diff options
Diffstat (limited to 'tests/testthat/test_saemix_parent.R')
| -rw-r--r-- | tests/testthat/test_saemix_parent.R | 135 | 
1 files changed, 94 insertions, 41 deletions
diff --git a/tests/testthat/test_saemix_parent.R b/tests/testthat/test_saemix_parent.R index 731228d9..39efa18f 100644 --- a/tests/testthat/test_saemix_parent.R +++ b/tests/testthat/test_saemix_parent.R @@ -4,37 +4,81 @@ test_that("Parent fits using saemix are correctly implemented", {    skip_on_cran()    expect_error(saem(fits), "Only row objects") -  # Some fits were done in the setup script + +  # SFO +  # mmkin_sfo_1 was generated in the setup script +  # We did not introduce variance of parent_0 in the data generation +  # This is correctly detected +  expect_equal(illparms(sfo_saem_1), "sd(parent_0)") +  # So we have also done a fit without this variance +  expect_equal(illparms(sfo_saem_1_reduced), character(0)) + +  # We cannot currently do the fit with completely fixed initial values    mmkin_sfo_2 <- update(mmkin_sfo_1, fixed_initials = c(parent = 100)) +  sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters") + +  # We get an error if we do not supply a suitable model specification    expect_error(update(mmkin_sfo_1, models = c("SFOOO")), "Please supply models.*") -  sfo_saem_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin") -  sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters") -  s_sfo_s1 <- summary(sfo_saem_1) -  s_sfo_s2 <- summary(sfo_saem_2) +  sfo_saem_1_mkin <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin") +  expect_equal(illparms(sfo_saem_1_mkin), "sd(parent_0)") +  sfo_saem_1_reduced_mkin <- update(sfo_saem_1_mkin, no_random_effect = "parent_0") + +  # The endpoints obtained do not depend on the transformation +  expect_equal(endpoints(sfo_saem_1), endpoints(sfo_saem_1_mkin), tol = 0.01) +  expect_equal(endpoints(sfo_saem_1_reduced), endpoints(sfo_saem_1_reduced_mkin), tol = 0.01) + +  s_sfo_saem_1 <- summary(sfo_saem_1) +  s_sfo_saem_1_reduced <- summary(sfo_saem_1_reduced) +  s_sfo_saem_1_mkin <- summary(sfo_saem_1_mkin) +  s_sfo_saem_1_reduced_mkin <- summary(sfo_saem_1_reduced_mkin)    sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge") -  s_sfo_n <- summary(sfo_nlme_1) +  s_sfo_nlme_1 <- summary(sfo_nlme_1)    # Compare with input -  expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3) +  expect_equal(round(s_sfo_saem_1$confint_ranef["SD.k_parent", "est."], 1), 0.3) +  expect_equal(round(s_sfo_saem_1_mkin$confint_ranef["SD.log_k_parent", "est."], 1), 0.3)    # k_parent is a bit different from input 0.03 here -  expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035) -  expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035) +  expect_equal(round(s_sfo_saem_1$confint_back["k_parent", "est."], 3), 0.035) +  expect_equal(round(s_sfo_saem_1_mkin$confint_back["k_parent", "est."], 3), 0.035)    # But the result is pretty unanimous between methods -  expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), -    round(s_sfo_s2$confint_back["k_parent", "est."], 3)) -  expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), -    round(s_sfo_n$confint_back["k_parent", "est."], 3)) - +  expect_equal(round(s_sfo_saem_1_reduced$confint_back["k_parent", "est."], 3), +    round(s_sfo_saem_1$confint_back["k_parent", "est."], 3)) +  expect_equal(round(s_sfo_saem_1_mkin$confint_back["k_parent", "est."], 3), +    round(s_sfo_saem_1$confint_back["k_parent", "est."], 3)) +  expect_equal(round(s_sfo_saem_1_reduced_mkin$confint_back["k_parent", "est."], 3), +    round(s_sfo_saem_1$confint_back["k_parent", "est."], 3)) +  expect_equal(round(s_sfo_nlme_1$confint_back["k_parent", "est."], 3), +    round(s_sfo_saem_1$confint_back["k_parent", "est."], 3)) + +  # Compare fits with heavy rounding to avoid platform dependent results +  anova_sfo <- anova( +      sfo_saem_1, sfo_saem_1_reduced, +      sfo_saem_1_mkin, sfo_saem_1_reduced_mkin, +      test = TRUE) +  anova_sfo_rounded <- round(anova_sfo, 0) +  expect_known_output(print(anova_sfo_rounded), file = "anova_sfo_saem.txt") + +  # Check the influence of an invented covariate +  set.seed(123456) # In my first attempt I hit a false positive by chance... +  pH <- data.frame(pH = runif(15, 5, 8), row.names = as.character(1:15)) +  sfo_saem_pH <- update(sfo_saem_1_reduced_mkin, covariates = pH, +    covariate_models = list(log_k_parent ~ pH)) +  # We expect that this is not significantly better, as the covariate values were completely random +  expect_true(anova(sfo_saem_1_reduced_mkin, sfo_saem_pH, test = TRUE)[2, "Pr(>Chisq)"] > 0.05) + +  # FOMC    mmkin_fomc_1 <- mmkin("FOMC", ds_fomc, quiet = TRUE, error_model = "tc", cores = n_cores) -  fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE) +  fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE, transformations = "saemix", no_random_effect = "parent_0") +  fomc_saem_2 <- update(fomc_saem_1, transformations = "mkin")    ci_fomc_s1 <- summary(fomc_saem_1)$confint_back    fomc_pop <- as.numeric(fomc_pop)    expect_true(all(ci_fomc_s1[, "lower"] < fomc_pop))    expect_true(all(ci_fomc_s1[, "upper"] > fomc_pop)) +  