diff options
Diffstat (limited to 'tests/testthat/slow/test_roundtrip_error_parameters.R')
-rw-r--r-- | tests/testthat/slow/test_roundtrip_error_parameters.R | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/tests/testthat/slow/test_roundtrip_error_parameters.R b/tests/testthat/slow/test_roundtrip_error_parameters.R new file mode 100644 index 00000000..97510563 --- /dev/null +++ b/tests/testthat/slow/test_roundtrip_error_parameters.R @@ -0,0 +1,141 @@ +test_that("Reweighting method 'tc' produces reasonable variance estimates", { + + # Check if we can approximately obtain the parameters and the error model + # components that were used in the data generation + + # Parent only + DFOP <- mkinmod(parent = mkinsub("DFOP")) + sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) + parms_DFOP <- c(k1 = 0.2, k2 = 0.02, g = 0.5) + parms_DFOP_optim <- c(parent_0 = 100, parms_DFOP) + + d_DFOP <- mkinpredict(DFOP, + parms_DFOP, c(parent = 100), + sampling_times) + d_2_10 <- add_err(d_DFOP, + sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), + n = 10, reps = 2, digits = 5, LOD = -Inf, seed = 123456) + d_100_1 <- add_err(d_DFOP, + sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), + n = 1, reps = 100, digits = 5, LOD = -Inf, seed = 123456) + + # Per default (on my box where I set NOT_CRAN) use all cores minus one + if (identical(Sys.getenv("NOT_CRAN"), "true")) { + n_cores <- parallel::detectCores() - 1 + } else { + n_cores <- 1 + } + + # We are only allowed one core on travis, but they also set NOT_CRAN=true + if (Sys.getenv("TRAVIS") != "") n_cores = 1 + + # On Windows we would need to make a cluster first + if (Sys.info()["sysname"] == "Windows") n_cores = 1 + + # Unweighted fits + f_2_10 <- mmkin("DFOP", d_2_10, error_model = "const", quiet = TRUE, + cores = n_cores) + parms_2_10 <- apply(sapply(f_2_10, function(x) x$bparms.optim), 1, mean) + parm_errors_2_10 <- (parms_2_10 - parms_DFOP_optim) / parms_DFOP_optim + expect_true(all(abs(parm_errors_2_10) < 0.12)) + + f_2_10_tc <- mmkin("DFOP", d_2_10, error_model = "tc", quiet = TRUE, + cores = n_cores) + parms_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$bparms.optim), 1, mean) + parm_errors_2_10_tc <- (parms_2_10_tc - parms_DFOP_optim) / parms_DFOP_optim + expect_true(all(abs(parm_errors_2_10_tc) < 0.05)) + + tcf_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$errparms), 1, mean, na.rm = TRUE) + + tcf_2_10_error_model_errors <- (tcf_2_10_tc - c(0.5, 0.07)) / c(0.5, 0.07) + expect_true(all(abs(tcf_2_10_error_model_errors) < 0.2)) + + # When we have 100 replicates in the synthetic data, we can roundtrip + # the parameters with < 2% precision + f_tc_100_1 <- mkinfit(DFOP, d_100_1[[1]], error_model = "tc", quiet = TRUE) + parm_errors_100_1 <- (f_tc_100_1$bparms.optim - parms_DFOP_optim) / parms_DFOP_optim + expect_true(all(abs(parm_errors_100_1) < 0.02)) + + tcf_100_1_error_model_errors <- (f_tc_100_1$errparms - c(0.5, 0.07)) / + c(0.5, 0.07) + # We also get a precision of < 2% for the error model components + expect_true(all(abs(tcf_100_1_error_model_errors) < 0.02)) + + # Parent and two metabolites + m_synth_DFOP_lin <- mkinmod(parent = list(type = "DFOP", to = "M1"), + M1 = list(type = "SFO", to = "M2"), + M2 = list(type = "SFO"), use_of_ff = "max", + quiet = TRUE) + sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) + parms_DFOP_lin <- c(k1 = 0.2, k2 = 0.02, g = 0.5, + f_parent_to_M1 = 0.5, k_M1 = 0.3, + f_M1_to_M2 = 0.7, k_M2 = 0.02) + d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin, + parms_DFOP_lin, + c(parent = 100, M1 = 0, M2 = 0), + sampling_times) + parms_DFOP_lin_optim = c(parent_0 = 100, parms_DFOP_lin) + + d_met_2_15 <- add_err(d_synth_DFOP_lin, + sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), + n = 15, reps = 100, digits = 5, LOD = 0.01, seed = 123456) + + # For a single fit, we get a relative error of less than 5% in the error + # model components + f_met_2_tc_e4 <- mkinfit(m_synth_DFOP_lin, d_met_2_15[[1]], quiet = TRUE, + error_model = "tc", error_model_algorithm = "direct") + parm_errors_met_2_tc_e4 <- (f_met_2_tc_e4$errparms - c(0.5, 0.07)) / c(0.5, 0.07) + expect_true(all(abs(parm_errors_met_2_tc_e4) < 0.05)) + + # Doing more takes a lot of computing power + skip_on_travis() + skip_on_cran() + f_met_2_15_tc_e4 <- mmkin(list(m_synth_DFOP_lin), d_met_2_15, quiet = TRUE, + error_model = "tc", cores = n_cores) + + parms_met_2_15_tc_e4 <- apply(sapply(f_met_2_15_tc_e4, function(x) x$bparms.optim), 1, mean) + parm_errors_met_2_15_tc_e4 <- (parms_met_2_15_tc_e4[names(parms_DFOP_lin_optim)] - + parms_DFOP_lin_optim) / parms_DFOP_lin_optim + expect_true(all(abs(parm_errors_met_2_15_tc_e4) < 0.015)) + + tcf_met_2_15_tc <- apply(sapply(f_met_2_15_tc_e4, function(x) x$errparms), 1, mean, na.rm = TRUE) + + tcf_met_2_15_tc_error_model_errors <- (tcf_met_2_15_tc - c(0.5, 0.07)) / + c(0.5, 0.07) + + # Here we get a precision < 10% for retrieving the original error model components + # from 15 datasets + expect_true(all(abs(tcf_met_2_15_tc_error_model_errors) < 0.10)) +}) + +test_that("The different error model fitting methods work for parent fits", { + skip_on_cran() + + f_9_OLS <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data, + quiet = TRUE) + expect_equivalent(round(AIC(f_9_OLS), 2), 137.43) + + f_9_direct <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data, + error_model = "tc", error_model_algorithm = "direct", quiet = TRUE) + expect_equivalent(round(AIC(f_9_direct), 2), 134.94) + + f_9_twostep <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data, + error_model = "tc", error_model_algorithm = "twostep", quiet = TRUE) + expect_equivalent(round(AIC(f_9_twostep), 2), 134.94) + + f_9_threestep <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data, + error_model = "tc", error_model_algorithm = "threestep", quiet = TRUE) + expect_equivalent(round(AIC(f_9_threestep), 2), 139.43) + + f_9_fourstep <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data, + error_model = "tc", error_model_algorithm = "fourstep", quiet = TRUE) + expect_equivalent(round(AIC(f_9_fourstep), 2), 139.43) + + f_9_IRLS <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data, + error_model = "tc", error_model_algorithm = "IRLS", quiet = TRUE) + expect_equivalent(round(AIC(f_9_IRLS), 2), 139.43) + + f_9_d_3 <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data, + error_model = "tc", error_model_algorithm = "d_3", quiet = TRUE) + expect_equivalent(round(AIC(f_9_d_3), 2), 134.94) +}) |