]</span>, diff --git a/docs/dev/reference/plot.mkinfit-2.png b/docs/dev/reference/plot.mkinfit-2.pngBinary files differ index 376c812f..a11d1680 100644 --- a/docs/dev/reference/plot.mkinfit-2.png +++ b/docs/dev/reference/plot.mkinfit-2.png diff --git a/docs/dev/reference/plot.mkinfit-5.png b/docs/dev/reference/plot.mkinfit-5.pngBinary files differ index bc44de88..6631aa68 100644 --- a/docs/dev/reference/plot.mkinfit-5.png +++ b/docs/dev/reference/plot.mkinfit-5.png diff --git a/docs/dev/reference/plot.mkinfit-6.png b/docs/dev/reference/plot.mkinfit-6.pngBinary files differ index eb8cbd92..946b20c5 100644 --- a/docs/dev/reference/plot.mkinfit-6.png +++ b/docs/dev/reference/plot.mkinfit-6.png diff --git a/docs/dev/reference/plot.mkinfit-7.png b/docs/dev/reference/plot.mkinfit-7.pngBinary files differ index 92a664f4..10807ea8 100644 --- a/docs/dev/reference/plot.mkinfit-7.png +++ b/docs/dev/reference/plot.mkinfit-7.png diff --git a/docs/dev/reference/plot.mkinfit.html b/docs/dev/reference/plot.mkinfit.html index c5bfb528..c5249ecd 100644 --- a/docs/dev/reference/plot.mkinfit.html +++ b/docs/dev/reference/plot.mkinfit.html @@ -74,7 +74,7 @@ observed data together with the solution of the fitted model." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> diff --git a/docs/dev/reference/plot.mmkin-1.png b/docs/dev/reference/plot.mmkin-1.pngBinary files differ index f12b7907..647dfb8a 100644 --- a/docs/dev/reference/plot.mmkin-1.png +++ b/docs/dev/reference/plot.mmkin-1.png diff --git a/docs/dev/reference/plot.mmkin-2.png b/docs/dev/reference/plot.mmkin-2.pngBinary files differ index e3127554..1bc1c9db 100644 --- a/docs/dev/reference/plot.mmkin-2.png +++ b/docs/dev/reference/plot.mmkin-2.png diff --git a/docs/dev/reference/plot.mmkin-3.png b/docs/dev/reference/plot.mmkin-3.pngBinary files differ index 5448976e..50d6ffac 100644 --- a/docs/dev/reference/plot.mmkin-3.png +++ b/docs/dev/reference/plot.mmkin-3.png diff --git a/docs/dev/reference/plot.mmkin-4.png b/docs/dev/reference/plot.mmkin-4.pngBinary files differ index 9a25fc50..e049fa16 100644 --- a/docs/dev/reference/plot.mmkin-4.png +++ b/docs/dev/reference/plot.mmkin-4.png diff --git a/docs/dev/reference/plot.mmkin-5.png b/docs/dev/reference/plot.mmkin-5.pngBinary files differ index 82b422b5..2421995b 100644 --- a/docs/dev/reference/plot.mmkin-5.png +++ b/docs/dev/reference/plot.mmkin-5.png diff --git a/docs/dev/reference/plot.mmkin.html b/docs/dev/reference/plot.mmkin.html index ee80c6e4..9ca0df94 100644 --- a/docs/dev/reference/plot.mmkin.html +++ b/docs/dev/reference/plot.mmkin.html @@ -76,7 +76,7 @@ the fit of at least one model to the same dataset is shown." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> diff --git a/docs/dev/reference/plot.nafta.html b/docs/dev/reference/plot.nafta.html index 9fc59f94..c24fba99 100644 --- a/docs/dev/reference/plot.nafta.html +++ b/docs/dev/reference/plot.nafta.html @@ -73,7 +73,7 @@ function (SFO, then IORE, then DFOP)." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ function (SFO, then IORE, then DFOP)." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> diff --git a/docs/dev/reference/reexports.html b/docs/dev/reference/reexports.html index f12a2690..f5ace044 100644 --- a/docs/dev/reference/reexports.html +++ b/docs/dev/reference/reexports.html @@ -47,6 +47,8 @@ below to see their documentation.    nlmenlme +  nlmixrnlmixr +  " /> @@ -79,7 +81,7 @@ below to see their documentation.        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -128,7 +130,7 @@ below to see their documentation.        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -146,7 +148,7 @@ below to see their documentation.    <div class="col-md-9 contents">      <div class="page-header">      <h1>Objects exported from other packages</h1> -    <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/lrtest.mkinfit.R'><code>R/lrtest.mkinfit.R</code></a>, <a href='https://github.com/jranke/mkin/blob/master/R/nlme.mmkin.R'><code>R/nlme.mmkin.R</code></a></small> +    <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/lrtest.mkinfit.R'><code>R/lrtest.mkinfit.R</code></a>, <a href='https://github.com/jranke/mkin/blob/master/R/nlme.mmkin.R'><code>R/nlme.mmkin.R</code></a>, <a href='https://github.com/jranke/mkin/blob/master/R/nlmixr.R'><code>R/nlmixr.R</code></a></small>      <div class="hidden name"><code>reexports.Rd</code></div>      </div> @@ -158,6 +160,8 @@ below to see their documentation.</p>    <dt>nlme</dt><dd><p><code><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></code></p></dd> +  <dt>nlmixr</dt><dd><p><code><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></code></p></dd> +  </dl>      </div> diff --git a/docs/dev/reference/residuals.mkinfit.html b/docs/dev/reference/residuals.mkinfit.html index 95114dae..3f518ab7 100644 --- a/docs/dev/reference/residuals.mkinfit.html +++ b/docs/dev/reference/residuals.mkinfit.html @@ -72,7 +72,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -121,7 +121,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -175,7 +175,7 @@ standard deviation obtained from the fitted error model?</p></td>  </div><div class='output co'>#> [1]  0.09726374 -0.13912142 -0.15351210  0.73388322 -0.08657004 -0.93204702  #> [7] -0.03269080  1.45347823 -0.88423697</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/residuals.html'>residuals</a></span><span class='op'>(</span><span class='va'>f</span>, standardized <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  </div><div class='output co'>#> [1]  0.13969917 -0.19981904 -0.22048826  1.05407091 -0.12433989 -1.33869208 -#> [7] -0.04695354  2.08761977 -1.27002287</div></pre> +#> [7] -0.04695355  2.08761977 -1.27002287</div></pre>    </div>    <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">      <nav id="toc" data-toggle="toc" class="sticky-top"> diff --git a/docs/dev/reference/saem-1.png b/docs/dev/reference/saem-1.pngBinary files differ index 2df248bb..0e87d741 100644 --- a/docs/dev/reference/saem-1.png +++ b/docs/dev/reference/saem-1.png diff --git a/docs/dev/reference/saem-2.png b/docs/dev/reference/saem-2.pngBinary files differ index d4a2c1be..456a4c58 100644 --- a/docs/dev/reference/saem-2.png +++ b/docs/dev/reference/saem-2.png diff --git a/docs/dev/reference/saem-3.png b/docs/dev/reference/saem-3.pngBinary files differ index 6a32cda1..27d43e53 100644 --- a/docs/dev/reference/saem-3.png +++ b/docs/dev/reference/saem-3.png diff --git a/docs/dev/reference/saem-4.png b/docs/dev/reference/saem-4.pngBinary files differ index bf24d6b0..5c089bbc 100644 --- a/docs/dev/reference/saem-4.png +++ b/docs/dev/reference/saem-4.png diff --git a/docs/dev/reference/saem-5.png b/docs/dev/reference/saem-5.pngBinary files differ index 6e6e0f91..d22e7285 100644 --- a/docs/dev/reference/saem-5.png +++ b/docs/dev/reference/saem-5.png diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html index 59589378..620173b2 100644 --- a/docs/dev/reference/saem.html +++ b/docs/dev/reference/saem.html @@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -158,9 +158,13 @@ Expectation Maximisation algorithm (SAEM).</p>    <span class='va'>object</span>,    transformations <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"mkin"</span>, <span class='st'>"saemix"</span><span class='op'>)</span>,    degparms_start <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/numeric.html'>numeric</a></span><span class='op'>(</span><span class='op'>)</span>, +  test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span>, +  conf.level <span class='op'>=</span> <span class='fl'>0.6</span>,    solution_type <span class='op'>=</span> <span class='st'>"auto"</span>, -  control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>displayProgress <span class='op'>=</span> <span class='cn'>FALSE</span>, print <span class='op'>=</span> <span class='cn'>FALSE</span>, save <span class='op'>=</span> <span class='cn'>FALSE</span>, save.graphs <span class='op'>=</span> -    <span class='cn'>FALSE</span><span class='op'>)</span>, +  nbiter.saemix <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>300</span>, <span class='fl'>100</span><span class='op'>)</span>, +  control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>displayProgress <span class='op'>=</span> <span class='cn'>FALSE</span>, print <span class='op'>=</span> <span class='cn'>FALSE</span>, nbiter.saemix <span class='op'>=</span> <span class='va'>nbiter.saemix</span>, +    save <span class='op'>=</span> <span class='cn'>FALSE</span>, save.graphs <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>, +  fail_with_errors <span class='op'>=</span> <span class='cn'>TRUE</span>,    verbose <span class='op'>=</span> <span class='cn'>FALSE</span>,    quiet <span class='op'>=</span> <span class='cn'>FALSE</span>,    <span class='va'>...</span> @@ -174,6 +178,7 @@ Expectation Maximisation algorithm (SAEM).</p>    solution_type <span class='op'>=</span> <span class='st'>"auto"</span>,    transformations <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"mkin"</span>, <span class='st'>"saemix"</span><span class='op'>)</span>,    degparms_start <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/numeric.html'>numeric</a></span><span class='op'>(</span><span class='op'>)</span>, +  test_log_parms <span class='op'>=</span> <span class='cn'>FALSE</span>,    verbose <span class='op'>=</span> <span class='cn'>FALSE</span>,    <span class='va'>...</span>  <span class='op'>)</span> @@ -206,13 +211,35 @@ SFO or DFOP is used for the parent and there is either no metabolite or one.</p>  be used to override the starting values obtained from the 'mmkin' object.</p></td>      </tr>      <tr> +      <th>test_log_parms</th> +      <td><p>If TRUE, an attempt is made to use more robust starting +values for population parameters fitted as log parameters in mkin (like +rate constants) by only considering rate constants that pass the t-test +when calculating mean degradation parameters using <a href='mean_degparms.html'>mean_degparms</a>.</p></td> +    </tr> +    <tr> +      <th>conf.level</th> +      <td><p>Possibility to adjust the required confidence level +for parameter that are tested if requested by 'test_log_parms'.</p></td> +    </tr> +    <tr>        <th>solution_type</th>        <td><p>Possibility to specify the solution type in case the  automatic choice is not desired</p></td>      </tr>      <tr> +      <th>nbiter.saemix</th> +      <td><p>Convenience option to increase the number of +iterations</p></td> +    </tr> +    <tr>        <th>control</th> -      <td><p>Passed to <a href='https://rdrr.io/pkg/saemix/man/saemix.html'>saemix::saemix</a></p></td> +      <td><p>Passed to <a href='https://rdrr.io/pkg/saemix/man/saemix.html'>saemix::saemix</a>.</p></td> +    </tr> +    <tr> +      <th>fail_with_errors</th> +      <td><p>Should a failure to compute standard errors +from the inverse of the Fisher Information Matrix be a failure?</p></td>      </tr>      <tr>        <th>verbose</th> @@ -261,33 +288,39 @@ using <a href='mmkin.html'>mmkin</a>.</p>    state.ini <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fl'>100</span><span class='op'>)</span>, fixed_initials <span class='op'>=</span> <span class='st'>"parent"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  <span class='va'>f_saem_p0_fixed</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent_p0_fixed</span><span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Mon Jan 25 14:41:42 2021" +#> [1] "Wed Aug  4 16:22:05 2021"  #> ....  #>     Minimisation finished -#> [1] "Mon Jan 25 14:41:43 2021"</div><div class='input'> +#> [1] "Wed Aug  4 16:22:06 2021"</div><div class='input'>  <span class='va'>f_mmkin_parent</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  <span class='va'>f_saem_sfo</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span><span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Mon Jan 25 14:41:45 2021" +#> [1] "Wed Aug  4 16:22:08 2021"  #> ....  #>     Minimisation finished -#> [1] "Mon Jan 25 14:41:46 2021"</div><div class='input'><span class='va'>f_saem_fomc</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span><span class='op'>)</span> +#> [1] "Wed Aug  4 16:22:10 2021"</div><div class='input'><span class='va'>f_saem_fomc</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span><span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Mon Jan 25 14:41:47 2021" +#> [1] "Wed Aug  4 16:22:10 2021"  #> ....  #>     Minimisation finished -#> [1] "Mon Jan 25 14:41:49 2021"</div><div class='input'><span class='va'>f_saem_dfop</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span><span class='op'>)</span> +#> [1] "Wed Aug  4 16:22:12 2021"</div><div class='input'><span class='va'>f_saem_dfop</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span><span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Mon Jan 25 14:41:49 2021" +#> [1] "Wed Aug  4 16:22:12 2021"  #> ....  #>     Minimisation finished -#> [1] "Mon Jan 25 14:41:52 2021"</div><div class='input'> +#> [1] "Wed Aug  4 16:22:16 2021"</div><div class='input'>  <span class='co'># The returned saem.mmkin object contains an SaemixObject, therefore we can use</span>  <span class='co'># functions from saemix</span>  <span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'>saemix</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='message'>Package saemix, version 3.1.9000</span> -#> <span class='message'>  please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/compare.saemix.html'>compare.saemix</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='va'>f_saem_sfo</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_dfop</span><span class='op'>$</span><span class='va'>so</span><span class='op'>)</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)): 'compare.saemix' requires at least two models.</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"convergence"</span><span class='op'>)</span> +#> <span class='message'>  please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr</span></div><div class='output co'>#> <span class='message'></span> +#> <span class='message'>Attaching package: ‘saemix’</span></div><div class='output co'>#> <span class='message'>The following object is masked from ‘package:RxODE’:</span> +#> <span class='message'></span> +#> <span class='message'>    phi</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/compare.saemix.html'>compare.saemix</a></span><span class='op'>(</span><span class='va'>f_saem_sfo</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_dfop</span><span class='op'>$</span><span class='va'>so</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>Likelihoods calculated by importance sampling</span></div><div class='output co'>#>        AIC      BIC +#> 1 624.2484 622.2956 +#> 2 467.7096 464.9757 +#> 3 495.4373 491.9222</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"convergence"</span><span class='op'>)</span>  </div><div class='output co'>#> Plotting convergence plots</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"individual.fit"</span><span class='op'>)</span>  </div><div class='img'><img src='saem-1.png' alt='' width='700' height='433' /></div><div class='output co'>#> Plotting individual fits</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"npde"</span><span class='op'>)</span>  </div><div class='img'><img src='saem-2.png' alt='' width='700' height='433' /></div><div class='output co'>#> Simulating data using nsim = 1000 simulated datasets @@ -324,11 +357,13 @@ using <a href='mmkin.html'>mmkin</a>.</p>  <span class='va'>f_mmkin_parent_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>  <span class='va'>f_saem_fomc_tc</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent_tc</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span><span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Mon Jan 25 14:41:55 2021" +#> [1] "Wed Aug  4 16:22:19 2021"  #> ....  #>     Minimisation finished -#> [1] "Mon Jan 25 14:42:00 2021"</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/compare.saemix.html'>compare.saemix</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_fomc_tc</span><span class='op'>$</span><span class='va'>so</span><span class='op'>)</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so)): 'compare.saemix' requires at least two models.</span></div><div class='input'> +#> [1] "Wed Aug  4 16:22:24 2021"</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/compare.saemix.html'>compare.saemix</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_fomc_tc</span><span class='op'>$</span><span class='va'>so</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>Likelihoods calculated by importance sampling</span></div><div class='output co'>#>        AIC      BIC +#> 1 467.7096 464.9757 +#> 2 469.6831 466.5586</div><div class='input'>  <span class='va'>sfo_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,    A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>fomc_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='st'>"A1"</span><span class='op'>)</span>, @@ -346,15 +381,15 @@ using <a href='mmkin.html'>mmkin</a>.</p>  <span class='co'># four minutes</span>  <span class='va'>f_saem_sfo_sfo</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Mon Jan 25 14:42:02 2021" +#> [1] "Wed Aug  4 16:22:27 2021"  #> ....  #>     Minimisation finished -#> [1] "Mon Jan 25 14:42:07 2021"</div><div class='input'><span class='va'>f_saem_dfop_sfo</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> +#> [1] "Wed Aug  4 16:22:32 2021"</div><div class='input'><span class='va'>f_saem_dfop_sfo</span> <span class='op'><-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Mon Jan 25 14:42:08 2021" +#> [1] "Wed Aug  4 16:22:33 2021"  #> ....  #>     Minimisation finished -#> [1] "Mon Jan 25 14:42:17 2021"</div><div class='input'><span class='co'># We can use print, plot and summary methods to check the results</span> +#> [1] "Wed Aug  4 16:22:42 2021"</div><div class='input'><span class='co'># We can use print, plot and summary methods to check the results</span>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span><span class='op'>)</span>  </div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by SAEM  #> Structural model: @@ -370,35 +405,35 @@ using <a href='mmkin.html'>mmkin</a>.