aboutsummaryrefslogtreecommitdiff
path: root/tests/testthat/slow
diff options
context:
space:
mode:
Diffstat (limited to 'tests/testthat/slow')
-rw-r--r--tests/testthat/slow/test_parent_only.R218
-rw-r--r--tests/testthat/slow/test_roundtrip_error_parameters.R141
2 files changed, 359 insertions, 0 deletions
diff --git a/tests/testthat/slow/test_parent_only.R b/tests/testthat/slow/test_parent_only.R
new file mode 100644
index 00000000..7521e145
--- /dev/null
+++ b/tests/testthat/slow/test_parent_only.R
@@ -0,0 +1,218 @@
+# Copyright (C) 2015,2018 Johannes Ranke
+# Contact: jranke@uni-bremen.de
+
+# This file is part of the R package mkin
+
+# mkin is free software: you can redistribute it and/or modify it under the
+# terms of the GNU General Public License as published by the Free Software
+# Foundation, either version 3 of the License, or (at your option) any later
+# version.
+
+# This program is distributed in the hope that it will be useful, but WITHOUT
+# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+# details.
+
+# You should have received a copy of the GNU General Public License along with
+# this program. If not, see <http://www.gnu.org/licenses/>
+
+context("Fitting of parent only models")
+
+calc_dev.percent <- function(fitlist, reference, endpoints = TRUE, round_results = NULL) {
+ dev.percent <- list()
+ for (i in 1:length(fitlist)) {
+ fit <- fitlist[[i]]
+ if (endpoints) {
+ results <- c(fit$bparms.optim,
+ endpoints(fit)$distimes$DT50,
+ endpoints(fit)$distimes$DT90)
+ } else {
+ results <- fit$bparms.optim
+ }
+ if (!missing(round_results)) results <- round(results, round_results)
+ dev.percent[[i]] <- abs(100 * ((reference - results)/reference))
+ }
+ return(dev.percent)
+}
+
+SFO <- mkinmod(parent = list(type = "SFO"))
+FOMC <- mkinmod(parent = list(type = "FOMC"))
+DFOP <- mkinmod(parent = list(type = "DFOP"))
+HS <- mkinmod(parent = list(type = "HS"))
+SFORB <- mkinmod(parent = list(type = "SFORB"))
+
+test_that("Fits for FOCUS A deviate less than 0.1% from median of values from FOCUS report", {
+ fit.A.SFO <- list(mkinfit("SFO", FOCUS_2006_A, quiet = TRUE))
+
+ median.A.SFO <- as.numeric(lapply(subset(FOCUS_2006_SFO_ref_A_to_F,
+ dataset == "A",
+ c(M0, k, DT50, DT90)), "median"))
+
+ dev.percent.A.SFO <- calc_dev.percent(fit.A.SFO, median.A.SFO)
+ expect_equivalent(dev.percent.A.SFO[[1]] < 0.1, rep(TRUE, 4))
+
+ # Fitting FOCUS A with FOMC is possible, but the correlation between
+ # alpha and beta, when obtained, is 1.0000, and the fit does not
+ # always converge using the Port algorithm (platform dependent), so
+ # we need to suppress a potential warning
+ suppressWarnings(fit.A.FOMC <- try(list(mkinfit("FOMC", FOCUS_2006_A, quiet = TRUE))))
+
+ if (!inherits(fit.A.FOMC, "try-error")) {
+
+ median.A.FOMC <- as.numeric(lapply(subset(FOCUS_2006_FOMC_ref_A_to_F,
+ dataset == "A",
+ c(M0, alpha, beta, DT50, DT90)), "median"))
+
+ dev.percent.A.FOMC <- calc_dev.percent(fit.A.FOMC, median.A.FOMC)
+ # alpha and are beta ill-determined, do not compare those
+ expect_equivalent(dev.percent.A.FOMC[[1]][c(1, 4, 5)] < 0.1, rep(TRUE, 3))
+ }
+
+ fit.A.DFOP <- list(mkinfit("DFOP", FOCUS_2006_A, quiet = TRUE))
