aboutsummaryrefslogtreecommitdiff
path: root/tests/testthat/runit.mkinfit.R
diff options
context:
space:
mode:
Diffstat (limited to 'tests/testthat/runit.mkinfit.R')
-rw-r--r--tests/testthat/runit.mkinfit.R227
1 files changed, 0 insertions, 227 deletions
diff --git a/tests/testthat/runit.mkinfit.R b/tests/testthat/runit.mkinfit.R
deleted file mode 100644
index 8eefb995..00000000
--- a/tests/testthat/runit.mkinfit.R
+++ /dev/null
@@ -1,227 +0,0 @@
-# Copyright (C) 2010-2014 Johannes Ranke
-# Contact: jranke@uni-bremen.de
-
-# This file is part of the R package mkin
-
-# mkin is free software: you can redistribute it and/or modify it under the
-# terms of the GNU General Public License as published by the Free Software
-# Foundation, either version 3 of the License, or (at your option) any later
-# version.
-
-# This program is distributed in the hope that it will be useful, but WITHOUT
-# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
-# details.
-
-# You should have received a copy of the GNU General Public License along with
-# this program. If not, see <http://www.gnu.org/licenses/>
-
-# Test SFO model to a relative tolerance of 1% # {{{
-test.FOCUS_2006_SFO <- function()
-{
- SFO.1 <- mkinmod(parent = list(type = "SFO"))
- SFO.2 <- mkinmod(parent = list(type = "SFO"), use_of_ff = "max")
-
- fit.A.SFO.1 <- mkinfit(SFO.1, FOCUS_2006_A, quiet=TRUE)
- fit.A.SFO.2 <- mkinfit(SFO.2, FOCUS_2006_A, quiet=TRUE)
-
- median.A.SFO <- as.numeric(lapply(subset(FOCUS_2006_SFO_ref_A_to_F, dataset == "A",
- c(M0, k, DT50, DT90)), "median"))
-
- fit.A.SFO.1.r <- as.numeric(c(fit.A.SFO.1$bparms.optim, endpoints(fit.A.SFO.1)$distimes))
- dev.A.SFO.1 <- abs(round(100 * ((median.A.SFO - fit.A.SFO.1.r)/median.A.SFO), digits=1))
- checkIdentical(dev.A.SFO.1 < 1, rep(TRUE, length(dev.A.SFO.1)))
-
- fit.A.SFO.2.r <- as.numeric(c(fit.A.SFO.2$bparms.optim, endpoints(fit.A.SFO.2)$distimes))
- dev.A.SFO.2 <- abs(round(100 * ((median.A.SFO - fit.A.SFO.2.r)/median.A.SFO), digits=1))
- checkIdentical(dev.A.SFO.2 < 1, rep(TRUE, length(dev.A.SFO.2)))
-
- fit.C.SFO.1 <- mkinfit(SFO.1, FOCUS_2006_C, quiet=TRUE)
- fit.C.SFO.2 <- mkinfit(SFO.2, FOCUS_2006_C, quiet=TRUE)
-
- median.C.SFO <- as.numeric(lapply(subset(FOCUS_2006_SFO_ref_A_to_F, dataset == "C",
- c(M0, k, DT50, DT90)), "median"))
-
- fit.C.SFO.1.r <- as.numeric(c(fit.C.SFO.1$bparms.optim, endpoints(fit.C.SFO.1)$distimes))
- dev.C.SFO.1 <- abs(round(100 * ((median.C.SFO - fit.C.SFO.1.r)/median.C.SFO), digits=1))
- checkIdentical(dev.C.SFO.1 < 1, rep(TRUE, length(dev.C.SFO.1)))
-
- fit.C.SFO.2.r <- as.numeric(c(fit.C.SFO.2$bparms.optim, endpoints(fit.C.SFO.2)$distimes))
- dev.C.SFO.2 <- abs(round(100 * ((median.C.SFO - fit.C.SFO.2.r)/median.C.SFO), digits=1))
- checkIdentical(dev.C.SFO.2 < 1, rep(TRUE, length(dev.C.SFO.2)))
-} # }}}
-
-# Test FOMC model to a relative tolerance of 1% {{{
-# See kinfit vignette for a discussion of FOMC fits to FOCUS_2006_A
-# In this case, only M0, DT50 and DT90 are checked
-test.FOCUS_2006_FOMC <- function()
-{
- FOMC <- mkinmod(parent = list(type = "FOMC"))
-
- # FOCUS_2006_A (compare kinfit vignette for discussion)
- fit.A.FOMC <- mkinfit(FOMC, FOCUS_2006_A, quiet=TRUE)
-
- median.A.FOMC <- as.numeric(lapply(subset(FOCUS_2006_FOMC_ref_A_to_F, dataset == "A",
- c(M0, alpha, beta, DT50, DT90)), "median"))
-
