diff options
Diffstat (limited to 'docs/reference/Extract.mmkin.html')
| -rw-r--r-- | docs/reference/Extract.mmkin.html | 1192 | 
1 files changed, 1192 insertions, 0 deletions
| diff --git a/docs/reference/Extract.mmkin.html b/docs/reference/Extract.mmkin.html new file mode 100644 index 00000000..b811eb95 --- /dev/null +++ b/docs/reference/Extract.mmkin.html @@ -0,0 +1,1192 @@ +<!-- Generated by pkgdown: do not edit by hand --> +<!DOCTYPE html> +<html> +  <head> +  <meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> + +<title>[.mmkin. mkin</title> + +<!-- jquery --> +<script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script> + +<!-- Bootstrap --> +<link href="https://maxcdn.bootstrapcdn.com/bootswatch/3.3.7/cerulean/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous"> + +<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script> + +<!-- Font Awesome icons --> +<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous"> + + +<!-- pkgdown --> +<link href="../pkgdown.css" rel="stylesheet"> +<script src="../pkgdown.js"></script> + +<!-- mathjax --> +<script src='https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script> + +<!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> +  </head> + +  <body> +    <div class="container"> +      <header> +       +<div class="navbar navbar-default  navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar"> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <a class="navbar-brand" href="../index.html">mkin</a> +    </div> +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +        <li> +  <a href="../index.html">Home</a> +</li> +<li> +  <a href="../reference/index.html">Reference</a> +</li> +      </ul> +      <ul class="nav navbar-nav navbar-right"> +        <li> +  <a href="https://github.com/jranke/mkin"> +    <span class="fa fa-github fa-lg"></span> +      +  </a> +</li> +      </ul> +    </div><!--/.nav-collapse --> +  </div><!--/.container --> +</div><!--/.navbar --> +       +      </header> + +      <div class="page-header"> +  <h1>Subsetting method for mmkin objects</h1> +</div> + +<div class="row"> +  <div class="col-md-9"> +     +    <p>Subsetting method for mmkin objects.</p> +     + +    <pre># S3 method for mmkin +[(x, i, j, ..., drop = FALSE)</pre> +     +    <h2>Arguments</h2> +    <dl class="dl-horizontal"> +      <dt>x</dt> +      <dd>An <code>mmkin object</code></dd> +      <dt>i</dt> +      <dd>Row index selecting the fits for specific models</dd> +      <dt>j</dt> +      <dd>Column index selecting the fits to specific datasets</dd> +      <dt>...</dt> +      <dd>Not used, only there to satisfy the generic method definition</dd> +      <dt>drop</dt> +      <dd>If FALSE, the method always returns an mmkin object, otherwise either  +  a list of mkinfit objects or a single mkinfit object.</dd> +    </dl> +     +    <div class="Value"> +      <h2>Value</h2> + +      <p>An object of class <code>mmkin</code>.</p> +    </div> +     +    <h2 id="examples">Examples</h2> +    <pre class="examples"><div class='input'>  <span class='co'># Only use one core, to pass R CMD check --as-cran</span> +  <span class='no'>fits</span> <span class='kw'><-</span> <span class='fu'>mmkin</span>(<span class='fu'>c</span>(<span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>), <span class='fu'>list</span>(<span class='kw'>B</span> <span class='kw'>=</span> <span class='no'>FOCUS_2006_B</span>, <span class='kw'>C</span> <span class='kw'>=</span> <span class='no'>FOCUS_2006_C</span>), +                <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +  <span class='no'>fits</span>[<span class='st'>"FOMC"</span>, ]</div><div class='output co'>#>       dataset +#> model  B       C       +#>   FOMC List,42 List,42 +#> attr(,"class") +#> [1] "mmkin" +#> </div><div class='input'>  <span class='no'>fits</span>[, <span class='st'>"B"</span>]</div><div class='output co'>#>       dataset +#> model  B       +#>   SFO  List,42 +#>   FOMC List,42 +#> attr(,"class") +#> [1] "mmkin" +#> </div><div class='input'>  <span class='no'>fits</span>[, <span class='st'>"B"</span>, <span class='kw'>drop</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>]$<span class='no'>FOMC</span></div><div class='output co'>#> $par +#>  parent_0 log_alpha  log_beta  +#> 99.666193  2.549849  5.050586  +#>  +#> $ssr +#> [1] 28.58291 +#>  +#> $convergence +#> [1] 0 +#>  +#> $iterations +#> [1] 21 +#>  +#> $evaluations +#> function gradient  +#>       25       78  +#>  +#> $counts +#> [1] "both X-convergence and relative convergence (5)" +#>  +#> $hessian +#>             parent_0   log_alpha    log_beta +#> parent_0    4.123033   -95.69983    93.17699 +#> log_alpha -95.699832  6618.85833 -6352.46648 +#> log_beta   93.176993 -6352.46648  6101.23483 +#>  +#> $residuals +#>       parent       parent       parent       parent       parent       parent  +#>  1.046192647 -3.322396479  3.655156669 -1.705316770  0.406306255 -0.123734689  +#>       parent       parent  +#> -0.036886982 -0.006240458  +#>  +#> $ms +#> [1] 3.572863 +#>  +#> $var_ms +#>   parent  +#> 3.572863  +#>  +#> $var_ms_unscaled +#>   parent  +#> 3.572863  +#>  +#> $var_ms_unweighted +#>   parent  +#> 3.572863  +#>  +#> $rank +#> [1] 3 +#>  +#> $df.residual +#> [1] 5 +#>  +#> $solution_type +#> [1] "analytical" +#>  +#> $transform_rates +#> [1] TRUE +#>  +#> $transform_fractions +#> [1] TRUE +#>  +#> $method.modFit +#> [1] "Port" +#>  +#> $maxit.modFit +#> [1] "auto" +#>  +#> $calls +#> [1] 111 +#>  +#> $time +#>    user  system elapsed  +#>   0.256   0.000   0.257  +#>  +#> $mkinmod +#> <mkinmod> model generated with +#> Use of formation fractions $use_of_ff: min  +#> Specification $spec: +#> $parent +#> $type: FOMC; $sink: TRUE +#>  +#> $observed +#>     name time value +#> 1 parent    0 98.62 +#> 2 parent    3 81.43 +#> 3 parent    7 53.18 +#> 4 parent   14 34.89 +#> 5 parent   30 10.09 +#> 6 parent   62  1.50 +#> 7 parent   90  0.33 +#> 8 parent  118  0.08 +#>  +#> $obs_vars +#> [1] "parent" +#>  +#> $predicted +#>       name       time       value +#> 1   parent   0.000000 99.66619265 +#> 2   parent   1.191919 90.41690342 +#> 3   parent   2.383838 82.08630014 +#> 4   parent   3.000000 78.10760352 +#> 5   parent   3.575758 74.57722848 +#> 6   parent   4.767677 67.80342415 +#> 7   parent   5.959596 61.68822425 +#> 8   parent   7.000000 56.83515667 +#> 9   parent   7.151515 56.16343898 +#> 10  parent   8.343434 51.16836285 +#> 11  parent   9.535354 46.64890734 +#> 12  parent  10.727273 42.55683931 +#> 13  parent  11.919192 38.84911158 +#> 14  parent  13.111111 35.48727414 +#> 15  parent  14.000000 33.18468323 +#> 16  parent  14.303030 32.43695565 +#> 17  parent  15.494949 29.66740651 +#> 18  parent  16.686869 27.15109578 +#> 19  parent  17.878788 24.86335532 +#> 20  parent  19.070707 22.78206538 +#> 21  parent  20.262626 20.88737647 +#> 22  parent  21.454545 19.16146324 +#> 23  parent  22.646465 17.58830644 +#> 24  parent  23.838384 16.15349953 +#> 25  parent  25.030303 14.84407724 +#> 26  parent  26.222222 13.64836315 +#> 27  parent  27.414141 12.55583436 +#> 28  parent  28.606061 11.55700107 +#> 29  parent  29.797980 10.64329940 +#> 30  parent  30.000000 10.49630626 +#> 31  parent  30.989899  9.80699593 +#> 32  parent  32.181818  9.04110261 +#> 33  parent  33.373737  8.33930082 +#> 34  parent  34.565657  7.69587362 +#> 35  parent  35.757576  7.10564515 +#> 36  parent  36.949495  6.56392657 +#> 37  parent  38.141414  6.06646759 +#> 38  parent  39.333333  5.60941311 +#> 39  parent  40.525253  5.18926438 +#> 40  parent  41.717172  4.80284421 +#> 41  parent  42.909091  4.44726569 +#> 42  parent  44.101010  4.11990420 +#> 43  parent  45.292929  3.81837216 +#> 44  parent  46.484848  3.54049644 +#> 45  parent  47.676768  3.28429799 +#> 46  parent  48.868687  3.04797350 +#> 47  parent  50.060606  2.82987892 +#> 48  parent  51.252525  2.62851456 +#> 49  parent  52.444444  2.44251172 +#> 50  parent  53.636364  2.27062056 +#> 51  parent  54.828283  2.11169922 +#> 52  parent  56.020202  1.96470393 +#> 53  parent  57.212121  1.82868009 +#> 54  parent  58.404040  1.70275424 +#> 55  parent  59.595960  1.58612677 +#> 56  parent  60.787879  1.47806529 +#> 57  parent  61.979798  1.37789865 +#> 58  parent  62.000000  1.37626531 +#> 59  parent  63.171717  1.28501157 +#> 60  parent  64.363636  1.19883967 +#> 61  parent  65.555556  1.11886504 +#> 62  parent  66.747475  1.04461220 +#> 63  parent  67.939394  0.97564441 +#> 64  parent  69.131313  0.91156031 +#> 65  parent  70.323232  0.85199096 +#> 66  parent  71.515152  0.79659697 +#> 67  parent  72.707071  0.74506609 +#> 68  parent  73.898990  0.69711084 +#> 69  parent  75.090909  0.65246649 +#> 70  parent  76.282828  0.61088912 +#> 71  parent  77.474747  0.57215389 +#> 72  parent  78.666667  0.53605348 +#> 73  parent  79.858586  0.50239663 +#> 74  parent  81.050505  0.47100683 +#> 75  parent  82.242424  0.44172111 +#> 76  parent  83.434343  0.41438896 +#> 77  parent  84.626263  0.38887128 +#> 78  parent  85.818182  0.36503953 +#> 79  parent  87.010101  0.34277481 +#> 80  parent  88.202020  0.32196716 +#> 81  parent  89.393939  0.30251479 +#> 82  parent  90.000000  0.29311302 +#> 83  parent  90.585859  0.28432347 +#> 84  parent  91.777778  0.26730596 +#> 85  parent  92.969697  0.25138141 +#> 86  parent  94.161616  0.23647487 +#> 87  parent  95.353535  0.22251689 +#> 88  parent  96.545455  0.20944302 +#> 89  