diff options
Diffstat (limited to 'man')
-rw-r--r-- | man/dimethenamid_2018.Rd | 71 |
1 files changed, 36 insertions, 35 deletions
diff --git a/man/dimethenamid_2018.Rd b/man/dimethenamid_2018.Rd index 0d1265be..6c28ab7b 100644 --- a/man/dimethenamid_2018.Rd +++ b/man/dimethenamid_2018.Rd @@ -42,42 +42,43 @@ dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]]) dmta_ds[["Elliot 1"]] <- NULL dmta_ds[["Elliot 2"]] <- NULL \dontrun{ -dfop_sfo3_plus <- mkinmod( - DMTA = mkinsub("DFOP", c("M23", "M27", "M31")), - M23 = mkinsub("SFO"), - M27 = mkinsub("SFO"), - M31 = mkinsub("SFO", "M27", sink = FALSE), - quiet = TRUE +# We don't use DFOP for the parent compound, as this gives numerical +# instabilities in the fits +sfo_sfo3p <- mkinmod( + DMTA = mkinsub("SFO", c("M23", "M27", "M31")), + M23 = mkinsub("SFO"), + M27 = mkinsub("SFO"), + M31 = mkinsub("SFO", "M27", sink = FALSE), + quiet = TRUE ) -f_dmta_mkin_tc <- mmkin( - list("DFOP-SFO3+" = dfop_sfo3_plus), - dmta_ds, quiet = TRUE, error_model = "tc") -nlmixr_model(f_dmta_mkin_tc) -# The focei fit takes about four minutes on my system -system.time( - f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei", - control = nlmixr::foceiControl(print = 500)) -) -summary(f_dmta_nlmixr_focei) -plot(f_dmta_nlmixr_focei) -# Using saemix takes about 18 minutes -system.time( - f_dmta_saemix <- saem(f_dmta_mkin_tc, test_log_parms = TRUE) -) - -# nlmixr with est = "saem" is pretty fast with default iteration numbers, most -# of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end -# The likelihood calculated for the nlmixr fit is much lower than that found by saemix -# Also, the trace plot and the plot of the individual predictions is not -# convincing for the parent. It seems we are fitting an overparameterised -# model, so the result we get strongly depends on starting parameters and control settings. -system.time( - f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem", - control = nlmixr::saemControl(print = 500, logLik = TRUE, nmc = 9)) -) -traceplot(f_dmta_nlmixr_saem$nm) -summary(f_dmta_nlmixr_saem) -plot(f_dmta_nlmixr_saem) +dmta_sfo_sfo3p_tc <- mmkin(list("SFO-SFO3+" = sfo_sfo3p), + dmta_ds, error_model = "tc", quiet = TRUE) +print(dmta_sfo_sfo3p_tc) +# The default (test_log_parms = FALSE) gives an undue +# influence of ill-defined rate constants that have +# extremely small values: +plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = FALSE) +# If we disregards ill-defined rate constants, the results +# look more plausible, but the truth is likely to be in +# between these variants +plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = TRUE) +# Therefore we use nonlinear mixed-effects models +# f_dmta_nlme_tc <- nlme(dmta_sfo_sfo3p_tc) +# nlme reaches maxIter = 50 without convergence +f_dmta_saem_tc <- saem(dmta_sfo_sfo3p_tc) +# I am commenting out the convergence plot as rendering them +# with pkgdown fails (at least without further tweaks to the +# graphics device used) +#saemix::plot(f_dmta_saem_tc$so, plot.type = "convergence") +summary(f_dmta_saem_tc) +# As the confidence interval for the random effects of DMTA_0 +# includes zero, we could try an alternative model without +# such random effects +# f_dmta_saem_tc_2 <- saem(dmta_sfo_sfo3p_tc, +# covariance.model = diag(c(0, rep(1, 7)))) +# saemix::plot(f_dmta_saem_tc_2$so, plot.type = "convergence") +# This does not perform better judged by AIC and BIC +saemix::compare.saemix(f_dmta_saem_tc$so, f_dmta_saem_tc_2$so) } } \keyword{datasets} |