diff options
Diffstat (limited to 'tests/testthat/setup_script.R')
-rw-r--r-- | tests/testthat/setup_script.R | 64 |
1 files changed, 64 insertions, 0 deletions
diff --git a/tests/testthat/setup_script.R b/tests/testthat/setup_script.R index 8d8ba3e9..9ec91425 100644 --- a/tests/testthat/setup_script.R +++ b/tests/testthat/setup_script.R @@ -100,3 +100,67 @@ fit_obs_1 <- mkinfit(m_synth_SFO_lin, SFO_lin_a, error_model = "obs", quiet = TR # We know threestep is OK, and threestep (and IRLS) is faster here fit_tc_1 <- mkinfit(m_synth_SFO_lin, SFO_lin_a, error_model = "tc", quiet = TRUE, error_model_algorithm = "threestep") + +# Mixed models data +set.seed(123456) +sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +n <- n_biphasic <- 15 +log_sd <- 0.3 +err_1 = list(const = 1, prop = 0.05) +tc <- function(value) sigma_twocomp(value, err_1$const, err_1$prop) +const <- function(value) 2 + +SFO <- mkinmod(parent = mkinsub("SFO")) +k_parent = rlnorm(n, log(0.03), log_sd) +ds_sfo <- lapply(1:n, function(i) { + ds_mean <- mkinpredict(SFO, c(k_parent = k_parent[i]), + c(parent = 100), sampling_times) + add_err(ds_mean, tc, n = 1)[[1]] +}) + +DFOP <- mkinmod(parent = mkinsub("DFOP")) +dfop_pop <- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4) +dfop_parms <- as.matrix(data.frame( + k1 = rlnorm(n, log(dfop_pop$k1), log_sd), + k2 = rlnorm(n, log(dfop_pop$k2), log_sd), + g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd)))) +ds_dfop <- lapply(1:n, function(i) { + ds_mean <- mkinpredict(DFOP, dfop_parms[i, ], + c(parent = dfop_pop$parent_0), sampling_times) + add_err(ds_mean, const, n = 1)[[1]] +}) + +set.seed(123456) +DFOP_SFO <- mkinmod( + parent = mkinsub("DFOP", "m1"), + m1 = mkinsub("SFO"), + quiet = TRUE) +dfop_sfo_pop <- list(parent_0 = 100, + k_m1 = 0.002, f_parent_to_m1 = 0.5, + k1 = 0.05, k2 = 0.01, g = 0.5) +syn_biphasic_parms <- as.matrix(data.frame( + k1 = rlnorm(n_biphasic, log(dfop_sfo_pop$k1), log_sd), + k2 = rlnorm(n_biphasic, log(dfop_sfo_pop$k2), log_sd), + g = plogis(rnorm(n_biphasic, qlogis(dfop_sfo_pop$g), log_sd)), + f_parent_to_m1 = plogis(rnorm(n_biphasic, + qlogis(dfop_sfo_pop$f_parent_to_m1), log_sd)), + k_m1 = rlnorm(n_biphasic, log(dfop_sfo_pop$k_m1), log_sd))) +ds_biphasic_mean <- lapply(1:n_biphasic, + function(i) { + mkinpredict(DFOP_SFO, syn_biphasic_parms[i, ], + c(parent = 100, m1 = 0), sampling_times) + } +) +ds_biphasic <- lapply(ds_biphasic_mean, function(ds) { + add_err(ds, + sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2), + n = 1, secondary = "m1")[[1]] +}) + +# Mixed model fits +mmkin_sfo_1 <- mmkin("SFO", ds_sfo, quiet = TRUE, error_model = "tc") +sfo_saemix_1 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "saemix") +mmkin_biphasic <- mmkin(list("DFOP-SFO" = DFOP_SFO), ds_biphasic, quiet = TRUE) +nlme_biphasic <- nlme(mmkin_biphasic) +saem_biphasic_m <- saem(mmkin_biphasic, transformations = "mkin", quiet = TRUE) +saem_biphasic_s <- saem(mmkin_biphasic, transformations = "saemix", quiet = TRUE) |