- fit.A.FOMC.r <- as.numeric(c(fit.A.FOMC$bparms.optim, endpoints(fit.A.FOMC)$distimes[c("DT50", "DT90")]))
- dev.A.FOMC <- abs(round(100 * ((median.A.FOMC - fit.A.FOMC.r)/median.A.FOMC), digits=1))
- dev.A.FOMC <- dev.A.FOMC[c(1, 4, 5)]
- checkIdentical(dev.A.FOMC < 1, rep(TRUE, length(dev.A.FOMC)))
-
- # FOCUS_2006_B
- fit.B.FOMC <- mkinfit(FOMC, FOCUS_2006_B, quiet=TRUE)
-
- median.B.FOMC <- as.numeric(lapply(subset(FOCUS_2006_FOMC_ref_A_to_F, dataset == "B",
- c(M0, alpha, beta, DT50, DT90)), "median"))
-
- fit.B.FOMC.r <- as.numeric(c(fit.B.FOMC$bparms.optim, endpoints(fit.B.FOMC)$distimes[c("DT50", "DT90")]))
- dev.B.FOMC <- abs(round(100 * ((median.B.FOMC - fit.B.FOMC.r)/median.B.FOMC), digits=1))
- dev.B.FOMC <- dev.B.FOMC[c(1, 4, 5)]
- checkIdentical(dev.B.FOMC < 1, rep(TRUE, length(dev.B.FOMC)))
-
- # FOCUS_2006_C
- fit.C.FOMC <- mkinfit(FOMC, FOCUS_2006_C, quiet=TRUE)
-
- median.C.FOMC <- as.numeric(lapply(subset(FOCUS_2006_FOMC_ref_A_to_F, dataset == "C",
- c(M0, alpha, beta, DT50, DT90)), "median"))
-
- fit.C.FOMC.r <- as.numeric(c(fit.C.FOMC$bparms.optim, endpoints(fit.C.FOMC)$distimes[c("DT50", "DT90")]))
- dev.C.FOMC <- abs(round(100 * ((median.C.FOMC - fit.C.FOMC.r)/median.C.FOMC), digits=1))
- dev.C.FOMC <- dev.C.FOMC[c(1, 4, 5)]
- checkIdentical(dev.C.FOMC < 1, rep(TRUE, length(dev.C.FOMC)))
-} # }}}
-
-# Test DFOP model, tolerance of 1% with the exception of f parameter for A {{{
-test.FOCUS_2006_DFOP <- function()
-{
- DFOP <- mkinmod(parent = list(type = "DFOP"))
-
- # FOCUS_2006_A
- # Results were too much dependent on algorithm, as this dataset
- # is pretty much SFO. "Port" gave a lower deviance, but deviated from the
- # median of FOCUS_2006 solutions
-
- # FOCUS_2006_B
- fit.B.DFOP <- mkinfit(DFOP, FOCUS_2006_B, quiet=TRUE)
-
- median.B.DFOP <- as.numeric(lapply(subset(FOCUS_2006_DFOP_ref_A_to_B, dataset == "B",
- c(M0, k1, k2, f, DT50, DT90)), "median"))
-
- fit.B.DFOP.r <- as.numeric(c(fit.B.DFOP$bparms.optim, endpoints(fit.B.DFOP)$distimes[c("DT50", "DT90")]))
- dev.B.DFOP <- abs(round(100 * ((median.B.DFOP - fit.B.DFOP.r)/median.B.DFOP), digits=1))
- # about 0.6% deviation for parameter f, the others are <= 0.1%
- checkIdentical(dev.B.DFOP < 1, rep(TRUE, length(dev.B.DFOP)))
-} # }}}
-
-# Test HS model to a relative tolerance of 1% excluding Mathematica values {{{
-# as they are unreliable
-test.FOCUS_2006_HS <- function()
-{
- HS <- mkinmod(parent = list(type = "HS"))
-
- # FOCUS_2006_A
- fit.A.HS <- mkinfit(HS, FOCUS_2006_A, quiet=TRUE)
-
- median.A.HS <- as.numeric(lapply(subset(FOCUS_2006_HS_ref_A_to_F, dataset == "A",
- c(M0, k1, k2, tb, DT50, DT90)), "median"))
-
- fit.A.HS.r <- as.numeric(c(fit.A.HS$bparms.optim, endpoints(fit.A.HS)$distimes[c("DT50", "DT90")]))
- dev.A.HS <- abs(round(100 * ((median.A.HS - fit.A.HS.r)/median.A.HS), digits=1))
- # about 6.7% deviation for parameter f, the others are < 0.1%
- checkIdentical(dev.A.HS < 1, rep(TRUE, length(dev.A.HS)))
-
- # FOCUS_2006_B
- fit.B.HS <- mkinfit(HS, FOCUS_2006_B, quiet=TRUE)
-
- median.B.HS <- as.numeric(lapply(subset(FOCUS_2006_HS_ref_A_to_F, dataset == "B",
- c(M0, k1, k2, tb, DT50, DT90)), "median"))
-
- fit.B.HS.r <- as.numeric(c(fit.B.HS$bparms.optim, endpoints(fit.B.HS)$distimes[c("DT50", "DT90")]))
- dev.B.HS <- abs(round(100 * ((median.B.HS - fit.B.HS.r)/median.B.HS), digits=1))