parent  97.737374  0.19719349 +#> 90  parent  98.929293  0.18571281 +#> 91  parent 100.121212  0.17494947 +#> 92  parent 101.313131  0.16485560 +#> 93  parent 102.505051  0.15538676 +#> 94  parent 103.696970  0.14650163 +#> 95  parent 104.888889  0.13816179 +#> 96  parent 106.080808  0.13033150 +#> 97  parent 107.272727  0.12297753 +#> 98  parent 108.464646  0.11606895 +#> 99  parent 109.656566  0.10957695 +#> 100 parent 110.848485  0.10347470 +#> 101 parent 112.040404  0.09773723 +#> 102 parent 113.232323  0.09234125 +#> 103 parent 114.424242  0.08726506 +#> 104 parent 115.616162  0.08248842 +#> 105 parent 116.808081  0.07799245 +#> 106 parent 118.000000  0.07375954 +#>  +#> $cost +#> function (P)  +#> { +#>     assign("calls", calls + 1, inherits = TRUE) +#>     if (trace_parms)  +#>         cat(P, "\n") +#>     if (length(state.ini.optim) > 0) { +#>         odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed) +#>         names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames) +#>     } +#>     else { +#>         odeini <- state.ini.fixed +#>         names(odeini) <- state.ini.fixed.boxnames +#>     } +#>     odeparms <- c(P[(length(state.ini.optim) + 1):length(P)],  +#>         transparms.fixed) +#>     parms <- backtransform_odeparms(odeparms, mkinmod, transform_rates = transform_rates,  +#>         transform_fractions = transform_fractions) +#>     out <- mkinpredict(mkinmod, parms, odeini, outtimes, solution_type = solution_type,  +#>         use_compiled = use_compiled, method.ode = method.ode,  +#>         atol = atol, rtol = rtol, ...) +#>     assign("out_predicted", out, inherits = TRUE) +#>     mC <- modCost(out, observed, y = "value", err = err, weight = weight,  +#>         scaleVar = scaleVar) +#>     if (mC$model < cost.old) { +#>         if (!quiet)  +#>             cat("Model cost at call ", calls, ": ", mC$model,  +#>                 "\n") +#>         if (plot) { +#>             outtimes_plot = seq(min(observed$time), max(observed$time),  +#>                 length.out = 100) +#>             out_plot <- mkinpredict(mkinmod, parms, odeini, outtimes_plot,  +#>                 solution_type = solution_type, use_compiled = use_compiled,  +#>                 method.ode = method.ode, atol = atol, rtol = rtol,  +#>                 ...) +#>             plot(0, type = "n", xlim = range(observed$time),  +#>                 ylim = c(0, max(observed$value, na.rm = TRUE)),  +#>                 xlab = "Time", ylab = "Observed") +#>             col_obs <- pch_obs <- 1:length(obs_vars) +#>             lty_obs <- rep(1, length(obs_vars)) +#>             names(col_obs) <- names(pch_obs) <- names(lty_obs) <- obs_vars +#>             for (obs_var in obs_vars) { +#>                 points(subset(observed, name == obs_var, c(time,  +#>                   value)), pch = pch_obs[obs_var], col = col_obs[obs_var]) +#>             } +#>             matlines(out_plot$time, out_plot[-1], col = col_obs,  +#>                 lty = lty_obs) +#>             legend("topright", inset = c(0.05, 0.05), legend = obs_vars,  +#>                 col = col_obs, pch = pch_obs, lty = 1:length(pch_obs)) +#>         } +#>         assign("cost.old", mC$model, inherits = TRUE) +#>     } +#>     return(mC) +#> } +#> <environment: 0x27fc328> +#>  +#> $cost_notrans +#> function (P)  +#> { +#>     if (length(state.ini.optim) > 0) { +#>         odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed) +#>         names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames) +#>     } +#>     else { +#>         odeini <- state.ini.fixed +#>         names(odeini) <- state.ini.fixed.boxnames +#>     } +#>     odeparms <- c(P[(length(state.ini.optim) + 1):length(P)],  +#>         parms.fixed) +#>     out <- mkinpredict(mkinmod, odeparms, odeini, outtimes, solution_type = solution_type,  +#>         use_compiled = use_compiled, method.ode = method.ode,  +#>         atol = atol, rtol = rtol, ...) +#>     mC <- modCost(out, observed, y = "value", err = err, weight = weight,  +#>         scaleVar = scaleVar) +#>     return(mC) +#> } +#> <environment: 0x27fc328> +#>  +#> $hessian_notrans +#>            parent_0     alpha       beta +#> parent_0  4.1230329 -7.473531  0.5968527 +#> alpha    -7.4735307 40.365690 -3.1777189 +#> beta      0.5968527 -3.177719  0.2503425 +#>  +#> $start +#>          value   type +#> parent_0 98.62  state +#> alpha     1.00 deparm +#> beta     10.00 deparm +#>  +#> $start_transformed +#>               value lower upper +#> parent_0  98.620000  -Inf   Inf +#> log_alpha  0.000000  -Inf   Inf +#> log_beta   2.302585  -Inf   Inf +#>  +#> $fixed +#> [1] value type  +#> <0 rows> (or 0-length row.names) +#>  +#> $data +#>   time