diff options
Diffstat (limited to 'docs/reference/mkinfit.html')
| -rw-r--r-- | docs/reference/mkinfit.html | 133 | 
1 files changed, 69 insertions, 64 deletions
| diff --git a/docs/reference/mkinfit.html b/docs/reference/mkinfit.html index 9974b66b..ceac59bf 100644 --- a/docs/reference/mkinfit.html +++ b/docs/reference/mkinfit.html @@ -78,7 +78,7 @@ likelihood function." />        </button>        <span class="navbar-brand">          <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.50</span> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.50.1</span>        </span>      </div> @@ -209,15 +209,15 @@ detection.</p></td>      <tr>        <th>parms.ini</th>        <td><p>A named vector of initial values for the parameters, -  including parameters to be optimised and potentially also fixed parameters -  as indicated by <code>fixed_parms</code>.  If set to "auto", initial values for -  rate constants are set to default values.  Using parameter names that are -  not in the model gives an error.</p> +including parameters to be optimised and potentially also fixed parameters +as indicated by <code>fixed_parms</code>.  If set to "auto", initial values for +rate constants are set to default values.  Using parameter names that are +not in the model gives an error.</p>  <p>It is possible to only specify a subset of the parameters that the model -  needs. You can use the parameter lists "bparms.ode" from a previously -  fitted model, which contains the differential equation parameters from -  this model.  This works nicely if the models are nested. An example is -  given below.</p></td> +needs. You can use the parameter lists "bparms.ode" from a previously +fitted model, which contains the differential equation parameters from +this model.  This works nicely if the models are nested. An example is +given below.</p></td>      </tr>      <tr>        <th>state.ini</th> @@ -326,42 +326,44 @@ is 1e-10, much lower than in <code>lsoda</code>.</p></td>      <tr>        <th>error_model</th>        <td><p>If the error model is "const", a constant standard -  deviation is assumed.</p> +deviation is assumed.</p>  <p>If the error model is "obs", each observed variable is assumed to have its -  own variance.</p> +own variance.</p>  <p>If the error model is "tc" (two-component error model), a two component -  error model similar to the one described by Rocke and Lorenzato (1995) is -  used for setting up the likelihood function.  Note that this model -  deviates from the model by Rocke and Lorenzato, as their model implies -  that the errors follow a lognormal distribution for large values, not a -  normal distribution as assumed by this method.</p></td> +error model similar to the one described by Rocke and Lorenzato (1995) is +used for setting up the likelihood function.  Note that this model +deviates from the model by Rocke and Lorenzato, as their model implies +that the errors follow a lognormal distribution for large values, not a +normal distribution as assumed by this method.</p></td>      </tr>      <tr>        <th>error_model_algorithm</th>        <td><p>If "auto", the selected algorithm depends on -  the error model.  If the error model is "const", unweighted nonlinear -  least squares fitting ("OLS") is selected. If the error model is "obs", or -  "tc", the "d_3" algorithm is selected.</p> -<p>The algorithm "d_3" will directly minimize the negative log-likelihood and -  - independently - also use the three step algorithm described below. The -  fit with the higher likelihood is returned.</p> +the error model.  If the error model is "const", unweighted nonlinear +least squares fitting ("OLS") is selected. If the error model is "obs", or +"tc", the "d_3" algorithm is selected.</p> +<p>The algorithm "d_3" will directly minimize the negative log-likelihood and</p><ul> +<li><p>independently - also use the three step algorithm described below. The +fit with the higher likelihood is returned.</p></li> +</ul> +  <p>The algorithm "direct" will directly minimize the negative log-likelihood.</p>  <p>The algorithm "twostep" will minimize the negative log-likelihood after an -  initial unweighted least squares optimisation step.</p> +initial unweighted least squares optimisation step.</p>  <p>The algorithm "threestep" starts with unweighted least squares, then -  optimizes only the error model using the degradation model parameters -  found, and then minimizes the negative log-likelihood with free -  degradation and error model parameters.</p> +optimizes only the error model using the degradation model parameters +found, and then minimizes the negative log-likelihood with free +degradation and error model parameters.</p>  <p>The algorithm "fourstep" starts with unweighted least squares, then -  optimizes only the error model using the degradation model parameters -  found, then optimizes the degradation model again with fixed error model -  parameters, and finally minimizes the negative log-likelihood with free -  degradation and error model parameters.</p> +optimizes only the error model using the degradation model parameters +found, then optimizes the degradation model again with fixed error model +parameters, and finally minimizes the negative log-likelihood with free +degradation and error model parameters.