+
+ median.A.DFOP <- as.numeric(lapply(subset(FOCUS_2006_DFOP_ref_A_to_B,
+ dataset == "A",
+ c(M0, k1, k2, f, DT50, DT90)), "median"))
+
+ dev.percent.A.DFOP <- calc_dev.percent(fit.A.DFOP, median.A.DFOP)
+ #expect_equivalent(dev.percent.A.DFOP[[1]] < 0.1, rep(TRUE, 6)) # g/f is ill-determined
+ expect_equivalent(dev.percent.A.DFOP[[1]][c(1, 2, 3, 5, 6)] < 0.1, rep(TRUE, 5))
+
+ fit.A.HS <- list(mkinfit("HS", FOCUS_2006_A, quiet = TRUE))
+
+ median.A.HS <- as.numeric(lapply(subset(FOCUS_2006_HS_ref_A_to_F,
+ dataset == "A",
+ c(M0, k1, k2, tb, DT50, DT90)), "median"))
+
+ dev.percent.A.HS <- calc_dev.percent(fit.A.HS, median.A.HS)
+ expect_equivalent(dev.percent.A.HS[[1]] < 0.1, rep(TRUE, 6))
+})
+
+test_that("Fits for FOCUS B deviate less than 0.1% from median of values from FOCUS report", {
+ skip_on_cran()
+ fit.B.SFO <- list(mkinfit("SFO", FOCUS_2006_B, quiet = TRUE))
+
+ median.B.SFO <- as.numeric(lapply(subset(FOCUS_2006_SFO_ref_A_to_F,
+ dataset == "B",
+ c(M0, k, DT50, DT90)), "median"))
+
+ dev.percent.B.SFO <- calc_dev.percent(fit.B.SFO, median.B.SFO)
+ expect_equivalent(dev.percent.B.SFO[[1]] < 0.1, rep(TRUE, 4))
+
+ fit.B.FOMC <- list(mkinfit("FOMC", FOCUS_2006_B, quiet = TRUE))
+
+ median.B.FOMC <- as.numeric(lapply(subset(FOCUS_2006_FOMC_ref_A_to_F,
+ dataset == "B",
+ c(M0, alpha, beta, DT50, DT90)), "median"))
+
+ dev.percent.B.FOMC <- calc_dev.percent(fit.B.FOMC, median.B.FOMC)
+ expect_equivalent(dev.percent.B.FOMC[[1]] < 0.1, rep(TRUE, 5))
+
+ fit.B.DFOP <- list(mkinfit("DFOP", FOCUS_2006_B, quiet = TRUE))
+
+ median.B.DFOP <- as.numeric(lapply(subset(FOCUS_2006_DFOP_ref_A_to_B,
+ dataset == "B",
+ c(M0, k1, k2, f, DT50, DT90)), "median"))
+
+ dev.percent.B.DFOP <- calc_dev.percent(fit.B.DFOP, median.B.DFOP)
+ #expect_equivalent(dev.percent.B.DFOP[[1]] < 0.1, rep(TRUE, 6)) # g/f is ill-determined
+ expect_equivalent(dev.percent.B.DFOP[[1]][c(1, 2, 3, 5, 6)] < 0.1, rep(TRUE, 5))
+
+ fit.B.HS <- list(mkinfit("HS", FOCUS_2006_B, quiet = TRUE))
+
+ median.B.HS <- as.numeric(lapply(subset(FOCUS_2006_HS_ref_A_to_F,
+ dataset == "B",
+ c(M0, k1, k2, tb, DT50, DT90)),
+ "median", na.rm = TRUE))
+
+ dev.percent.B.HS <- calc_dev.percent(fit.B.HS, median.B.HS)
+ expect_equivalent(dev.percent.B.HS[[1]] < 0.1, rep(TRUE, 6))
+
+ fit.B.SFORB <- list(mkinfit(SFORB, FOCUS_2006_B, quiet=TRUE))
+ dev.percent.B.SFORB <- calc_dev.percent(fit.B.SFORB, median.B.DFOP)
+ expect_equivalent(dev.percent.B.SFORB[[1]][c(1, 5, 6)] < 0.1, rep(TRUE, 3))
+})
+
+test_that("Fits for FOCUS C deviate less than 0.1% from median of values from FOCUS report", {
+ fit.C.SFO <- list(mkinfit("SFO", FOCUS_2006_C, quiet = TRUE))
+
+ median.C.SFO <- as.numeric(lapply(subset(FOCUS_2006_SFO_ref_A_to_F,
+ dataset == "C",
+ c(M0, k, DT50, DT90)), "median"))
+
+ dev.percent.C.SFO <- calc_dev.percent(fit.C.SFO, median.C.SFO)
+ expect_equivalent(dev.percent.C.SFO[[1]] < 0.1, rep(TRUE, 4))
+
+ fit.C.FOMC <- list(mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE))
+
+ median.C.FOMC <- as.numeric(lapply(subset(FOCUS_2006_FOMC_ref_A_to_F,
+ dataset == "C",
+ c(M0, alpha, beta, DT50, DT90)), "median"))