variable observed   predicted     residual +#> 1    0   parent    98.62 99.66619265 -1.046192647 +#> 2    3   parent    81.43 78.10760352  3.322396479 +#> 3    7   parent    53.18 56.83515667 -3.655156669 +#> 4   14   parent    34.89 33.18468323  1.705316770 +#> 5   30   parent    10.09 10.49630626 -0.406306255 +#> 6   62   parent     1.50  1.37626531  0.123734689 +#> 7   90   parent     0.33  0.29311302  0.036886982 +#> 8  118   parent     0.08  0.07375954  0.006240458 +#>  +#> $atol +#> [1] 1e-08 +#>  +#> $rtol +#> [1] 1e-10 +#>  +#> $weight.ini +#> [1] "none" +#>  +#> $reweight.tol +#> [1] 1e-08 +#>  +#> $reweight.max.iter +#> [1] 10 +#>  +#> $bparms.optim +#>  parent_0     alpha      beta  +#>  99.66619  12.80517 156.11390  +#>  +#> $bparms.fixed +#> numeric(0) +#>  +#> $bparms.ode +#>     alpha      beta  +#>  12.80517 156.11390  +#>  +#> $bparms.state +#>   parent  +#> 99.66619  +#>  +#> $date +#> [1] "Thu Oct  6 09:17:52 2016" +#>  +#> attr(,"class") +#> [1] "mkinfit" "modFit"  +#> </div><div class='input'>  <span class='no'>fits</span>[<span class='st'>"SFO"</span>, <span class='st'>"B"</span>]</div><div class='output co'>#>      dataset +#> model B       +#>   SFO List,42 +#> attr(,"class") +#> [1] "mmkin" +#> </div><div class='input'>  <span class='no'>fits</span><span class='kw'>[[</span><span class='st'>"SFO"</span>, <span class='st'>"B"</span>]] <span class='co'># This is equivalent to</span></div><div class='output co'>#> $par +#>          parent_0 log_k_parent_sink  +#>         99.174072         -2.549028  +#>  +#> $ssr +#> [1] 30.65564 +#>  +#> $convergence +#> [1] 0 +#>  +#> $iterations +#> [1] 5 +#>  +#> $evaluations +#> function gradient  +#>        8       15  +#>  +#> $counts +#> [1] "relative convergence (4)" +#>  +#> $hessian +#>                     parent_0 log_k_parent_sink +#> parent_0            4.163631         -94.09343 +#> log_k_parent_sink -94.093431        6311.34610 +#>  +#> $residuals +#>      parent      parent      parent      parent      parent      parent  +#>  0.55407218 -2.98452128  4.20445742 -1.68599939 -0.58185357 -0.72033730  +#>      parent      parent  +#> -0.24260405 -0.07020339  +#>  +#> $ms +#> [1] 3.831956 +#>  +#> $var_ms +#>   parent  +#> 3.831956  +#>  +#> $var_ms_unscaled +#>   parent  +#> 3.831956  +#>  +#> $var_ms_unweighted +#>   parent  +#> 3.831956  +#>  +#> $rank +#> [1] 2 +#>  +#> $df.residual +#> [1] 6 +#>  +#> $solution_type +#> [1] "analytical" +#>  +#> $transform_rates +#> [1] TRUE +#>  +#> $transform_fractions +#> [1] TRUE +#>  +#> $method.modFit +#> [1] "Port" +#>  +#> $maxit.modFit +#> [1] "auto" +#>  +#> $calls +#> [1] 29 +#>  +#> $time +#>    user  system elapsed  +#>   0.068   0.000   0.068  +#>  +#> $mkinmod +#> <mkinmod> model generated with +#> Use of formation fractions $use_of_ff: min  +#> Specification $spec: +#> $parent +#> $type: SFO; $sink: TRUE +#> Coefficient matrix $coefmat available +#>  +#> $observed +#>     name time value +#> 1 parent    0 98.62 +#> 2 parent    3 81.43 +#> 3 parent    7 53.18 +#> 4 parent   14 34.89 +#> 5 parent   30 10.09 +#> 6 parent   62  1.50 +#> 7 parent   90  0.33 +#> 8 parent  118  0.08 +#>  +#> $obs_vars +#> [1] "parent" +#>  +#> $predicted +#>       name       time       value +#> 1   parent   0.000000 99.17407218 +#> 2   parent   1.191919 90.35253561 +#> 3   parent   2.383838 82.31567498 +#> 4   parent   3.000000 78.44547872 +#> 5   parent   3.575758 74.99369333 +#> 6   parent   4.767677 68.32300215 +#> 7   parent   5.959596 62.24566915 +#> 8   parent   7.000000 57.38445742 +#> 9   parent   7.151515 56.70891509 +#> 10  parent   8.343434 51.66465547 +#> 11  parent   9.535354 47.06908288 +#> 12  parent  10.727273 42.88228661 +#> 13  parent  11.919192 39.06790599 +#> 14  parent  13.111111 35.59281463 +#> 15  parent  14.000000 33.20400061 +#> 16  parent  14.303030 32.42683275 +#> 17  parent  15.494949 29.54246504 +#> 18  parent  16.686869 26.91466193 +#> 19  parent  17.878788 24.52060198 +#> 20  parent  19.070707 22.33949373 +#> 21  parent  20.262626 20.35239512 +#> 22  parent  21.454545 18.54204899 +#> 23  parent  22.646465 16.89273320 +#> 24  parent  23.838384 15.39012410 +#> 25  parent  25.030303 14.02117212 +#> 26  parent  26.222222 12.77398846 +#> 27  parent  27.414141 11.63774182 +#> 28  parent  28.606061 10.60256435 +#> 29  parent  29.797980  9.65946594 +#> 30  parent  30.000000  9.50814643 +#> 31  parent  30.989899  8.80025617 +#> 32  parent  32.181818  8.01747313 +#> 33  parent  33.373737  7.30431867 +#> 34  parent  34.565657  6.65459931 +#> 35  parent  35.757576  6.06267251 +#> 36  parent  36.949495  5.52339762 +#> 37  parent  38.141414  5.03209124 +#> 38  parent  39.333333  4.58448658 +#> 39  parent  