</p>  <p>The algorithm "IRLS" (Iteratively Reweighted Least Squares) starts with -  unweighted least squares, and then iterates optimization of the error -  model parameters and subsequent optimization of the degradation model -  using those error model parameters, until the error model parameters -  converge.</p></td> +unweighted least squares, and then iterates optimization of the error +model parameters and subsequent optimization of the degradation model +using those error model parameters, until the error model parameters +converge.</p></td>      </tr>      <tr>        <th>reweight.tol</th> @@ -383,14 +385,10 @@ the error model parameters in IRLS fits.</p></td>      </tr>      </table> -    <h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2> - -    <p>Rocke, David M. und Lorenzato, Stefan (1995) A two-component model -  for measurement error in analytical chemistry. Technometrics 37(2), 176-184.</p>      <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>      <p>A list with "mkinfit" in the class attribute.  A summary can be -  obtained by <code><a href='summary.mkinfit.html'>summary.mkinfit</a></code>.</p> +obtained by <code><a href='summary.mkinfit.html'>summary.mkinfit</a></code>.</p>      <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>      <p>Per default, parameters in the kinetic models are internally transformed in @@ -399,33 +397,40 @@ estimators.</p>      <h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2>      <p>When using the "IORE" submodel for metabolites, fitting with -  "transform_rates = TRUE" (the default) often leads to failures of the -  numerical ODE solver. In this situation it may help to switch off the -  internal rate transformation.</p> +"transform_rates = TRUE" (the default) often leads to failures of the +numerical ODE solver. In this situation it may help to switch off the +internal rate transformation.</p> +    <h2 class="hasAnchor" id="references"><a class="anchor" href="#references"></a>References</h2> + +    <p>Rocke DM and Lorenzato S (1995) A two-component model +for measurement error in analytical chemistry. <em>Technometrics</em> 37(2), 176-184.</p> +<p>Ranke J and Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical +Degradation Data. <em>Environments</em> 6(12) 124 +<a href='https://doi.org/10.3390/environments6120124'>doi:10.3390/environments6120124</a>.</p>      <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>      <div class='dont-index'><p>Plotting methods <code><a href='plot.mkinfit.html'>plot.mkinfit</a></code> and -  <code><a href='mkinparplot.html'>mkinparplot</a></code>.</p> +<code><a href='mkinparplot.html'>mkinparplot</a></code>.</p>  <p>Comparisons of models fitted to the same data can be made using -  <code><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></code> by virtue of the method <code><a href='logLik.mkinfit.html'>logLik.mkinfit</a></code>.</p> +<code><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></code> by virtue of the method <code><a href='logLik.mkinfit.html'>logLik.mkinfit</a></code>.</p>  <p>Fitting of several models to several datasets in a single call to -  <code><a href='mmkin.html'>mmkin</a></code>.</p></div> +<code><a href='mmkin.html'>mmkin</a></code>.</p></div>      <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>      <pre class="examples"><div class='input'>  <span class='co'># Use shorthand notation for parent only degradation</span>  <span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) -<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50  +<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50.1   #> R version used for fitting:       4.0.0  -#> Date of fit:     Mon May 11 05:14:26 2020  -#> Date of summary: Mon May 11 05:14:26 2020  +#> Date of fit:     Tue May 12 08:36:07 2020  +#> Date of summary: Tue May 12 08:36:07 2020   #>   #> Equations:  #> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent  #>   #> Model predictions using solution type analytical   #>  -#> Fitted using 222 model solutions performed in 0.043 s +#> Fitted using 222 model solutions performed in 0.047 s  #>   #> Error model: Constant variance   #>  @@ -502,7 +507,7 @@ estimators.</p>    <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>,                             <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)))</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#>        User      System verstrichen  -#>       0.407       0.002       0.409 </div><div class='input'><span class='fu'><a href='parms.html'>parms</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#>       parent_0       k_parent           k_m1 f_parent_to_m1          sigma  +#>       0.408       0.008       0.416 </div><div class='input'><span class='fu'><a href='parms.html'>parms</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#>       parent_0       k_parent           k_m1 f_parent_to_m1          sigma   #>   99.598483222    0.098697734    0.005260651    0.514475962    3.125503875 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> $ff  #>   parent_m1 parent_sink   #>    0.514476    0.485524  @@ -592,7 +597,7 @@ estimators.