diff options
Diffstat (limited to 'docs/reference/mkinfit.html')
| -rw-r--r-- | docs/reference/mkinfit.html | 50 | 
1 files changed, 25 insertions, 25 deletions
| diff --git a/docs/reference/mkinfit.html b/docs/reference/mkinfit.html index 32083843..891bc18b 100644 --- a/docs/reference/mkinfit.html +++ b/docs/reference/mkinfit.html @@ -82,11 +82,11 @@      <p>This function uses the Flexible Modelling Environment package -  <code>FME</code> to create a function calculating the model cost, i.e. the  +  <code>FME</code> to create a function calculating the model cost, i.e. the    deviation between the kinetic model and the observed data. This model cost is -  then minimised using the Port algorithm <code>nlminb</code>,  +  then minimised using the Port algorithm <code>nlminb</code>,    using the specified initial or fixed parameters and starting values. -  Per default, parameters in the kinetic models are internally transformed in order  +  Per default, parameters in the kinetic models are internally transformed in order    to better satisfy the assumption of a normal distribution of their estimators.    In each step of the optimsation, the kinetic model is solved using the    function <code><a href='mkinpredict.html'>mkinpredict</a></code>. The variance of the residuals for each @@ -200,13 +200,13 @@    </dd>        <dt>use_compiled</dt>        <dd> -    If set to <code>FALSE</code>, no compiled version of the <code><a href='mkinmod.html'>mkinmod</a></code>  +    If set to <code>FALSE</code>, no compiled version of the <code><a href='mkinmod.html'>mkinmod</a></code>      model is used, in the calls to <code><a href='mkinpredict.html'>mkinpredict</a></code> even if -    a compiled verion is present.  +    a compiled verion is present.    </dd>        <dt>method.modFit</dt>        <dd> -    The optimisation method passed to <code>modFit</code>.   +    The optimisation method passed to <code>modFit</code>.      In order to optimally deal with problems where local minima occur, the      "Port" algorithm is now used per default as it is less prone to get trapped @@ -228,20 +228,20 @@        <dt>maxit.modFit</dt>        <dd>      Maximum number of iterations in the optimisation. If not "auto", this will -    be passed to the method called by <code>modFit</code>, overriding  +    be passed to the method called by <code>modFit</code>, overriding      what may be specified in the next argument <code>control.modFit</code>.    </dd>        <dt>control.modFit</dt>        <dd>      Additional arguments passed to the optimisation method used by -    <code>modFit</code>.  +    <code>modFit</code>.    </dd>        <dt>transform_rates</dt>        <dd>      Boolean specifying if kinetic rate constants should be transformed in the      model specification used in the fitting for better compliance with the -    assumption of normal distribution of the estimator. If TRUE, also  -    alpha and beta parameters of the FOMC model are log-transformed, as well  +    assumption of normal distribution of the estimator. If TRUE, also +    alpha and beta parameters of the FOMC model are log-transformed, as well      as k1 and k2 rate constants for the DFOP and HS models and the break point      tb of the HS model.      If FALSE, zero is used as a lower bound for the rates in the optimisation. @@ -250,7 +250,7 @@        <dd>      Boolean specifying if formation fractions constants should be transformed in the      model specification used in the fitting for better compliance with the -    assumption of normal distribution of the estimator. The default (TRUE) is  +    assumption of normal distribution of the estimator. The default (TRUE) is      to do transformations. If TRUE, the g parameter of the DFOP and HS      models are also transformed, as they can also be seen as compositional      data. The transformation used for these transformations is the @@ -294,7 +294,7 @@        <dd>      The length of the dataseries that is produced by the model prediction      function <code><a href='mkinpredict.html'>mkinpredict</a></code>. This impacts the accuracy of -    the numerical solver if that is used (see <code>solution_type</code> argument.  +    the numerical solver if that is used (see <code>solution_type</code> argument.      The default value is 100.    </dd>        <dt>reweight.method</dt> @@ -302,9 +302,9 @@      The method used for iteratively reweighting residuals, also known      as iteratively reweighted least squares (IRLS). Default is NULL,      the other method implemented is called "obs", meaning that each -    observed variable is assumed to have its own variance, this is  +    observed variable is assumed to have its own variance, this is      estimated from the fit and used for weighting the residuals -    in each iteration until convergence of this estimate up to  +    in each iteration until convergence of this estimate up to      <code>reweight.tol</code> or up to the maximum number of iterations      specified by <code>reweight.max.iter</code>.    </dd> @@ -323,20 +323,20 @@    </dd>        <dt>&#8230;</dt>        <dd> -    Further arguments that will be passed to <code>modFit</code>.  +    Further arguments that will be passed to <code>modFit</code>.    </dd>      </dl>      <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> -    <p>A list with "mkinfit" and "modFit" in the class attribute.  +    <p>A list with "mkinfit" and "modFit" in the class attribute.    A summary can be obtained by <code><a href='summary.mkinfit.html'>summary.mkinfit</a></code>.</p>      <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>      <p>Plotting methods <code><a href='plot.mkinfit.html'>plot.mkinfit</a></code> and    <code><a href='mkinparplot.html'>mkinparplot</a></code>.</p> -    <p>Fitting of several models to several datasets in a single call to  +    <p>Fitting of several models to several datasets in a single call to    <code><a href='mmkin.html'>mmkin</a></code>.</p>      <h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2> @@ -348,7 +348,7 @@      <h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2> -    <p>When using the "IORE" submodel for metabolites, fitting with  +    <p>When using the "IORE" submodel for metabolites, fitting with    "transform_rates = TRUE" (the default) often leads to failures of the    numerical ODE solver. In this situation it may help to switch off the    internal rate transformation.</p> @@ -359,15 +359,15 @@  <span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)  <span class='fu'>summary</span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version:    0.9.44.9000   #> R version:       3.3.2  -#> Date of fit:     Fri Nov  4 17:12:35 2016  -#> Date of summary: Fri Nov  4 17:12:35 2016  +#> Date of fit:     Thu Nov 17 22:56:57 2016  +#> Date of summary: Thu Nov 17 22:56:57 2016   #>   #> Equations: -#> d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent +#> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent  #>   #> Model predictions using solution type analytical   #>  -#> Fitted with method Port using 64 model solutions performed in 0.147 s +#> Fitted with method Port using 64 model solutions performed in 0.158 s  #>   #> Weighting: none  #>  @@ -436,7 +436,7 @@    <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span>  <span class='fu'>print</span>(<span class='fu'>system.time</span>(<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>,                             <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)))</div><div class='output co'>#>    user  system elapsed  -#>   1.208   1.256   0.935 </div><div class='input'><span class='fu'>coef</span>(<span class='no'>fit</span>)</div><div class='output co'>#>          parent_0 log_k_parent_sink   log_k_parent_m1     log_k_m1_sink  +#>   1.168   1.260   0.924 </div><div class='input'><span class='fu'>coef</span>(<span class='no'>fit</span>)</div><div class='output co'>#>          parent_0 log_k_parent_sink   log_k_parent_m1     log_k_m1_sink   #>          99.59848          -3.03822          -2.98030          -5.24750 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> $ff  #> parent_sink   parent_m1     m1_sink   #>    0.485524    0.514476    1.000000  @@ -450,7 +450,7 @@  #> m1     131.760712 437.69961  #> </div><div class='input'><span class='co'>## Not run: ------------------------------------</span>  <span class='co'># # deSolve is slower when no C compiler (gcc) was available during model generation</span> -<span class='co'># print(system.time(fit.deSolve <- mkinfit(SFO_SFO, FOCUS_2006_D, </span> +<span class='co'># print(system.time(fit.deSolve <- mkinfit(SFO_SFO, FOCUS_2006_D,</span>  <span class='co'>#                            solution_type = "deSolve")))</span>  <span class='co'># coef(fit.deSolve)</span>  <span class='co'># endpoints(fit.deSolve)</span> @@ -465,7 +465,7 @@  <span class='co'># fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_2006_D)</span>  <span class='co'># # Use starting parameters from parent only FOMC fit</span>  <span class='co'># fit.FOMC = mkinfit("FOMC", FOCUS_2006_D, plot=TRUE)</span> -<span class='co'># fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_2006_D, </span> +<span class='co'># fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_2006_D,</span>  <span class='co'>#   parms.ini = fit.FOMC$bparms.ode, plot=TRUE)</span>  <span class='co'># </span>  <span class='co'># # Use stepwise fitting, using optimised parameters from parent only fit, SFORB</span> | 