40.525253  4.17669637 +#> 40  parent  41.717172  3.80517911 +#> 41  parent  42.909091  3.46670832 +#> 42  parent  44.101010  3.15834451 +#> 43  parent  45.292929  2.87740968 +#> 44  parent  46.484848  2.62146400 +#> 45  parent  47.676768  2.38828471 +#> 46  parent  48.868687  2.17584671 +#> 47  parent  50.060606  1.98230508 +#> 48  parent  51.252525  1.80597899 +#> 49  parent  52.444444  1.64533711 +#> 50  parent  53.636364  1.49898432 +#> 51  parent  54.828283  1.36564963 +#> 52  parent  56.020202  1.24417505 +#> 53  parent  57.212121  1.13350565 +#> 54  parent  58.404040  1.03268029 +#> 55  parent  59.595960  0.94082335 +#> 56  parent  60.787879  0.85713708 +#> 57  parent  61.979798  0.78089471 +#> 58  parent  62.000000  0.77966270 +#> 59  parent  63.171717  0.71143411 +#> 60  parent  64.363636  0.64815202 +#> 61  parent  65.555556  0.59049888 +#> 62  parent  66.747475  0.53797399 +#> 63  parent  67.939394  0.49012119 +#> 64  parent  69.131313  0.44652489 +#> 65  parent  70.323232  0.40680649 +#> 66  parent  71.515152  0.37062104 +#> 67  parent  72.707071  0.33765429 +#> 68  parent  73.898990  0.30761993 +#> 69  parent  75.090909  0.28025713 +#> 70  parent  76.282828  0.25532825 +#> 71  parent  77.474747  0.23261679 +#> 72  parent  78.666667  0.21192552 +#> 73  parent  79.858586  0.19307474 +#> 74  parent  81.050505  0.17590074 +#> 75  parent  82.242424  0.16025436 +#> 76  parent  83.434343  0.14599973 +#> 77  parent  84.626263  0.13301305 +#> 78  parent  85.818182  0.12118154 +#> 79  parent  87.010101  0.11040244 +#> 80  parent  88.202020  0.10058214 +#> 81  parent  89.393939  0.09163535 +#> 82  parent  90.000000  0.08739595 +#> 83  parent  90.585859  0.08348439 +#> 84  parent  91.777778  0.07605845 +#> 85  parent  92.969697  0.06929305 +#> 86  parent  94.161616  0.06312943 +#> 87  parent  95.353535  0.05751406 +#> 88  parent  96.545455  0.05239819 +#> 89  parent  97.737374  0.04773737 +#> 90  parent  98.929293  0.04349113 +#> 91  parent 100.121212  0.03962259 +#> 92  parent 101.313131  0.03609816 +#> 93  parent 102.505051  0.03288723 +#> 94  parent 103.696970  0.02996191 +#> 95  parent 104.888889  0.02729679 +#> 96  parent 106.080808  0.02486874 +#> 97  parent 107.272727  0.02265667 +#> 98  parent 108.464646  0.02064136 +#> 99  parent 109.656566  0.01880531 +#> 100 parent 110.848485  0.01713257 +#> 101 parent 112.040404  0.01560863 +#> 102 parent 113.232323  0.01422024 +#> 103 parent 114.424242  0.01295535 +#> 104 parent 115.616162  0.01180297 +#> 105 parent 116.808081  0.01075310 +#> 106 parent 118.000000  0.00979661 +#>  +#> $cost +#> function (P)  +#> { +#>     assign("calls", calls + 1, inherits = TRUE) +#>     if (trace_parms)  +#>         cat(P, "\n") +#>     if (length(state.ini.optim) > 0) { +#>         odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed) +#>         names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames) +#>     } +#>     else { +#>         odeini <- state.ini.fixed +#>         names(odeini) <- state.ini.fixed.boxnames +#>     } +#>     odeparms <- c(P[(length(state.ini.optim) + 1):length(P)],  +#>         transparms.fixed) +#>     parms <- backtransform_odeparms(odeparms, mkinmod, transform_rates = transform_rates,  +#>         transform_fractions = transform_fractions) +#>     out <- mkinpredict(mkinmod, parms, odeini, outtimes, solution_type = solution_type,  +#>         use_compiled = use_compiled, method.ode = method.ode,  +#>         atol = atol, rtol = rtol, ...) +#>     assign("out_predicted", out, inherits = TRUE) +#>     mC <- modCost(out, observed, y = "value", err = err, weight = weight,  +#>         scaleVar = scaleVar) +#>     if (mC$model < cost.old) { +#>         if (!quiet)  +#>             cat("Model cost at call ", calls, ": ", mC$model,  +#>                 "\n") +#>         if (plot) { +#>             outtimes_plot = seq(min(observed$time), max(observed$time),  +#>                 length.out = 100) +#>             out_plot <- mkinpredict(mkinmod, parms, odeini, outtimes_plot,  +#>                 solution_type = solution_type, use_compiled = use_compiled,  +#>                 method.ode = method.ode, atol = atol, rtol = rtol,  +#>                 ...) +#>             plot(0, type = "n", xlim = range(observed$time),  +#>                 ylim = c(0, max(observed$value, na.rm = TRUE)),  +#>                 xlab = "Time", ylab = "Observed") +#>             col_obs <- pch_obs <- 1:length(obs_vars) +#>             lty_obs <- rep(1, length(obs_vars)) +#>             names(col_obs) <- names(pch_obs) <- names(lty_obs) <- obs_vars +#>             for (obs_var in obs_vars) { +#>                 points(subset(observed, name == obs_var, c(time,  +#>                   