+
+ dev.percent.C.FOMC <- calc_dev.percent(fit.C.FOMC, median.C.FOMC,
+ round_results = 2) # Not enough precision in FOCUS results
+ expect_equivalent(dev.percent.C.FOMC[[1]] < 0.1, rep(TRUE, 5))
+
+ fit.C.HS <- list(mkinfit("HS", FOCUS_2006_C, quiet = TRUE))
+
+ median.C.HS <- as.numeric(lapply(subset(FOCUS_2006_HS_ref_A_to_F,
+ dataset == "C",
+ c(M0, k1, k2, tb, DT50, DT90)), "median"))
+
+ dev.percent.C.HS <- calc_dev.percent(fit.C.HS, median.C.HS, round_results = c(2, 4, 6, 2, 2))
+ # Not enouth precision in k2 available
+ expect_equivalent(dev.percent.C.HS[[1]] < c(0.1, 0.1, 0.3, 0.1, 0.1, 0.1), rep(TRUE, 6))
+})
+
+test_that("SFO fits give approximately (0.001%) equal results with different solution methods", {
+ skip_on_cran()
+ fit.A.SFO.default <- mkinfit("SFO", FOCUS_2006_A, quiet = TRUE)$bparms.optim
+
+ fits.A.SFO <- list()
+ fits.A.SFO[[1]] <- mkinfit(SFO, FOCUS_2006_A, quiet = TRUE)
+ fits.A.SFO[[2]] <- mkinfit(SFO, FOCUS_2006_A, quiet = TRUE, solution_type = "eigen")
+ fits.A.SFO[[3]] <- mkinfit(SFO, FOCUS_2006_A, quiet = TRUE, solution_type = "deSolve")
+
+ dev.percent <- calc_dev.percent(fits.A.SFO, fit.A.SFO.default, endpoints = FALSE)
+ expect_equivalent(dev.percent[[1]] < 0.001, rep(TRUE, 2))
+ expect_equivalent(dev.percent[[2]] < 0.001, rep(TRUE, 2))
+ expect_equivalent(dev.percent[[3]] < 0.001, rep(TRUE, 2))
+})
+
+test_that("FOMC fits give approximately (0.001%) equal results with different solution methods", {
+ skip_on_cran()
+ fit.C.FOMC.default <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)$bparms.optim
+
+ fits.C.FOMC <- list()
+ fits.C.FOMC[[1]] <- mkinfit(FOMC, FOCUS_2006_C, quiet = TRUE)
+ fits.C.FOMC[[2]] <- mkinfit(FOMC, FOCUS_2006_C, quiet = TRUE, solution_type = "deSolve")
+
+ dev.percent <- calc_dev.percent(fits.C.FOMC, fit.C.FOMC.default, endpoints = FALSE)
+ expect_equivalent(dev.percent[[1]] < 0.001, rep(TRUE, 3))
+ expect_equivalent(dev.percent[[2]] < 0.001, rep(TRUE, 3))
+})
+
+test_that("DFOP fits give approximately (0.001%) equal results with different solution methods", {
+ skip_on_cran()
+ fit.C.DFOP.default <- mkinfit("DFOP", FOCUS_2006_C, quiet = TRUE)$bparms.optim
+
+ fits.C.DFOP <- list()
+ fits.C.DFOP[[1]] <- mkinfit(DFOP, FOCUS_2006_C, quiet = TRUE)
+ fits.C.DFOP[[2]] <- mkinfit(DFOP, FOCUS_2006_C, quiet = TRUE, solution_type = "deSolve")
+
+ dev.percent <- calc_dev.percent(fits.C.DFOP, fit.C.DFOP.default, endpoints = FALSE)
+ expect_equivalent(dev.percent[[1]] < 0.001, rep(TRUE, 4))
+ expect_equivalent(dev.percent[[2]] < 0.001, rep(TRUE, 4))
+})
+
+test_that("SFORB fits give approximately (0.002%) equal results with different solution methods", {
+ skip_on_cran()
+ fit.B.SFORB.default <- mkinfit(SFORB, FOCUS_2006_B, quiet=TRUE)$bparms.optim
+
+ fits.B.SFORB <- list()
+ fits.B.SFORB[[1]] <- mkinfit(SFORB, FOCUS_2006_B, quiet=TRUE, solution_type = "eigen")
+ fits.B.SFORB[[2]] <- mkinfit(SFORB, FOCUS_2006_B, quiet=TRUE, solution_type = "deSolve")
+ dev.percent <- calc_dev.percent(fits.B.SFORB, fit.B.SFORB.default, endpoints = FALSE)
+ expect_equivalent(dev.percent[[1]] < 0.001, rep(TRUE, 4))
+ expect_equivalent(dev.percent[[2]] < 0.002, rep(TRUE, 4))