</p>  #> Sum of squared residuals at call 166: 371.2134  #> Sum of squared residuals at call 168: 371.2134  #> Negative log-likelihood at call 178: 97.22429</div><div class='output co'>#> <span class='message'>Optimisation successfully terminated.</span></div><div class='output co'>#>        User      System verstrichen  -#>       0.349       0.000       0.350 </div><div class='input'><span class='fu'><a href='parms.html'>parms</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#>       parent_0       k_parent           k_m1 f_parent_to_m1          sigma  +#>       0.350       0.001       0.351 </div><div class='input'><span class='fu'><a href='parms.html'>parms</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#>       parent_0       k_parent           k_m1 f_parent_to_m1          sigma   #>   99.598480759    0.098697739    0.005260651    0.514475958    3.125503874 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> $ff  #>   parent_m1 parent_sink   #>    0.514476    0.485524  @@ -622,12 +627,12 @@ estimators.</p>  <span class='no'>fit.SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='no'>fit.SFORB</span>$<span class='no'>bparms.ode</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#> <span class='warning'>Warning: Initial parameter(s) k_parent_free_sink not used in the model</span></div><div class='input'><span class='co'># }</span>  <span class='co'># \dontrun{</span> -<span class='co'># Weighted fits, including IRLS</span> +<span class='co'># Weighted fits, including IRLS (error_model = "obs")</span>  <span class='no'>SFO_SFO.ff</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>), -                      <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>f.noweight</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.noweight</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50  +                      <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>f.noweight</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.noweight</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50.1   #> R version used for fitting:       4.0.0  -#> Date of fit:     Mon May 11 05:14:31 2020  -#> Date of summary: Mon May 11 05:14:31 2020  +#> Date of fit:     Tue May 12 08:36:12 2020  +#> Date of summary: Tue May 12 08:36:12 2020   #>   #> Equations:  #> d_parent/dt = - k_parent * parent @@ -635,7 +640,7 @@ estimators.</p>  #>   #> Model predictions using solution type analytical   #>  -#> Fitted using 421 model solutions performed in 0.124 s +#> Fitted using 421 model solutions performed in 0.146 s  #>   #> Error model: Constant variance   #>  @@ -746,10 +751,10 @@ estimators.</p>  #>   100       m1    31.04  31.98163 -9.416e-01  #>   100       m1    33.13  31.98163  1.148e+00  #>   120       m1    25.15  28.78984 -3.640e+00 -#>   120       m1    33.31  28.78984  4.520e+00</div><div class='input'><span class='no'>f.obs</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.obs</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50  +#>   120       m1    33.31  28.78984  4.520e+00</div><div class='input'><span class='no'>f.obs</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.obs</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50.1   #> R version used for fitting:       4.0.0  -#> Date of fit:     Mon May 11 05:14:32 2020  -#> Date of summary: Mon May 11 05:14:32 2020  +#> Date of fit:     Tue May 12 08:36:13 2020  +#> Date of summary: Tue May 12 08:36:13 2020   #>   #> Equations:  #> d_parent/dt = - k_parent * parent @@ -757,7 +762,7 @@ estimators.</p>  #>   #> Model predictions using solution type analytical   #>  -#> Fitted using 978 model solutions performed in 0.336 s +#> Fitted using 978 model solutions performed in 0.337 s  #>   #> Error model: Variance unique to each observed variable   #>  @@ -883,10 +888,10 @@ estimators.</p>  #>   100       m1    31.04  31.98773 -9.477e-01  #>   100       m1    33.13  31.98773  1.142e+00  #>   120       m1    25.15  28.80429 -3.654e+00 -#>   120       m1    33.31  28.80429  4.506e+00</div><div class='input'><span class='no'>f.tc</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"tc"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.tc</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50  +#>   120       m1    33.31  28.80429  4.506e+00</div><div class='input'><span class='no'>f.tc</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"tc"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.tc</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.50.1   #> R version used for fitting:       4.0.0  -#> Date of fit:     Mon May 11 05:14:32 2020  -#> Date of summary: Mon May 11 05:14:32 2020  +#> Date of fit:     Tue May 12 08:36:14 2020  +#> Date of summary: Tue May 12 08:36:14 2020   #>   #> Equations:  #> d_parent/dt = - k_parent * parent @@ -894,7 +899,7 @@ estimators.</p>  #>   #> Model predictions using solution type analytical   #>  -#> Fitted using 1875 model solutions performed in 0.642 s +#> Fitted using 1875 model solutions performed in 0.647 s  #>   #> Error model: Two-component variance function   #>  | 
