diff options
Diffstat (limited to 'tests/testthat/test_saem.R')
-rw-r--r-- | tests/testthat/test_saem.R | 118 |
1 files changed, 118 insertions, 0 deletions
diff --git a/tests/testthat/test_saem.R b/tests/testthat/test_saem.R new file mode 100644 index 00000000..0b6d4531 --- /dev/null +++ b/tests/testthat/test_saem.R @@ -0,0 +1,118 @@ +context("Nonlinear mixed effects models fitted with SAEM from saemix") + +set.seed(123456) +sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +n <- n_biphasic <- 15 +log_sd <- 0.3 +err_1 = list(const = 1, prop = 0.05) +tc <- function(value) sigma_twocomp(value, err_1$const, err_1$prop) +const <- function(value) 2 + +SFO <- mkinmod(parent = mkinsub("SFO")) +k_parent = rlnorm(n, log(0.03), log_sd) +ds_sfo <- lapply(1:n, function(i) { + ds_mean <- mkinpredict(SFO, c(k_parent = k_parent[i]), + c(parent = 100), sampling_times) + add_err(ds_mean, tc, n = 1)[[1]] +}) + +DFOP <- mkinmod(parent = mkinsub("DFOP")) +dfop_pop <- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4) +dfop_parms <- as.matrix(data.frame( + k1 = rlnorm(n, log(dfop_pop$k1), log_sd), + k2 = rlnorm(n, log(dfop_pop$k2), log_sd), + g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd)))) +ds_dfop <- lapply(1:n, function(i) { + ds_mean <- mkinpredict(DFOP, dfop_parms[i, ], + c(parent = dfop_pop$parent_0), sampling_times) + add_err(ds_mean, const, n = 1)[[1]] +}) + +set.seed(123456) +DFOP_SFO <- mkinmod( + parent = mkinsub("DFOP", "m1"), + m1 = mkinsub("SFO"), + quiet = TRUE) +syn_biphasic_parms <- as.matrix(data.frame( + k1 = rlnorm(n_biphasic, log(0.05), log_sd), + k2 = rlnorm(n_biphasic, log(0.01), log_sd), + g = plogis(rnorm(n_biphasic, 0, log_sd)), + f_parent_to_m1 = plogis(rnorm(n_biphasic, 0, log_sd)), + k_m1 = rlnorm(n_biphasic, log(0.002), log_sd))) +ds_biphasic_mean <- lapply(1:n_biphasic, + function(i) { + mkinpredict(DFOP_SFO, syn_biphasic_parms[i, ], + c(parent = 100, m1 = 0), sampling_times) + } +) +ds_biphasic <- lapply(ds_biphasic_mean, function(ds) { + add_err(ds, + sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2), + n = 1, secondary = "m1")[[1]] +}) + +test_that("Parent only models can be fitted with saemix", { + # Some fits were done in the setup script + mmkin_sfo_2 <- mmkin("SFO", ds_sfo, fixed_initials = c(parent = 100), quiet = TRUE) + + sfo_saemix_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin") + sfo_saemix_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters") + s_sfo_s1 <- summary(sfo_saemix_1) + s_sfo_s2 <- summary(sfo_saemix_2) + + sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge") + s_sfo_n <- summary(sfo_nlme_1) + + # Compare with input + expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3) + # k_parent is a bit different from input 0.03 here + expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035) + expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035) + + # But the result is pretty unanimous between methods + expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), + round(s_sfo_s2$confint_back["k_parent", "est."], 3)) + expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), + round(s_sfo_n$confint_back["k_parent", "est."], 3)) + + mmkin_dfop_1 <- mmkin("DFOP", ds_dfop, quiet = TRUE) + + dfop_saemix_1 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "mkin") + dfop_saemix_2 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix") + dfop_nlme_1 <- nlme(mmkin_dfop_1) + s_dfop_s1 <- summary(dfop_saemix_1) + s_dfop_s2 <- summary(dfop_saemix_2) + s_dfop_n <- summary(dfop_nlme_1) + + dfop_pop <- as.numeric(dfop_pop) + expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop)) + expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop)) + expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop)) + expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop)) + + + # We get < 20% deviations with transformations made in mkin + rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop + expect_true(all(rel_diff_1 < 0.2)) + + # We get < 8% deviations with transformations made in saemix + rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop + expect_true(all(rel_diff_2 < 0.08)) +}) + +test_that("Simple models with metabolite can be fitted with saemix", { + + dfop_sfo_pop <- as.numeric(dfop_sfo_pop) + ci_dfop_sfo_s_s <- summary(saem_biphasic_s)$confint_back + expect_true(all(ci_dfop_sfo_s_s[, "lower"] < dfop_sfo_pop)) + expect_true(all(ci_dfop_sfo_s_s[, "upper"] > dfop_sfo_pop)) + + # The following does not work, the k1 and k2 are not fitted well + ci_dfop_sfo_s_m <- summary(saem_biphasic_m)$confint_back + # expect_true(all(ci_dfop_sfo_s_m[, "lower"] < dfop_sfo_pop)) + #expect_true(all(ci_dfop_sfo_s_m[, "upper"] > dfop_sfo_pop)) + + # Somehow this does not work at the moment. But it took forever (~ 10 min) anyways... + #saem_biphasic_2 <- saem(mmkin_biphasic, solution_type = "deSolve", quiet = TRUE) + +}) |