aboutsummaryrefslogtreecommitdiff
path: root/inst/web/vignettes
diff options
context:
space:
mode:
Diffstat (limited to 'inst/web/vignettes')
-rw-r--r--inst/web/vignettes/FOCUS_D.html6
-rw-r--r--inst/web/vignettes/FOCUS_L.html40
-rw-r--r--inst/web/vignettes/FOCUS_Z.pdfbin238636 -> 238632 bytes
-rw-r--r--inst/web/vignettes/compiled_models.html32
4 files changed, 39 insertions, 39 deletions
diff --git a/inst/web/vignettes/FOCUS_D.html b/inst/web/vignettes/FOCUS_D.html
index d02b1b61..9e19315d 100644
--- a/inst/web/vignettes/FOCUS_D.html
+++ b/inst/web/vignettes/FOCUS_D.html
@@ -192,8 +192,8 @@ print(FOCUS_2006_D)</code></pre>
<pre class="r"><code>summary(fit)</code></pre>
<pre><code>## mkin version: 0.9.44.9000
## R version: 3.3.1
-## Date of fit: Sat Sep 10 04:13:37 2016
-## Date of summary: Sat Sep 10 04:13:38 2016
+## Date of fit: Sat Sep 10 05:20:59 2016
+## Date of summary: Sat Sep 10 05:20:59 2016
##
## Equations:
## d_parent = - k_parent_sink * parent - k_parent_m1 * parent
@@ -201,7 +201,7 @@ print(FOCUS_2006_D)</code></pre>
##
## Model predictions using solution type deSolve
##
-## Fitted with method Port using 153 model solutions performed in 0.643 s
+## Fitted with method Port using 153 model solutions performed in 0.641 s
##
## Weighting: none
##
diff --git a/inst/web/vignettes/FOCUS_L.html b/inst/web/vignettes/FOCUS_L.html
index 10d1eb01..8223a3f4 100644
--- a/inst/web/vignettes/FOCUS_L.html
+++ b/inst/web/vignettes/FOCUS_L.html
@@ -236,15 +236,15 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
summary(m.L1.SFO)</code></pre>
<pre><code>## mkin version: 0.9.44.9000
## R version: 3.3.1
-## Date of fit: Sat Sep 10 04:13:38 2016
-## Date of summary: Sat Sep 10 04:13:38 2016
+## Date of fit: Sat Sep 10 05:20:59 2016
+## Date of summary: Sat Sep 10 05:20:59 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.086 s
+## Fitted with method Port using 37 model solutions performed in 0.09 s
##
## Weighting: none
##
@@ -329,8 +329,8 @@ summary(m.L1.SFO)</code></pre>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.44.9000