</p>  #>   #> Likelihood computed by importance sampling  #>     AIC   BIC logLik -#>   841.6 836.5 -407.8 +#>   839.6 834.6 -406.8  #>   #> Fitted parameters:  #>                     estimate    lower   upper -#> parent_0            93.76647 91.15312 96.3798 -#> log_k_A1            -6.13235 -8.45788 -3.8068 -#> f_parent_qlogis     -0.97364 -1.36940 -0.5779 -#> log_k1              -2.53176 -3.80372 -1.2598 -#> log_k2              -3.58667 -5.29524 -1.8781 -#> g_qlogis             0.01238 -1.07968  1.1044 -#> Var.parent_0         7.61106 -3.34955 18.5717 -#> Var.log_k_A1         4.64679 -2.73133 12.0249 -#> Var.f_parent_qlogis  0.19693 -0.05498  0.4488 -#> Var.log_k1           2.01717 -0.51980  4.5542 -#> Var.log_k2           3.63412 -0.92964  8.1979 -#> Var.g_qlogis         0.20045 -0.97425  1.3751 -#> a.1                  1.88335  1.66636  2.1004 -#> SD.parent_0          2.75881  0.77234  4.7453 -#> SD.log_k_A1          2.15564  0.44429  3.8670 -#> SD.f_parent_qlogis   0.44377  0.15994  0.7276 -#> SD.log_k1            1.42027  0.52714  2.3134 -#> SD.log_k2            1.90634  0.70934  3.1033 -#> SD.g_qlogis          0.44771 -0.86417  1.7596</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span><span class='op'>)</span> +#> parent_0            93.80521 91.22487 96.3856 +#> log_k_A1            -6.06244 -8.26517 -3.8597 +#> f_parent_qlogis     -0.97319 -1.37024 -0.5761 +#> log_k1              -2.55394 -4.00815 -1.0997 +#> log_k2              -3.47160 -5.18763 -1.7556 +#> g_qlogis            -0.09324 -1.42737  1.2409 +#> Var.parent_0         7.42157 -3.25683 18.1000 +#> Var.log_k_A1         4.22850 -2.46339 10.9204 +#> Var.f_parent_qlogis  0.19803 -0.05541  0.4515 +#> Var.log_k1           2.28644 -0.86079  5.4337 +#> Var.log_k2           3.35626 -1.14639  7.8589 +#> Var.g_qlogis         0.20084 -1.32516  1.7268 +#> a.1                  1.88399  1.66794  2.1000 +#> SD.parent_0          2.72425  0.76438  4.6841 +#> SD.log_k_A1          2.05633  0.42919  3.6835 +#> SD.f_parent_qlogis   0.44501  0.16025  0.7298 +#> SD.log_k1            1.51210  0.47142  2.5528 +#> SD.log_k2            1.83201  0.60313  3.0609 +#> SD.g_qlogis          0.44816 -1.25437  2.1507</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span><span class='op'>)</span>  </div><div class='img'><img src='saem-5.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  </div><div class='output co'>#> saemix version used for fitting:      3.1.9000  -#> mkin version used for pre-fitting:  0.9.50.4  -#> R version used for fitting:         4.0.3  -#> Date of fit:     Mon Jan 25 14:42:18 2021  -#> Date of summary: Mon Jan 25 14:42:18 2021  +#> mkin version used for pre-fitting:  1.0.5  +#> R version used for fitting:         4.1.0  +#> Date of fit:     Wed Aug  4 16:22:43 2021  +#> Date of summary: Wed Aug  4 16:22:43 2021   #>   #> Equations:  #> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -413,13 +448,13 @@ using <a href='mmkin.html'>mmkin</a>.</p>  #>   #> Model predictions using solution type analytical   #>  -#> Fitted in 9.954 s using 300, 100 iterations +#> Fitted in 10.143 s using 300, 100 iterations  #>   #> Variance model: Constant variance   #>   #> Mean of starting values for individual parameters:  #>        parent_0        log_k_A1 f_parent_qlogis          log_k1          log_k2  -#>         93.8102         -9.7647         -0.9711         -1.8799         -4.2708  +#>         93.8102         -5.3734         -0.9711         -1.8799         -4.2708   #>        g_qlogis   #>          0.1356   #>  @@ -430,46 +465,46 @@ using <a href='mmkin.html'>mmkin</a>.</p>  #>   #> Likelihood computed by importance sampling  #>     AIC   BIC logLik -#>   841.6 836.5 -407.8 +#>   839.6 834.6 -406.8  #>   #> Optimised parameters:  #>                     est.  lower   upper -#> parent_0        93.76647 91.153 96.3798 -#> log_k_A1        -6.13235 -8.458 -3.8068 -#> f_parent_qlogis -0.97364 -1.369 -0.5779 -#> log_k1          -2.53176 -3.804 -1.2598 -#> log_k2          -3.58667 -5.295 -1.8781 -#> g_qlogis         0.01238 -1.080  1.1044 +#> parent_0        93.80521 91.225 96.3856 +#> log_k_A1        -6.06244 -8.265 -3.8597 +#> f_parent_qlogis -0.97319 -1.370 -0.5761 +#> log_k1          -2.55394 -4.008 -1.0997 +#> log_k2          -3.47160 -5.188 -1.7556 +#> g_qlogis        -0.09324 -1.427  1.2409  #>   #> Correlation:   #>                 prnt_0 lg__A1 f_prn_ log_k1 log_k2 -#> log_k_A1        -0.013                             -#> f_parent_qlogis -0.025  0.050                      -#> log_k1           0.030  0.000 -0.005               -#> log_k2           0.010  0.005 -0.003  0.032        -#> g_qlogis        -0.063 -0.015  0.010 -0.167 -0.177 +#> log_k_A1        -0.014                             +#> f_parent_qlogis -0.025  0.054                      +#> log_k1           0.027 -0.003 -0.005               +#> log_k2           0.011  0.005 -0.002 -0.070        +#> g_qlogis        -0.067 -0.009  0.011 -0.189 -0.171  #>   #> Random effects:  #>                      est.   lower  upper -#> SD.parent_0        2.7588  0.7723 4.7453 -#> SD.log_k_A1        2.1556  0.4443 3.8670 -#> SD.f_parent_qlogis 0.4438  0.1599 0.7276 -#> SD.log_k1          1.4203  0.5271 2.3134 -#> SD.log_k2          1.9063  0.7093 3.1033 -#> SD.g_qlogis        0.4477 -0.8642 1.7596 +#> SD.parent_0        2.7243  0.7644 4.6841 +#> SD.log_k_A1        2.0563  0.4292 3.6835 +#> SD.f_parent_qlogis 0.4450  0.1602 0.7298 +#> SD.log_k1          1.5121  0.4714 2.5528 +#> SD.log_k2          1.8320  0.6031 3.0609 +#> SD.g_qlogis        0.4482 -1.2544 2.1507  #>   #> Variance model:  #>      est. lower upper -#> a.1 1.883 1.666   2.1 +#> a.1 1.884 1.668   2.1  #>   #> Backtransformed parameters:  #>                     est.     lower    upper -#> parent_0       93.766473 9.115e+01 96.37983 -#> k_A1            0.002171 2.122e-04  0.02222 -#> f_parent_to_A1  0.274156 2.027e-01  0.35942 -#> k1              0.079519 2.229e-02  0.28371 -#> k2              0.027691 5.015e-03  0.15288 -#> g               0.503095 2.536e-01  0.75109 +#> parent_0       93.805214 9.122e+01 96.38556 +#> k_A1            0.002329 2.573e-04  0.02107 +#> f_parent_to_A1  0.274245 2.026e-01  0.35982 +#> k1              0.077775 1.817e-02  0.33296 +#> k2              0.031067 5.585e-03  0.17281 +#> g               0.476707 1.935e-01  0.77572  #>   #> Resulting formation fractions:  #>                 ff @@ -477,182 +512,182 @@ using <a href='mmkin.html'>mmkin</a>.</p>  #> parent_sink 0.7258  #>   #> Estimated disappearance times: -#>          DT50    DT90 DT50back DT50_k1 DT50_k2 -#> parent  14.11   59.53    17.92   8.717   25.03 -#> A1     319.21 1060.38       NA      NA      NA +#>          DT50  DT90 DT50back DT50_k1 DT50_k2 +#> parent  13.96  55.4    16.68   8.912   22.31 +#> A1     297.65 988.8       NA      NA      NA  #>   #> Data: -#>          ds   name time observed predicted residual   std standardized -#>   Dataset 6 parent    0     97.2  95.79523 -1.40477 1.883    -0.745888 -#>   Dataset 6 parent    0     96.4  95.79523 -0.60477 1.883    -0.321114 -#>   Dataset 6 parent    3     71.1  71.32042  0.22042 1.883     0.117035 -#>   Dataset 6 parent    3     69.2  71.32042  2.12042 1.883     1.125873 -#>   Dataset 6 parent    6     58.1  56.45256 -1.64744 1.883    -0.874739 -#>   Dataset 6 parent    6     56.6  56.45256 -0.14744 1.883    -0.078288 -#>   Dataset 6 parent   10     44.4  44.48523  0.08523 1.883     0.045256 -#>   Dataset 6 parent   10     43.4  44.48523  1.08523 1.883     0.576224 -#>   Dataset 6 parent   20     33.3  29.75774 -3.54226 1.883    -1.880826 -#>   Dataset 6 parent   20     29.2  29.75774  0.55774 1.883     0.296141 -#>   Dataset 6 parent   34     17.6  19.35710  1.75710 1.883     0.932966 -#>   Dataset 6 parent   34     18.0  19.35710  1.35710 1.883     0.720578 -#>   Dataset 6 parent   55     10.5  10.48443 -0.01557 1.883    -0.008266 -#>   Dataset 6 parent   55      9.3  10.48443  1.18443 1.883     0.628895 -#>   Dataset 6 parent   90      4.5   3.78622 -0.71378 1.883    -0.378995 -#>   Dataset 6 parent   90      4.7   3.78622 -0.91378 1.883    -0.485188 -#>   Dataset 6 parent  112      3.0   1.99608 -1.00392 1.883    -0.533048 -#>   Dataset 6 parent  112      3.4   1.99608 -1.40392 1.883    -0.745435 -#>   Dataset 6 parent  132      2.3   1.11539 -1.18461 1.883    -0.628990 -#>   Dataset 6 parent  132      2.7   1.11539 -1.58461 1.883    -0.841377 -#>   Dataset 6     A1    3      4.3   4.66132  0.36132 1.883     0.191849 -#>   Dataset 6     A1    3      4.6   4.66132  0.06132 1.883     0.032559 -#>   Dataset 6     A1    6      7.0   7.41087  0.41087 1.883     0.218157 -#>   Dataset 6     A1    6      7.2   7.41087  0.21087 1.883     0.111964 -#>   Dataset 6     A1   10      8.2   9.50878  1.30878 1.883     0.694921 -#>   Dataset 6     A1   10      8.0   9.50878  1.50878 1.883     0.801114 -#>   Dataset 6     A1   20     11.0  11.69902  0.69902 1.883     0.371157 -#>   Dataset 6     A1   20     13.7  11.69902 -2.00098 1.883    -1.062455 -#>   Dataset 6     A1   34     11.5  12.67784  1.17784 1.883     0.625396 -#>   Dataset 6     A1   34     12.7  12.67784 -0.02216 1.883    -0.011765 -#>   Dataset 6     A1   55     14.9  12.78556 -2.11444 1.883    -1.122701 -#>   Dataset 6     A1   55     14.5  12.78556 -1.71444 1.883    -0.910314 -#>   Dataset 6     A1   90     12.1  11.52954 -0.57046 1.883    -0.302898 -#>   Dataset 6     A1   90     12.3  11.52954 -0.77046 1.883    -0.409092 -#>   Dataset 6     A1  112      9.9  10.43825  0.53825 1.883     0.285793 -#>   Dataset 6     A1  112     10.2  10.43825  0.23825 1.883     0.126503 -#>   Dataset 6     A1  132      8.8   9.42830  0.62830 1.883     0.333609 -#>   Dataset 6     A1  132      7.8   9.42830  1.62830 1.883     0.864577 -#>   Dataset 7 parent    0     93.6  90.91477 -2.68523 1.883    -1.425772 -#>   Dataset 7 parent    0     92.3  90.91477 -1.38523 1.883    -0.735514 -#>   Dataset 7 parent    3     87.0  84.76874 -2.23126 1.883    -1.184726 -#>   Dataset 7 parent    3     82.2  84.76874  2.56874 1.883     1.363919 -#>   Dataset 7 parent    7     74.0  77.62735  3.62735 1.883     1.926003 -#>   Dataset 7 parent    7     73.9  77.62735  3.72735 1.883     1.979100 -#>   Dataset 7 parent   14     64.2  67.52266  3.32266 1.883     1.764224 -#>   Dataset 7 parent   14     69.5  67.52266 -1.97734 1.883    -1.049904 -#>   Dataset 7 parent   30     54.0  52.41949 -1.58051 1.883    -0.839202 -#>   Dataset 7 parent   30     54.6  52.41949 -2.18051 1.883    -1.157783 -#>   Dataset 7 parent   60     41.1  39.36582 -1.73418 1.883    -0.920794 -#>   Dataset 7 parent   60     38.4  39.36582  0.96582 1.883     0.512818 -#>   Dataset 7 parent   90     32.5  33.75388  1.25388 1.883     0.665771 -#>   Dataset 7 parent   90     35.5  33.75388 -1.74612 1.883    -0.927132 -#>   Dataset 7 parent  120     28.1  30.41716  2.31716 1.883     1.230335 -#>   Dataset 7 parent  120     29.0  30.41716  1.41716 1.883     0.752464 -#>   Dataset 7 parent  180     26.5  25.66046 -0.83954 1.883    -0.445767 -#>   Dataset 7 parent  180     27.6  25.66046 -1.93954 1.883    -1.029832 -#>   Dataset 7     A1    3      3.9   2.69355 -1.20645 1.883    -0.640585 -#>   Dataset 7     A1    3      3.1   2.69355 -0.40645 1.883    -0.215811 -#>   Dataset 7     A1    7      6.9   5.81807 -1.08193 1.883    -0.574470 -#>   Dataset 7     A1    7      6.6   5.81807 -0.78193 1.883    -0.415180 -#>   Dataset 7     A1   14     10.4  10.22529 -0.17471 1.883    -0.092767 -#>   Dataset 7     A1   14      8.3  10.22529  1.92529 1.883     1.022265 -#>   Dataset 7     A1   30     14.4  16.75484  2.35484 1.883     1.250345 -#>   Dataset 7     A1   30     13.7  16.75484  3.05484 1.883     1.622022 -#>   Dataset 7     A1   60     22.1  22.22540  0.12540 1.883     0.066583 -#>   Dataset 7     A1   60     22.3  22.22540 -0.07460 1.883    -0.039610 -#>   Dataset 7     A1   90     27.5  24.38799 -3.11201 1.883    -1.652376 -#>   Dataset 7     A1   90     25.4  24.38799 -1.01201 1.883    -0.537344 -#>   Dataset 7     A1  120     28.0  25.53294 -2.46706 1.883    -1.309927 -#>   Dataset 7     A1  120     26.6  25.53294 -1.06706 1.883    -0.566572 -#>   Dataset 7     A1  180     25.8  26.94943  1.14943 1.883     0.610309 -#>   Dataset 7     A1  180     25.3  26.94943  1.64943 1.883     0.875793 -#>   Dataset 8 parent    0     91.9  91.53246 -0.36754 1.883    -0.195151 -#>   Dataset 8 parent    0     90.8  91.53246  0.73246 1.883     0.388914 -#>   Dataset 8 parent    1     64.9  67.73197  2.83197 1.883     1.503686 -#>   Dataset 8 parent    1     66.2  67.73197  1.53197 1.883     0.813428 -#>   Dataset 8 parent    3     43.5  41.58448 -1.91552 1.883    -1.017081 -#>   Dataset 8 parent    3     44.1  41.58448 -2.51552 1.883    -1.335661 -#>   Dataset 8 parent    8     18.3  19.62286  1.32286 1.883     0.702395 -#>   Dataset 8 parent    8     18.1  19.62286  1.52286 1.883     0.808589 -#>   Dataset 8 parent   14     10.2  10.77819  0.57819 1.883     0.306999 -#>   Dataset 8 parent   14     10.8  10.77819 -0.02181 1.883    -0.011582 -#>   Dataset 8 parent   27      4.9   3.26977 -1.63023 1.883    -0.865599 -#>   Dataset 8 parent   27      3.3   3.26977 -0.03023 1.883    -0.016051 -#>   Dataset 8 parent   48      1.6   0.48024 -1.11976 1.883    -0.594557 -#>   Dataset 8 parent   48      1.5   0.48024 -1.01976 1.883    -0.541460 -#>   Dataset 8 parent   70      1.1   0.06438 -1.03562 1.883    -0.549881 -#>   Dataset 8 parent   70      0.9   0.06438 -0.83562 1.883    -0.443688 -#>   Dataset 8     A1    1      9.6   7.61539 -1.98461 1.883    -1.053761 -#>   Dataset 8     A1    1      7.7   7.61539 -0.08461 1.883    -0.044923 -#>   Dataset 8     A1    3     15.0  15.47954  0.47954 1.883     0.254622 -#>   Dataset 8     A1    3     15.1  15.47954  0.37954 1.883     0.201525 -#>   Dataset 8     A1    8     21.2  20.22616 -0.97384 1.883    -0.517076 -#>   Dataset 8     A1    8     21.1  20.22616 -0.87384 1.883    -0.463979 -#>   Dataset 8     A1   14     19.7  20.00067  0.30067 1.883     0.159645 -#>   Dataset 8     A1   14     18.9  20.00067  1.10067 1.883     0.584419 -#>   Dataset 8     A1   27     17.5  16.38142 -1.11858 1.883    -0.593929 -#>   Dataset 8     A1   27     15.9  16.38142  0.48142 1.883     0.255619 -#>   Dataset 8     A1   48      9.5  10.25357  0.75357 1.883     0.400123 -#>   Dataset 8     A1   48      9.8  10.25357  0.45357 1.883     0.240833 -#>   Dataset 8     A1   70      6.2   5.95728 -0.24272 1.883    -0.128878 -#>   Dataset 8     A1   70      6.1   5.95728 -0.14272 1.883    -0.075781 -#>   Dataset 9 parent    0     99.8  97.47274 -2.32726 1.883    -1.235697 -#>   Dataset 9 parent    0     98.3  97.47274 -0.82726 1.883    -0.439246 -#>   Dataset 9 parent    1     77.1  79.72257  2.62257 1.883     1.392500 -#>   Dataset 9 parent    1     77.2  79.72257  2.52257 1.883     1.339404 -#>   Dataset 9 parent    3     59.0  56.26497 -2.73503 1.883    -1.452212 -#>   Dataset 9 parent    3     58.1  56.26497 -1.83503 1.883    -0.974342 -#>   Dataset 9 parent    8     27.4  31.66985  4.26985 1.883     2.267151 -#>   Dataset 9 parent    8     29.2  31.66985  2.46985 1.883     1.311410 -#>   Dataset 9 parent   14     19.1  22.39789  3.29789 1.883     1.751071 -#>   Dataset 9 parent   14     29.6  22.39789 -7.20211 1.883    -3.824090 -#>   Dataset 9 parent   27     10.1  14.21758  4.11758 1.883     2.186301 -#>   Dataset 9 parent   27     18.2  14.21758 -3.98242 1.883    -2.114537 -#>   Dataset 9 parent   48      4.5   7.27921  2.77921 1.883     1.475671 -#>   Dataset 9 parent   48      9.1   7.27921 -1.82079 1.883    -0.966780 -#>   Dataset 9 parent   70      2.3   3.61470  1.31470 1.883     0.698065 -#>   Dataset 9 parent   70      2.9   3.61470  0.71470 1.883     0.379485 -#>   Dataset 9 parent   91      2.0   1.85303 -0.14697 1.883    -0.078038 -#>   Dataset 9 parent   91      1.8   1.85303  0.05303 1.883     0.028155 -#>   Dataset 9 parent  120      2.0   0.73645 -1.26355 1.883    -0.670906 -#>   Dataset 9 parent  120      2.2   0.73645 -1.46355 1.883    -0.777099 -#>   Dataset 9     A1    1      4.2   3.87843 -0.32157 1.883    -0.170743 -#>   Dataset 9     A1    1      3.9   3.87843 -0.02157 1.883    -0.011453 -#>   Dataset 9     A1    3      7.4   8.90535  1.50535 1.883     0.799291 -#>   Dataset 9     A1    3      7.9   8.90535  1.00535 1.883     0.533807 -#>   Dataset 9     A1    8     14.5  13.75172 -0.74828 1.883    -0.397312 -#>   Dataset 9     A1    8     13.7  13.75172  0.05172 1.883     0.027462 -#>   Dataset 9     A1   14     14.2  14.97541  0.77541 1.883     0.411715 -#>   Dataset 9     A1   14     12.2  14.97541  2.77541 1.883     1.473650 -#>   Dataset 9     A1   27     13.7  14.94728  1.24728 1.883     0.662266 -#>   Dataset 9     A1   27     13.2  14.94728  1.74728 1.883     0.927750 -#>   Dataset 9     A1   48     13.6  13.66078  0.06078 1.883     0.032272 -#>   Dataset 9     A1   48     15.4  13.66078 -1.73922 1.883    -0.923470 -#>   Dataset 9     A1   70     10.4  11.84899  1.44899 1.883     0.769365 -#>   Dataset 9     A1   70     11.6  11.84899  0.24899 1.883     0.132204 -#>   Dataset 9     A1   91     10.0  10.09177  0.09177 1.883     0.048727 -#>   Dataset 9     A1   91      9.5  10.09177  0.59177 1.883     0.314211 -#>   Dataset 9     A1  120      9.1   7.91379 -1.18621 1.883    -0.629841 -#>   Dataset 9     A1  120      9.0   7.91379 -1.08621 1.883    -0.576745 -#>  Dataset 10 parent    0     96.1  93.65257 -2.44743 1.883    -1.299505 -#>  Dataset 10 parent    0     94.3  93.65257 -0.64743 1.883    -0.343763 -#>  Dataset 10 parent    8     73.9  77.85906  3.95906 1.883     2.102132 -#>  Dataset 10 parent    8     73.9  77.85906  3.95906 1.883     2.102132 -#>  Dataset 10 parent   14     69.4  70.17143  0.77143 1.883     0.409606 -#>  Dataset 10 parent   14     73.1  70.17143 -2.92857 1.883    -1.554974 -#>  Dataset 10 parent   21     65.6  63.99188 -1.60812 1.883    -0.853862 -#>  Dataset 10 parent   21     65.3  63.99188 -1.30812 1.883    -0.694572 -#>  Dataset 10 parent   41     55.9  54.64292 -1.25708 1.883    -0.667467 -#>  Dataset 10 parent   41     54.4  54.64292  0.24292 1.883     0.128985 -#>  Dataset 10 parent   63     47.0  49.61303  2.61303 1.883     1.387433 -#>  Dataset 10 parent   63     49.3  49.61303  0.31303 1.883     0.166207 -#>  Dataset 10 parent   91     44.7  45.17807  0.47807 1.883     0.253839 -#>  Dataset 10 parent   91     46.7  45.17807 -1.52193 1.883    -0.808096 -#>  Dataset 10 parent  120     42.1  41.27970 -0.82030 1.883    -0.435552 -#>  Dataset 10 parent  120     41.3  41.27970 -0.02030 1.883    -0.010778 -#>  Dataset 10     A1    8      3.3   3.99294  0.69294 1.883     0.367929 -#>  Dataset 10     A1    8      3.4   3.99294  0.59294 1.883     0.314832 -#>  Dataset 10     A1   14      3.9   5.92756  2.02756 1.883     1.076570 -#>  Dataset 10     A1   14      2.9   5.92756  3.02756 1.883     1.607538 -#>  Dataset 10     A1   21      6.4   7.47313  1.07313 1.883     0.569799 -#>  Dataset 10     A1   21      7.2   7.47313  0.27313 1.883     0.145025 -#>  Dataset 10     A1   41      9.1   9.76819  0.66819 1.883     0.354786 -#>  Dataset 10     A1   41      8.5   9.76819  1.26819 1.883     0.673367 -#>  Dataset 10     A1   63     11.7  10.94733 -0.75267 1.883    -0.399643 -#>  Dataset 10     A1   63     12.0  10.94733 -1.05267 1.883    -0.558933 -#>  Dataset 10     A1   91     13.3  11.93773 -1.36227 1.883    -0.723321 -#>  Dataset 10     A1   91     13.2  11.93773 -1.26227 1.883    -0.670224 -#>  Dataset 10     A1  120     14.3  12.77666 -1.52334 1.883    -0.808847 -#>  Dataset 10     A1  120     12.1  12.77666  0.67666 1.883     0.359282</div><div class='input'> +#>          ds   name time observed predicted  residual   std standardized +#>   Dataset 6 parent    0     97.2  95.75408  1.445920 1.884     0.767479 +#>   Dataset 6 parent    0     96.4  95.75408  0.645920 1.884     0.342847 +#>   Dataset 6 parent    3     71.1  71.22466 -0.124662 1.884    -0.066169 +#>   Dataset 6 parent    3     69.2  71.22466 -2.024662 1.884    -1.074669 +#>   Dataset 6 parent    6     58.1  56.42290  1.677100 1.884     0.890187 +#>   Dataset 6 parent    6     56.6  56.42290  0.177100 1.884     0.094003 +#>   Dataset 6 parent   10     44.4  44.55255 -0.152554 1.884    -0.080974 +#>   Dataset 6 parent   10     43.4  44.55255 -1.152554 1.884    -0.611763 +#>   Dataset 6 parent   20     33.3  29.88846  3.411537 1.884     1.810807 +#>   Dataset 6 parent   20     29.2  29.88846 -0.688463 1.884    -0.365429 +#>   Dataset 6 parent   34     17.6  19.40826 -1.808260 1.884    -0.959805 +#>   Dataset 6 parent   34     18.0  19.40826 -1.408260 1.884    -0.747489 +#>   Dataset 6 parent   55     10.5  10.45560  0.044398 1.884     0.023566 +#>   Dataset 6 parent   55      9.3  10.45560 -1.155602 1.884    -0.613381 +#>   Dataset 6 parent   90      4.5   3.74026  0.759744 1.884     0.403264 +#>   Dataset 6 parent   90      4.7   3.74026  0.959744 1.884     0.509421 +#>   Dataset 6 parent  112      3.0   1.96015  1.039853 1.884     0.551943 +#>   Dataset 6 parent  112      3.4   1.96015  1.439853 1.884     0.764258 +#>   Dataset 6 parent  132      2.3   1.08940  1.210603 1.884     0.642575 +#>   Dataset 6 parent  132      2.7   1.08940  1.610603 1.884     0.854890 +#>   Dataset 6     A1    3      4.3   4.75601 -0.456009 1.884    -0.242045 +#>   Dataset 6     A1    3      4.6   4.75601 -0.156009 1.884    -0.082808 +#>   Dataset 6     A1    6      7.0   7.53839 -0.538391 1.884    -0.285772 +#>   Dataset 6     A1    6      7.2   7.53839 -0.338391 1.884    -0.179614 +#>   Dataset 6     A1   10      8.2   9.64728 -1.447276 1.884    -0.768198 +#>   Dataset 6     A1   10      8.0   9.64728 -1.647276 1.884    -0.874356 +#>   Dataset 6     A1   20     11.0  11.83954 -0.839545 1.884    -0.445621 +#>   Dataset 6     A1   20     13.7  11.83954  1.860455 1.884     0.987509 +#>   Dataset 6     A1   34     11.5  12.81233 -1.312327 1.884    -0.696569 +#>   Dataset 6     A1   34     12.7  12.81233 -0.112327 1.884    -0.059622 +#>   Dataset 6     A1   55     14.9  12.87919  2.020809 1.884     1.072624 +#>   Dataset 6     A1   55     14.5  12.87919  1.620809 1.884     0.860308 +#>   Dataset 6     A1   90     12.1  11.52464  0.575364 1.884     0.305397 +#>   Dataset 6     A1   90     12.3  11.52464  0.775364 1.884     0.411555 +#>   Dataset 6     A1  112      9.9  10.37694 -0.476938 1.884    -0.253153 +#>   Dataset 6     A1  112     10.2  10.37694 -0.176938 1.884    -0.093917 +#>   Dataset 6     A1  132      8.8   9.32474 -0.524742 1.884    -0.278528 +#>   Dataset 6     A1  132      7.8   9.32474 -1.524742 1.884    -0.809317 +#>   Dataset 7 parent    0     93.6  90.16918  3.430816 1.884     1.821040 +#>   Dataset 7 parent    0     92.3  90.16918  2.130816 1.884     1.131014 +#>   Dataset 7 parent    3     87.0  84.05442  2.945583 1.884     1.563483 +#>   Dataset 7 parent    3     82.2  84.05442 -1.854417 1.884    -0.984304 +#>   Dataset 7 parent    7     74.0  77.00960 -3.009596 1.884    -1.597461 +#>   Dataset 7 parent    7     73.9  77.00960 -3.109596 1.884    -1.650540 +#>   Dataset 7 parent   14     64.2  67.15684 -2.956840 1.884    -1.569459 +#>   Dataset 7 parent   14     69.5  67.15684  2.343160 1.884     1.243724 +#>   Dataset 7 parent   30     54.0  52.66290  1.337101 1.884     0.709719 +#>   Dataset 7 parent   30     54.6  52.66290  1.937101 1.884     1.028192 +#>   Dataset 7 parent   60     41.1  40.04995  1.050050 1.884     0.557355 +#>   Dataset 7 parent   60     38.4  40.04995 -1.649950 1.884    -0.875775 +#>   Dataset 7 parent   90     32.5  34.09675 -1.596746 1.884    -0.847535 +#>   Dataset 7 parent   90     35.5  34.09675  1.403254 1.884     0.744832 +#>   Dataset 7 parent  120     28.1  30.12281 -2.022814 1.884    -1.073688 +#>   Dataset 7 parent  120     29.0  30.12281 -1.122814 1.884    -0.595977 +#>   Dataset 7 parent  180     26.5  24.10888  2.391123 1.884     1.269182 +#>   Dataset 7 parent  180     27.6  24.10888  3.491123 1.884     1.853050 +#>   Dataset 7     A1    3      3.9   2.77684  1.123161 1.884     0.596161 +#>   Dataset 7     A1    3      3.1   2.77684  0.323161 1.884     0.171530 +#>   Dataset 7     A1    7      6.9   5.96705  0.932950 1.884     0.495200 +#>   Dataset 7     A1    7      6.6   5.96705  0.632950 1.884     0.335963 +#>   Dataset 7     A1   14     10.4  10.40535 -0.005348 1.884    -0.002839 +#>   Dataset 7     A1   14      8.3  10.40535 -2.105348 1.884    -1.117496 +#>   Dataset 7     A1   30     14.4  16.83722 -2.437216 1.884    -1.293648 +#>   Dataset 7     A1   30     13.7  16.83722 -3.137216 1.884    -1.665200 +#>   Dataset 7     A1   60     22.1  22.15018 -0.050179 1.884    -0.026635 +#>   Dataset 7     A1   60     22.3  22.15018  0.149821 1.884     0.079523 +#>   Dataset 7     A1   90     27.5  24.36286  3.137143 1.884     1.665161 +#>   Dataset 7     A1   90     25.4  24.36286  1.037143 1.884     0.550504 +#>   Dataset 7     A1  120     28.0  25.64064  2.359361 1.884     1.252323 +#>   Dataset 7     A1  120     26.6  25.64064  0.959361 1.884     0.509218 +#>   Dataset 7     A1  180     25.8  27.25486 -1.454858 1.884    -0.772223 +#>   Dataset 7     A1  180     25.3  27.25486 -1.954858 1.884    -1.037617 +#>   Dataset 8 parent    0     91.9  91.72652  0.173479 1.884     0.092081 +#>   Dataset 8 parent    0     90.8  91.72652 -0.926521 1.884    -0.491787 +#>   Dataset 8 parent    1     64.9  67.22810 -2.328104 1.884    -1.235732 +#>   Dataset 8 parent    1     66.2  67.22810 -1.028104 1.884    -0.545706 +#>   Dataset 8 parent    3     43.5  41.46375  2.036251 1.884     1.080820 +#>   Dataset 8 parent    3     44.1  41.46375  2.636251 1.884     1.399293 +#>   Dataset 8 parent    8     18.3  19.83597 -1.535968 1.884    -0.815275 +#>   Dataset 8 parent    8     18.1  19.83597 -1.735968 1.884    -0.921433 +#>   Dataset 8 parent   14     10.2  10.34793 -0.147927 1.884    -0.078518 +#>   Dataset 8 parent   14     10.8  10.34793  0.452073 1.884     0.239956 +#>   Dataset 8 parent   27      4.9   2.67641  2.223595 1.884     1.180260 +#>   Dataset 8 parent   27      3.3   2.67641  0.623595 1.884     0.330997 +#>   Dataset 8 parent   48      1.6   0.30218  1.297822 1.884     0.688870 +#>   Dataset 8 parent   48      1.5   0.30218  1.197822 1.884     0.635791 +#>   Dataset 8 parent   70      1.1   0.03075  1.069248 1.884     0.567545 +#>   Dataset 8 parent   70      0.9   0.03075  0.869248 1.884     0.461388 +#>   Dataset 8     A1    1      9.6   7.74066  1.859342 1.884     0.986918 +#>   Dataset 8     A1    1      7.7   7.74066 -0.040658 1.884    -0.021581 +#>   Dataset 8     A1    3     15.0  15.37549 -0.375495 1.884    -0.199309 +#>   Dataset 8     A1    3     15.1  15.37549 -0.275495 1.884    -0.146230 +#>   Dataset 8     A1    8     21.2  19.95900  1.241003 1.884     0.658711 +#>   Dataset 8     A1    8     21.1  19.95900  1.141003 1.884     0.605632 +#>   Dataset 8     A1   14     19.7  19.92898 -0.228978 1.884    -0.121539 +#>   Dataset 8     A1   14     18.9  19.92898 -1.028978 1.884    -0.546170 +#>   Dataset 8     A1   27     17.5  16.34046  1.159536 1.884     0.615469 +#>   Dataset 8     A1   27     15.9  16.34046 -0.440464 1.884    -0.233793 +#>   Dataset 8     A1   48      9.5  10.12131 -0.621313 1.884    -0.329786 +#>   Dataset 8     A1   48      9.8  10.12131 -0.321313 1.884    -0.170550 +#>   Dataset 8     A1   70      6.2   5.84753  0.352469 1.884     0.187087 +#>   Dataset 8     A1   70      6.1   5.84753  0.252469 1.884     0.134008 +#>   Dataset 9 parent    0     99.8  98.23600  1.564002 1.884     0.830155 +#>   Dataset 9 parent    0     98.3  98.23600  0.064002 1.884     0.033972 +#>   Dataset 9 parent    1     77.1  79.68007 -2.580074 1.884    -1.369475 +#>   Dataset 9 parent    1     77.2  79.68007 -2.480074 1.884    -1.316396 +#>   Dataset 9 parent    3     59.0  55.81142  3.188584 1.884     1.692465 +#>   Dataset 9 parent    3     58.1  55.81142  2.288584 1.884     1.214755 +#>   Dataset 9 parent    8     27.4  31.81995 -4.419948 1.884    -2.346060 +#>   Dataset 9 parent    8     29.2  31.81995 -2.619948 1.884    -1.390640 +#>   Dataset 9 parent   14     19.1  22.78328 -3.683282 1.884    -1.955046 +#>   Dataset 9 parent   14     29.6  22.78328  6.816718 1.884     3.618240 +#>   Dataset 9 parent   27     10.1  14.15172 -4.051720 1.884    -2.150609 +#>   Dataset 9 parent   27     18.2  14.15172  4.048280 1.884     2.148783 +#>   Dataset 9 parent   48      4.5   6.86094 -2.360941 1.884    -1.253162 +#>   Dataset 9 parent   48      9.1   6.86094  2.239059 1.884     1.188468 +#>   Dataset 9 parent   70      2.3   3.21580 -0.915798 1.884    -0.486096 +#>   Dataset 9 parent   70      2.9   3.21580 -0.315798 1.884    -0.167622 +#>   Dataset 9 parent   91      2.0   1.56010  0.439897 1.884     0.233492 +#>   Dataset 9 parent   91      1.8   1.56010  0.239897 1.884     0.127335 +#>   Dataset 9 parent  120      2.0   0.57458  1.425424 1.884     0.756600 +#>   Dataset 9 parent  120      2.2   0.57458  1.625424 1.884     0.862757 +#>   Dataset 9     A1    1      4.2   4.01796  0.182037 1.884     0.096623 +#>   Dataset 9     A1    1      3.9   4.01796 -0.117963 1.884    -0.062613 +#>   Dataset 9     A1    3      7.4   9.08527 -1.685270 1.884    -0.894523 +#>   Dataset 9     A1    3      7.9   9.08527 -1.185270 1.884    -0.629129 +#>   Dataset 9     A1    8     14.5  13.75054  0.749457 1.884     0.397804 +#>   Dataset 9     A1    8     13.7  13.75054 -0.050543 1.884    -0.026827 +#>   Dataset 9     A1   14     14.2  14.91180 -0.711804 1.884    -0.377818 +#>   Dataset 9     A1   14     12.2  14.91180 -2.711804 1.884    -1.439396 +#>   Dataset 9     A1   27     13.7  14.97813 -1.278129 1.884    -0.678417 +#>   Dataset 9     A1   27     13.2  14.97813 -1.778129 1.884    -0.943812 +#>   Dataset 9     A1   48     13.6  13.75574 -0.155745 1.884    -0.082668 +#>   Dataset 9     A1   48     15.4  13.75574  1.644255 1.884     0.872753 +#>   Dataset 9     A1   70     10.4  11.92861 -1.528608 1.884    -0.811369 +#>   Dataset 9     A1   70     11.6  11.92861 -0.328608 1.884    -0.174422 +#>   Dataset 9     A1   91     10.0  10.14395 -0.143947 1.884    -0.076405 +#>   Dataset 9     A1   91      9.5  10.14395 -0.643947 1.884    -0.341800 +#>   Dataset 9     A1  120      9.1   7.93869  1.161307 1.884     0.616409 +#>   Dataset 9     A1  120      9.0   7.93869  1.061307 1.884     0.563330 +#>  Dataset 10 parent    0     96.1  93.65914  2.440862 1.884     1.295583 +#>  Dataset 10 parent    0     94.3  93.65914  0.640862 1.884     0.340163 +#>  Dataset 10 parent    8     73.9  77.83065 -3.930647 1.884    -2.086344 +#>  Dataset 10 parent    8     73.9  77.83065 -3.930647 1.884    -2.086344 +#>  Dataset 10 parent   14     69.4  70.15862 -0.758619 1.884    -0.402667 +#>  Dataset 10 parent   14     73.1  70.15862  2.941381 1.884     1.561253 +#>  Dataset 10 parent   21     65.6  64.00840  1.591600 1.884     0.844804 +#>  Dataset 10 parent   21     65.3  64.00840  1.291600 1.884     0.685567 +#>  Dataset 10 parent   41     55.9  54.71192  1.188076 1.884     0.630618 +#>  Dataset 10 parent   41     54.4  54.71192 -0.311924 1.884    -0.165566 +#>  Dataset 10 parent   63     47.0  49.66775 -2.667747 1.884    -1.416011 +#>  Dataset 10 parent   63     49.3  49.66775 -0.367747 1.884    -0.195196 +#>  Dataset 10 parent   91     44.7  45.17119 -0.471186 1.884    -0.250101 +#>  Dataset 10 parent   91     46.7  45.17119  1.528814 1.884     0.811478 +#>  Dataset 10 parent  120     42.1  41.20430  0.895699 1.884     0.475427 +#>  Dataset 10 parent  120     41.3  41.20430  0.095699 1.884     0.050796 +#>  Dataset 10     A1    8      3.3   4.00920 -0.709204 1.884    -0.376438 +#>  Dataset 10     A1    8      3.4   4.00920 -0.609204 1.884    -0.323359 +#>  Dataset 10     A1   14      3.9   5.94267 -2.042668 1.884    -1.084226 +#>  Dataset 10     A1   14      2.9   5.94267 -3.042668 1.884    -1.615015 +#>  Dataset 10     A1   21      6.4   7.48222 -1.082219 1.884    -0.574430 +#>  Dataset 10     A1   21      7.2   7.48222 -0.282219 1.884    -0.149799 +#>  Dataset 10     A1   41      9.1   9.76246 -0.662460 1.884    -0.351626 +#>  Dataset 10     A1   41      8.5   9.76246 -1.262460 1.884    -0.670100 +#>  Dataset 10     A1   63     11.7  10.93972  0.760278 1.884     0.403547 +#>  Dataset 10     A1   63     12.0  10.93972  1.060278 1.884     0.562784 +#>  Dataset 10     A1   91     13.3  11.93666  1.363337 1.884     0.723645 +#>  Dataset 10     A1   91     13.2  11.93666  1.263337 1.884     0.670566 +#>  Dataset 10     A1  120     14.3  12.78218  1.517817 1.884     0.805641 +#>  Dataset 10     A1  120     12.1  12.78218 -0.682183 1.884    -0.362095</div><div class='input'>  <span class='co'># The following takes about 6 minutes</span>  <span class='co'>#f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",</span>  <span class='co'>#  control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))</span> diff --git a/docs/dev/reference/schaefer07_complex_case-1.png b/docs/dev/reference/schaefer07_complex_case-1.pngBinary files differ index 16e657dd..96aab2dc 100644 --- a/docs/dev/reference/schaefer07_complex_case-1.png +++ b/docs/dev/reference/schaefer07_complex_case-1.png diff --git a/docs/dev/reference/schaefer07_complex_case.html b/docs/dev/reference/schaefer07_complex_case.html index 83555b99..4ccad5c4 100644 --- a/docs/dev/reference/schaefer07_complex_case.html +++ b/docs/dev/reference/schaefer07_complex_case.html @@ -74,7 +74,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -123,7 +123,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -186,15 +186,15 @@  </div><div class='img'><img src='schaefer07_complex_case-1.png' alt='' width='700' height='433' /></div><div class='input'>    <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>  </div><div class='output co'>#> $ff  #>   parent_A1   parent_B1   parent_C1 parent_sink       A1_A2     A1_sink  -#>   0.3809620   0.1954665   0.4235715   0.0000000   0.4479662   0.5520338  +#>   0.3809620   0.1954667   0.4235713   0.0000000   0.4479619   0.5520381   #>   #> $distimes  #>            DT50      DT90  #> parent 13.95078  46.34350 -#> A1     49.75343 165.27731 -#> B1     37.26912 123.80533 -#> C1     11.23131  37.30959 -#> A2     28.50569  94.69386 +#> A1     49.75342 165.27728 +#> B1     37.26908 123.80520 +#> C1     11.23131  37.30961 +#> A2     28.50624  94.69567  #> </div><div class='input'>  <span class='co'># }</span>   <span class='co'># Compare with the results obtained in the original publication</span>   <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>schaefer07_complex_results</span><span class='op'>)</span> diff --git a/docs/dev/reference/sigma_twocomp-1.png b/docs/dev/reference/sigma_twocomp-1.pngBinary files differ index 21db3145..6e61684e 100644 --- a/docs/dev/reference/sigma_twocomp-1.png +++ b/docs/dev/reference/sigma_twocomp-1.png diff --git a/docs/dev/reference/sigma_twocomp.html b/docs/dev/reference/sigma_twocomp.html index 8212e480..b7d295b2 100644 --- a/docs/dev/reference/sigma_twocomp.html +++ b/docs/dev/reference/sigma_twocomp.html @@ -73,7 +73,7 @@ dependence of the measured value \(y\):" />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@ dependence of the measured value \(y\):" />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -188,6 +188,10 @@ Additive, Multiplicative, and Mixed Analytical Errors. Clinical Chemistry  24(11), 1895-1898.</p>  <p>Rocke, David M. and Lorenzato, Stefan (1995) A two-component model for  measurement error in analytical chemistry. Technometrics 37(2), 176-184.</p> +<p>Ranke J and Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical +Degradation Data. <em>Environments</em> 6(12) 124 +doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6120124</a> +.</p>      <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>      <pre class="examples"><div class='input'><span class='va'>times</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>3</span>, <span class='fl'>7</span>, <span class='fl'>14</span>, <span class='fl'>28</span>, <span class='fl'>60</span>, <span class='fl'>90</span>, <span class='fl'>120</span><span class='op'>)</span> diff --git a/docs/dev/reference/summary.mkinfit.html b/docs/dev/reference/summary.mkinfit.html index f314dfa8..494731e9 100644 --- a/docs/dev/reference/summary.mkinfit.html +++ b/docs/dev/reference/summary.mkinfit.html @@ -76,7 +76,7 @@ values." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ values." