aboutsummaryrefslogtreecommitdiff
path: root/tests/testthat
diff options
context:
space:
mode:
Diffstat (limited to 'tests/testthat')
-rw-r--r--tests/testthat/print_sfo_saemix_1.txt2
-rw-r--r--tests/testthat/setup_script.R30
-rw-r--r--tests/testthat/test_mixed.R55
3 files changed, 77 insertions, 10 deletions
diff --git a/tests/testthat/print_sfo_saemix_1.txt b/tests/testthat/print_sfo_saemix_1.txt
index d341e9e7..9dd4f175 100644
--- a/tests/testthat/print_sfo_saemix_1.txt
+++ b/tests/testthat/print_sfo_saemix_1.txt
@@ -6,6 +6,8 @@ Data:
264 observations of 1 variable(s) grouped in 15 datasets
Likelihood computed by importance sampling
+
+LL by is "-653.97 (df=6)"
AIC BIC logLik
1320 1324 -654
diff --git a/tests/testthat/setup_script.R b/tests/testthat/setup_script.R
index 9da8b90d..4a343bc5 100644
--- a/tests/testthat/setup_script.R
+++ b/tests/testthat/setup_script.R
@@ -95,7 +95,6 @@ fit_tc_1 <- mkinfit(m_synth_SFO_lin, SFO_lin_a, error_model = "tc", quiet = TRUE
error_model_algorithm = "threestep")
# Mixed models data and
-set.seed(123456)
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
n <- n_biphasic <- 15
log_sd <- 0.3
@@ -103,6 +102,7 @@ err_1 = list(const = 1, prop = 0.05)
tc <- function(value) sigma_twocomp(value, err_1$const, err_1$prop)
const <- function(value) 2
+set.seed(123456)
SFO <- mkinmod(parent = mkinsub("SFO"))
k_parent = rlnorm(n, log(0.03), log_sd)
ds_sfo <- lapply(1:n, function(i) {
@@ -111,6 +111,19 @@ ds_sfo <- lapply(1:n, function(i) {
add_err(ds_mean, tc, n = 1)[[1]]
})
+set.seed(123456)
+FOMC <- mkinmod(parent = mkinsub("FOMC"))
+fomc_pop <- list(parent_0 = 100, alpha = 2, beta = 8)
+fomc_parms <- as.matrix(data.frame(
+ alpha = rlnorm(n, log(fomc_pop$alpha), 0.4),
+ beta = rlnorm(n, log(fomc_pop$beta), 0.2)))
+ds_fomc <- lapply(1:3, function(i) {
+ ds_mean <- mkinpredict(FOMC, fomc_parms[i, ],
+ c(parent = 100), sampling_times)
+ add_err(ds_mean, tc, n = 1)[[1]]
+})
+
+set.seed(123456)
DFOP <- mkinmod(parent = mkinsub("DFOP"))
dfop_pop <- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4)
dfop_parms <- as.matrix(data.frame(
@@ -124,6 +137,19 @@ ds_dfop <- lapply(1:n, function(i) {
})
set.seed(123456)
+HS <- mkinmod(parent = mkinsub("HS"))
+hs_pop <- list(parent_0 = 100, k1 = 0.08, k2 = 0.01, tb = 15)
+hs_parms <- as.matrix(data.frame(
+ k1 = rlnorm(n, log(hs_pop$k1), log_sd),
+ k2 = rlnorm(n, log(hs_pop$k2), log_sd),
+ tb = rlnorm(n, log(hs_pop$tb), 0.1)))
+ds_hs <- lapply(1:10, function(i) {
+ ds_mean <- mkinpredict(HS, hs_parms[i, ],
+ c(parent = hs_pop$parent_0), sampling_times)
+ add_err(ds_mean, const, n = 1)[[1]]
+})
+
+set.seed(123456)
DFOP_SFO <- mkinmod(
parent = mkinsub("DFOP", "m1"),
m1 = mkinsub("SFO"),
@@ -152,7 +178,7 @@ ds_biphasic <- lapply(ds_biphasic_mean, function(ds) {
# Mixed model fits
mmkin_sfo_1 <- mmkin("SFO", ds_sfo, quiet = TRUE, error_model = "tc")
-sfo_saemix_1 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "saemix")
+sfo_saem_1 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "saemix")
mmkin_dfop_1 <- mmkin("DFOP", ds_dfop, quiet = TRUE)
dfop_saemix_1 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "mkin")
diff --git a/tests/testthat/test_mixed.R b/tests/testthat/test_mixed.R
index 644cccc1..6fc6c2f0 100644
--- a/tests/testthat/test_mixed.R
+++ b/tests/testthat/test_mixed.R
@@ -1,14 +1,15 @@
context("Nonlinear mixed effects models")
test_that("Parent only models can be fitted using nonlinear mixed effects models", {
