diff options
Diffstat (limited to 'inst/web/vignettes')
-rw-r--r-- | inst/web/vignettes/FOCUS_D.html | 4 | ||||
-rw-r--r-- | inst/web/vignettes/FOCUS_L.html | 4 | ||||
-rw-r--r-- | inst/web/vignettes/FOCUS_Z.pdf | bin | 224775 -> 224838 bytes | |||
-rw-r--r-- | inst/web/vignettes/compiled_models.html | 85 | ||||
-rw-r--r-- | inst/web/vignettes/mkin.pdf | bin | 160268 -> 160269 bytes |
5 files changed, 52 insertions, 41 deletions
diff --git a/inst/web/vignettes/FOCUS_D.html b/inst/web/vignettes/FOCUS_D.html index 557ceb03..d9fc6e18 100644 --- a/inst/web/vignettes/FOCUS_D.html +++ b/inst/web/vignettes/FOCUS_D.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-11-09" /> +<meta name="date" content="2015-11-13" /> <title>Example evaluation of FOCUS Example Dataset D</title> @@ -64,7 +64,7 @@ img { <div id="header"> <h1 class="title">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-11-09</em></h4> +<h4 class="date"><em>2015-11-13</em></h4> </div> diff --git a/inst/web/vignettes/FOCUS_L.html b/inst/web/vignettes/FOCUS_L.html index 9bb60153..9584aee5 100644 --- a/inst/web/vignettes/FOCUS_L.html +++ b/inst/web/vignettes/FOCUS_L.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-11-09" /> +<meta name="date" content="2015-11-13" /> <title>Example evaluation of FOCUS Laboratory Data L1 to L3</title> @@ -65,7 +65,7 @@ img { <div id="header"> <h1 class="title">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-11-09</em></h4> +<h4 class="date"><em>2015-11-13</em></h4> </div> <div id="TOC"> diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf Binary files differindex 31480019..1d08173a 100644 --- a/inst/web/vignettes/FOCUS_Z.pdf +++ b/inst/web/vignettes/FOCUS_Z.pdf diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html index 7722d95a..c7f4fbea 100644 --- a/inst/web/vignettes/compiled_models.html +++ b/inst/web/vignettes/compiled_models.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-11-09" /> +<meta name="date" content="2015-11-13" /> <title>Performance benefit by using compiled model definitions in mkin</title> @@ -65,7 +65,7 @@ img { <div id="header"> <h1 class="title">Performance benefit by using compiled model definitions in mkin</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-11-09</em></h4> +<h4 class="date"><em>2015-11-13</em></h4> </div> <div id="TOC"> @@ -89,28 +89,36 @@ SFO_SFO <- mkinmod( <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> <p>We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the microbenchmark package.</p> <pre class="r"><code>library("microbenchmark") +library("ggplot2") mb.1 <- microbenchmark( - mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", use_compiled = FALSE, - quiet = TRUE), - mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE), - mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", quiet = TRUE), + "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "deSolve", + use_compiled = FALSE, quiet = TRUE), + "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "eigen", quiet = TRUE), + "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "deSolve", quiet = TRUE), times = 3, control = list(warmup = 1)) -smb.1 <- summary(mb.1)[-1] -rownames(smb.1) <- c("deSolve, not compiled", "Eigenvalue based", "deSolve, compiled") -print(smb.1)</code></pre> -<pre><code>## min lq mean median uq -## deSolve, not compiled 9442.5119 9447.2060 9458.3420 9451.9001 9466.2571 -## Eigenvalue based 868.6312 872.4552 895.3422 876.2792 908.6977 -## deSolve, compiled 691.9663 697.5653 701.1004 703.1643 705.6674 -## max neval cld -## deSolve, not compiled 9480.6141 3 c -## Eigenvalue based 941.1163 3 b -## deSolve, compiled 708.1706 3 a</code></pre> -<p>We see that using the compiled model is by a factor of 13.4 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> -<pre class="r"><code>smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> + +smb.1 <- summary(mb.1) +print(mb.1)</code></pre> +<pre><code>## Unit: milliseconds +## expr min lq mean median uq +## deSolve, not compiled 9538.4007 9570.3211 9605.6503 9602.2416 9639.2752 +## Eigenvalue based 881.9438 885.9337 901.1558 889.9236 910.7618 +## deSolve, compiled 692.0913 695.6109 697.9629 699.1304 700.8987 +## max neval cld +## 9676.3087 3 c +## 931.5999 3 b +## 702.6669 3 a</code></pre> +<pre class="r"><code>autoplot(mb.1)</code></pre> +<p><img src="" title alt width="672" /></p> +<p>We see that using the compiled model is by a factor of 13.7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<pre class="r"><code>rownames(smb.1) <- smb.1$expr +smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> <pre><code>## median -## deSolve, not compiled 13.441951 -## Eigenvalue based 1.246194 +## deSolve, not compiled 13.734549 +## Eigenvalue based 1.272901 ## deSolve, compiled 1.000000</code></pre> </div> <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -121,24 +129,27 @@ print(smb.1)</code></pre> m1 = mkinsub( "SFO"))</code></pre> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> <pre class="r"><code>mb.2 <- microbenchmark( - mkinfit(FOMC_SFO, FOCUS_2006_D, use_compiled = FALSE, quiet = TRUE), - mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), + "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, + use_compiled = FALSE, quiet = TRUE), + "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), times = 3, control = list(warmup = 1)) -smb.2 <- summary(mb.2)[-1] -rownames(smb.2) <- c("deSolve, not compiled", "deSolve, compiled") -print(smb.2)</code></pre> -<pre><code>## min lq mean median uq -## deSolve, not compiled 20.444632 20.48824 20.557595 20.531857 20.614077 -## deSolve, compiled 1.251733 1.25179 1.275227 1.251846 1.286973 -## max neval cld -## deSolve, not compiled 20.6963 3 b -## deSolve, compiled 1.3221 3 a</code></pre> +smb.2 <- summary(mb.2) +print(mb.2)</code></pre> +<pre><code>## Unit: seconds +## expr min lq mean median uq +## deSolve, not compiled 20.475764 20.494740 20.507391 20.513716 20.523205 +## deSolve, compiled 1.244022 1.244327 1.261983 1.244631 1.270963 +## max neval cld +## 20.532695 3 b +## 1.297295 3 a</code></pre> <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> -<pre><code>## median -## deSolve, not compiled 16.40126 -## deSolve, compiled 1.00000</code></pre> -<p>Here we get a performance benefit of a factor of 16.4 using the version of the differential equation model compiled from C code using the inline package!</p> -<p>This vignette was built with mkin 0.9.41 on</p> +<pre><code>## median +## 1 NA +## 2 NA</code></pre> +<pre class="r"><code>autoplot(mb.2)</code></pre> +<p><img src="" title alt width="672" /></p> +<p>Here we get a performance benefit of a factor of 16.5 using the version of the differential equation model compiled from C code using the inline package!</p> +<p>This vignette was built with mkin 0.9.41.9000 on</p> <pre><code>## R version 3.2.2 (2015-08-14) ## Platform: x86_64-pc-linux-gnu (64-bit) ## Running under: Debian GNU/Linux 8 (jessie)</code></pre> diff --git a/inst/web/vignettes/mkin.pdf b/inst/web/vignettes/mkin.pdf Binary files differindex 9f9f9af0..e9ee9ed1 100644 --- a/inst/web/vignettes/mkin.pdf +++ b/inst/web/vignettes/mkin.pdf |