diff options
Diffstat (limited to 'tests/testthat/test_saemix_parent.R')
-rw-r--r-- | tests/testthat/test_saemix_parent.R | 91 |
1 files changed, 91 insertions, 0 deletions
diff --git a/tests/testthat/test_saemix_parent.R b/tests/testthat/test_saemix_parent.R new file mode 100644 index 00000000..2f05c175 --- /dev/null +++ b/tests/testthat/test_saemix_parent.R @@ -0,0 +1,91 @@ +test_that("Parent fits using saemix are correctly implemented", { + + expect_error(saem(fits), "Only row objects") + # Some fits were done in the setup script + mmkin_sfo_2 <- update(mmkin_sfo_1, fixed_initials = c(parent = 100)) + expect_error(update(mmkin_sfo_1, models = c("SFOOO")), "Please supply models.*") + + sfo_saem_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin") + sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters") + s_sfo_s1 <- summary(sfo_saem_1) + s_sfo_s2 <- summary(sfo_saem_2) + + sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge") + s_sfo_n <- summary(sfo_nlme_1) + + # Compare with input + expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3) + # k_parent is a bit different from input 0.03 here + expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035) + expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035) + + # But the result is pretty unanimous between methods + expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), + round(s_sfo_s2$confint_back["k_parent", "est."], 3)) + expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), + round(s_sfo_n$confint_back["k_parent", "est."], 3)) + + mmkin_fomc_1 <- mmkin("FOMC", ds_fomc, quiet = TRUE, error_model = "tc", cores = n_cores) + fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE) + ci_fomc_s1 <- summary(fomc_saem_1)$confint_back + + fomc_pop <- as.numeric(fomc_pop) + expect_true(all(ci_fomc_s1[, "lower"] < fomc_pop)) + expect_true(all(ci_fomc_s1[, "upper"] > fomc_pop)) + + mmkin_fomc_2 <- update(mmkin_fomc_1, state.ini = 100, fixed_initials = "parent") + fomc_saem_2 <- saem(mmkin_fomc_2, quiet = TRUE, transformations = "mkin") + ci_fomc_s2 <- summary(fomc_saem_2)$confint_back + + expect_true(all(ci_fomc_s2[, "lower"] < fomc_pop[2:3])) + expect_true(all(ci_fomc_s2[, "upper"] > fomc_pop[2:3])) + + s_dfop_s1 <- summary(dfop_saemix_1) + s_dfop_s2 <- summary(dfop_saemix_2) + s_dfop_n <- summary(dfop_nlme_1) + + dfop_pop <- as.numeric(dfop_pop) + expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop)) + expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop)) + expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop)) + expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop)) + + dfop_mmkin_means_trans_tested <- mean_degparms(mmkin_dfop_1, test_log_parms = TRUE) + dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean) + + dfop_mmkin_means_tested <- backtransform_odeparms(dfop_mmkin_means_trans_tested, mmkin_dfop_1$mkinmod) + dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod) + + # We get < 20% deviations for parent_0 and k1 by averaging the transformed parameters + # If we average only parameters passing the t-test, the deviation for k2 is also < 20% + rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop + rel_diff_mmkin_tested <- (dfop_mmkin_means_tested - dfop_pop) / dfop_pop + expect_true(all(rel_diff_mmkin[c("parent_0", "k1")] < 0.20)) + expect_true(all(rel_diff_mmkin_tested[c("parent_0", "k1", "k2")] < 0.20)) + + # We get < 15% deviations with transformations made in mkin + rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop + expect_true(all(rel_diff_1 < 0.15)) + + # We get < 20% deviations with transformations made in saemix + rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop + expect_true(all(rel_diff_2 < 0.2)) + + mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const", cores = n_cores) + hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE) + ci_hs_s1 <- summary(hs_saem_1)$confint_back + + hs_pop <- as.numeric(hs_pop) + # expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated + expect_true(all(ci_hs_s1[, "upper"] > hs_pop)) + + mmkin_hs_2 <- update(mmkin_hs_1, state.ini = 100, fixed_initials = "parent") + hs_saem_2 <- saem(mmkin_hs_2, quiet = TRUE) + ci_hs_s2 <- summary(hs_saem_2)$confint_back + + #expect_true(all(ci_hs_s2[, "lower"] < hs_pop[2:4])) # k1 again overestimated + expect_true(all(ci_hs_s2[, "upper"] > hs_pop[2:4])) + + # HS would likely benefit from implemenation of transformations = "saemix" +}) + |