- # < 10% deviation for M0, k1, DT50 and DT90, others are problematic
- dev.B.HS <- dev.B.HS[c(1, 2, 5, 6)]
- checkIdentical(dev.B.HS < 10, rep(TRUE, length(dev.B.HS)))
-
- # FOCUS_2006_C
- fit.C.HS <- mkinfit(HS, FOCUS_2006_C, quiet=TRUE)
-
- median.C.HS <- as.numeric(lapply(subset(FOCUS_2006_HS_ref_A_to_F, dataset == "C",
- c(M0, k1, k2, tb, DT50, DT90)), "median"))
-
- fit.C.HS.r <- as.numeric(c(fit.C.HS$bparms.optim, endpoints(fit.C.HS)$distimes[c("DT50", "DT90")]))
- dev.C.HS <- abs(round(100 * ((median.C.HS - fit.C.HS.r)/median.C.HS), digits=1))
- # deviation <= 0.1%
- checkIdentical(dev.C.HS < 1, rep(TRUE, length(dev.C.HS)))
-} # }}}
-
-# Test SFORB model against DFOP solutions to a relative tolerance of 1% # {{{
-test.FOCUS_2006_SFORB <- function()
-{
- SFORB <- mkinmod(parent = list(type = "SFORB"))
-
- # FOCUS_2006_A
- # Again it does not make a lot of sense to use a SFO dataset for this
-
- # FOCUS_2006_B
- fit.B.SFORB.1 <- mkinfit(SFORB, FOCUS_2006_B, quiet=TRUE)
- fit.B.SFORB.2 <- mkinfit(SFORB, FOCUS_2006_B, solution_type = "deSolve", quiet=TRUE)
-
- median.B.SFORB <- as.numeric(lapply(subset(FOCUS_2006_DFOP_ref_A_to_B, dataset == "B",
- c(M0, k1, k2, DT50, DT90)), "median"))
-
- fit.B.SFORB.1.r <- as.numeric(c(
- parent_0 = fit.B.SFORB.1$bparms.optim[[1]],
- k1 = endpoints(fit.B.SFORB.1)$SFORB[[1]],
- k2 = endpoints(fit.B.SFORB.1)$SFORB[[2]],
- endpoints(fit.B.SFORB.1)$distimes[c("DT50", "DT90")]))
- dev.B.SFORB.1 <- abs(round(100 * ((median.B.SFORB - fit.B.SFORB.1.r)/median.B.SFORB), digits=1))
- checkIdentical(dev.B.SFORB.1 < 1, rep(TRUE, length(dev.B.SFORB.1)))
-
- fit.B.SFORB.2.r <- as.numeric(c(
- parent_0 = fit.B.SFORB.2$bparms.optim[[1]],
- k1 = endpoints(fit.B.SFORB.2)$SFORB[[1]],
- k2 = endpoints(fit.B.SFORB.2)$SFORB[[2]],
- endpoints(fit.B.SFORB.2)$distimes[c("DT50", "DT90")]))
- dev.B.SFORB.2 <- abs(round(100 * ((median.B.SFORB - fit.B.SFORB.2.r)/median.B.SFORB), digits=1))
- checkIdentical(dev.B.SFORB.2 < 1, rep(TRUE, length(dev.B.SFORB.2)))
-} # }}}
-
-# Test eigenvalue based fit to Schaefer 2007 data against solution from conference paper {{{
-test.mkinfit.schaefer07_complex_example <- function()
-{
- schaefer07_complex_model <- mkinmod(
- parent = list(type = "SFO", to = c("A1", "B1", "C1"), sink = FALSE),
- A1 = list(type = "SFO", to = "A2"),
- B1 = list(type = "SFO"),
- C1 = list(type = "SFO"),
- A2 = list(type = "SFO"), use_of_ff = "max")
-
- # If we use the default algorithm 'Marq' we need to give a good starting
- # estimate for k_A2 in order to find the solution published by Schaefer et al.
- fit <- mkinfit(schaefer07_complex_model, method.modFit = "Port",
- mkin_wide_to_long(schaefer07_complex_case, time = "time"))
- s <- summary(fit)
- r <- schaefer07_complex_results
- attach(as.list(fit$bparms.optim))
- r$mkin <- c(
- k_parent,
- s$distimes["parent", "DT50"],
- s$ff["parent_A1"],
- k_A1,
- s$distimes["A1", "DT50"],
- s$ff["parent_B1"],
- k_B1,
- s$distimes["B1", "DT50"],
- s$ff["parent_C1"],
- k_C1,
- s$distimes["C1", "DT50"],
- s$ff["A1_A2"],
- k_A2,
- s$distimes["A2", "DT50"])
- r$means <- (r$KinGUI + r$ModelMaker)/2
- r$mkin.deviation <- abs(round(100 * ((r$mkin - r$means)/r$means), digits=1))
- checkIdentical(r$mkin.deviation < 10, rep(TRUE, 14))
-} # }}}
-
-# vim: set foldmethod=marker ts=2 sw=2 expandtab:

Contact - Imprint