diff options
Diffstat (limited to 'man')
-rw-r--r-- | man/mkinerrplot.Rd | 2 | ||||
-rw-r--r-- | man/mkinfit.Rd | 40 | ||||
-rw-r--r-- | man/plot.mkinfit.Rd | 2 |
3 files changed, 44 insertions, 0 deletions
diff --git a/man/mkinerrplot.Rd b/man/mkinerrplot.Rd index 4cbb5eb7..3b557b0a 100644 --- a/man/mkinerrplot.Rd +++ b/man/mkinerrplot.Rd @@ -68,8 +68,10 @@ \code{\link{mkinplot}}, for a way to plot the data and the fitted lines of the mkinfit object. } \examples{ +\dontrun{ model <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO")) fit <- mkinfit(model, FOCUS_2006_D, error_model = "tc", quiet = TRUE) mkinerrplot(fit) } +} \keyword{ hplot } diff --git a/man/mkinfit.Rd b/man/mkinfit.Rd index 78a53ee0..975eace8 100644 --- a/man/mkinfit.Rd +++ b/man/mkinfit.Rd @@ -31,6 +31,8 @@ mkinfit(mkinmod, observed, quiet = FALSE, atol = 1e-8, rtol = 1e-10, n.outtimes = 100, error_model = c("const", "obs", "tc"), + error_model_algorithm = c("d_3", "direct", "twostep", "threestep", "fourstep", "IRLS"), + reweight.tol = 1e-8, reweight.max.iter = 10, trace_parms = FALSE, ...) } \arguments{ @@ -171,6 +173,44 @@ mkinfit(mkinmod, observed, errors follow a lognormal distribution for large values, not a normal distribution as assumed by this method. } + \item{error_model_algorithm}{ + If the error model is "const", the error model algorithm is ignored, + because no special algorithm is needed and unweighted (also known as + ordinary) least squares fitting can be applied. + + The default algorithm "d_3" will directly minimize the negative + log-likelihood and - independently - also use the three step algorithm + described below. The fit with the higher likelihood is returned. + + The algorithm "direct" will directly minimize the negative + log-likelihood. + + The algorithm "twostep" will minimize the negative log-likelihood + after an initial unweighted leas squares optimisation step. + + The algorithm "threestep" starts with unweighted least squares, + then optimizes only the error model using the degradation model + parameters found, and then minimizes the negative log-likelihood + with free degradation and error model parameters. + + The algorithm "fourstep" starts with unweighted least squares, + then optimizes only the error model using the degradation model + parameters found, then optimizes the degradation model again + with fixed error model parameters, and finally minimizes the negative + log-likelihood with free degradation and error model parameters. + + The algorithm "IRLS" starts with unweighted least squares, + and then iterates optimization of the error model parameters and subsequent + optimization of the degradation model using those error model parameters, + until the error model parameters converge. + } + \item{reweight.tol}{ + Tolerance for the convergence criterion calculated from the error model + parameters in IRLS fits. + } + \item{reweight.max.iter}{ + Maximum number of iterations in IRLS fits. + } \item{trace_parms}{ Should a trace of the parameter values be listed? } diff --git a/man/plot.mkinfit.Rd b/man/plot.mkinfit.Rd index 9514c5e5..5e20ad90 100644 --- a/man/plot.mkinfit.Rd +++ b/man/plot.mkinfit.Rd @@ -115,6 +115,7 @@ plot_sep(fit, sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE, \dots) \examples{ # One parent compound, one metabolite, both single first order, path from # parent to sink included +\dontrun{ SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1", full = "Parent"), m1 = mkinsub("SFO", full = "Metabolite M1" )) fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE, error_model = "tc") @@ -136,6 +137,7 @@ plot_sep(fit, lpos = c("topright", "bottomright")) plot(fit, sep_obs = TRUE, show_errplot = TRUE, lpos = c("topright", "bottomright"), show_errmin = TRUE) } +} \author{ Johannes Ranke } |