expect_equal(endpoints(fomc_saem_1), endpoints(fomc_saem_2), tol = 0.01)    mmkin_fomc_2 <- update(mmkin_fomc_1, state.ini = 100, fixed_initials = "parent")    fomc_saem_2 <- saem(mmkin_fomc_2, quiet = TRUE, transformations = "mkin") @@ -43,62 +87,71 @@ test_that("Parent fits using saemix are correctly implemented", {    expect_true(all(ci_fomc_s2[, "lower"] < fomc_pop[2:3]))    expect_true(all(ci_fomc_s2[, "upper"] > fomc_pop[2:3])) +  # DFOP +  dfop_saemix_2 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix", +    no_random_effect = "parent_0") +    s_dfop_s1 <- summary(dfop_saemix_1)    s_dfop_s2 <- summary(dfop_saemix_2)    s_dfop_n <- summary(dfop_nlme_1)    dfop_pop <- as.numeric(dfop_pop) -  expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop)) -  expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop)) + +  # When using DFOP with mkin transformations, k1 and k2 are sometimes swapped +  swap_k1_k2 <- function(p) c(p[1], p[3], p[2], 1 - p[4]) +  expect_true(all(s_dfop_s1$confint_back[, "lower"] < swap_k1_k2(dfop_pop))) +  expect_true(all(s_dfop_s1$confint_back[, "upper"] > swap_k1_k2(dfop_pop)))    expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop))    expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop)) -  dfop_mmkin_means_trans_tested <- mean_degparms(mmkin_dfop_1, test_log_parms = TRUE) -  dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean) - -  dfop_mmkin_means_tested <- backtransform_odeparms(dfop_mmkin_means_trans_tested, mmkin_dfop_1$mkinmod) -  dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod) - -  # We get < 20% deviations for parent_0 and k1 by averaging the transformed parameters -  # If we average only parameters passing the t-test, the deviation for k2 is also < 20% -  rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop -  rel_diff_mmkin_tested <- (dfop_mmkin_means_tested - dfop_pop) / dfop_pop -  expect_true(all(rel_diff_mmkin[c("parent_0", "k1")] < 0.20)) -  expect_true(all(rel_diff_mmkin_tested[c("parent_0", "k1", "k2")] < 0.20)) - -  # We get < 20% deviations with transformations made in mkin -  rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop +  # We get < 20% deviations with transformations made in mkin (need to swap k1 and k2) +  rel_diff_1 <- (swap_k1_k2(s_dfop_s1$confint_back[, "est."]) - dfop_pop) / dfop_pop    expect_true(all(rel_diff_1 < 0.20))    # We get < 20% deviations with transformations made in saemix    rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop    expect_true(all(rel_diff_2 < 0.2)) +  # SFORB +  mmkin_sforb_1 <- mmkin("SFORB", ds_dfop, quiet = TRUE, cores = n_cores) +  sforb_saemix_1 <- saem(mmkin_sforb_1, quiet = TRUE, +    no_random_effect = c("parent_free_0"), +    transformations = "mkin") +  sforb_saemix_2 <- saem(mmkin_sforb_1, quiet = TRUE, +    no_random_effect = c("parent_free_0"), +    transformations = "saemix") +  expect_equal( +    log(endpoints(dfop_saemix_1)$distimes[1:2]), +    log(endpoints(sforb_saemix_1)$distimes[1:2]), tolerance = 0.03) +  expect_equal( +    log(endpoints(sforb_saemix_1)$distimes[1:2]), +    log(endpoints(sforb_saemix_2)$distimes[1:2]), tolerance = 0.01) +    mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const", cores = n_cores)    hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE) +  hs_saem_2 <- saem(mmkin_hs_1, quiet = TRUE, transformations = "mkin") +  expect_equal(endpoints(hs_saem_1), endpoints(hs_saem_2), tol = 0.01)    ci_hs_s1 <- summary(hs_saem_1)$confint_back    hs_pop <- as.numeric(hs_pop) -  # expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated +  #expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated    expect_true(all(ci_hs_s1[, "upper"] > hs_pop))    mmkin_hs_2 <- update(mmkin_hs_1, state.ini = 100, fixed_initials = "parent") -  hs_saem_2 <- saem(mmkin_hs_2, quiet = TRUE) -  ci_hs_s2 <- summary(hs_saem_2)$confint_back - -  #expect_true(all(ci_hs_s2[, "lower"] < hs_pop[2:4])) # k1 again overestimated -  expect_true(all(ci_hs_s2[, "upper"] > hs_pop[2:4])) +  hs_saem_3 <- saem(mmkin_hs_2, quiet = TRUE) +  ci_hs_s3 <- summary(hs_saem_3)$confint_back -  # HS would likely benefit from implemenation of transformations = "saemix" +  #expect_true(all(ci_hs_s3[, "lower"] < hs_pop[2:4])) # k1 again overestimated +  expect_true(all(ci_hs_s3[, "upper"] > hs_pop[2:4]))  })  test_that("We can also use mkin solution methods for saem", {    expect_error(saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix", solution_type = "analytical"),      "saemix transformations is only supported if an analytical solution is implemented"    ) -  skip_on_cran() # This still takes almost 2.5 minutes although we do not solve ODEs +  skip("This still takes almost 2.5 minutes although we do not solve ODEs")    dfop_saemix_3 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "mkin", -    solution_type = "analytical") +    solution_type = "analytical", no_random_effect = "parent_0")    distimes_dfop <- endpoints(dfop_saemix_1)$distimes    distimes_dfop_analytical <- endpoints(dfop_saemix_3)$distimes    rel_diff <- abs(distimes_dfop_analytical - distimes_dfop) / distimes_dfop  | 