+ expect_error(saem(fits), "Only row objects")
# Some fits were done in the setup script
mmkin_sfo_2 <- update(mmkin_sfo_1, fixed_initials = c(parent = 100))
expect_error(update(mmkin_sfo_1, models = c("SFOOO")), "Please supply models.*")
- sfo_saemix_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin")
- sfo_saemix_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters")
- s_sfo_s1 <- summary(sfo_saemix_1)
- s_sfo_s2 <- summary(sfo_saemix_2)
+ sfo_saem_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin")
+ sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters")
+ s_sfo_s1 <- summary(sfo_saem_1)
+ s_sfo_s2 <- summary(sfo_saem_2)
sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge")
s_sfo_n <- summary(sfo_nlme_1)
@@ -25,6 +26,21 @@ test_that("Parent only models can be fitted using nonlinear mixed effects models
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
round(s_sfo_n$confint_back["k_parent", "est."], 3))
+ mmkin_fomc_1 <- mmkin("FOMC", ds_fomc, quiet = TRUE, error_model = "tc")
+ fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE)
+ ci_fomc_s1 <- summary(fomc_saem_1)$confint_back
+
+ fomc_pop <- as.numeric(fomc_pop)
+ expect_true(all(ci_fomc_s1[, "lower"] < fomc_pop))
+ expect_true(all(ci_fomc_s1[, "upper"] > fomc_pop))
+
+ mmkin_fomc_2 <- update(mmkin_fomc_1, state.ini = 100, fixed_initials = "parent")
+ fomc_saem_2 <- saem(mmkin_fomc_2, quiet = TRUE, transformations = "mkin")
+ ci_fomc_s2 <- summary(fomc_saem_2)$confint_back
+
+ expect_true(all(ci_fomc_s2[, "lower"] < fomc_pop[2:3]))
+ expect_true(all(ci_fomc_s2[, "upper"] > fomc_pop[2:3]))
+
s_dfop_s1 <- summary(dfop_saemix_1)
s_dfop_s2 <- summary(dfop_saemix_2)
s_dfop_n <- summary(dfop_nlme_1)
@@ -35,14 +51,37 @@ test_that("Parent only models can be fitted using nonlinear mixed effects models
expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop))
expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop))
+ dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean)
+ dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod)
+
+ # We get < 22% deviations by averaging the transformed parameters
+ rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop
+ expect_true(all(rel_diff_mmkin < 0.22))
- # We get < 20% deviations with transformations made in mkin
+ # We get < 50% deviations with transformations made in mkin
rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop
- expect_true(all(rel_diff_1 < 0.2))
+ expect_true(all(rel_diff_1 < 0.5))
- # We get < 8% deviations with transformations made in saemix
+ # We get < 12% deviations with transformations made in saemix
rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop
- expect_true(all(rel_diff_2 < 0.08))
+ expect_true(all(rel_diff_2 < 0.12))
+
+ mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const")
+ hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE)
+ ci_hs_s1 <- summary(hs_saem_1)$confint_back
+
+ hs_pop <- as.numeric(hs_pop)
+ # expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated
+ expect_true(all(ci_hs_s1[, "upper"] > hs_pop))
+
+ mmkin_hs_2 <- update(mmkin_hs_1, state.ini = 100, fixed_initials = "parent")
+ hs_saem_2 <- saem(mmkin_hs_2, quiet = TRUE)
+ ci_hs_s2 <- summary(hs_saem_2)$confint_back
+
+ #expect_true(all(ci_hs_s2[, "lower"] < hs_pop[2:4])) # k1 again overestimated
+ expect_true(all(ci_hs_s2[, "upper"] > hs_pop[2:4]))
+
+ # HS would likely benefit from implemenation of transformations = "saemix"
})
test_that("Print methods work", {

Contact - Imprint