value)), pch = pch_obs[obs_var], col = col_obs[obs_var]) +#>             } +#>             matlines(out_plot$time, out_plot[-1], col = col_obs,  +#>                 lty = lty_obs) +#>             legend("topright", inset = c(0.05, 0.05), legend = obs_vars,  +#>                 col = col_obs, pch = pch_obs, lty = 1:length(pch_obs)) +#>         } +#>         assign("cost.old", mC$model, inherits = TRUE) +#>     } +#>     return(mC) +#> } +#> <environment: 0x2e966b0> +#>  +#> $cost_notrans +#> function (P)  +#> { +#>     if (length(state.ini.optim) > 0) { +#>         odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed) +#>         names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames) +#>     } +#>     else { +#>         odeini <- state.ini.fixed +#>         names(odeini) <- state.ini.fixed.boxnames +#>     } +#>     odeparms <- c(P[(length(state.ini.optim) + 1):length(P)],  +#>         parms.fixed) +#>     out <- mkinpredict(mkinmod, odeparms, odeini, outtimes, solution_type = solution_type,  +#>         use_compiled = use_compiled, method.ode = method.ode,  +#>         atol = atol, rtol = rtol, ...) +#>     mC <- modCost(out, observed, y = "value", err = err, weight = weight,  +#>         scaleVar = scaleVar) +#>     return(mC) +#> } +#> <environment: 0x2e966b0> +#>  +#> $hessian_notrans +#>                   parent_0 k_parent_sink +#> parent_0          4.163631     -1203.894 +#> k_parent_sink -1203.893702   1033188.753 +#>  +#> $start +#>               value   type +#> parent_0      98.62  state +#> k_parent_sink  0.10 deparm +#>  +#> $start_transformed +#>                       value lower upper +#> parent_0          98.620000  -Inf   Inf +#> log_k_parent_sink -2.302585  -Inf   Inf +#>  +#> $fixed +#> [1] value type  +#> <0 rows> (or 0-length row.names) +#>  +#> $data +#>   time variable observed   predicted    residual +#> 1    0   parent    98.62 99.17407218 -0.55407218 +#> 2    3   parent    81.43 78.44547872  2.98452128 +#> 3    7   parent    53.18 57.38445742 -4.20445742 +#> 4   14   parent    34.89 33.20400061  1.68599939 +#> 5   30   parent    10.09  9.50814643  0.58185357 +#> 6   62   parent     1.50  0.77966270  0.72033730 +#> 7   90   parent     0.33  0.08739595  0.24260405 +#> 8  118   parent     0.08  0.00979661  0.07020339 +#>  +#> $atol +#> [1] 1e-08 +#>  +#> $rtol +#> [1] 1e-10 +#>  +#> $weight.ini +#> [1] "none" +#>  +#> $reweight.tol +#> [1] 1e-08 +#>  +#> $reweight.max.iter +#> [1] 10 +#>  +#> $bparms.optim +#>      parent_0 k_parent_sink  +#>   99.17407218    0.07815759  +#>  +#> $bparms.fixed +#> numeric(0) +#>  +#> $bparms.ode +#> k_parent_sink  +#>    0.07815759  +#>  +#> $bparms.state +#>   parent  +#> 99.17407  +#>  +#> $date +#> [1] "Thu Oct  6 09:17:51 2016" +#>  +#> attr(,"class") +#> [1] "mkinfit" "modFit"  +#> </div><div class='input'>  <span class='no'>fits</span>[<span class='st'>"SFO"</span>, <span class='st'>"B"</span>, <span class='kw'>drop</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>]</div><div class='output co'>#> [[1]] +#> $par +#>          parent_0 log_k_parent_sink  +#>         99.174072         -2.549028  +#>  +#> $ssr +#> [1] 30.65564 +#>  +#> $convergence +#> [1] 0 +#>  +#> $iterations +#> [1] 5 +#>  +#> $evaluations +#> function gradient  +#>        8       15  +#>  +#> $counts +#> [1] "relative convergence (4)" +#>  +#> $hessian +#>                     parent_0 log_k_parent_sink +#> parent_0            4.163631         -94.09343 +#> log_k_parent_sink -94.093431        6311.34610 +#>  +#> $residuals +#>      parent      parent      parent      parent      parent      parent  +#>  0.55407218 -2.98452128  4.20445742 -1.68599939 -0.58185357 -0.72033730  +#>      parent      parent  +#> -0.24260405 -0.07020339  +#>  +#> $ms +#> [1] 3.831956 +#>  +#> $var_ms +#>   parent  +#> 3.831956  +#>  +#> $var_ms_unscaled +#>   parent  +#> 3.831956  +#>  +#> $var_ms_unweighted +#>   parent  +#> 3.831956  +#>  +#> $rank +#> [1] 2 +#>  +#> $df.residual +#> [1] 6 +#>  +#> $solution_type +#> [1] "analytical" +#>  +#> $transform_rates +#> [1] TRUE +#>  +#> $transform_fractions +#> [1] TRUE +#>  +#> $method.modFit +#> [1] "Port" +#>  +#> $maxit.modFit +#> [1] "auto" +#>  +#> $calls +#> [1] 29 +#>  +#> $time +#>    user  system elapsed  +#>   0.068   0.000   0.068  +#>  +#> $mkinmod +#> <mkinmod> model generated with +#> Use of formation fractions $use_of_ff: min  +#> Specification $spec: +#> $parent +#> $type: SFO; $sink: TRUE +#> Coefficient matrix $coefmat available +#>  +#> $observed +#>     name time value +#> 1 parent    0 98.62 +#> 2 parent    3 81.43 +#> 3 parent    7 53.18 +#> 4 parent   14 34.89 +#> 5 parent   30 10.09 +#> 6 parent   62  1.50 +#> 7 parent   90  0.33 +#> 