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -236,17 +236,17 @@ EC Document Reference Sanco/10058/2005 version 2.0, 434 pp,      <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>      <pre class="examples"><div class='input'>    <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>, <span class='va'>FOCUS_2006_A</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span><span class='op'>)</span> -</div><div class='output co'>#> mkin version used for fitting:    0.9.50.4  +</div><div class='output co'>#> mkin version used for fitting:    1.0.3.9000   #> R version used for fitting:       4.0.3  -#> Date of fit:     Mon Nov 30 16:01:20 2020  -#> Date of summary: Mon Nov 30 16:01:20 2020  +#> Date of fit:     Mon Feb 15 17:13:09 2021  +#> Date of summary: Mon Feb 15 17:13:09 2021   #>   #> Equations:  #> d_parent/dt = - k_parent * parent  #>   #> Model predictions using solution type analytical   #>  -#> Fitted using 131 model solutions performed in 0.028 s +#> Fitted using 131 model solutions performed in 0.027 s  #>   #> Error model: Constant variance   #>  diff --git a/docs/dev/reference/summary.nlme.mmkin.html b/docs/dev/reference/summary.nlme.mmkin.html index 2aeadc46..b2f6624a 100644 --- a/docs/dev/reference/summary.nlme.mmkin.html +++ b/docs/dev/reference/summary.nlme.mmkin.html @@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -125,7 +125,7 @@ endpoints such as formation fractions and DT50 values. Optionally        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -263,12 +263,12 @@ José Pinheiro and Douglas Bates for the components inherited from nlme</p>  <span class='va'>f_mmkin</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='va'>ds_sfo_syn</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='warning'>Warning: Optimisation did not converge:</span>  #> <span class='warning'>iteration limit reached without convergence (10)</span></div><div class='input'><span class='va'>f_nlme</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlme</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> nlme version used for fitting:      3.1.150.1  -#> mkin version used for pre-fitting:  0.9.50.4  +</div><div class='output co'>#> <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlme</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +</div><div class='output co'>#> nlme version used for fitting:      3.1.152  +#> mkin version used for pre-fitting:  1.0.3.9000   #> R version used for fitting:         4.0.3  -#> Date of fit:     Mon Nov 30 16:01:23 2020  -#> Date of summary: Mon Nov 30 16:01:23 2020  +#> Date of fit:     Mon Feb 15 17:13:12 2021  +#> Date of summary: Mon Feb 15 17:13:12 2021   #>   #> Equations:  #> d_parent/dt = - k_parent * parent @@ -278,148 +278,146 @@ José Pinheiro and Douglas Bates for the components inherited from nlme</p>  #>   #> Model predictions using solution type analytical   #>  -#> Fitted in 0.996 s using 6 iterations +#> Fitted in 0.544 s using 4 iterations  #>   #> Variance model: Two-component variance function   #>   #> Mean of starting values for individual parameters:  #>     parent_0 log_k_parent  -#>   101.568773    -4.454103  +#>      101.569       -4.454   #>   #> Fixed degradation parameter values:  #> None  #>   #> Results:  #>  -#>        AIC      BIC    logLik -#>   586.4159 603.9145 -286.2079 +#>     AIC   BIC logLik +#>   584.5 599.5 -286.2  #>   #> Optimised, transformed parameters with symmetric confidence intervals:  #>               lower    est.   upper -#> parent_0     99.360 101.593 103.825 -#> log_k_parent -4.979  -4.451  -3.924 +#> parent_0     99.371 101.592 103.814 +#> log_k_parent -4.973  -4.449  -3.926  #>   #> Correlation:   #>              prnt_0 -#> log_k_parent 0.155  +#> log_k_parent 0.051   #>   #> Random effects:  #>  Formula: list(parent_0 ~ 1, log_k_parent ~ 1)  #>  Level: ds -#>  Structure: General positive-definite, Log-Cholesky parametrization -#>              StdDev    Corr   -#> parent_0     0.2624248 prnt_0 -#> log_k_parent 0.5907146 0.999  -#> Residual     1.0000000        +#>  Structure: Diagonal +#>          parent_0 log_k_parent Residual +#> StdDev: 6.924e-05       0.5863        1  #>   #> Variance function:  #>  Structure: Constant plus proportion of variance covariate  #>  Formula: ~fitted(.)   #>  Parameter estimates: -#>       const        prop  -#> 6.56706e-24 7.89583e-02  +#>        const         prop  +#> 0.0001208853 0.0789968036   #>   #> Backtransformed parameters with asymmetric confidence intervals:  #>              lower      est.     upper -#> parent_0 99.360213 101.59280 103.82539 -#> k_parent  0.006883   0.01166   0.01976 +#> parent_0 99.370882 101.59243 103.81398 +#> k_parent  0.006923   0.01168   0.01972  #>   #> Estimated disappearance times:  #>         DT50  DT90 -#> parent 59.44 197.4 +#> parent 59.32 197.1  #>   #> Data:  #>    ds   name time observed predicted  residual    std standardized -#>  ds 1 parent    0    104.1   101.417   2.68283 8.0077     0.335030 -#>  ds 1 parent    0    105.0   101.417   3.58283 8.0077     0.447422 -#>  ds 1 parent    1     98.5   100.624  -2.12400 7.9451    -0.267334 -#>  ds 1 parent    1     96.1   100.624  -4.52400 7.9451    -0.569407 -#>  ds 1 parent    3    101.9    99.056   2.84379 7.8213     0.363595 -#>  ds 1 parent    3     85.2    99.056 -13.85621 7.8213    -1.771597 -#>  ds 1 parent    7     99.1    95.994   3.10646 7.5795     0.409850 -#>  ds 1 parent    7     93.0    95.994  -2.99354 7.5795    -0.394953 -#>  ds 1 parent   14     88.1    90.860  -2.75997 7.1741    -0.384710 -#>  ds 1 parent   14     84.1    90.860  -6.75997 7.1741    -0.942268 -#>  ds 1 parent   28     80.2    81.402  -1.20174 6.4273    -0.186973 -#>  ds 1 parent   28     91.3    81.402   9.89826 6.4273     1.540024 -#>  ds 1 parent   60     65.1    63.316   1.78361 4.9994     0.356767 -#>  ds 1 parent   60     65.8    63.316   2.48361 4.9994     0.496785 -#>  ds 1 parent   90     47.8    50.029  -2.22862 3.9502    -0.564182 -#>  ds 1 parent   90     53.5    50.029   3.47138 3.9502     0.878792 -#>  ds 1 parent  120     37.6    39.529  -1.92946 3.1212    -0.618182 -#>  ds 1 parent  120     39.3    39.529  -0.22946 3.1212    -0.073516 -#>  ds 2 parent    0    107.9   101.711   6.18875 8.0309     0.770613 -#>  ds 2 parent    0    102.1   101.711   0.38875 8.0309     0.048406 -#>  ds 2 parent    1    103.8   100.174   3.62597 7.9096     0.458428 -#>  ds 2 parent    1    108.6   100.174   8.42597 7.9096     1.065287 -#>  ds 2 parent    3     91.0    97.169  -6.16895 7.6723    -0.804055 -#>  ds 2 parent    3     84.9    97.169 -12.26895 7.6723    -1.599124 -#>  ds 2 parent    7     79.3    91.427 -12.12652 7.2189    -1.679833 -#>  ds 2 parent    7    100.9    91.427   9.47348 7.2189     1.312320 -#>  ds 2 parent   14     77.3    82.182  -4.88174 6.4889    -0.752318 -#>  ds 2 parent   14     83.5    82.182   1.31826 6.4889     0.203155 -#>  ds 2 parent   28     66.8    66.402   0.39792 5.2430     0.075895 -#>  ds 2 parent   28     63.3    66.402  -3.10208 5.2430    -0.591662 -#>  ds 2 parent   60     40.8    40.789   0.01138 3.2206     0.003532 -#>  ds 2 parent   60     44.8    40.789   4.01138 3.2206     1.245537 -#>  ds 2 parent   90     27.8    25.830   1.97002 2.0395     0.965937 -#>  ds 2 parent   90     27.0    25.830   1.17002 2.0395     0.573682 -#>  ds 2 parent  120     15.2    16.357  -1.15721 1.2915    -0.895991 -#>  ds 2 parent  120     15.5    16.357  -0.85721 1.2915    -0.663710 -#>  ds 3 parent    0     97.7   101.907  -4.20726 8.0464    -0.522873 -#>  ds 3 parent    0     88.2   101.907 -13.70726 8.0464    -1.703521 -#>  ds 3 parent    1    109.9    99.522  10.37805 7.8581     1.320685 -#>  ds 3 parent    1     97.8    99.522  -1.72195 7.8581    -0.219130 -#>  ds 3 parent    3    100.5    94.918   5.58248 7.4945     0.744875 -#>  ds 3 parent    3     77.4    94.918 -17.51752 7.4945    -2.337375 -#>  ds 3 parent    7     78.3    86.338  -8.03788 6.8171    -1.179077 -#>  ds 3 parent    7     90.3    86.338   3.96212 6.8171     0.581204 -#>  ds 3 parent   14     76.0    73.147   2.85281 5.7756     0.493944 -#>  ds 3 parent   14     79.1    73.147   5.95281 5.7756     1.030687 -#>  ds 3 parent   28     46.0    52.504  -6.50373 4.1456    -1.568826 -#>  ds 3 parent   28     53.4    52.504   0.89627 4.1456     0.216197 -#>  ds 3 parent   60     25.1    24.605   0.49461 1.9428     0.254586 -#>  ds 3 parent   60     21.4    24.605  -3.20539 1.9428    -1.649882 -#>  ds 3 parent   90     11.0    12.090  -1.09046 0.9546    -1.142271 -#>  ds 3 parent   90     14.2    12.090   2.10954 0.9546     2.209770 -#>  ds 3 parent  120      5.8     5.941  -0.14094 0.4691    -0.300464 -#>  ds 3 parent  120      6.1     5.941   0.15906 0.4691     0.339077 -#>  ds 4 parent    0     95.3   101.177  -5.87672 7.9887    -0.735625 -#>  ds 4 parent    0    102.0   101.177   0.82328 7.9887     0.103056 -#>  ds 4 parent    1    104.4   100.716   3.68438 7.9523     0.463307 -#>  ds 4 parent    1    105.4   100.716   4.68438 7.9523     0.589057 -#>  ds 4 parent    3    113.7    99.800  13.90026 7.8800     1.763989 -#>  ds 4 parent    3     82.3    99.800 -17.49974 7.8800    -2.220774 -#>  ds 4 parent    7     98.1    97.993   0.10713 7.7374     0.013846 -#>  ds 4 parent    7     87.8    97.993 -10.19287 7.7374    -1.317359 -#>  ds 4 parent   14     97.9    94.909   2.99079 7.4939     0.399098 -#>  ds 4 parent   14    104.8    94.909   9.89079 7.4939     1.319851 -#>  ds 4 parent   28     85.0    89.030  -4.02995 7.0297    -0.573279 -#>  ds 4 parent   28     77.2    89.030 -11.82995 7.0297    -1.682864 -#>  ds 4 parent   60     82.2    76.923   5.27690 6.0737     0.868808 -#>  ds 4 parent   60     86.1    76.923   9.17690 6.0737     1.510919 -#>  ds 4 parent   90     70.5    67.073   3.42743 5.2959     0.647182 -#>  ds 4 parent   90     61.7    67.073  -5.37257 5.2959    -1.014470 -#>  ds 4 parent  120     60.0    58.483   1.51654 4.6178     0.328416 -#>  ds 4 parent  120     56.4    58.483  -2.08346 4.6178    -0.451184 -#>  ds 5 parent    0     92.6   101.752  -9.15161 8.0341    -1.139091 -#>  ds 5 parent    0    116.5   101.752  14.74839 8.0341     1.835716 -#>  ds 5 parent    1    108.0   100.069   7.93112 7.9013     1.003778 -#>  ds 5 parent    1    104.9   100.069   4.83112 7.9013     0.611436 -#>  ds 5 parent    3    100.5    96.786   3.71355 7.6421     0.485934 -#>  ds 5 parent    3     89.5    96.786  -7.28645 7.6421    -0.953462 -#>  ds 5 parent    7     91.7    90.541   1.15895 7.1490     0.162114 -#>  ds 5 parent    7     95.1    90.541   4.55895 7.1490     0.637707 -#>  ds 5 parent   14     82.2    80.566   1.63437 6.3613     0.256923 -#>  ds 5 parent   14     84.5    80.566   3.93437 6.3613     0.618483 -#>  ds 5 parent   28     60.5    63.791  -3.29084 5.0368    -0.653357 -#>  ds 5 parent   28     72.8    63.791   9.00916 5.0368     1.788662 -#>  ds 5 parent   60     38.3    37.412   0.88840 2.9540     0.300748 -#>  ds 5 parent   60     40.7    37.412   3.28840 2.9540     1.113217 -#>  ds 5 parent   90     22.5    22.685  -0.18500 1.7912    -0.103287 -#>  ds 5 parent   90     20.8    22.685  -1.88500 1.7912    -1.052387 -#>  ds 5 parent  120     13.4    13.755  -0.35534 1.0861    -0.327173 -#>  ds 5 parent  120     13.8    13.755   0.04466 1.0861     0.041118</div><div class='input'> +#>  ds 1 parent    0    104.1   101.592   2.50757 8.0255     0.312451 +#>  ds 1 parent    0    105.0   101.592   3.40757 8.0255     0.424594 +#>  ds 1 parent    1     98.5   100.796  -2.29571 7.9625    -0.288313 +#>  ds 1 parent    1     96.1   100.796  -4.69571 7.9625    -0.589725 +#>  ds 1 parent    3    101.9    99.221   2.67904 7.8381     0.341796 +#>  ds 1 parent    3     85.2    99.221 -14.02096 7.8381    -1.788812 +#>  ds 1 parent    7     99.1    96.145   2.95512 7.5951     0.389081 +#>  ds 1 parent    7     93.0    96.145  -3.14488 7.5951    -0.414065 +#>  ds 1 parent   14     88.1    90.989  -2.88944 7.1879    -0.401987 +#>  ds 1 parent   14     84.1    90.989  -6.88944 7.1879    -0.958480 +#>  ds 1 parent   28     80.2    81.493  -1.29305 6.4377    -0.200857 +#>  ds 1 parent   28     91.3    81.493   9.80695 6.4377     1.523364 +#>  ds 1 parent   60     65.1    63.344   1.75642 5.0039     0.351008 +#>  ds 1 parent   60     65.8    63.344   2.45642 5.0039     0.490898 +#>  ds 1 parent   90     47.8    50.018  -2.21764 3.9512    -0.561252 +#>  ds 1 parent   90     53.5    50.018   3.48236 3.9512     0.881335 +#>  ds 1 parent  120     37.6    39.495  -1.89515 3.1200    -0.607423 +#>  ds 1 parent  120     39.3    39.495  -0.19515 3.1200    -0.062549 +#>  ds 2 parent    0    107.9   101.592   6.30757 8.0255     0.785943 +#>  ds 2 parent    0    102.1   101.592   0.50757 8.0255     0.063245 +#>  ds 2 parent    1    103.8   100.058   3.74159 7.9043     0.473361 +#>  ds 2 parent    1    108.6   100.058   8.54159 7.9043     1.080626 +#>  ds 2 parent    3     91.0    97.060  -6.05952 7.6674    -0.790297 +#>  ds 2 parent    3     84.9    97.060 -12.15952 7.6674    -1.585874 +#>  ds 2 parent    7     79.3    91.329 -12.02867 7.2147    -1.667251 +#>  ds 2 parent    7    100.9    91.329   9.57133 7.2147     1.326647 +#>  ds 2 parent   14     77.3    82.102  -4.80185 6.4858    -0.740366 +#>  ds 2 parent   14     83.5    82.102   1.39815 6.4858     0.215571 +#>  ds 2 parent   28     66.8    66.351   0.44945 5.2415     0.085748 +#>  ds 2 parent   28     63.3    66.351  -3.05055 5.2415    -0.582002 +#>  ds 2 parent   60     40.8    40.775   0.02474 3.2211     0.007679 +#>  ds 2 parent   60     44.8    40.775   4.02474 3.2211     1.249485 +#>  ds 2 parent   90     27.8    25.832   1.96762 2.0407     0.964198 +#>  ds 2 parent   90     27.0    25.832   1.16762 2.0407     0.572171 +#>  ds 2 parent  120     15.2    16.366  -1.16561 1.2928    -0.901595 +#>  ds 2 parent  120     15.5    16.366  -0.86561 1.2928    -0.669547 +#>  ds 3 parent    0     97.7   101.592  -3.89243 8.0255    -0.485009 +#>  ds 3 parent    0     88.2   101.592 -13.39243 8.0255    -1.668739 +#>  ds 3 parent    1    109.9    99.218  10.68196 7.8379     1.362858 +#>  ds 3 parent    1     97.8    99.218  -1.41804 7.8379    -0.180921 +#>  ds 3 parent    3    100.5    94.634   5.86555 7.4758     0.784603 +#>  ds 3 parent    3     77.4    94.634 -17.23445 7.4758    -2.305360 +#>  ds 3 parent    7     78.3    86.093  -7.79273 6.8011    -1.145813 +#>  ds 3 parent    7     90.3    86.093   4.20727 6.8011     0.618620 +#>  ds 3 parent   14     76.0    72.958   3.04222 5.7634     0.527848 +#>  ds 3 parent   14     79.1    72.958   6.14222 5.7634     1.065722 +#>  ds 3 parent   28     46.0    52.394  -6.39404 4.1390    -1.544842 +#>  ds 3 parent   28     53.4    52.394   1.00596 4.1390     0.243046 +#>  ds 3 parent   60     25.1    24.582   0.51786 1.9419     0.266676 +#>  ds 3 parent   60     21.4    24.582  -3.18214 1.9419    -1.638664 +#>  ds 3 parent   90     11.0    12.092  -1.09202 0.9552    -1.143199 +#>  ds 3 parent   90     14.2    12.092   2.10798 0.9552     2.206776 +#>  ds 3 parent  120      5.8     5.948  -0.14810 0.4699    -0.315178 +#>  ds 3 parent  120      6.1     5.948   0.15190 0.4699     0.323282 +#>  ds 4 parent    0     95.3   101.592  -6.29243 8.0255    -0.784057 +#>  ds 4 parent    0    102.0   101.592   0.40757 8.0255     0.050784 +#>  ds 4 parent    1    104.4   101.125   3.27549 7.9885     0.410025 +#>  ds 4 parent    1    105.4   101.125   4.27549 7.9885     0.535205 +#>  ds 4 parent    3    113.7   100.195  13.50487 7.9151     1.706218 +#>  ds 4 parent    3     82.3   100.195 -17.89513 7.9151    -2.260886 +#>  ds 4 parent    7     98.1    98.362  -0.26190 7.7703    -0.033706 +#>  ds 4 parent    7     87.8    98.362 -10.56190 7.7703    -1.359270 +#>  ds 4 parent   14     97.9    95.234   2.66590 7.5232     0.354357 +#>  ds 4 parent   14    104.8    95.234   9.56590 7.5232     1.271521 +#>  ds 4 parent   28     85.0    89.274  -4.27372 7.0523    -0.606001 +#>  ds 4 parent   28     77.2    89.274 -12.07372 7.0523    -1.712017 +#>  ds 4 parent   60     82.2    77.013   5.18661 6.0838     0.852526 +#>  ds 4 parent   60     86.1    77.013   9.08661 6.0838     1.493571 +#>  ds 4 parent   90     70.5    67.053   3.44692 5.2970     0.650733 +#>  ds 4 parent   90     61.7    67.053  -5.35308 5.2970    -1.010591 +#>  ds 4 parent  120     60.0    58.381   1.61905 4.6119     0.351058 +#>  ds 4 parent  120     56.4    58.381  -1.98095 4.6119    -0.429530 +#>  ds 5 parent    0     92.6   101.592  -8.99243 8.0255    -1.120485 +#>  ds 5 parent    0    116.5   101.592  14.90757 8.0255     1.857531 +#>  ds 5 parent    1    108.0    99.914   8.08560 7.8929     1.024413 +#>  ds 5 parent    1    104.9    99.914   4.98560 7.8929     0.631655 +#>  ds 5 parent    3    100.5    96.641   3.85898 7.6343     0.505477 +#>  ds 5 parent    3     89.5    96.641  -7.14102 7.6343    -0.935382 +#>  ds 5 parent    7     91.7    90.412   1.28752 7.1423     0.180267 +#>  ds 5 parent    7     95.1    90.412   4.68752 7.1423     0.656304 +#>  ds 5 parent   14     82.2    80.463   1.73715 6.3563     0.273295 +#>  ds 5 parent   14     84.5    80.463   4.03715 6.3563     0.635141 +#>  ds 5 parent   28     60.5    63.728  -3.22788 5.0343    -0.641178 +#>  ds 5 parent   28     72.8    63.728   9.07212 5.0343     1.802062 +#>  ds 5 parent   60     38.3    37.399   0.90061 2.9544     0.304835 +#>  ds 5 parent   60     40.7    37.399   3.30061 2.9544     1.117174 +#>  ds 5 parent   90     22.5    22.692  -0.19165 1.7926    -0.106913 +#>  ds 5 parent   90     20.8    22.692  -1.89165 1.7926    -1.055273 +#>  ds 5 parent  120     13.4    13.768  -0.36790 1.0876    -0.338259 +#>  ds 5 parent  120     13.8    13.768   0.03210 1.0876     0.029517</div><div class='input'>  </div></pre>    </div>    <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> diff --git a/docs/dev/reference/summary.nlmixr.mmkin.html b/docs/dev/reference/summary.nlmixr.mmkin.html new file mode 100644 index 00000000..70a71683 --- /dev/null +++ b/docs/dev/reference/summary.nlmixr.mmkin.html @@ -0,0 +1,358 @@ +<!-- Generated by pkgdown: do not edit by hand --> +<!DOCTYPE html> +<html lang="en"> +  <head> +  <meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> + +<title>Summary method for class "nlmixr.mmkin" — summary.nlmixr.mmkin • mkin</title> + + +<!-- jquery --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script> +<!-- Bootstrap --> + +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" /> + +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script> + +<!-- bootstrap-toc --> +<link rel="stylesheet" href="../bootstrap-toc.css"> +<script src="../bootstrap-toc.js"></script> + +<!-- Font Awesome icons --> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" /> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" /> + +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script> + +<!-- headroom.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> + +<!-- pkgdown --> +<link href="../pkgdown.css" rel="stylesheet"> +<script src="../pkgdown.js"></script> + + + + +<meta property="og:title" content="Summary method for class "nlmixr.mmkin" — summary.nlmixr.mmkin" /> +<meta property="og:description" content="Lists model equations, initial parameter values, optimised parameters +for fixed effects (population), random effects (deviations from the +population mean) and residual error model, as well as the resulting +endpoints such as formation fractions and DT50 values. Optionally +(default is FALSE), the data are listed in full." /> + + +<meta name="robots" content="noindex"> + +<!-- mathjax --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> + +<!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> + + + +  </head> + +  <body data-spy="scroll" data-target="#toc"> +    <div class="container template-reference-topic"> +      <header> +      <div class="navbar navbar-default navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> +        <span class="sr-only">Toggle navigation</span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <span class="navbar-brand"> +        <a class="navbar-link" href="../index.html">mkin</a> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span> +      </span> +    </div> + +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +        <li> +  <a href="../reference/index.html">Functions and data</a> +</li> +<li class="dropdown"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> +    Articles +      +    <span class="caret"></span> +  </a> +  <ul class="dropdown-menu" role="menu"> +    <li> +      <a href="../articles/mkin.html">Introduction to mkin</a> +    </li> +    <li> +      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> +    </li> +    <li> +      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> +    </li> +    <li> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +    </li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li> +    <li> +      <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a> +    </li> +  </ul> +</li> +<li> +  <a href="../news/index.html">News</a> +</li> +      </ul> +      <ul class="nav navbar-nav navbar-right"> +        <li> +  <a href="https://github.com/jranke/mkin/"> +    <span class="fab fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +       +    </div><!