aboutsummaryrefslogtreecommitdiff
path: root/tests/testthat/test_saemix_parent.R
diff options
context:
space:
mode:
Diffstat (limited to 'tests/testthat/test_saemix_parent.R')
-rw-r--r--tests/testthat/test_saemix_parent.R135
1 files changed, 94 insertions, 41 deletions
diff --git a/tests/testthat/test_saemix_parent.R b/tests/testthat/test_saemix_parent.R
index 731228d9..39efa18f 100644
--- a/tests/testthat/test_saemix_parent.R
+++ b/tests/testthat/test_saemix_parent.R
@@ -4,37 +4,81 @@ test_that("Parent fits using saemix are correctly implemented", {
skip_on_cran()
expect_error(saem(fits), "Only row objects")
- # Some fits were done in the setup script
+
+ # SFO
+ # mmkin_sfo_1 was generated in the setup script
+ # We did not introduce variance of parent_0 in the data generation
+ # This is correctly detected
+ expect_equal(illparms(sfo_saem_1), "sd(parent_0)")
+ # So we have also done a fit without this variance
+ expect_equal(illparms(sfo_saem_1_reduced), character(0))
+
+ # We cannot currently do the fit with completely fixed initial values
mmkin_sfo_2 <- update(mmkin_sfo_1, fixed_initials = c(parent = 100))
+ sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters")
+
+ # We get an error if we do not supply a suitable model specification
expect_error(update(mmkin_sfo_1, models = c("SFOOO")), "Please supply models.*")
- sfo_saem_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin")
- sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters")
- s_sfo_s1 <- summary(sfo_saem_1)
- s_sfo_s2 <- summary(sfo_saem_2)
+ sfo_saem_1_mkin <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin")
+ expect_equal(illparms(sfo_saem_1_mkin), "sd(parent_0)")
+ sfo_saem_1_reduced_mkin <- update(sfo_saem_1_mkin, no_random_effect = "parent_0")
+
+ # The endpoints obtained do not depend on the transformation
+ expect_equal(endpoints(sfo_saem_1), endpoints(sfo_saem_1_mkin), tol = 0.01)
+ expect_equal(endpoints(sfo_saem_1_reduced), endpoints(sfo_saem_1_reduced_mkin), tol = 0.01)
+
+ s_sfo_saem_1 <- summary(sfo_saem_1)
+ s_sfo_saem_1_reduced <- summary(sfo_saem_1_reduced)
+ s_sfo_saem_1_mkin <- summary(sfo_saem_1_mkin)
+ s_sfo_saem_1_reduced_mkin <- summary(sfo_saem_1_reduced_mkin)
sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge")
- s_sfo_n <- summary(sfo_nlme_1)
+ s_sfo_nlme_1 <- summary(sfo_nlme_1)
# Compare with input
- expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3)
+ expect_equal(round(s_sfo_saem_1$confint_ranef["SD.k_parent", "est."], 1), 0.3)
+ expect_equal(round(s_sfo_saem_1_mkin$confint_ranef["SD.log_k_parent", "est."], 1), 0.3)
# k_parent is a bit different from input 0.03 here
- expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035)
- expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035)
+ expect_equal(round(s_sfo_saem_1$confint_back["k_parent", "est."], 3), 0.035)
+ expect_equal(round(s_sfo_saem_1_mkin$confint_back["k_parent", "est."], 3), 0.035)
# But the result is pretty unanimous between methods
- expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
- round(s_sfo_s2$confint_back["k_parent", "est."], 3))
- expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
- round(s_sfo_n$confint_back["k_parent", "est."], 3))
-
+ expect_equal(round(s_sfo_saem_1_reduced$confint_back["k_parent", "est."], 3),
+ round(s_sfo_saem_1$confint_back["k_parent", "est."], 3))
+ expect_equal(round(s_sfo_saem_1_mkin$confint_back["k_parent", "est."], 3),
+ round(s_sfo_saem_1$confint_back["k_parent", "est."], 3))
+ expect_equal(round(s_sfo_saem_1_reduced_mkin$confint_back["k_parent", "est."], 3),
+ round(s_sfo_saem_1$confint_back["k_parent", "est."], 3))
+ expect_equal(round(s_sfo_nlme_1$confint_back["k_parent", "est."], 3),
+ round(s_sfo_saem_1$confint_back["k_parent", "est."], 3))
+
+ # Compare fits with heavy rounding to avoid platform dependent results
+ anova_sfo <- anova(
+ sfo_saem_1, sfo_saem_1_reduced,
+ sfo_saem_1_mkin, sfo_saem_1_reduced_mkin,
+ test = TRUE)
+ anova_sfo_rounded <- round(anova_sfo, 0)
+ expect_known_output(print(anova_sfo_rounded), file = "anova_sfo_saem.txt")
+
+ # Check the influence of an invented covariate
+ set.seed(123456) # In my first attempt I hit a false positive by chance...