8 parent  118  0.08 +#>  +#> $obs_vars +#> [1] "parent" +#>  +#> $predicted +#>       name       time       value +#> 1   parent   0.000000 99.17407218 +#> 2   parent   1.191919 90.35253561 +#> 3   parent   2.383838 82.31567498 +#> 4   parent   3.000000 78.44547872 +#> 5   parent   3.575758 74.99369333 +#> 6   parent   4.767677 68.32300215 +#> 7   parent   5.959596 62.24566915 +#> 8   parent   7.000000 57.38445742 +#> 9   parent   7.151515 56.70891509 +#> 10  parent   8.343434 51.66465547 +#> 11  parent   9.535354 47.06908288 +#> 12  parent  10.727273 42.88228661 +#> 13  parent  11.919192 39.06790599 +#> 14  parent  13.111111 35.59281463 +#> 15  parent  14.000000 33.20400061 +#> 16  parent  14.303030 32.42683275 +#> 17  parent  15.494949 29.54246504 +#> 18  parent  16.686869 26.91466193 +#> 19  parent  17.878788 24.52060198 +#> 20  parent  19.070707 22.33949373 +#> 21  parent  20.262626 20.35239512 +#> 22  parent  21.454545 18.54204899 +#> 23  parent  22.646465 16.89273320 +#> 24  parent  23.838384 15.39012410 +#> 25  parent  25.030303 14.02117212 +#> 26  parent  26.222222 12.77398846 +#> 27  parent  27.414141 11.63774182 +#> 28  parent  28.606061 10.60256435 +#> 29  parent  29.797980  9.65946594 +#> 30  parent  30.000000  9.50814643 +#> 31  parent  30.989899  8.80025617 +#> 32  parent  32.181818  8.01747313 +#> 33  parent  33.373737  7.30431867 +#> 34  parent  34.565657  6.65459931 +#> 35  parent  35.757576  6.06267251 +#> 36  parent  36.949495  5.52339762 +#> 37  parent  38.141414  5.03209124 +#> 38  parent  39.333333  4.58448658 +#> 39  parent  40.525253  4.17669637 +#> 40  parent  41.717172  3.80517911 +#> 41  parent  42.909091  3.46670832 +#> 42  parent  44.101010  3.15834451 +#> 43  parent  45.292929  2.87740968 +#> 44  parent  46.484848  2.62146400 +#> 45  parent  47.676768  2.38828471 +#> 46  parent  48.868687  2.17584671 +#> 47  parent  50.060606  1.98230508 +#> 48  parent  51.252525  1.80597899 +#> 49  parent  52.444444  1.64533711 +#> 50  parent  53.636364  1.49898432 +#> 51  parent  54.828283  1.36564963 +#> 52  parent  56.020202  1.24417505 +#> 53  parent  57.212121  1.13350565 +#> 54  parent  58.404040  1.03268029 +#> 55  parent  59.595960  0.94082335 +#> 56  parent  60.787879  0.85713708 +#> 57  parent  61.979798  0.78089471 +#> 58  parent  62.000000  0.77966270 +#> 59  parent  63.171717  0.71143411 +#> 60  parent  64.363636  0.64815202 +#> 61  parent  65.555556  0.59049888 +#> 62  parent  66.747475  0.53797399 +#> 63  parent  67.939394  0.49012119 +#> 64  parent  69.131313  0.44652489 +#> 65  parent  70.323232  0.40680649 +#> 66  parent  71.515152  0.37062104 +#> 67  parent  72.707071  0.33765429 +#> 68  parent  73.898990  0.30761993 +#> 69  parent  75.090909  0.28025713 +#> 70  parent  76.282828  0.25532825 +#> 71  parent  77.474747  0.23261679 +#> 72  parent  78.666667  0.21192552 +#> 73  parent  79.858586  0.19307474 +#> 74  parent  81.050505  0.17590074 +#> 75  parent  82.242424  0.16025436 +#> 76  parent  83.434343  0.14599973 +#> 77  parent  84.626263  0.13301305 +#> 78  parent  85.818182  0.12118154 +#> 79  parent  87.010101  0.11040244 +#> 80  parent  88.202020  0.10058214 +#> 81  parent  89.393939  0.09163535 +#> 82  parent  90.000000  0.08739595 +#> 83  parent  90.585859  0.08348439 +#> 84  parent  91.777778  0.07605845 +#> 85  parent  92.969697  0.06929305 +#> 86  parent  94.161616  0.06312943 +#> 87  parent  95.353535  0.05751406 +#> 88  parent  96.545455  0.05239819 +#> 89  parent  97.737374  0.04773737 +#> 90  parent  98.929293  0.04349113 +#> 91  parent 100.121212  0.03962259 +#> 92  parent 101.313131  0.03609816 +#> 93  parent 102.505051  0.03288723 +#> 94  parent 103.696970  0.02996191 +#> 95  parent 104.888889  0.02729679 +#> 96  parent 106.080808  0.02486874 +#> 97  parent 107.272727  0.02265667 +#> 98  parent 108.464646  0.02064136 +#> 99  parent 109.656566  0.01880531 +#> 100 parent 110.848485  0.01713257 +#> 101 parent 112.040404  0.01560863 +#> 102 parent 113.232323  0.01422024 +#> 103 parent 114.424242  0.01295535 +#> 104 parent 115.616162  0.01180297 +#> 105 parent 116.808081  0.01075310 +#> 106 parent 118.000000  0.00979661 +#>  +#> $cost +#> function (P)  +#> { +#>     assign("calls", calls + 1, inherits = TRUE) +#>     if (trace_parms)  +#>         cat(P, "\n") +#>     if (length(state.ini.optim) > 0) { +#>         odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed) +#>         names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames) +#>     } +#>     else { +#>         odeini <- state.ini.fixed +#>         names(odeini) <- state.ini.fixed.boxnames +#>     } +#>     odeparms <- c(P[(length(state.ini.optim) + 1):length(P)],  +#>         transparms.fixed) +#>     