diff options
Diffstat (limited to 'man/ilr.Rd')
-rw-r--r-- | man/ilr.Rd | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/man/ilr.Rd b/man/ilr.Rd new file mode 100644 index 00000000..fef0d29f --- /dev/null +++ b/man/ilr.Rd @@ -0,0 +1,62 @@ +\name{ilr} +\alias{ilr} +\alias{invilr} +\title{ + Function to perform isotropic log-ratio transformation +} +\description{ + This implementation is a special case of the class of isotropic log-ratio transformations. +} +\usage{ + ilr(x) + invilr(x) +} +\arguments{ + \item{x}{ + A numeric vector. Naturally, the forward transformation is only sensible for + vectors with all elements being greater than zero. + } +} +\details{ +} +\value{ + The result of the forward or backward transformation. The returned components always + sum to 1 for the case of the inverse log-ratio transformation. +} +\references{ +%% ~put references to the literature/web site here ~ +} +\author{ + René Lehmann and Johannes Ranke +} +\note{ +%% ~~further notes~~ +} + +\seealso{ + Other implementations are in R packages \code{compositions} and \code{robCompositions}. +} +\examples{ +# Order matters +ilr(c(0.1, 1, 10)) +ilr(c(10, 1, 0.1)) +# Equal entries give ilr transformations with zeros as elements +ilr(c(3, 3, 3)) +# Almost equal entries give small numbers +ilr(c(0.3, 0.4, 0.3)) +# Only the ration between the numbers counts, not their sum +invilr(ilr(c(0.7, 0.29, 0.01))) +invilr(ilr(2.1 * c(0.7, 0.29, 0.01))) +# Inverse transformation of larger numbers gives unequal elements +invilr(-10) +invilr(c(-10, 0)) +# The sum of the elements of the inverse ilr is 1 +sum(invilr(c(-10, 0))) +# This is why we do not need all elements of the inverse transformation to go back: +a <- c(0.1, 0.3, 0.5) +b <- invilr(a) +length(b) # Four elements +ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5) +} + +\keyword{ manip } |