diff options
Diffstat (limited to 'tests')
-rw-r--r-- | tests/testthat/FOCUS_2006_D.csf | 2 | ||||
-rw-r--r-- | tests/testthat/test_confidence.R | 103 |
2 files changed, 45 insertions, 60 deletions
diff --git a/tests/testthat/FOCUS_2006_D.csf b/tests/testthat/FOCUS_2006_D.csf index 22a4b125..c9da7d61 100644 --- a/tests/testthat/FOCUS_2006_D.csf +++ b/tests/testthat/FOCUS_2006_D.csf @@ -5,7 +5,7 @@ Description: MeasurementUnits: % AR TimeUnits: days Comments: Created using mkin::CAKE_export -Date: 2019-10-26 +Date: 2019-10-28 Optimiser: IRLS [Data] diff --git a/tests/testthat/test_confidence.R b/tests/testthat/test_confidence.R index 13652436..5f76c344 100644 --- a/tests/testthat/test_confidence.R +++ b/tests/testthat/test_confidence.R @@ -1,3 +1,25 @@ +# We set up some models and fits with nls for comparisons +SFO_trans <- function(t, parent_0, log_k_parent_sink) { + parent_0 * exp(- exp(log_k_parent_sink) * t) +} +SFO_notrans <- function(t, parent_0, k_parent_sink) { + parent_0 * exp(- k_parent_sink * t) +} +f_1_nls_trans <- nls(value ~ SFO_trans(time, parent_0, log_k_parent_sink), + data = FOCUS_2006_A, + start = list(parent_0 = 100, log_k_parent_sink = log(0.1))) +f_1_nls_notrans <- nls(value ~ SFO_notrans(time, parent_0, k_parent_sink), + data = FOCUS_2006_A, + start = list(parent_0 = 100, k_parent_sink = 0.1)) + +f_1_mkin_OLS <- mkinfit("SFO", FOCUS_2006_A, quiet = TRUE) +f_1_mkin_OLS_notrans <- mkinfit("SFO", FOCUS_2006_A, quiet = TRUE, + transform_rates = FALSE) + + +f_2_mkin <- mkinfit("DFOP", FOCUS_2006_C, quiet = TRUE) +f_2_nls <- nls(value ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = FOCUS_2006_C) + context("Confidence intervals and p-values") test_that("The confint method 'quadratic' is consistent with the summary", { @@ -20,24 +42,7 @@ test_that("The confint method 'quadratic' is consistent with the summary", { }) -test_that("Quadratic confidence intervals for rate constants are comparable to confint.nls", { - - SFO_trans <- function(t, parent_0, log_k_parent_sink) { - parent_0 * exp(- exp(log_k_parent_sink) * t) - } - SFO_notrans <- function(t, parent_0, k_parent_sink) { - parent_0 * exp(- k_parent_sink * t) - } - f_1_nls_trans <- nls(value ~ SFO_trans(time, parent_0, log_k_parent_sink), - data = FOCUS_2006_A, - start = list(parent_0 = 100, log_k_parent_sink = log(0.1))) - f_1_nls_notrans <- nls(value ~ SFO_notrans(time, parent_0, k_parent_sink), - data = FOCUS_2006_A, - start = list(parent_0 = 100, k_parent_sink = 0.1)) - - f_1_mkin_OLS <- mkinfit("SFO", FOCUS_2006_A, quiet = TRUE) - f_1_mkin_OLS_notrans <- mkinfit("SFO", FOCUS_2006_A, quiet = TRUE, - transform_rates = FALSE) +test_that("Quadratic confidence intervals for rate constants are comparable to values in summary.nls", { # Check fitted parameter values expect_equivalent( @@ -70,8 +75,6 @@ test_that("Quadratic confidence intervals for rate constants are comparable to c expect_equivalent(se_nls_notrans[2] / se_mkin_notrans[2], sqrt(8/5), tolerance = 0.01) # Another case: - f_2_mkin <- mkinfit("DFOP", FOCUS_2006_C, quiet = TRUE) - f_2_nls <- nls(value ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = FOCUS_2006_C) se_mkin_2 <- summary(f_2_mkin)$par[1:4, "Std. Error"] se_nls_2 <- summary(f_2_nls)$coefficients[, "Std. Error"] # Here we the ratio of standard errors can be explained by the same @@ -82,42 +85,24 @@ test_that("Quadratic confidence intervals for rate constants are comparable to c tolerance = 0.03) }) -#test_that("Likelihood profile based confidence intervals work", { - -# f <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE) -# f <- fits[["SFO", "FOCUS_C"]] -# f_notrans <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE, transform_rates = FALSE) -# pf <- parms(f) -# f_nll <- function(parent_0, k_parent_sink, sigma) { -# - f$ll(c(parent_0 = as.numeric(parent_0), -# k_parent_sink = as.numeric(k_parent_sink), -# sigma = as.numeric(sigma))) -# } -# f_nll(parent_0 = 100, k_parent_sink = 0.3, sigma = 4.7) -# f_nll(pf[1], pf[2], pf[3]) -# f_mle <- stats4::mle(f_nll, start = as.list(parms(f)), nobs = nrow(FOCUS_2006_C)) -# f_mle <- stats4::mle(f_nll, start = as.list(parms(f)), nobs = 17L) -# logLik(f_mle) -# stats4::confint(f_mle, nobs = nrow(FOCUS_2006_C)) -# -# ci_mkin_1 <- confint(f, -# method = "quadratic", backtransform = FALSE, -# transformed = TRUE) -# ci_maxLik_1 <- maxLik::confint.maxLik(f_maxLik) -# -# f_tc_2_maxLik <- maxLik::maxLik(f_tc_2$ll, -# start = f_tc_2$par) -# ci_tc_2 <- confint(f_tc_2, method = "quadratic", -# backtransform = FALSE, transformed = TRUE, -# distribution = "normal") -# ci_tc_2_maxLik <- confint(f_tc_2_maxLik) -# rel_diff_ci_tc_2 <- (ci_tc_2 - ci_tc_2_maxLik)/ci_tc_2_maxLik -# # The ilr transformed variable appear to misbehave in the numeric differentiation -# expect_equivalent( -# rel_diff_ci_tc_2[c(2, 3, 4, 6, 7, 9, 10), ], rep(0, 14), -# tolerance = 0.05) -# -# ci_tc_2[, 1] -# ci_tc_2_maxLik[, 1] - -#}) +test_that("Likelihood profile based confidence intervals work", { + f <- fits[["SFO", "FOCUS_C"]] + + # negative log-likelihood for use with mle + f_nll <- function(parent_0, k_parent_sink, sigma) { + - f$ll(c(parent_0 = as.numeric(parent_0), + k_parent_sink = as.numeric(k_parent_sink), + sigma = as.numeric(sigma))) + } + f_mle <- stats4::mle(f_nll, start = as.list(parms(f)), nobs = nrow(FOCUS_2006_C)) + + ci_mkin_1_p_0.95 <- confint(f, method = "profile", level = 0.95, quiet = TRUE) + + # Magically, we get very similar boundaries as stats4::mle + # (we need to capture the output to avoid printing this while testing as + # stats4::confint uses cat() for its message, instead of message(), so + # suppressMessage() has no effect) + msg <- capture.output(ci_mle_1_0.95 <- stats4::confint(f_mle, level = 0.95)) + rel_diff_ci <- (ci_mle_1_0.95 - ci_mkin_1_p_0.95)/ci_mle_1_0.95 + expect_equivalent(as.numeric(rel_diff_ci), rep(0, 6), tolerance = 1e-4) +}) |