parms <- backtransform_odeparms(odeparms, mkinmod, transform_rates = transform_rates,  +#>         transform_fractions = transform_fractions) +#>     out <- mkinpredict(mkinmod, parms, odeini, outtimes, solution_type = solution_type,  +#>         use_compiled = use_compiled, method.ode = method.ode,  +#>         atol = atol, rtol = rtol, ...) +#>     assign("out_predicted", out, inherits = TRUE) +#>     mC <- modCost(out, observed, y = "value", err = err, weight = weight,  +#>         scaleVar = scaleVar) +#>     if (mC$model < cost.old) { +#>         if (!quiet)  +#>             cat("Model cost at call ", calls, ": ", mC$model,  +#>                 "\n") +#>         if (plot) { +#>             outtimes_plot = seq(min(observed$time), max(observed$time),  +#>                 length.out = 100) +#>             out_plot <- mkinpredict(mkinmod, parms, odeini, outtimes_plot,  +#>                 solution_type = solution_type, use_compiled = use_compiled,  +#>                 method.ode = method.ode, atol = atol, rtol = rtol,  +#>                 ...) +#>             plot(0, type = "n", xlim = range(observed$time),  +#>                 ylim = c(0, max(observed$value, na.rm = TRUE)),  +#>                 xlab = "Time", ylab = "Observed") +#>             col_obs <- pch_obs <- 1:length(obs_vars) +#>             lty_obs <- rep(1, length(obs_vars)) +#>             names(col_obs) <- names(pch_obs) <- names(lty_obs) <- obs_vars +#>             for (obs_var in obs_vars) { +#>                 points(subset(observed, name == obs_var, c(time,  +#>                   value)), pch = pch_obs[obs_var], col = col_obs[obs_var]) +#>             } +#>             matlines(out_plot$time, out_plot[-1], col = col_obs,  +#>                 lty = lty_obs) +#>             legend("topright", inset = c(0.05, 0.05), legend = obs_vars,  +#>                 col = col_obs, pch = pch_obs, lty = 1:length(pch_obs)) +#>         } +#>         assign("cost.old", mC$model, inherits = TRUE) +#>     } +#>     return(mC) +#> } +#> <environment: 0x2e966b0> +#>  +#> $cost_notrans +#> function (P)  +#> { +#>     if (length(state.ini.optim) > 0) { +#>         odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed) +#>         names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames) +#>     } +#>     else { +#>         odeini <- state.ini.fixed +#>         names(odeini) <- state.ini.fixed.boxnames +#>     } +#>     odeparms <- c(P[(length(state.ini.optim) + 1):length(P)],  +#>         parms.fixed) +#>     out <- mkinpredict(mkinmod, odeparms, odeini, outtimes, solution_type = solution_type,  +#>         use_compiled = use_compiled, method.ode = method.ode,  +#>         atol = atol, rtol = rtol, ...) +#>     mC <- modCost(out, observed, y = "value", err = err, weight = weight,  +#>         scaleVar = scaleVar) +#>     return(mC) +#> } +#> <environment: 0x2e966b0> +#>  +#> $hessian_notrans +#>                   parent_0 k_parent_sink +#> parent_0          4.163631     -1203.894 +#> k_parent_sink -1203.893702   1033188.753 +#>  +#> $start +#>               value   type +#> parent_0      98.62  state +#> k_parent_sink  0.10 deparm +#>  +#> $start_transformed +#>                       value lower upper +#> parent_0          98.620000  -Inf   Inf +#> log_k_parent_sink -2.302585  -Inf   Inf +#>  +#> $fixed +#> [1] value type  +#> <0 rows> (or 0-length row.names) +#>  +#> $data +#>   time variable observed   predicted    residual +#> 1    0   parent    98.62 99.17407218 -0.55407218 +#> 2    3   parent    81.43 78.44547872  2.98452128 +#> 3    7   parent    53.18 57.38445742 -4.20445742 +#> 4   14   parent    34.89 33.20400061  1.68599939 +#> 5   30   parent    10.09  9.50814643  0.58185357 +#> 6   62   parent     1.50  0.77966270  0.72033730 +#> 7   90   parent     0.33  0.08739595  0.24260405 +#> 8  118   parent     0.08  0.00979661  0.07020339 +#>  +#> $atol +#> [1] 1e-08 +#>  +#> $rtol +#> [1] 1e-10 +#>  +#> $weight.ini +#> [1] "none" +#>  +#> $reweight.tol +#> [1] 1e-08 +#>  +#> $reweight.max.iter +#> [1] 10 +#>  +#> $bparms.optim +#>      parent_0 k_parent_sink  +#>   99.17407218    0.07815759  +#>  +#> $bparms.fixed +#> numeric(0) +#>  +#> $bparms.ode +#> k_parent_sink  +#>    0.07815759  +#>  +#> $bparms.state +#>   parent  +#> 99.17407  +#>  +#> $date +#> [1] "Thu Oct  6 09:17:51 2016" +#>  +#> attr(,"class") +#> [1] "mkinfit" "modFit"  +#>  +#> </div></pre> +  </div> +  <div class="col-md-3"> +    <h2>Author</h2> +     +  Johannes Ranke + +  </div> +</div> + +      <footer> +      <p>Built by <a href="http://hadley.github.io/pkgdown/">pkgdown</a>. Styled with <a href="http://getbootstrap.com">Bootstrap 3</a>.</p> +      </footer> +   </div> + +  </body> +</html> | 