--/.nav-collapse --> +  </div><!--/.container --> +</div><!--/.navbar --> + +       + +      </header> + +<div class="row"> +  <div class="col-md-9 contents"> +    <div class="page-header"> +    <h1>Summary method for class "nlmixr.mmkin"</h1> +    <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/summary.nlmixr.mmkin.R'><code>R/summary.nlmixr.mmkin.R</code></a></small> +    <div class="hidden name"><code>summary.nlmixr.mmkin.Rd</code></div> +    </div> + +    <div class="ref-description"> +    <p>Lists model equations, initial parameter values, optimised parameters +for fixed effects (population), random effects (deviations from the +population mean) and residual error model, as well as the resulting +endpoints such as formation fractions and DT50 values. Optionally +(default is FALSE), the data are listed in full.</p> +    </div> + +    <pre class="usage"><span class='co'># S3 method for nlmixr.mmkin</span> +<span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>object</span>, data <span class='op'>=</span> <span class='cn'>FALSE</span>, verbose <span class='op'>=</span> <span class='cn'>FALSE</span>, distimes <span class='op'>=</span> <span class='cn'>TRUE</span>, <span class='va'>...</span><span class='op'>)</span> + +<span class='co'># S3 method for summary.nlmixr.mmkin</span> +<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>x</span>, digits <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Extremes.html'>max</a></span><span class='op'>(</span><span class='fl'>3</span>, <span class='fu'><a href='https://rdrr.io/r/base/options.html'>getOption</a></span><span class='op'>(</span><span class='st'>"digits"</span><span class='op'>)</span> <span class='op'>-</span> <span class='fl'>3</span><span class='op'>)</span>, verbose <span class='op'>=</span> <span class='va'>x</span><span class='op'>$</span><span class='va'>verbose</span>, <span class='va'>...</span><span class='op'>)</span></pre> + +    <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> +    <table class="ref-arguments"> +    <colgroup><col class="name" /><col class="desc" /></colgroup> +    <tr> +      <th>object</th> +      <td><p>an object of class <a href='nlmixr.mmkin.html'>nlmixr.mmkin</a></p></td> +    </tr> +    <tr> +      <th>data</th> +      <td><p>logical, indicating whether the full data should be included in +the summary.</p></td> +    </tr> +    <tr> +      <th>verbose</th> +      <td><p>Should the summary be verbose?</p></td> +    </tr> +    <tr> +      <th>distimes</th> +      <td><p>logical, indicating whether DT50 and DT90 values should be +included.</p></td> +    </tr> +    <tr> +      <th>...</th> +      <td><p>optional arguments passed to methods like <code>print</code>.</p></td> +    </tr> +    <tr> +      <th>x</th> +      <td><p>an object of class summary.nlmixr.mmkin</p></td> +    </tr> +    <tr> +      <th>digits</th> +      <td><p>Number of digits to use for printing</p></td> +    </tr> +    </table> + +    <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> + +    <p>The summary function returns a list obtained in the fit, with at +least the following additional components</p> +<dt>nlmixrversion, mkinversion, Rversion</dt><dd><p>The nlmixr, mkin and R versions used</p></dd> +<dt>date.fit, date.summary</dt><dd><p>The dates where the fit and the summary were +produced</p></dd> +<dt>diffs</dt><dd><p>The differential equations used in the degradation model</p></dd> +<dt>use_of_ff</dt><dd><p>Was maximum or minimum use made of formation fractions</p></dd> +<dt>data</dt><dd><p>The data</p></dd> +<dt>confint_back</dt><dd><p>Backtransformed parameters, with confidence intervals if available</p></dd> +<dt>ff</dt><dd><p>The estimated formation fractions derived from the fitted +model.</p></dd> +<dt>distimes</dt><dd><p>The DT50 and DT90 values for each observed variable.</p></dd> +<dt>SFORB</dt><dd><p>If applicable, eigenvalues of SFORB components of the model.</p></dd> +The print method is called for its side effect, i.e. printing the summary. + +    <h2 class="hasAnchor" id="author"><a class="anchor" href="#author"></a>Author</h2> + +    <p>Johannes Ranke for the mkin specific parts +nlmixr authors for the parts inherited from nlmixr.</p> + +    <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> +    <pre class="examples"><div class='input'><span class='co'># Generate five datasets following DFOP-SFO kinetics</span> +<span class='va'>sampling_times</span> <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>3</span>, <span class='fl'>7</span>, <span class='fl'>14</span>, <span class='fl'>28</span>, <span class='fl'>60</span>, <span class='fl'>90</span>, <span class='fl'>120</span><span class='op'>)</span> +<span class='va'>dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='st'>"m1"</span><span class='op'>)</span>, + m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +<span class='fu'><a href='https://rdrr.io/r/base/Random.html'>set.seed</a></span><span class='op'>(</span><span class='fl'>1234</span><span class='op'>)</span> +<span class='va'>k1_in</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Lognormal.html'>rlnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/base/Log.html'>log</a></span><span class='op'>(</span><span class='fl'>0.1</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span> +<span class='va'>k2_in</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Lognormal.html'>rlnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/base/Log.html'>log</a></span><span class='op'>(</span><span class='fl'>0.02</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span> +<span class='va'>g_in</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Logistic.html'>plogis</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/stats/Normal.html'>rnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/stats/Logistic.html'>qlogis</a></span><span class='op'>(</span><span class='fl'>0.5</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span><span class='op'>)</span> +<span class='va'>f_parent_to_m1_in</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Logistic.html'>plogis</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/stats/Normal.html'>rnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/stats/Logistic.html'>qlogis</a></span><span class='op'>(</span><span class='fl'>0.3</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span><span class='op'>)</span> +<span class='va'>k_m1_in</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Lognormal.html'>rlnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/base/Log.html'>log</a></span><span class='op'>(</span><span class='fl'>0.02</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span> + +<span class='va'>pred_dfop_sfo</span> <span class='op'><-</span> <span class='kw'>function</span><span class='op'>(</span><span class='va'>k1</span>, <span class='va'>k2</span>, <span class='va'>g</span>, <span class='va'>f_parent_to_m1</span>, <span class='va'>k_m1</span><span class='op'>)</span> <span class='op'>{</span> +  <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span><span class='op'>(</span><span class='va'>dfop_sfo</span>, +    <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>k1 <span class='op'>=</span> <span class='va'>k1</span>, k2 <span class='op'>=</span> <span class='va'>k2</span>, g <span class='op'>=</span> <span class='va'>g</span>, f_parent_to_m1 <span class='op'>=</span> <span class='va'>f_parent_to_m1</span>, k_m1 <span class='op'>=</span> <span class='va'>k_m1</span><span class='op'>)</span>, +    <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fl'>100</span>, m1 <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span>, +    <span class='va'>sampling_times</span><span class='op'>)</span> +<span class='op'>}</span> + +<span class='va'>ds_mean_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>:</span><span class='fl'>5</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>{</span> +  <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span><span class='op'>(</span><span class='va'>dfop_sfo</span>, +    <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>k1 <span class='op'>=</span> <span class='va'>k1_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>, k2 <span class='op'>=</span> <span class='va'>k2_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>, g <span class='op'>=</span> <span class='va'>g_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>, +      f_parent_to_m1 <span class='op'>=</span> <span class='va'>f_parent_to_m1_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>, k_m1 <span class='op'>=</span> <span class='va'>k_m1_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span><span class='op'>)</span>, +    <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fl'>100</span>, m1 <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span>, +    <span class='va'>sampling_times</span><span class='op'>)</span> +<span class='op'>}</span><span class='op'>)</span> +<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>ds_mean_dfop_sfo</span><span class='op'>)</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"ds"</span>, <span class='fl'>1</span><span class='op'>:</span><span class='fl'>5</span><span class='op'>)</span> + +<span class='va'>ds_syn_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>ds_mean_dfop_sfo</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='op'>{</span> +  <span class='fu'><a href='add_err.html'>add_err</a></span><span class='op'>(</span><span class='va'>ds</span>, +    sdfunc <span class='op'>=</span> <span class='kw'>function</span><span class='op'>(</span><span class='va'>value</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/MathFun.html'>sqrt</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>^</span><span class='fl'>2</span> <span class='op'>+</span> <span class='va'>value</span><span class='op'>^</span><span class='fl'>2</span> <span class='op'>*</span> <span class='fl'>0.07</span><span class='op'>^</span><span class='fl'>2</span><span class='op'>)</span>, +    n <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span> +<span class='op'>}</span><span class='op'>)</span> + +<span class='co'># \dontrun{</span> +<span class='co'># Evaluate using mmkin and nlmixr</span> +<span class='va'>f_mmkin_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='va'>dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds_syn_dfop_sfo</span>, +  quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, cores <span class='op'>=</span> <span class='fl'>5</span><span class='op'>)</span> +<span class='va'>f_saemix_dfop_sfo</span> <span class='op'><-</span> <span class='fu'>mkin</span><span class='fu'>::</span><span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span><span class='op'>)</span> +</div><div class='output co'>#> Running main SAEM algorithm +#> [1] "Wed Aug  4 16:22:46 2021" +#> .... +#>     Minimisation finished +#> [1] "Wed Aug  4 16:22:59 2021"</div><div class='input'><span class='va'>f_nlme_dfop_sfo</span> <span class='op'><-</span> <span class='fu'>mkin</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_m1</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 1.383 0.12 1.503</span></div><div class='input'><span class='co'># The following takes a very long time but gives</span> +<span class='va'>f_nlmixr_dfop_sfo_focei</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Model:</span></div><div class='output co'>#> <span class='message'>cmt(parent);</span> +#> <span class='message'>cmt(m1);</span> +#> <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span> +#> <span class='message'>parent(0)=rx_expr_6;</span> +#> <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span> +#> <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span> +#> <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span> +#> <span class='message'>rx_expr_12~exp(rx_expr_7);</span> +#> <span class='message'>rx_expr_13~exp(rx_expr_9);</span> +#> <span class='message'>rx_expr_15~t*rx_expr_12;</span> +#> <span class='message'>rx_expr_16~t*rx_expr_13;</span> +#> <span class='message'>rx_expr_19~exp(-(rx_expr_8));</span> +#> <span class='message'>rx_expr_21~1+rx_expr_19;</span> +#> <span class='message'>rx_expr_26~1/(rx_expr_21);</span> +#> <span class='message'>rx_expr_28~(rx_expr_26);</span> +#> <span class='message'>rx_expr_29~1-rx_expr_28;</span> +#> <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));</span> +#> <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span> +#> <span class='message'>rx_expr_14~exp(rx_expr_10);</span> +#> <span class='message'>d/dt(m1)=-rx_expr_14*m1+parent*f_parent_to_m1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));</span> +#> <span class='message'>rx_expr_0~CMT==2;</span> +#> <span class='message'>rx_expr_1~CMT==1;</span> +#> <span class='message'>rx_expr_2~1-(rx_expr_0);</span> +#> <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span> +#> <span class='message'>rx_expr_3~(rx_expr_0);</span> +#> <span class='message'>rx_expr_5~(rx_expr_2);</span> +#> <span class='message'>rx_expr_20~rx_expr_5*(rx_expr_1);</span> +#> <span class='message'>rx_lambda_~rx_expr_20+rx_expr_3;</span> +#> <span class='message'>rx_hi_~rx_expr_20+rx_expr_3;</span> +#> <span class='message'>rx_low_~0;</span> +#> <span class='message'>rx_expr_4~m1*(rx_expr_0);</span> +#> <span class='message'>rx_expr_11~parent*(rx_expr_2);</span> +#> <span class='message'>rx_expr_24~rx_expr_11*(rx_expr_1);</span> +#> <span class='message'>rx_pred_=(rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>rx_expr_17~Rx_pow_di(THETA[8],2);</span> +#> <span class='message'>rx_expr_18~Rx_pow_di(THETA[7],2);</span> +#> <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_17+rx_expr_18)*(rx_expr_0)+(Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_1)),2)*rx_expr_17+rx_expr_18)*(rx_expr_2)*(rx_expr_1);</span> +#> <span class='message'>parent_0=THETA[1];</span> +#> <span class='message'>log_k_m1=THETA[2];</span> +#> <span class='message'>f_parent_qlogis=THETA[3];</span> +#> <span class='message'>log_k1=THETA[4];</span> +#> <span class='message'>log_k2=THETA[5];</span> +#> <span class='message'>g_qlogis=THETA[6];</span> +#> <span class='message'>sigma_low=THETA[7];</span> +#> <span class='message'>rsd_high=THETA[8];</span> +#> <span class='message'>eta.parent_0=ETA[1];</span> +#> <span class='message'>eta.log_k_m1=ETA[2];</span> +#> <span class='message'>eta.f_parent_qlogis=ETA[3];</span> +#> <span class='message'>eta.log_k1=ETA[4];</span> +#> <span class='message'>eta.log_k2=ETA[5];</span> +#> <span class='message'>eta.g_qlogis=ETA[6];</span> +#> <span class='message'>parent_0_model=rx_expr_6;</span> +#> <span class='message'>k_m1=rx_expr_14;</span> +#> <span class='message'>k1=rx_expr_12;</span> +#> <span class='message'>k2=rx_expr_13;</span> +#> <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span> +#> <span class='message'>g=1/(rx_expr_21);</span> +#> <span class='message'>tad=tad();</span> +#> <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> <span class='message'>[1] "f_parent_to_m1" "CMT"           </span></div><div class='output co'>#> <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 18.43 0.422 18.87</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nlmixr_dfop_sfo_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_dfop_sfo_focei</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='error'>Error in AIC(f_nlmixr_dfop_sfo_saem$nm, f_nlmixr_dfop_sfo_focei$nm): object 'f_nlmixr_dfop_sfo_saem' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlmixr_dfop_sfo_sfo</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'f_nlmixr_dfop_sfo_sfo' not found</span></div><div class='input'><span class='co'># }</span> + +</div></pre> +  </div> +  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> +    <nav id="toc" data-toggle="toc" class="sticky-top"> +      <h2 data-toc-skip>Contents</h2> +    </nav> +  </div> +</div> + + +      <footer> +      <div class="copyright"> +  <p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> +  <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p> +</div> + +      </footer> +   </div> + +   + + +  </body> +</html> + + diff --git a/docs/dev/reference/summary.saem.mmkin.html b/docs/dev/reference/summary.saem.mmkin.html index 722415fb..08e3c8f8 100644 --- a/docs/dev/reference/summary.saem.mmkin.html +++ b/docs/dev/reference/summary.saem.mmkin.html @@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>        </span>      </div> @@ -260,15 +260,15 @@ saemix authors for the parts inherited from saemix.</p>    quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, cores <span class='op'>=</span> <span class='fl'>5</span><span class='op'>)</span>  <span class='va'>f_saem_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span><span class='op'>)</span>  </div><div class='output co'>#> Running main SAEM algorithm -#> [1] "Mon Jan 11 12:42:40 2021" +#> [1] "Wed Aug  4 16:23:26 2021"  #> ....  #>     Minimisation finished -#> [1] "Mon Jan 11 12:42:53 2021"</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +#> [1] "Wed Aug  4 16:23:38 2021"</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>  </div><div class='output co'>#> saemix version used for fitting:      3.1.9000  -#> mkin version used for pre-fitting:  0.9.50.4  -#> R version used for fitting:         4.0.3  -#> Date of fit:     Mon Jan 11 12:42:54 2021  -#> Date of summary: Mon Jan 11 12:42:54 2021  +#> mkin version used for pre-fitting:  1.0.5  +#> R version used for fitting:         4.1.0  +#> Date of fit:     Wed Aug  4 16:23:39 2021  +#> Date of summary: Wed Aug  4 16:23:39 2021   #>   #> Equations:  #> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -283,7 +283,7 @@ saemix authors for the parts inherited from saemix.</p>  #>   #> Model predictions using solution type analytical   #>  -#> Fitted in 13.298 s using 300, 100 iterations +#> Fitted in 12.54 s using 300, 100 iterations  #>   #> Variance model: Two-component variance function   #>  @@ -291,7 +291,7 @@ saemix authors for the parts inherited from saemix.</p>  #>        parent_0        log_k_m1 f_parent_qlogis          log_k1          log_k2   #>       101.65645        -4.05368        -0.94311        -2.35943        -4.07006   #>        g_qlogis  -#>        -0.01133  +#>        -0.01132   #>   #> Fixed degradation parameter values:  #> None @@ -299,232 +299,232 @@ saemix authors for the parts inherited from saemix.