diff options
Diffstat (limited to 'tests/testthat/test_mhmkin.R')
| -rw-r--r-- | tests/testthat/test_mhmkin.R | 34 | 
1 files changed, 22 insertions, 12 deletions
| diff --git a/tests/testthat/test_mhmkin.R b/tests/testthat/test_mhmkin.R index e2339f28..da063326 100644 --- a/tests/testthat/test_mhmkin.R +++ b/tests/testthat/test_mhmkin.R @@ -3,8 +3,11 @@ context("Batch fitting and diagnosing hierarchical kinetic models")  test_that("Multiple hierarchical kinetic models can be fitted and diagnosed", {    skip_on_cran() -  fits_synth_const <- suppressWarnings( -    mmkin(c("SFO", "FOMC"), ds_sfo[1:6], cores = n_cores, quiet = TRUE)) +  fits_synth_const <- mmkin(c("SFO", "FOMC"), ds_fomc[1:6], cores = n_cores, quiet = TRUE) + +  expect_known_output( +    print(fits_synth_const), +    "print_fits_synth_const.txt")    fits_synth_tc <- suppressWarnings(      update(fits_synth_const, error_model = "tc")) @@ -19,8 +22,8 @@ test_that("Multiple hierarchical kinetic models can be fitted and diagnosed", {      print(illparms(hfits)),      "illparms_hfits_synth.txt") -  expect_equal(which.min(AIC(hfits)), 3) -  expect_equal(which.min(BIC(hfits)), 3) +  expect_equal(which.min(AIC(hfits)), 4) +  expect_equal(which.min(BIC(hfits)), 4)    hfit_sfo_tc <- update(hfits[["SFO", "tc"]],      covariance.model = diag(c(0, 1))) @@ -38,12 +41,19 @@ test_that("Multiple hierarchical kinetic models can be fitted and diagnosed", {    expect_known_output(print(test_summary, digits = 1),      "summary_hfit_sfo_tc.txt") -  # It depends on the platform exactly which of the datasets fail to converge -  # with FOMC, because they were generated to be SFO -  skip_on_travis() - -  expect_known_output( -    print(fits_synth_const), -    "print_fits_synth_const.txt") - +  hfits_sfo_reduced <- update(hfits, +    no_random_effect = illparms(hfits)) +  expect_equal( +    as.character(illparms(hfits_sfo_reduced)), +    rep("", 4)) + +  # We can also manually set up an object specifying random effects to be +  # excluded. Entries in the inital list have to be by column +  no_ranef <- list("parent_0", "log_beta", "parent_0", c("parent_0", "log_beta")) +  dim(no_ranef) <- c(2, 2) + +  hfits_sfo_reduced_2 <- update(hfits, +    no_random_effect = no_ranef) +  expect_equivalent(round(anova(hfits_sfo_reduced), 0), +    round(anova(hfits_sfo_reduced_2), 0))  }) | 