## R version: 3.3.1
-## Date of fit: Sat Sep 10 04:13:39 2016
-## Date of summary: Sat Sep 10 04:13:39 2016
+## Date of fit: Sat Sep 10 05:21:00 2016
+## Date of summary: Sat Sep 10 05:21:00 2016
##
##
## Warning: Optimisation by method Port did not converge.
@@ -342,7 +342,7 @@ summary(m.L1.SFO)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 188 model solutions performed in 0.443 s
+## Fitted with method Port using 188 model solutions performed in 0.441 s
##
## Weighting: none
##
@@ -426,8 +426,8 @@ plot(m.L2.FOMC, show_residuals = TRUE,
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.44.9000
## R version: 3.3.1
-## Date of fit: Sat Sep 10 04:13:40 2016
-## Date of summary: Sat Sep 10 04:13:40 2016
+## Date of fit: Sat Sep 10 05:21:01 2016
+## Date of summary: Sat Sep 10 05:21:01 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -496,8 +496,8 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.44.9000
## R version: 3.3.1
-## Date of fit: Sat Sep 10 04:13:41 2016
-## Date of summary: Sat Sep 10 04:13:41 2016
+## Date of fit: Sat Sep 10 05:21:02 2016
+## Date of summary: Sat Sep 10 05:21:02 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -506,7 +506,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 0.797 s
+## Fitted with method Port using 336 model solutions performed in 0.899 s
##
## Weighting: none
##
@@ -585,8 +585,8 @@ plot(mm.L3)</code></pre>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
<pre><code>## mkin version: 0.9.44.9000
## R version: 3.3.1
-## Date of fit: Sat Sep 10 04:13:42 2016
-## Date of summary: Sat Sep 10 04:13:42 2016
+## Date of fit: Sat Sep 10 05:21:03 2016
+## Date of summary: Sat Sep 10 05:21:03 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -595,7 +595,7 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.326 s
+## Fitted with method Port using 137 model solutions performed in 0.403 s
##
## Weighting: none
##
@@ -685,15 +685,15 @@ plot(mm.L4)</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.44.9000
## R version: 3.3.1
-## Date of fit: Sat Sep 10 04:13:42 2016
-## Date of summary: Sat Sep 10 04:13:42 2016
+## Date of fit: Sat Sep 10 05:21:04 2016
+## Date of summary: Sat Sep 10 05:21:04 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.106 s
+## Fitted with method Port using 46 model solutions performed in 0.109 s
##
## Weighting: none
##
@@ -745,15 +745,15 @@ plot(mm.L4)</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.44.9000
## R version: 3.3.1
-## Date of fit: Sat Sep 10 04:13:42 2016
-## Date of summary: Sat Sep 10 04:13:43 2016
+## Date of fit: Sat Sep 10 05:21:04 2016
+## Date of summary: Sat Sep 10 05:21:04 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.15 s
+## Fitted with method Port using 66 model solutions performed in 0.152 s
##
## Weighting: none
##
diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf
index 27b9951d..85e50e65 100644
--- a/inst/web/vignettes/FOCUS_Z.pdf
+++ b/inst/web/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html
index 004a808c..212b1abb 100644
--- a/inst/web/vignettes/compiled_models.html
+++ b/inst/web/vignettes/compiled_models.html
@@ -251,21 +251,21 @@ mb.1 &lt;- microbenchmark(
print(mb.1)</code></pre>
<pre><code>## Unit: milliseconds
## expr min lq mean median uq
-## deSolve, not compiled 6507.8296 6549.5160 6597.4319 6591.2024 6642.2330
-## Eigenvalue based 890.5249 917.6589 928.4907 944.7928 947.4735
-## deSolve, compiled 735.4908 742.0363 749.3996 748.5817 756.3540
+## deSolve, not compiled 6410.2240 6437.0229 6461.3866 6463.8218 6486.9680
+## Eigenvalue based 887.5697 915.3026 929.6279 943.0355 950.6570
+## deSolve, compiled 737.4060 745.6645 749.1956 753.9229 755.0903
## max neval cld
-## 6693.2636 3 c
-## 950.1543 3 b
-## 764.1264 3 a</code></pre>
+## 6510.1142 3 c
+## 958.2786 3 b
+## 756.2578 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" width="672" /></p>
-<p>We see that using the compiled model is by a factor of 8.8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" width="672" /></p>
+<p>We see that using the compiled model is by a factor of 8.6 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 8.804921
-## Eigenvalue based 1.262110
+## deSolve, not compiled 8.573584
+## Eigenvalue based 1.250838
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -286,18 +286,18 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
<pre class="r"><code>smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 13.741831 13.74759 13.815509 13.753350 13.852348
-## deSolve, compiled 1.358402 1.35862 1.368666 1.358838 1.373798
+## expr min lq mean median uq
+## deSolve, not compiled 13.370040 13.424534 13.501075 13.479027 13.56659
+## deSolve, compiled 1.336599 1.336707 1.339399 1.336815 1.34080
## max neval cld
-## 13.951345 3 b
-## 1.388759 3 a</code></pre>
+## 13.654158 3 b
+## 1.344784 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" width="672" /></p>
+<p><img src="" width="672" /></p>
<p>Here we get a performance benefit of a factor of 10.1 using the version of the differential equation model compiled from C code!</p>
<p>This vignette was built with mkin 0.9.44.9000 on</p>
<pre><code>## R version 3.3.1 (2016-06-21)

Contact - Imprint