</p>  #> Results:  #>   #> Likelihood computed by importance sampling -#>   AIC   BIC logLik -#>   830 824.5   -401 +#>     AIC   BIC logLik +#>   825.9 820.4 -398.9  #>   #> Optimised parameters: -#>                     est.  lower    upper -#> parent_0        101.4423 97.862 105.0224 -#> log_k_m1         -4.0703 -4.191  -3.9495 -#> f_parent_qlogis  -0.9539 -1.313  -0.5949 -#> log_k1           -2.9724 -3.811  -2.1342 -#> log_k2           -3.4977 -4.206  -2.7895 -#> g_qlogis         -0.0449 -1.116   1.0262 +#>                       est.  lower    upper +#> parent_0        101.118986 97.368 104.8695 +#> log_k_m1         -4.057591 -4.177  -3.9379 +#> f_parent_qlogis  -0.933087 -1.290  -0.5763 +#> log_k1           -2.945520 -3.833  -2.0576 +#> log_k2           -3.531954 -4.310  -2.7542 +#> g_qlogis         -0.009584 -1.688   1.6687  #>   #> Correlation:   #>                 prnt_0 lg_k_1 f_prn_ log_k1 log_k2 -#> log_k_m1        -0.207                             -#> f_parent_qlogis -0.148  0.202                      -#> log_k1           0.040 -0.038 -0.022               -#> log_k2           0.022 -0.015 -0.009  0.001        -#> g_qlogis        -0.012  0.005  0.011 -0.173 -0.130 +#> log_k_m1        -0.198                             +#> f_parent_qlogis -0.153  0.184                      +#> log_k1           0.080 -0.077 -0.045               +#> log_k2           0.005  0.008 -0.003 -0.019        +#> g_qlogis        -0.059  0.048  0.041 -0.334 -0.253  #>   #> Random effects: -#>                       est.   lower  upper -#> SD.parent_0        2.88564 -0.5163 6.2876 -#> SD.log_k_m1        0.08502 -0.0427 0.2127 -#> SD.f_parent_qlogis 0.38857  0.1350 0.6421 -#> SD.log_k1          0.92338  0.3296 1.5172 -#> SD.log_k2          0.78644  0.2817 1.2912 -#> SD.g_qlogis        0.34614 -0.8727 1.5650 +#>                       est.    lower  upper +#> SD.parent_0        2.97797 -0.62927 6.5852 +#> SD.log_k_m1        0.09235 -0.02448 0.2092 +#> SD.f_parent_qlogis 0.38712  0.13469 0.6396 +#> SD.log_k1          0.88671  0.27052 1.5029 +#> SD.log_k2          0.80497  0.25587 1.3541 +#> SD.g_qlogis        0.36812 -3.56188 4.2981  #>   #> Variance model:  #>        est.   lower   upper -#> a.1 0.65859 0.49250 0.82469 -#> b.1 0.06411 0.05006 0.07817 +#> a.1 0.85879 0.68143 1.03615 +#> b.1 0.07787 0.06288 0.09286  #>   #> Backtransformed parameters:  #>                     est.    lower     upper -#> parent_0       101.44231 97.86220 105.02241 -#> k_m1             0.01707  0.01513   0.01926 -#> f_parent_to_m1   0.27811  0.21201   0.35551 -#> k1               0.05118  0.02213   0.11834 -#> k2               0.03027  0.01491   0.06145 -#> g                0.48878  0.24675   0.73618 +#> parent_0       101.11899 97.36850 104.86947 +#> k_m1             0.01729  0.01534   0.01949 +#> f_parent_to_m1   0.28230  0.21587   0.35979 +#> k1               0.05257  0.02163   0.12776 +#> k2               0.02925  0.01344   0.06366 +#> g                0.49760  0.15606   0.84140  #>   #> Resulting formation fractions:  #>                 ff -#> parent_m1   0.2781 -#> parent_sink 0.7219 +#> parent_m1   0.2823 +#> parent_sink 0.7177  #>   #> Estimated disappearance times:  #>         DT50   DT90 DT50back DT50_k1 DT50_k2 -#> parent 17.53  61.64    18.55   13.54    22.9 -#> m1     40.60 134.88       NA      NA      NA +#> parent 17.47  62.31    18.76   13.18    23.7 +#> m1     40.09 133.17       NA      NA      NA  #>   #> Data: -#>    ds   name time observed  predicted   residual    std standardized -#>  ds 1 parent    0     89.8  9.869e+01   8.894553 6.3618     1.398124 -#>  ds 1 parent    0    104.1  9.869e+01  -5.405447 6.3618    -0.849676 -#>  ds 1 parent    1     88.7  9.413e+01   5.426448 6.0706     0.893897 -#>  ds 1 parent    1     95.5  9.413e+01  -1.373552 6.0706    -0.226265 -#>  ds 1 parent    3     81.8  8.576e+01   3.961821 5.5377     0.715422 -#>  ds 1 parent    3     94.5  8.576e+01  -8.738179 5.5377    -1.577932 -#>  ds 1 parent    7     71.5  7.168e+01   0.184828 4.6429     0.039809 -#>  ds 1 parent    7     70.3  7.168e+01   1.384828 4.6429     0.298270 -#>  ds 1 parent   14     54.2  5.351e+01  -0.688235 3.4934    -0.197008 -#>  ds 1 parent   14     49.6  5.351e+01   3.911765 3.4934     1.119747 -#>  ds 1 parent   28     31.5  3.209e+01   0.590445 2.1603     0.273322 -#>  ds 1 parent   28     28.8  3.209e+01   3.290445 2.1603     1.523177 -#>  ds 1 parent   60     12.1  1.272e+01   0.618158 1.0481     0.589761 -#>  ds 1 parent   60     13.6  1.272e+01  -0.881842 1.0481    -0.841332 -#>  ds 1 parent   90      6.2  6.085e+00  -0.115212 0.7655    -0.150512 -#>  ds 1 parent   90      8.3  6.085e+00  -2.215212 0.7655    -2.893953 -#>  ds 1 parent  120      2.2  3.009e+00   0.809439 0.6863     1.179470 -#>  ds 1 parent  120      2.4  3.009e+00   0.609439 0.6863     0.888041 -#>  ds 1     m1    1      0.3  1.129e+00   0.828817 0.6626     1.250938 -#>  ds 1     m1    1      0.2  1.129e+00   0.928817 0.6626     1.401869 -#>  ds 1     m1    3      2.2  3.141e+00   0.940880 0.6887     1.366187 -#>  ds 1     m1    3      3.0  3.141e+00   0.140880 0.6887     0.204562 -#>  ds 1     m1    7      6.5  6.326e+00  -0.174162 0.7735    -0.225175 -#>  ds 1     m1    7      5.0  6.326e+00   1.325838 0.7735     1.714181 -#>  ds 1     m1   14     10.2  9.883e+00  -0.317417 0.9139    -0.347326 -#>  ds 1     m1   14      9.5  9.883e+00   0.382583 0.9139     0.418631 -#>  ds 1     m1   28     12.2  1.251e+01   0.309856 1.0378     0.298572 -#>  ds 1     m1   28     13.4  1.251e+01  -0.890144 1.0378    -0.857726 -#>  ds 1     m1   60     11.8  1.086e+01  -0.940009 0.9584    -0.980812 -#>  ds 1     m1   60     13.2  1.086e+01  -2.340009 0.9584    -2.441581 -#>  ds 1     m1   90      6.6  7.823e+00   1.222977 0.8278     1.477332 -#>  ds 1     m1   90      9.3  7.823e+00  -1.477023 0.8278    -1.784214 -#>  ds 1     m1  120      3.5  5.315e+00   1.815201 0.7415     2.447906 -#>  ds 1     m1  120      5.4  5.315e+00  -0.084799 0.7415    -0.114356 -#>  ds 2 parent    0    118.0  1.031e+02 -14.876736 6.6443    -2.239038 -#>  ds 2 parent    0     99.8  1.031e+02   3.323264 6.6443     0.500171 -#>  ds 2 parent    1     90.2  9.757e+01   7.371379 6.2902     1.171891 -#>  ds 2 parent    1     94.6  9.757e+01   2.971379 6.2902     0.472386 -#>  ds 2 parent    3     96.1  8.788e+01  -8.222746 5.6724    -1.449599 -#>  ds 2 parent    3     78.4  8.788e+01   9.477254 5.6724     1.670758 -#>  ds 2 parent    7     77.9  7.293e+01  -4.972272 4.7218    -1.053054 -#>  ds 2 parent    7     77.7  7.293e+01  -4.772272 4.7218    -1.010697 -#>  ds 2 parent   14     56.0  5.602e+01   0.016773 3.6513     0.004594 -#>  ds 2 parent   14     54.7  5.602e+01   1.316773 3.6513     0.360633 -#>  ds 2 parent   28     36.6  3.855e+01   1.945779 2.5575     0.760803 -#>  ds 2 parent   28     36.8  3.855e+01   1.745779 2.5575     0.682603 -#>  ds 2 parent   60     22.1  2.101e+01  -1.086693 1.4996    -0.724663 -#>  ds 2 parent   60     24.7  2.101e+01  -3.686693 1.4996    -2.458475 -#>  ds 2 parent   90     12.4  1.246e+01   0.058759 1.0353     0.056757 -#>  ds 2 parent   90     10.8  1.246e+01   1.658759 1.0353     1.602256 -#>  ds 2 parent  120      6.8  7.406e+00   0.606226 0.8119     0.746659 -#>  ds 2 parent  120      7.9  7.406e+00  -0.493774 0.8119    -0.608157 -#>  ds 2     m1    1      1.3  1.438e+00   0.138236 0.6650     0.207869 -#>  ds 2     m1    3      3.7  3.879e+00   0.178617 0.7040     0.253726 -#>  ds 2     m1    3      4.7  3.879e+00  -0.821383 0.7040    -1.166780 -#>  ds 2     m1    7      8.1  7.389e+00  -0.710951 0.8113    -0.876337 -#>  ds 2     m1    7      7.9  7.389e+00  -0.510951 0.8113    -0.629812 -#>  ds 2     m1   14     10.1  1.069e+01   0.593533 0.9507     0.624328 -#>  ds 2     m1   14     10.3  1.069e+01   0.393533 0.9507     0.413951 -#>  ds 2     m1   28     10.7  1.240e+01   1.703647 1.0325     1.649956 -#>  ds 2     m1   28     12.2  1.240e+01   0.203647 1.0325     0.197229 -#>  ds 2     m1   60     10.7  1.055e+01  -0.147672 0.9442    -0.156405 -#>  ds 2     m1   60     12.5  1.055e+01  -1.947672 0.9442    -2.062848 -#>  ds 2     m1   90      9.1  8.010e+00  -1.090041 0.8351    -1.305210 -#>  ds 2     m1   90      7.4  8.010e+00   0.609959 0.8351     0.730362 -#>  ds 2     m1  120      6.1  5.793e+00  -0.306797 0.7561    -0.405759 -#>  ds 2     m1  120      4.5  5.793e+00   1.293203 0.7561     1.710347 -#>  ds 3 parent    0    106.2  1.035e+02  -2.712344 6.6675    -0.406801 -#>  ds 3 parent    0    106.9  1.035e+02  -3.412344 6.6675    -0.511788 -#>  ds 3 parent    1    107.4  9.548e+01 -11.924044 6.1566    -1.936801 -#>  ds 3 parent    1     96.1  9.548e+01  -0.624044 6.1566    -0.101362 -#>  ds 3 parent    3     79.4  8.246e+01   3.056105 5.3274     0.573662 -#>  ds 3 parent    3     82.6  8.246e+01  -0.143895 5.3274    -0.027010 -#>  ds 3 parent    7     63.9  6.489e+01   0.991141 4.2122     0.235304 -#>  ds 3 parent    7     62.4  6.489e+01   2.491141 4.2122     0.591416 -#>  ds 3 parent   14     51.0  4.869e+01  -2.306824 3.1906    -0.723013 -#>  ds 3 parent   14     47.1  4.869e+01   1.593176 3.1906     0.499338 -#>  ds 3 parent   28     36.1  3.480e+01  -1.304261 2.3260    -0.560722 -#>  ds 3 parent   28     36.6  3.480e+01  -1.804261 2.3260    -0.775679 -#>  ds 3 parent   60     20.1  1.988e+01  -0.221952 1.4346    -0.154719 -#>  ds 3 parent   60     19.8  1.988e+01   0.078048 1.4346     0.054406 -#>  ds 3 parent   90     11.3  1.194e+01   0.642458 1.0099     0.636132 -#>  ds 3 parent   90     10.7  1.194e+01   1.242458 1.0099     1.230224 -#>  ds 3 parent  120      8.2  7.176e+00  -1.023847 0.8034    -1.274423 -#>  ds 3 parent  120      7.3  7.176e+00  -0.123847 0.8034    -0.154158 -#>  ds 3     m1    0      0.8  8.527e-13  -0.800000 0.6586    -1.214712 -#>  ds 3     m1    1      1.8  1.856e+00   0.055925 0.6693     0.083562 -#>  ds 3     m1    1      2.3  1.856e+00  -0.444075 0.6693    -0.663537 -#>  ds 3     m1    3      4.2  4.780e+00   0.580164 0.7264     0.798676 -#>  ds 3     m1    3      4.1  4.780e+00   0.680164 0.7264     0.936340 -#>  ds 3     m1    7      6.8  8.410e+00   1.609920 0.8512     1.891455 -#>  ds 3     m1    7     10.1  8.410e+00  -1.690080 0.8512    -1.985633 -#>  ds 3     m1   14     11.4  1.098e+01  -0.424444 0.9638    -0.440389 -#>  ds 3     m1   14     12.8  1.098e+01  -1.824444 0.9638    -1.892979 -#>  ds 3     m1   28     11.5  1.142e+01  -0.079336 0.9848    -0.080558 -#>  ds 3     m1   28     10.6  1.142e+01   0.820664 0.9848     0.833311 -#>  ds 3     m1   60      7.5  9.110e+00   1.610231 0.8803     1.829222 -#>  ds 3     m1   60      8.6  9.110e+00   0.510231 0.8803     0.579622 -#>  ds 3     m1   90      7.3  6.799e+00  -0.501085 0.7898    -0.634463 -#>  ds 3     m1   90      8.1  6.799e+00  -1.301085 0.7898    -1.647404 -#>  ds 3     m1  120      5.3  4.868e+00  -0.431505 0.7288    -0.592064 -#>  ds 3     m1  120      3.8  4.868e+00   1.068495 0.7288     1.466073 -#>  ds 4 parent    0    104.7  9.926e+01  -5.444622 6.3975    -0.851049 -#>  ds 4 parent    0     88.3  9.926e+01  10.955378 6.3975     1.712436 -#>  ds 4 parent    1     94.2  9.618e+01   1.978413 6.2013     0.319030 -#>  ds 4 parent    1     94.6  9.618e+01   1.578413 6.2013     0.254527 -#>  ds 4 parent    3     78.1  9.037e+01  12.268550 5.8311     2.103985 -#>  ds 4 parent    3     96.5  9.037e+01  -6.131450 5.8311    -1.051508 -#>  ds 4 parent    7     76.2  7.999e+01   3.794958 5.1708     0.733918 -#>  ds 4 parent    7     77.8  7.999e+01   2.194958 5.1708     0.424489 -#>  ds 4 parent   14     70.8  6.518e+01  -5.624996 4.2301    -1.329742 -#>  ds 4 parent   14     67.3  6.518e+01  -2.124996 4.2301    -0.502346 -#>  ds 4 parent   28     43.1  4.462e+01   1.517860 2.9354     0.517085 -#>  ds 4 parent   28     45.1  4.462e+01  -0.482140 2.9354    -0.164249 -#>  ds 4 parent   60     21.3  2.130e+01  -0.003305 1.5159    -0.002180 -#>  ds 4 parent   60     23.5  2.130e+01  -2.203305 1.5159    -1.453435 -#>  ds 4 parent   90     11.8  1.180e+01   0.002834 1.0032     0.002825 -#>  ds 4 parent   90     12.1  1.180e+01  -0.297166 1.0032    -0.296226 -#>  ds 4 parent  120      7.0  6.868e+00  -0.132251 0.7922    -0.166937 -#>  ds 4 parent  120      6.2  6.868e+00   0.667749 0.7922     0.842879 -#>  ds 4     m1    0      1.6  0.000e+00  -1.600000 0.6586    -2.429424 -#>  ds 4     m1    1      0.9  6.826e-01  -0.217363 0.6600    -0.329315 -#>  ds 4     m1    3      3.7  1.935e+00  -1.765082 0.6702    -2.633768 -#>  ds 4     m1    3      2.0  1.935e+00  -0.065082 0.6702    -0.097112 -#>  ds 4     m1    7      3.6  4.035e+00   0.434805 0.7076     0.614501 -#>  ds 4     m1    7      3.8  4.035e+00   0.234805 0.7076     0.331845 -#>  ds 4     m1   14      7.1  6.652e+00  -0.448187 0.7846    -0.571220 -#>  ds 4     m1   14      6.6  6.652e+00   0.051813 0.7846     0.066036 -#>  ds 4     m1   28      9.5  9.156e+00  -0.343805 0.8822    -0.389696 -#>  ds 4     m1   28      9.3  9.156e+00  -0.143805 0.8822    -0.163000 -#>  ds 4     m1   60      8.3  8.848e+00   0.547762 0.8692     0.630185 -#>  ds 4     m1   60      9.0  8.848e+00  -0.152238 0.8692    -0.175146 -#>  ds 4     m1   90      6.6  6.674e+00   0.073979 0.7854     0.094194 -#>  ds 4     m1   90      7.7  6.674e+00  -1.026021 0.7854    -1.306390 -#>  ds 4     m1  120      3.7  4.668e+00   0.967537 0.7234     1.337503 -#>  ds 4     m1  120      3.5  4.668e+00   1.167537 0.7234     1.613979 -#>  ds 5 parent    0    110.4  1.022e+02  -8.170986 6.5872    -1.240433 -#>  ds 5 parent    0    112.1  1.022e+02  -9.870986 6.5872    -1.498509 -#>  ds 5 parent    1     93.5  9.513e+01   1.630764 6.1346     0.265832 -#>  ds 5 parent    1     91.0  9.513e+01   4.130764 6.1346     0.673359 -#>  ds 5 parent    3     71.0  8.296e+01  11.964279 5.3597     2.232268 -#>  ds 5 parent    3     89.7  8.296e+01  -6.735721 5.3597    -1.256735 -#>  ds 5 parent    7     60.4  6.495e+01   4.547441 4.2157     1.078684 -#>  ds 5 parent    7     59.1  6.495e+01   5.847441 4.2157     1.387053 -#>  ds 5 parent   14     56.5  4.626e+01 -10.241319 3.0380    -3.371047 -#>  ds 5 parent   14     47.0  4.626e+01  -0.741319 3.0380    -0.244014 -#>  ds 5 parent   28     30.2  3.026e+01   0.058478 2.0487     0.028544 -#>  ds 5 parent   28     23.9  3.026e+01   6.358478 2.0487     3.103661 -#>  ds 5 parent   60     17.0  1.792e+01   0.919046 1.3242     0.694024 -#>  ds 5 parent   60     18.7  1.792e+01  -0.780954 1.3242    -0.589742 -#>  ds 5 parent   90     11.3  1.187e+01   0.573917 1.0066     0.570144 -#>  ds 5 parent   90     11.9  1.187e+01  -0.026083 1.0066    -0.025912 -#>  ds 5 parent  120      9.0  7.898e+00  -1.102089 0.8307    -1.326622 -#>  ds 5 parent  120      8.1  7.898e+00  -0.202089 0.8307    -0.243261 -#>  ds 5     m1    0      0.7 -1.421e-14  -0.700000 0.6586    -1.062873 -#>  ds 5     m1    1      3.0  3.144e+00   0.143526 0.6887     0.208390 -#>  ds 5     m1    1      2.6  3.144e+00   0.543526 0.6887     0.789161 -#>  ds 5     m1    3      5.1  8.390e+00   3.290265 0.8504     3.869277 -#>  ds 5     m1    3      7.5  8.390e+00   0.890265 0.8504     1.046932 -#>  ds 5     m1    7     16.5  1.566e+01  -0.841368 1.2007    -0.700751 -#>  ds 5     m1    7     19.0  1.566e+01  -3.341368 1.2007    -2.782928 -#>  ds 5     m1   14     22.9  2.188e+01  -1.017753 1.5498    -0.656687 -#>  ds 5     m1   14     23.2  2.188e+01  -1.317753 1.5498    -0.850257 -#>  ds 5     m1   28     22.2  2.386e+01   1.655914 1.6652     0.994399 -#>  ds 5     m1   28     24.4  2.386e+01  -0.544086 1.6652    -0.326731 -#>  ds 5     m1   60     15.5  1.859e+01   3.091124 1.3618     2.269915 -#>  ds 5     m1   60     19.8  1.859e+01  -1.208876 1.3618    -0.887718 -#>  ds 5     m1   90     14.9  1.372e+01  -1.176815 1.0990    -1.070784 -#>  ds 5     m1   90     14.2  1.372e+01  -0.476815 1.0990    -0.433854 -#>  ds 5     m1  120     10.9  9.961e+00  -0.938796 0.9174    -1.023332 -#>  ds 5     m1  120     10.4  9.961e+00  -0.438796 0.9174    -0.478308</div><div class='input'><span class='co'># }</span> +#>    ds   name time observed predicted   residual    std standardized +#>  ds 1 parent    0     89.8 9.838e+01  -8.584661 7.7094    -1.113536 +#>  ds 1 parent    0    104.1 9.838e+01   5.715339 7.7094     0.741350 +#>  ds 1 parent    1     88.7 9.388e+01  -5.182489 7.3611    -0.704041 +#>  ds 1 parent    1     95.5 9.388e+01   1.617511 7.3611     0.219739 +#>  ds 1 parent    3     81.8 8.563e+01  -3.825382 6.7229    -0.569010 +#>  ds 1 parent    3     94.5 8.563e+01   8.874618 6.7229     1.320062 +#>  ds 1 parent    7     71.5 7.169e+01  -0.188290 5.6482    -0.033336 +#>  ds 1 parent    7     70.3 7.169e+01  -1.388290 5.6482    -0.245795 +#>  ds 1 parent   14     54.2 5.361e+01   0.586595 4.2624     0.137621 +#>  ds 1 parent   14     49.6 5.361e+01  -4.013405 4.2624    -0.941587 +#>  ds 1 parent   28     31.5 3.219e+01  -0.688936 2.6496    -0.260011 +#>  ds 1 parent   28     28.8 3.219e+01  -3.388936 2.6496    -1.279016 +#>  ds 1 parent   60     12.1 1.278e+01  -0.678998 1.3145    -0.516562 +#>  ds 1 parent   60     13.6 1.278e+01   0.821002 1.3145     0.624595 +#>  ds 1 parent   90      6.2 6.157e+00   0.043461 0.9835     0.044188 +#>  ds 1 parent   90      8.3 6.157e+00   2.143461 0.9835     2.179316 +#>  ds 1 parent  120      2.2 3.076e+00  -0.876218 0.8916    -0.982775 +#>  ds 1 parent  120      2.4 3.076e+00  -0.676218 0.8916    -0.758453 +#>  ds 1     m1    1      0.3 1.134e+00  -0.833749 0.8633    -0.965750 +#>  ds 1     m1    1      0.2 1.134e+00  -0.933749 0.8633    -1.081583 +#>  ds 1     m1    3      2.2 3.157e+00  -0.957400 0.8933    -1.071763 +#>  ds 1     m1    3      3.0 3.157e+00  -0.157400 0.8933    -0.176202 +#>  ds 1     m1    7      6.5 6.369e+00   0.130995 0.9917     0.132090 +#>  ds 1     m1    7      5.0 6.369e+00  -1.369005 0.9917    -1.380438 +#>  ds 1     m1   14     10.2 9.971e+00   0.229362 1.1577     0.198112 +#>  ds 1     m1   14      9.5 9.971e+00  -0.470638 1.1577    -0.406513 +#>  ds 1     m1   28     12.2 1.265e+01  -0.447735 1.3067    -0.342637 +#>  ds 1     m1   28     13.4 1.265e+01   0.752265 1.3067     0.575683 +#>  ds 1     m1   60     11.8 1.097e+01   0.832027 1.2112     0.686945 +#>  ds 1     m1   60     13.2 1.097e+01   2.232027 1.2112     1.842825 +#>  ds 1     m1   90      6.6 7.876e+00  -1.275985 1.0553    -1.209109 +#>  ds 1     m1   90      9.3 7.876e+00   1.424015 1.0553     1.349381 +#>  ds 1     m1  120      3.5 5.336e+00  -1.835829 0.9540    -1.924292 +#>  ds 1     m1  120      5.4 5.336e+00   0.064171 0.9540     0.067263 +#>  ds 2 parent    0    118.0 1.092e+02   8.812058 8.5459     1.031142 +#>  ds 2 parent    0     99.8 1.092e+02  -9.387942 8.5459    -1.098529 +#>  ds 2 parent    1     90.2 1.023e+02 -12.114268 8.0135    -1.511724 +#>  ds 2 parent    1     94.6 1.023e+02  -7.714268 8.0135    -0.962654 +#>  ds 2 parent    3     96.1 9.066e+01   5.436165 7.1122     0.764344 +#>  ds 2 parent    3     78.4 9.066e+01 -12.263835 7.1122    -1.724339 +#>  ds 2 parent    7     77.9 7.365e+01   4.245773 5.7995     0.732090 +#>  ds 2 parent    7     77.7 7.365e+01   4.045773 5.7995     0.697604 +#>  ds 2 parent   14     56.0 5.593e+01   0.073803 4.4389     0.016626 +#>  ds 2 parent   14     54.7 5.593e+01  -1.226197 4.4389    -0.276236 +#>  ds 2 parent   28     36.6 3.892e+01  -2.320837 3.1502    -0.736737 +#>  ds 2 parent   28     36.8 3.892e+01  -2.120837 3.1502    -0.673248 +#>  ds 2 parent   60     22.1 2.136e+01   0.741020 1.8719     0.395868 +#>  ds 2 parent   60     24.7 2.136e+01   3.341020 1.8719     1.784841 +#>  ds 2 parent   90     12.4 1.251e+01  -0.113999 1.2989    -0.087765 +#>  ds 2 parent   90     10.8 1.251e+01  -1.713999 1.2989    -1.319575 +#>  ds 2 parent  120      6.8 7.338e+00  -0.537708 1.0315    -0.521281 +#>  ds 2 parent  120      7.9 7.338e+00   0.562292 1.0315     0.545113 +#>  ds 2     m1    1      1.3 1.576e+00  -0.276176 0.8675    -0.318352 +#>  ds 2     m1    3      3.7 4.177e+00  -0.476741 0.9183    -0.519146 +#>  ds 2     m1    3      4.7 4.177e+00   0.523259 0.9183     0.569801 +#>  ds 2     m1    7      8.1 7.724e+00   0.376365 1.0485     0.358970 +#>  ds 2     m1    7      7.9 7.724e+00   0.176365 1.0485     0.168214 +#>  ds 2     m1   14     10.1 1.077e+01  -0.674433 1.2006    -0.561738 +#>  ds 2     m1   14     10.3 1.077e+01  -0.474433 1.2006    -0.395158 +#>  ds 2     m1   28     10.7 1.212e+01  -1.416179 1.2758    -1.110010 +#>  ds 2     m1   28     12.2 1.212e+01   0.083821 1.2758     0.065699 +#>  ds 2     m1   60     10.7 1.041e+01   0.294930 1.1807     0.249793 +#>  ds 2     m1   60     12.5 1.041e+01   2.094930 1.1807     1.774316 +#>  ds 2     m1   90      9.1 8.079e+00   1.020859 1.0646     0.958929 +#>  ds 2     m1   90      7.4 8.079e+00  -0.679141 1.0646    -0.637941 +#>  ds 2     m1  120      6.1 5.968e+00   0.131673 0.9765     0.134843 +#>  ds 2     m1  120      4.5 5.968e+00  -1.468327 0.9765    -1.503683 +#>  ds 3 parent    0    106.2 1.036e+02   2.638248 8.1101     0.325303 +#>  ds 3 parent    0    106.9 1.036e+02   3.338248 8.1101     0.411614 +#>  ds 3 parent    1    107.4 9.580e+01  11.600063 7.5094     1.544743 +#>  ds 3 parent    1     96.1 9.580e+01   0.300063 7.5094     0.039958 +#>  ds 3 parent    3     79.4 8.297e+01  -3.574516 6.5182    -0.548391 +#>  ds 3 parent    3     82.6 8.297e+01  -0.374516 6.5182    -0.057457 +#>  ds 3 parent    7     63.9 6.517e+01  -1.272397 5.1472    -0.247200 +#>  ds 3 parent    7     62.4 6.517e+01  -2.772397 5.1472    -0.538618 +#>  ds 3 parent   14     51.0 4.821e+01   2.790075 3.8512     0.724475 +#>  ds 3 parent   14     47.1 4.821e+01  -1.109925 3.8512    -0.288205 +#>  ds 3 parent   28     36.1 3.385e+01   2.250573 2.7723     0.811811 +#>  ds 3 parent   28     36.6 3.385e+01   2.750573 2.7723     0.992168 +#>  ds 3 parent   60     20.1 1.964e+01   0.455700 1.7543     0.259760 +#>  ds 3 parent   60     19.8 1.964e+01   0.155700 1.7543     0.088753 +#>  ds 3 parent   90     11.3 1.210e+01  -0.795458 1.2746    -0.624068 +#>  ds 3 parent   90     10.7 1.210e+01  -1.395458 1.2746    -1.094792 +#>  ds 3 parent  120      8.2 7.451e+00   0.749141 1.0364     0.722816 +#>  ds 3 parent  120      7.3 7.451e+00  -0.150859 1.0364    -0.145558 +#>  ds 3     m1    0      0.8 3.695e-13   0.800000 0.8588     0.931542 +#>  ds 3     m1    1      1.8 1.740e+00   0.059741 0.8694     0.068714 +#>  ds 3     m1    1      2.3 1.740e+00   0.559741 0.8694     0.643812 +#>  ds 3     m1    3      4.2 4.531e+00  -0.331379 0.9285    -0.356913 +#>  ds 3     m1    3      4.1 4.531e+00  -0.431379 0.9285    -0.464618 +#>  ds 3     m1    7      6.8 8.113e+00  -1.312762 1.0661    -1.231333 +#>  ds 3     m1    7     10.1 8.113e+00   1.987238 1.0661     1.863971 +#>  ds 3     m1   14     11.4 1.079e+01   0.613266 1.2013     0.510507 +#>  ds 3     m1   14     12.8 1.079e+01   2.013266 1.2013     1.675923 +#>  ds 3     m1   28     11.5 1.133e+01   0.174252 1.2310     0.141553 +#>  ds 3     m1   28     10.6 1.133e+01  -0.725748 1.2310    -0.589558 +#>  ds 3     m1   60      7.5 8.948e+00  -1.448281 1.1059    -1.309561 +#>  ds 3     m1   60      8.6 8.948e+00  -0.348281 1.1059    -0.314922 +#>  ds 3     m1   90      7.3 6.665e+00   0.634932 1.0034     0.632752 +#>  ds 3     m1   90      8.1 6.665e+00   1.434932 1.0034     1.430004 +#>  ds 3     m1  120      5.3 4.795e+00   0.504936 0.9365     0.539199 +#>  ds 3     m1  120      3.8 4.795e+00  -0.995064 0.9365    -1.062586 +#>  ds 4 parent    0    104.7 9.985e+01   4.850494 7.8227     0.620050 +#>  ds 4 parent    0     88.3 9.985e+01 -11.549506 7.8227    -1.476402 +#>  ds 4 parent    1     94.2 9.676e+01  -2.556304 7.5834    -0.337093 +#>  ds 4 parent    1     94.6 9.676e+01  -2.156304 7.5834    -0.284346 +#>  ds 4 parent    3     78.1 9.092e+01 -12.817485 7.1318    -1.797230 +#>  ds 4 parent    3     96.5 9.092e+01   5.582515 7.1318     0.782764 +#>  ds 4 parent    7     76.2 8.050e+01  -4.297338 6.3270    -0.679204 +#>  ds 4 parent    7     77.8 8.050e+01  -2.697338 6.3270    -0.426320 +#>  ds 4 parent   14     70.8 6.562e+01   5.179989 5.1816     0.999687 +#>  ds 4 parent   14     67.3 6.562e+01   1.679989 5.1816     0.324222 +#>  ds 4 parent   28     43.1 4.499e+01  -1.886936 3.6069    -0.523140 +#>  ds 4 parent   28     45.1 4.499e+01   0.113064 3.6069     0.031346 +#>  ds 4 parent   60     21.3 2.151e+01  -0.214840 1.8827    -0.114114 +#>  ds 4 parent   60     23.5 2.151e+01   1.985160 1.8827     1.054433 +#>  ds 4 parent   90     11.8 1.190e+01  -0.098528 1.2633    -0.077990 +#>  ds 4 parent   90     12.1 1.190e+01   0.201472 1.2633     0.159475 +#>  ds 4 parent  120      7.0 6.886e+00   0.113832 1.0125     0.112431 +#>  ds 4 parent  120      6.2 6.886e+00  -0.686168 1.0125    -0.677724 +#>  ds 4     m1    0      1.6 4.263e-14   1.600000 0.8588     1.863085 +#>  ds 4     m1    1      0.9 7.140e-01   0.185984 0.8606     0.216112 +#>  ds 4     m1    3      3.7 2.022e+00   1.678243 0.8731     1.922160 +#>  ds 4     m1    3      2.0 2.022e+00  -0.021757 0.8731    -0.024919 +#>  ds 4     m1    7      3.6 4.207e+00  -0.607229 0.9192    -0.660633 +#>  ds 4     m1    7      3.8 4.207e+00  -0.407229 0.9192    -0.443044 +#>  ds 4     m1   14      7.1 6.912e+00   0.188339 1.0135     0.185828 +#>  ds 4     m1   14      6.6 6.912e+00  -0.311661 1.0135    -0.307506 +#>  ds 4     m1   28      9.5 9.449e+00   0.050714 1.1309     0.044843 +#>  ds 4     m1   28      9.3 9.449e+00  -0.149286 1.1309    -0.132004 +#>  ds 4     m1   60      8.3 8.997e+00  -0.697403 1.1083    -0.629230 +#>  ds 4     m1   60      9.0 8.997e+00   0.002597 1.1083     0.002343 +#>  ds 4     m1   90      6.6 6.697e+00  -0.096928 1.0047    -0.096472 +#>  ds 4     m1   90      7.7 6.697e+00   1.003072 1.0047     0.998348 +#>  ds 4     m1  120      3.7 4.622e+00  -0.921607 0.9312    -0.989749 +#>  ds 4     m1  120      3.5 4.622e+00  -1.121607 0.9312    -1.204537 +#>  ds 5 parent    0    110.4 1.045e+02   5.942426 8.1795     0.726502 +#>  ds 5 parent    0    112.1 1.045e+02   7.642426 8.1795     0.934338 +#>  ds 5 parent    1     93.5 9.739e+01  -3.893915 7.6327    -0.510162 +#>  ds 5 parent    1     91.0 9.739e+01  -6.393915 7.6327    -0.837700 +#>  ds 5 parent    3     71.0 8.519e+01 -14.188275 6.6891    -2.121098 +#>  ds 5 parent    3     89.7 8.519e+01   4.511725 6.6891     0.674487 +#>  ds 5 parent    7     60.4 6.684e+01  -6.439546 5.2753    -1.220701 +#>  ds 5 parent    7     59.1 6.684e+01  -7.739546 5.2753    -1.467133 +#>  ds 5 parent   14     56.5 4.736e+01   9.138979 3.7868     2.413407 +#>  ds 5 parent   14     47.0 4.736e+01  -0.361021 3.7868    -0.095338 +#>  ds 5 parent   28     30.2 3.033e+01  -0.131178 2.5132    -0.052195 +#>  ds 5 parent   28     23.9 3.033e+01  -6.431178 2.5132    -2.558936 +#>  ds 5 parent   60     17.0 1.771e+01  -0.705246 1.6243    -0.434177 +#>  ds 5 parent   60     18.7 1.771e+01   0.994754 1.6243     0.612409 +#>  ds 5 parent   90     11.3 1.180e+01  -0.504856 1.2580    -0.401315 +#>  ds 5 parent   90     11.9 1.180e+01   0.095144 1.2580     0.075631 +#>  ds 5 parent  120      9.0 7.917e+00   1.083499 1.0571     1.024928 +#>  ds 5 parent  120      8.1 7.917e+00   0.183499 1.0571     0.173579 +#>  ds 5     m1    0      0.7 3.553e-15   0.700000 0.8588     0.815100 +#>  ds 5     m1    1      3.0 3.204e+00  -0.204414 0.8943    -0.228572 +#>  ds 5     m1    1      2.6 3.204e+00  -0.604414 0.8943    -0.675845 +#>  ds 5     m1    3      5.1 8.586e+00  -3.485889 1.0884    -3.202858 +#>  ds 5     m1    3      7.5 8.586e+00  -1.085889 1.0884    -0.997722 +#>  ds 5     m1    7     16.5 1.612e+01   0.376855 1.5211     0.247743 +#>  ds 5     m1    7     19.0 1.612e+01   2.876855 1.5211     1.891237 +#>  ds 5     m1   14     22.9 2.267e+01   0.228264 1.9633     0.116267 +#>  ds 5     m1   14     23.2 2.267e+01   0.528264 1.9633     0.269072 +#>  ds 5     m1   28     22.2 2.468e+01  -2.480178 2.1050    -1.178211 +#>  ds 5     m1   28     24.4 2.468e+01  -0.280178 2.1050    -0.133099 +#>  ds 5     m1   60     15.5 1.860e+01  -3.099615 1.6838    -1.840794 +#>  ds 5     m1   60     19.8 1.860e+01   1.200385 1.6838     0.712883 +#>  ds 5     m1   90     14.9 1.326e+01   1.636345 1.3433     1.218195 +#>  ds 5     m1   90     14.2 1.326e+01   0.936345 1.3433     0.697072 +#>  ds 5     m1  120     10.9 9.348e+00   1.551535 1.1258     1.378133 +#>  ds 5     m1  120     10.4 9.348e+00   1.051535 1.1258     0.934014</div><div class='input'><span class='co'># }</span>  </div></pre>    </div> diff --git a/docs/dev/reference/synthetic_data_for_UBA_2014-1.png b/docs/dev/reference/synthetic_data_for_UBA_2014-1.pngBinary files differ index 351b21aa..89975db5 100644 --- a/docs/dev/reference/synthetic_data_for_UBA_2014-1.png +++ b/docs/dev/reference/synthetic_data_for_UBA_2014-1.png diff --git a/docs/dev/reference/synthetic_data_for_UBA_2014.html b/docs/dev/reference/synthetic_data_for_UBA_2014.html index 1edc7c1e..33a0ace2 100644 --- a/docs/dev/reference/synthetic_data_for_UBA_2014.html +++ b/docs/dev/reference/synthetic_data_for_UBA_2014.html @@ -87,7 +87,7 @@ Compare also the code in the example section to see the degradation models." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -136,7 +136,7 @@ Compare also the code in the example section to see the degradation models." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -297,10 +297,10 @@ Compare also the code in the example section to see the degradation models." />                   quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>    <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>  </div><div class='img'><img src='synthetic_data_for_UBA_2014-1.png' alt='' width='700' height='433' /></div><div class='input'>  <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span> -</div><div class='output co'>#> mkin version used for fitting:    0.9.50.4  +</div><div class='output co'>#> mkin version used for fitting:    1.0.3.9000   #> R version used for fitting:       4.0.3  -#> Date of fit:     Mon Nov 30 16:01:42 2020  -#> Date of summary: Mon Nov 30 16:01:42 2020  +#> Date of fit:     Mon Feb 15 17:13:29 2021  +#> Date of summary: Mon Feb 15 17:13:29 2021   #>   #> Equations:  #> d_parent/dt = - k_parent * parent @@ -309,7 +309,7 @@ Compare also the code in the example section to see the degradation models." />  #>   #> Model predictions using solution type deSolve   #>  -#> Fitted using 822 model solutions performed in 0.652 s +#> Fitted using 833 model solutions performed in 0.649 s  #>   #> Error model: Constant variance   #>  @@ -361,15 +361,15 @@ Compare also the code in the example section to see the degradation models." />  #> log_k_M2         2.819e-02    7.166e-02 -3.929e-01  1.000e+00      -2.658e-01  #> f_parent_qlogis -4.624e-01   -5.682e-01  7.478e-01 -2.658e-01       1.000e+00  #> f_M1_qlogis      1.614e-01    4.102e-01 -8.109e-01  5.419e-01      -8.605e-01 -#> sigma           -7.941e-08   -9.143e-09 -1.268e-08  5.947e-08       5.657e-08 +#> sigma           -2.900e-08   -8.030e-09 -2.741e-08  3.938e-08      -2.681e-08  #>                 f_M1_qlogis      sigma -#> parent_0          1.614e-01 -7.941e-08 -#> log_k_parent      4.102e-01 -9.143e-09 -#> log_k_M1         -8.109e-01 -1.268e-08 -#> log_k_M2          5.419e-01  5.947e-08 -#> f_parent_qlogis  -8.605e-01  5.657e-08 -#> f_M1_qlogis       1.000e+00 -2.382e-10 -#> sigma            -2.382e-10  1.000e+00 +#> parent_0          1.614e-01 -2.900e-08 +#> log_k_parent      4.102e-01 -8.030e-09 +#> log_k_M1         -8.109e-01 -2.741e-08 +#> log_k_M2          5.419e-01  3.938e-08 +#> f_parent_qlogis  -8.605e-01 -2.681e-08 +#> f_M1_qlogis       1.000e+00  4.971e-08 +#> sigma             4.971e-08  1.000e+00  #>   #> Backtransformed parameters:  #> Confidence intervals for internally transformed parameters are asymmetric. @@ -416,7 +416,7 @@ Compare also the code in the example section to see the degradation models." />  #>     7   parent      0.3  5.772e-01 -0.27717  #>    14   parent      3.5  3.264e-03  3.49674  #>    28   parent      3.2  1.045e-07  3.20000 -#>    90   parent      0.6  9.532e-10  0.60000 +#>    90   parent      0.6  9.530e-10  0.60000  #>   120   parent      3.5 -5.940e-10  3.50000  #>     1       M1     36.4  3.479e+01  1.61088  #>     1       M1     37.4  3.479e+01  2.61088 @@ -427,7 +427,7 @@ Compare also the code in the example section to see the degradation models." />  #>    14       M1      5.8  1.995e+00  3.80469  #>    14       M1      1.2  1.995e+00 -0.79531  #>    60       M1      0.5  2.111e-06  0.50000 -#>    90       M1      3.2 -9.671e-10  3.20000 +#>    90       M1      3.2 -9.670e-10  3.20000  #>   120       M1      1.5  7.670e-10  1.50000  #>   120       M1      0.6  7.670e-10  0.60000  #>     1       M2      4.8  4.455e+00  0.34517 diff --git a/docs/dev/reference/test_data_from_UBA_2014-1.png b/docs/dev/reference/test_data_from_UBA_2014-1.pngBinary files differ index 9e0afad2..7bf0bd0f 100644 --- a/docs/dev/reference/test_data_from_UBA_2014-1.png +++ b/docs/dev/reference/test_data_from_UBA_2014-1.png diff --git a/docs/dev/reference/test_data_from_UBA_2014-2.png b/docs/dev/reference/test_data_from_UBA_2014-2.pngBinary files differ index e889efde..fc1f77e0 100644 --- a/docs/dev/reference/test_data_from_UBA_2014-2.png +++ b/docs/dev/reference/test_data_from_UBA_2014-2.png diff --git a/docs/dev/reference/test_data_from_UBA_2014.html b/docs/dev/reference/test_data_from_UBA_2014.html index 89ec3480..539b8287 100644 --- a/docs/dev/reference/test_data_from_UBA_2014.html +++ b/docs/dev/reference/test_data_from_UBA_2014.html @@ -73,7 +73,7 @@        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -122,7 +122,7 @@        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -203,25 +203,25 @@  </div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'>  <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span><span class='op'>(</span><span class='va'>f_soil</span>, lpos <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"topright"</span>, <span class='st'>"topright"</span>, <span class='st'>"topright"</span>, <span class='st'>"bottomright"</span><span class='op'>)</span><span class='op'>)</span>  </div><div class='img'><img src='test_data_from_UBA_2014-2.png' alt='' width='700' height='433' /></div><div class='input'>  <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_soil</span><span class='op'>)</span><span class='op'>$</span><span class='va'>bpar</span>  </div><div class='output co'>#>                   Estimate  se_notrans    t value       Pr(>t)        Lower -#> parent_0       76.55425649 0.859186399 89.1008710 1.113861e-26 74.755959406 +#> parent_0       76.55425650 0.859186399 89.1008710 1.113861e-26 74.755959418  #> k_parent        0.12081956 0.004601918 26.2541722 1.077359e-16  0.111561575 -#> k_M1            0.84258614 0.806159820  1.0451850 1.545267e-01  0.113779670 -#> k_M2            0.04210880 0.017083035  2.4649483 1.170188e-02  0.018013857 -#> k_M3            0.01122918 0.007245855  1.5497385 6.885052e-02  0.002909431 -#> f_parent_to_M1  0.32240200 0.240783909  1.3389682 9.819073e-02           NA -#> f_parent_to_M2  0.16099855 0.033691953  4.7785463 6.531137e-05           NA -#> f_M1_to_M3      0.27921507 0.269423745  1.0363417 1.565266e-01  0.022978220 -#> f_M2_to_M3      0.55641253 0.595119954  0.9349586 1.807707e-01  0.008002509 +#> k_M1            0.84258615 0.806160102  1.0451846 1.545268e-01  0.113779609 +#> k_M2            0.04210880 0.017083034  2.4649483 1.170188e-02  0.018013857 +#> k_M3            0.01122918 0.007245856  1.5497385 6.885052e-02  0.002909431 +#> f_parent_to_M1  0.32240200 0.240783943  1.3389680 9.819076e-02           NA +#> f_parent_to_M2  0.16099855 0.033691952  4.7785464 6.531136e-05           NA +#> f_M1_to_M3      0.27921507 0.269423780  1.0363416 1.565267e-01  0.022978205 +#> f_M2_to_M3      0.55641252 0.595119966  0.9349586 1.807707e-01  0.008002509  #> sigma           1.14005399 0.149696423  7.6157731 1.727024e-07  0.826735778  #>                      Upper -#> parent_0       78.35255357 +#> parent_0       78.35255358  #> k_parent        0.13084582 -#> k_M1            6.23970352 +#> k_M1            6.23970702  #> k_M2            0.09843260  #> k_M3            0.04333992  #> f_parent_to_M1          NA  #> f_parent_to_M2          NA -#> f_M1_to_M3      0.86450768 +#> f_M1_to_M3      0.86450775  #> f_M2_to_M3      0.99489895  #> sigma           1.45337221</div><div class='input'>  <span class='fu'><a href='mkinerrmin.html'>mkinerrmin</a></span><span class='op'>(</span><span class='va'>f_soil</span><span class='op'>)</span>  </div><div class='output co'>#>             err.min n.optim df diff --git a/docs/dev/reference/tffm0.html b/docs/dev/reference/tffm0.html new file mode 100644 index 00000000..d993e8ff --- /dev/null +++ b/docs/dev/reference/tffm0.html @@ -0,0 +1,226 @@ +<!-- Generated by pkgdown: do not edit by hand --> +<!DOCTYPE html> +<html lang="en"> +  <head> +  <meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> + +<title>Transform formation fractions as in the first published mkin version — tffm0 • mkin</title> + + +<!-- jquery --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script> +<!-- Bootstrap --> + +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" /> + +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script> + +<!-- bootstrap-toc --> +<link rel="stylesheet" href="../bootstrap-toc.css"> +<script src="../bootstrap-toc.js"></script> + +<!-- Font Awesome icons --> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" /> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" /> + +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script> + +<!