+})
diff --git a/tests/testthat/slow/test_roundtrip_error_parameters.R b/tests/testthat/slow/test_roundtrip_error_parameters.R
new file mode 100644
index 00000000..97510563
--- /dev/null
+++ b/tests/testthat/slow/test_roundtrip_error_parameters.R
@@ -0,0 +1,141 @@
+test_that("Reweighting method 'tc' produces reasonable variance estimates", {
+
+ # Check if we can approximately obtain the parameters and the error model
+ # components that were used in the data generation
+
+ # Parent only
+ DFOP <- mkinmod(parent = mkinsub("DFOP"))
+ sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+ parms_DFOP <- c(k1 = 0.2, k2 = 0.02, g = 0.5)
+ parms_DFOP_optim <- c(parent_0 = 100, parms_DFOP)
+
+ d_DFOP <- mkinpredict(DFOP,
+ parms_DFOP, c(parent = 100),
+ sampling_times)
+ d_2_10 <- add_err(d_DFOP,
+ sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
+ n = 10, reps = 2, digits = 5, LOD = -Inf, seed = 123456)
+ d_100_1 <- add_err(d_DFOP,
+ sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
+ n = 1, reps = 100, digits = 5, LOD = -Inf, seed = 123456)
+
+ # Per default (on my box where I set NOT_CRAN) use all cores minus one
+ if (identical(Sys.getenv("NOT_CRAN"), "true")) {
+ n_cores <- parallel::detectCores() - 1
+ } else {
+ n_cores <- 1
+ }
+
+ # We are only allowed one core on travis, but they also set NOT_CRAN=true
+ if (Sys.getenv("TRAVIS") != "") n_cores = 1
+
+ # On Windows we would need to make a cluster first
+ if (Sys.info()["sysname"] == "Windows") n_cores = 1
+
+ # Unweighted fits
+ f_2_10 <- mmkin("DFOP", d_2_10, error_model = "const", quiet = TRUE,
+ cores = n_cores)
+ parms_2_10 <- apply(sapply(f_2_10, function(x) x$bparms.optim), 1, mean)
+ parm_errors_2_10 <- (parms_2_10 - parms_DFOP_optim) / parms_DFOP_optim
+ expect_true(all(abs(parm_errors_2_10) < 0.12))
+
+ f_2_10_tc <- mmkin("DFOP", d_2_10, error_model = "tc", quiet = TRUE,
+ cores = n_cores)
+ parms_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$bparms.optim), 1, mean)
+ parm_errors_2_10_tc <- (parms_2_10_tc - parms_DFOP_optim) / parms_DFOP_optim
+ expect_true(all(abs(parm_errors_2_10_tc) < 0.05))
+
+ tcf_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$errparms), 1, mean, na.rm = TRUE)
+
+ tcf_2_10_error_model_errors <- (tcf_2_10_tc - c(0.5, 0.07)) / c(0.5, 0.07)
+ expect_true(all(abs(tcf_2_10_error_model_errors) < 0.2))
+
+ # When we have 100 replicates in the synthetic data, we can roundtrip
+ # the parameters with < 2% precision
+ f_tc_100_1 <- mkinfit(DFOP, d_100_1[[1]], error_model = "tc", quiet = TRUE)
+ parm_errors_100_1 <- (f_tc_100_1$bparms.optim - parms_DFOP_optim) / parms_DFOP_optim
+ expect_true(all(abs(parm_errors_100_1) < 0.02))
+
+ tcf_100_1_error_model_errors <- (f_tc_100_1$errparms - c(0.5, 0.07)) /
+ c(0.5, 0.07)
+ # We also get a precision of < 2% for the error model components
+ expect_true(all(abs(tcf_100_1_error_model_errors) < 0.02))
+
+ # Parent and two metabolites
+ m_synth_DFOP_lin <- mkinmod(parent = list(type = "DFOP", to = "M1"),
+ M1 = list(type = "SFO", to = "M2"),
+ M2 = list(type = "SFO"), use_of_ff = "max",
+ quiet = TRUE)
+ sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+ parms_DFOP_lin <- c(k1 = 0.2, k2 = 0.02, g = 0.5,
+ f_parent_to_M1 = 0.5, k_M1 = 0.3,
+ f_M1_to_M2 = 0.7, k_M2 = 0.02)
+ d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin,
+ parms_DFOP_lin,
+ c(parent = 100, M1 = 0, M2 = 0),
+ sampling_times)
+ parms_DFOP_lin_optim = c(parent_0 = 100, parms_DFOP_lin)
+
+ d_met_2_15 <- add_err(d_synth_DFOP_lin,
+ sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
+ n = 15, reps = 100, digits = 5, LOD = 0.01, seed = 123456)
+
+ # For a single fit, we get a relative error of less than 5% in the error
+ # model components
+ f_met_2_tc_e4 <- mkinfit(m_synth_DFOP_lin, d_met_2_15[[1]], quiet = TRUE,
+ error_model = "tc", error_model_algorithm = "direct")
+ parm_errors_met_2_tc_e4 <- (f_met_2_tc_e4$errparms - c(0.5, 0.07)) / c(0.5, 0.07)
+ expect_true(all(abs(parm_errors_met_2_tc_e4) < 0.05))
+
+ # Doing more takes a lot of computing power
+ skip_on_travis()
+ skip_on_cran()
+ f_met_2_15_tc_e4 <- mmkin(list(m_synth_DFOP_lin), d_met_2_15, quiet = TRUE,
+ error_model = "tc", cores = n_cores)
+
+ parms_met_2_15_tc_e4 <- apply(sapply(f_met_2_15_tc_e4, function(x) x$bparms.optim), 1, mean)
+ parm_errors_met_2_15_tc_e4 <- (parms_met_2_15_tc_e4[names(parms_DFOP_lin_optim)] -
+ parms_DFOP_lin_optim) / parms_DFOP_lin_optim
+ expect_true(all(abs(parm_errors_met_2_15_tc_e4) < 0.015))
+
+ tcf_met_2_15_tc <- apply(sapply(f_met_2_15_tc_e4, function(x) x$errparms), 1, mean, na.rm = TRUE)
+
+ tcf_met_2_15_tc_error_model_errors <- (tcf_met_2_15_tc - c(0.5, 0.07)) /
+ c(0.5, 0.07)
+
+ # Here we get a precision < 10% for retrieving the original error model components
+ # from 15 datasets
+ expect_true(all(abs(tcf_met_2_15_tc_error_model_errors) < 0.10))
+})
+
+test_that("The different error model fitting methods work for parent fits", {
+ skip_on_cran()
+
+ f_9_OLS <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
+ quiet = TRUE)
+ expect_equivalent(round(AIC(f_9_OLS), 2), 137.43)
+
+ f_9_direct <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
+ error_model = "tc", error_model_algorithm = "direct", quiet = TRUE)
+ expect_equivalent(round(AIC(f_9_direct), 2), 134.94)
+
+ f_9_twostep <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
+ error_model = "tc", error_model_algorithm = "twostep", quiet = TRUE)
+ expect_equivalent(round(AIC(f_9_twostep), 2), 134.94)
+
+ f_9_threestep <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
+ error_model = "tc", error_model_algorithm = "threestep", quiet = TRUE)
+ expect_equivalent(round(AIC(f_9_threestep), 2), 139.43)
+
+ f_9_fourstep <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
+ error_model = "tc", error_model_algorithm = "fourstep", quiet = TRUE)
+ expect_equivalent(round(AIC(f_9_fourstep), 2), 139.43)
+
+ f_9_IRLS <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
+ error_model = "tc", error_model_algorithm = "IRLS", quiet = TRUE)
+ expect_equivalent(round(AIC(f_9_IRLS), 2), 139.43)
+
+ f_9_d_3 <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
+ error_model = "tc", error_model_algorithm = "d_3", quiet = TRUE)
+ expect_equivalent(round(AIC(f_9_d_3), 2), 134.94)
+})

Contact - Imprint