+ pH <- data.frame(pH = runif(15, 5, 8), row.names = as.character(1:15))
+ sfo_saem_pH <- update(sfo_saem_1_reduced_mkin, covariates = pH,
+ covariate_models = list(log_k_parent ~ pH))
+ # We expect that this is not significantly better, as the covariate values were completely random
+ expect_true(anova(sfo_saem_1_reduced_mkin, sfo_saem_pH, test = TRUE)[2, "Pr(>Chisq)"] > 0.05)
+
+ # FOMC
mmkin_fomc_1 <- mmkin("FOMC", ds_fomc, quiet = TRUE, error_model = "tc", cores = n_cores)
- fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE)
+ fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE, transformations = "saemix", no_random_effect = "parent_0")
+ fomc_saem_2 <- update(fomc_saem_1, transformations = "mkin")
ci_fomc_s1 <- summary(fomc_saem_1)$confint_back
fomc_pop <- as.numeric(fomc_pop)
expect_true(all(ci_fomc_s1[, "lower"] < fomc_pop))
expect_true(all(ci_fomc_s1[, "upper"] > fomc_pop))
+ expect_equal(endpoints(fomc_saem_1), endpoints(fomc_saem_2), tol = 0.01)
mmkin_fomc_2 <- update(mmkin_fomc_1, state.ini = 100, fixed_initials = "parent")
fomc_saem_2 <- saem(mmkin_fomc_2, quiet = TRUE, transformations = "mkin")
@@ -43,62 +87,71 @@ test_that("Parent fits using saemix are correctly implemented", {
expect_true(all(ci_fomc_s2[, "lower"] < fomc_pop[2:3]))
expect_true(all(ci_fomc_s2[, "upper"] > fomc_pop[2:3]))
+ # DFOP
+ dfop_saemix_2 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix",
+ no_random_effect = "parent_0")
+
s_dfop_s1 <- summary(dfop_saemix_1)
s_dfop_s2 <- summary(dfop_saemix_2)
s_dfop_n <- summary(dfop_nlme_1)
dfop_pop <- as.numeric(dfop_pop)
- expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop))
- expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop))
+
+ # When using DFOP with mkin transformations, k1 and k2 are sometimes swapped
+ swap_k1_k2 <- function(p) c(p[1], p[3], p[2], 1 - p[4])
+ expect_true(all(s_dfop_s1$confint_back[, "lower"] < swap_k1_k2(dfop_pop)))
+ expect_true(all(s_dfop_s1$confint_back[, "upper"] > swap_k1_k2(dfop_pop)))
expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop))
expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop))
- dfop_mmkin_means_trans_tested <- mean_degparms(mmkin_dfop_1, test_log_parms = TRUE)
- dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean)
-
- dfop_mmkin_means_tested <- backtransform_odeparms(dfop_mmkin_means_trans_tested, mmkin_dfop_1$mkinmod)
- dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod)
-
- # We get < 20% deviations for parent_0 and k1 by averaging the transformed parameters
- # If we average only parameters passing the t-test, the deviation for k2 is also < 20%
- rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop
- rel_diff_mmkin_tested <- (dfop_mmkin_means_tested - dfop_pop) / dfop_pop
- expect_true(all(rel_diff_mmkin[c("parent_0", "k1")] < 0.20))
- expect_true(all(rel_diff_mmkin_tested[c("parent_0", "k1", "k2")] < 0.20))
-
- # We get < 20% deviations with transformations made in mkin
- rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop
+ # We get < 20% deviations with transformations made in mkin (need to swap k1 and k2)
+ rel_diff_1 <- (swap_k1_k2(s_dfop_s1$confint_back[, "est."]) - dfop_pop) / dfop_pop
expect_true(all(rel_diff_1 < 0.20))
# We get < 20% deviations with transformations made in saemix
rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop
expect_true(all(rel_diff_2 < 0.2))
+ # SFORB
+ mmkin_sforb_1 <- mmkin("SFORB", ds_dfop, quiet = TRUE, cores = n_cores)
+ sforb_saemix_1 <- saem(mmkin_sforb_1, quiet = TRUE,
+ no_random_effect = c("parent_free_0"),
+ transformations = "mkin")
+ sforb_saemix_2 <- saem(mmkin_sforb_1, quiet = TRUE,
+ no_random_effect = c("parent_free_0"),
+ transformations = "saemix")
+ expect_equal(
+ log(endpoints(dfop_saemix_1)$distimes[1:2]),
+ log(endpoints(sforb_saemix_1)$distimes[1:2]), tolerance = 0.03)
+ expect_equal(
+ log(endpoints(sforb_saemix_1)$distimes[1:2]),
+ log(endpoints(sforb_saemix_2)$distimes[1:2]), tolerance = 0.01)
+
mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const", cores = n_cores)
hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE)
+ hs_saem_2 <- saem(mmkin_hs_1, quiet = TRUE, transformations = "mkin")
+ expect_equal(endpoints(hs_saem_1), endpoints(hs_saem_2), tol = 0.01)
ci_hs_s1 <- summary(hs_saem_1)$confint_back
hs_pop <- as.numeric(hs_pop)
- # expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated
+ #expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated
expect_true(all(ci_hs_s1[, "upper"] > hs_pop))
mmkin_hs_2 <- update(mmkin_hs_1, state.ini = 100, fixed_initials = "parent")
- hs_saem_2 <- saem(mmkin_hs_2, quiet = TRUE)
- ci_hs_s2 <- summary(hs_saem_2)$confint_back
-
- #expect_true(all(ci_hs_s2[, "lower"] < hs_pop[2:4])) # k1 again overestimated
- expect_true(all(ci_hs_s2[, "upper"] > hs_pop[2:4]))
+ hs_saem_3 <- saem(mmkin_hs_2, quiet = TRUE)
+ ci_hs_s3 <- summary(hs_saem_3)$confint_back
- # HS would likely benefit from implemenation of transformations = "saemix"
+ #expect_true(all(ci_hs_s3[, "lower"] < hs_pop[2:4])) # k1 again overestimated
+ expect_true(all(ci_hs_s3[, "upper"] > hs_pop[2:4]))
})
test_that("We can also use mkin solution methods for saem", {
expect_error(saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix", solution_type = "analytical"),
"saemix transformations is only supported if an analytical solution is implemented"
)
- skip_on_cran() # This still takes almost 2.5 minutes although we do not solve ODEs
+ skip("This still takes almost 2.5 minutes although we do not solve ODEs")
dfop_saemix_3 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "mkin",
- solution_type = "analytical")
+ solution_type = "analytical", no_random_effect = "parent_0")
distimes_dfop <- endpoints(dfop_saemix_1)$distimes
distimes_dfop_analytical <- endpoints(dfop_saemix_3)$distimes
rel_diff <- abs(distimes_dfop_analytical - distimes_dfop) / distimes_dfop

Contact - Imprint