-- headroom.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> + +<!-- pkgdown --> +<link href="../pkgdown.css" rel="stylesheet"> +<script src="../pkgdown.js"></script> + + + + +<meta property="og:title" content="Transform formation fractions as in the first published mkin version — tffm0" /> +<meta property="og:description" content="The transformed fractions can be restricted between 0 and 1 in model +optimisations. Therefore this transformation was used originally in mkin. It +was later replaced by the ilr transformation because the ilr transformed +fractions can assumed to follow normal distribution. As the ilr +transformation is not available in RxODE and can therefore not be used in +the nlmixr modelling language, this transformation is currently used for +translating mkin models with formation fractions to more than one target +compartment for fitting with nlmixr in nlmixr_model. However, +this implementation cannot be used there, as it is not accessible +from RxODE." /> + + +<meta name="robots" content="noindex"> + +<!-- mathjax --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> + +<!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> + + + +  </head> + +  <body data-spy="scroll" data-target="#toc"> +    <div class="container template-reference-topic"> +      <header> +      <div class="navbar navbar-default navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> +        <span class="sr-only">Toggle navigation</span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <span class="navbar-brand"> +        <a class="navbar-link" href="../index.html">mkin</a> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span> +      </span> +    </div> + +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +        <li> +  <a href="../reference/index.html">Functions and data</a> +</li> +<li class="dropdown"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> +    Articles +      +    <span class="caret"></span> +  </a> +  <ul class="dropdown-menu" role="menu"> +    <li> +      <a href="../articles/mkin.html">Introduction to mkin</a> +    </li> +    <li> +      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> +    </li> +    <li> +      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> +    </li> +    <li> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +    </li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li> +    <li> +      <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a> +    </li> +  </ul> +</li> +<li> +  <a href="../news/index.html">News</a> +</li> +      </ul> +      <ul class="nav navbar-nav navbar-right"> +        <li> +  <a href="https://github.com/jranke/mkin/"> +    <span class="fab fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +       +    </div><!--/.nav-collapse --> +  </div><!--/.container --> +</div><!--/.navbar --> + +       + +      </header> + +<div class="row"> +  <div class="col-md-9 contents"> +    <div class="page-header"> +    <h1>Transform formation fractions as in the first published mkin version</h1> +    <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/tffm0.R'><code>R/tffm0.R</code></a></small> +    <div class="hidden name"><code>tffm0.Rd</code></div> +    </div> + +    <div class="ref-description"> +    <p>The transformed fractions can be restricted between 0 and 1 in model +optimisations. Therefore this transformation was used originally in mkin. It +was later replaced by the <a href='ilr.html'>ilr</a> transformation because the ilr transformed +fractions can assumed to follow normal distribution. As the ilr +transformation is not available in RxODE and can therefore not be used in +the nlmixr modelling language, this transformation is currently used for +translating mkin models with formation fractions to more than one target +compartment for fitting with nlmixr in <a href='nlmixr.mmkin.html'>nlmixr_model</a>. However, +this implementation cannot be used there, as it is not accessible +from RxODE.</p> +    </div> + +    <pre class="usage"><span class='fu'>tffm0</span><span class='op'>(</span><span class='va'>ff</span><span class='op'>)</span> + +<span class='fu'>invtffm0</span><span class='op'>(</span><span class='va'>ff_trans</span><span class='op'>)</span></pre> + +    <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> +    <table class="ref-arguments"> +    <colgroup><col class="name" /><col class="desc" /></colgroup> +    <tr> +      <th>ff</th> +      <td><p>Vector of untransformed formation fractions. The sum +must be smaller or equal to one</p></td> +    </tr> +    <tr> +      <th>ff_trans</th> +      <td><p>Vector of transformed formation fractions that can be +restricted to the interval from 0 to 1</p></td> +    </tr> +    </table> + +    <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> + +    <p>A vector of the transformed formation fractions</p> +<p>A vector of backtransformed formation fractions for natural use in degradation models</p> + +    <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> +    <pre class="examples"><div class='input'><span class='va'>ff_example</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span> +  <span class='fl'>0.10983681</span>, <span class='fl'>0.09035905</span>, <span class='fl'>0.08399383</span> +<span class='op'>)</span> +<span class='va'>ff_example_trans</span> <span class='op'><-</span> <span class='fu'>tffm0</span><span class='op'>(</span><span class='va'>ff_example</span><span class='op'>)</span> +<span class='fu'>invtffm0</span><span class='op'>(</span><span class='va'>ff_example_trans</span><span class='op'>)</span> +</div><div class='output co'>#> [1] 0.10983681 0.09035905 0.08399383</div></pre> +  </div> +  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> +    <nav id="toc" data-toggle="toc" class="sticky-top"> +      <h2 data-toc-skip>Contents</h2> +    </nav> +  </div> +</div> + + +      <footer> +      <div class="copyright"> +  <p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> +  <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p> +</div> + +      </footer> +   </div> + +   + + +  </body> +</html> + + diff --git a/docs/dev/reference/transform_odeparms.html b/docs/dev/reference/transform_odeparms.html index 46b66073..75d6a1f9 100644 --- a/docs/dev/reference/transform_odeparms.html +++ b/docs/dev/reference/transform_odeparms.html @@ -77,7 +77,7 @@ the ilr transformation is used." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -126,7 +126,7 @@ the ilr transformation is used." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> @@ -231,50 +231,64 @@ This is no problem for the internal use in <a href='mkinfit.html'>mkinfit</a>.</      <pre class="examples"><div class='input'>  <span class='va'>SFO_SFO</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>    parent <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='st'>"m1"</span>, sink <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>, -  m1 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> -<span class='va'>fit</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_2006_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='va'>fit.s</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span> +  m1 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"min"</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'> +<span class='co'># Fit the model to the FOCUS example dataset D using defaults</span> +<span class='va'>FOCUS_D</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span> <span class='co'># remove zero values to avoid warning</span> +<span class='va'>fit</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +<span class='va'>fit.s</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>  <span class='co'># Transformed and backtransformed parameters</span>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span> -</div><div class='output co'>#>                 Estimate Std. Error  Lower  Upper -#> parent_0         99.5985     1.5702 96.404 102.79 -#> log_k_parent     -2.3157     0.0409 -2.399  -2.23 -#> log_k_m1         -5.2475     0.1332 -5.518  -4.98 -#> f_parent_qlogis   0.0579     0.0893 -0.124   0.24 -#> sigma             3.1255     0.3585  2.396   3.85</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.s</span><span class='op'>$</span><span class='va'>bpar</span>, <span class='fl'>3</span><span class='op'>)</span> -</div><div class='output co'>#>                Estimate se_notrans t value   Pr(>t)    Lower    Upper -#> parent_0       99.59848    1.57022   63.43 2.30e-36 96.40383 102.7931 -#> k_parent        0.09870    0.00403   24.47 4.96e-23  0.09082   0.1073 -#> k_m1            0.00526    0.00070    7.51 6.16e-09  0.00401   0.0069 -#> f_parent_to_m1  0.51448    0.02230   23.07 3.10e-22  0.46912   0.5596 -#> sigma           3.12550    0.35852    8.72 2.24e-10  2.39609   3.8549</div><div class='input'> +</div><div class='output co'>#>                   Estimate Std. Error Lower  Upper +#> parent_0             99.60     1.5702 96.40 102.79 +#> log_k_parent_sink    -3.04     0.0763 -3.19  -2.88 +#> log_k_parent_m1      -2.98     0.0403 -3.06  -2.90 +#> log_k_m1_sink        -5.25     0.1332 -5.52  -4.98 +#> sigma                 3.13     0.3585  2.40   3.85</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.s</span><span class='op'>$</span><span class='va'>bpar</span>, <span class='fl'>3</span><span class='op'>)</span> +</div><div class='output co'>#>               Estimate se_notrans t value   Pr(>t)    Lower    Upper +#> parent_0      99.59848    1.57022   63.43 2.30e-36 96.40384 102.7931 +#> k_parent_sink  0.04792    0.00365   13.11 6.13e-15  0.04103   0.0560 +#> k_parent_m1    0.05078    0.00205   24.80 3.27e-23  0.04678   0.0551 +#> k_m1_sink      0.00526    0.00070    7.51 6.16e-09  0.00401   0.0069 +#> sigma          3.12550    0.35852    8.72 2.24e-10  2.39609   3.8549</div><div class='input'>  <span class='co'># \dontrun{</span> -<span class='co'># Compare to the version without transforming rate parameters</span> -<span class='va'>fit.2</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_2006_D</span>, transform_rates <span class='op'>=</span> <span class='cn'>FALSE</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#> <span class='error'>Error in if (cost < cost.current) {    assign("cost.current", cost, inherits = TRUE)    if (!quiet)         cat(ifelse(OLS, "Sum of squared residuals", "Negative log-likelihood"),             " at call ", calls, ": ", signif(cost.current, 6),             "\n", sep = "")}: missing value where TRUE/FALSE needed</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 0.006 0 0.005</span></div><div class='input'><span class='va'>fit.2.s</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.2</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'fit.2' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.2.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'print': object 'fit.2.s' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.2.s</span><span class='op'>$</span><span class='va'>bpar</span>, <span class='fl'>3</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'print': object 'fit.2.s' not found</span></div><div class='input'><span class='co'># }</span> +<span class='co'># Compare to the version without transforming rate parameters (does not work</span> +<span class='co'># with analytical solution, we get NA values for m1 in predictions)</span> +<span class='va'>fit.2</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, transform_rates <span class='op'>=</span> <span class='cn'>FALSE</span>, +  solution_type <span class='op'>=</span> <span class='st'>"deSolve"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +<span class='va'>fit.2.s</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.2</span><span class='op'>)</span> +<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.2.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span> +</div><div class='output co'>#>               Estimate Std. Error    Lower    Upper +#> parent_0      99.59848    1.57022 96.40384 1.03e+02 +#> k_parent_sink  0.04792    0.00365  0.04049 5.54e-02 +#> k_parent_m1    0.05078    0.00205  0.04661 5.49e-02 +#> k_m1_sink      0.00526    0.00070  0.00384 6.69e-03 +#> sigma          3.12550    0.35852  2.39609 3.85e+00</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.2.s</span><span class='op'>$</span><span class='va'>bpar</span>, <span class='fl'>3</span><span class='op'>)</span> +</div><div class='output co'>#>               Estimate se_notrans t value   Pr(>t)    Lower    Upper +#> parent_0      99.59848    1.57022   63.43 2.30e-36 96.40384 1.03e+02 +#> k_parent_sink  0.04792    0.00365   13.11 6.13e-15  0.04049 5.54e-02 +#> k_parent_m1    0.05078    0.00205   24.80 3.27e-23  0.04661 5.49e-02 +#> k_m1_sink      0.00526    0.00070    7.51 6.16e-09  0.00384 6.69e-03 +#> sigma          3.12550    0.35852    8.72 2.24e-10  2.39609 3.85e+00</div><div class='input'><span class='co'># }</span>  <span class='va'>initials</span> <span class='op'><-</span> <span class='va'>fit</span><span class='op'>$</span><span class='va'>start</span><span class='op'>$</span><span class='va'>value</span>  <span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>initials</span><span class='op'>)</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/colnames.html'>rownames</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>$</span><span class='va'>start</span><span class='op'>)</span>  <span class='va'>transformed</span> <span class='op'><-</span> <span class='va'>fit</span><span class='op'>$</span><span class='va'>start_transformed</span><span class='op'>$</span><span class='va'>value</span>  <span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>transformed</span><span class='op'>)</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/colnames.html'>rownames</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>$</span><span class='va'>start_transformed</span><span class='op'>)</span>  <span class='fu'>transform_odeparms</span><span class='op'>(</span><span class='va'>initials</span>, <span class='va'>SFO_SFO</span><span class='op'>)</span> -</div><div class='output co'>#>        parent_0    log_k_parent        log_k_m1 f_parent_qlogis  -#>      100.750000       -2.302585       -2.301586        0.000000 </div><div class='input'><span class='fu'>backtransform_odeparms</span><span class='op'>(</span><span class='va'>transformed</span>, <span class='va'>SFO_SFO</span><span class='op'>)</span> -</div><div class='output co'>#>       parent_0       k_parent           k_m1 f_parent_to_m1  -#>       100.7500         0.1000         0.1001         0.5000 </div><div class='input'> +</div><div class='output co'>#>          parent_0 log_k_parent_sink   log_k_parent_m1     log_k_m1_sink  +#>        100.750000         -2.302585         -2.301586         -2.300587 </div><div class='input'><span class='fu'>backtransform_odeparms</span><span class='op'>(</span><span class='va'>transformed</span>, <span class='va'>SFO_SFO</span><span class='op'>)</span> +</div><div class='output co'>#>      parent_0 k_parent_sink   k_parent_m1     k_m1_sink  +#>      100.7500        0.1000        0.1001        0.1002 </div><div class='input'>  <span class='co'># \dontrun{</span> -<span class='co'># The case of formation fractions</span> +<span class='co'># The case of formation fractions (this is now the default)</span>  <span class='va'>SFO_SFO.ff</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>    parent <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='st'>"m1"</span>, sink <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,    m1 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span>,    use_of_ff <span class='op'>=</span> <span class='st'>"max"</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'> -<span class='va'>fit.ff</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff</span>, <span class='va'>FOCUS_2006_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='va'>fit.ff.s</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.ff</span><span class='op'>)</span> +<span class='va'>fit.ff</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +<span class='va'>fit.ff.s</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.ff</span><span class='op'>)</span>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.ff.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span>  </div><div class='output co'>#>                 Estimate Std. Error  Lower  Upper  #> parent_0         99.5985     1.5702 96.404 102.79 @@ -299,8 +313,8 @@ This is no problem for the internal use in <a href='mkinfit.html'>mkinfit</a>.</    use_of_ff <span class='op'>=</span> <span class='st'>"max"</span><span class='op'>)</span>  </div><div class='output co'>#> <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'> -<span class='va'>fit.ff.2</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff.2</span>, <span class='va'>FOCUS_2006_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='va'>fit.ff.2.s</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.ff.2</span><span class='op'>)</span> +<span class='va'>fit.ff.2</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff.2</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> +<span class='va'>fit.ff.2.s</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.ff.2</span><span class='op'>)</span>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.ff.2.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span>  </div><div class='output co'>#>              Estimate Std. Error Lower Upper  #> parent_0        84.79      3.012 78.67 90.91 diff --git a/docs/dev/reference/update.mkinfit-1.png b/docs/dev/reference/update.mkinfit-1.pngBinary files differ index 7d2f1bdb..df8473c1 100644 --- a/docs/dev/reference/update.mkinfit-1.png +++ b/docs/dev/reference/update.mkinfit-1.png diff --git a/docs/dev/reference/update.mkinfit-2.png b/docs/dev/reference/update.mkinfit-2.pngBinary files differ index 8dcabcdc..13c99b44 100644 --- a/docs/dev/reference/update.mkinfit-2.png +++ b/docs/dev/reference/update.mkinfit-2.png diff --git a/docs/dev/reference/update.mkinfit.html b/docs/dev/reference/update.mkinfit.html index 10a93373..83f45028 100644 --- a/docs/dev/reference/update.mkinfit.html +++ b/docs/dev/reference/update.mkinfit.html @@ -75,7 +75,7 @@ override these starting values." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> +        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>        </span>      </div> @@ -124,7 +124,7 @@ override these starting values." />        <ul class="nav navbar-nav navbar-right">          <li>    <a href="https://github.com/jranke/mkin/"> -    <span class="fab fa fab fa-github fa-lg"></span> +    <span class="fab fa-github fa-lg"></span>    </a>  </li> | 
