aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_D.html
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r--vignettes/FOCUS_D.html16
1 files changed, 8 insertions, 8 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index 6573cc7a..9522e881 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -276,13 +276,13 @@ kinetics (SFO) to one metabolite named m1, which also degrades with SFO kinetics
<p>The call to mkinmod returns a degradation model. The differential equations represented in
R code can be found in the character vector <code>$diffs</code> of the <code>mkinmod</code> object. If
-the <code>ccSolve</code> package is installed and functional, the differential equation model
+a compiler (g++) is installed and functional, the differential equation model
will be compiled from auto-generated C code.</p>
<pre><code class="r">SFO_SFO &lt;- mkinmod(parent = mkinsub(&quot;SFO&quot;, &quot;m1&quot;), m1 = mkinsub(&quot;SFO&quot;))
</code></pre>
-<pre><code>## Compiling differential equation model from auto-generated C code...
+<pre><code>## Compiling differential equation model from auto-generated C++ code...
</code></pre>
<pre><code class="r">print(SFO_SFO$diffs)
@@ -312,7 +312,7 @@ using the <code>plot</code> method for <code>mkinfit</code> objects.</p>
<pre><code class="r">mkinparplot(fit)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p>
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code>
objects.</p>
@@ -322,16 +322,16 @@ objects.</p>
<pre><code>## mkin version: 0.9.36
## R version: 3.2.0
-## Date of fit: Fri Jun 5 14:20:31 2015
-## Date of summary: Fri Jun 5 14:20:31 2015
+## Date of fit: Fri Jun 19 16:21:21 2015
+## Date of summary: Fri Jun 19 16:21:21 2015
##
## Equations:
## d_parent = - k_parent_sink * parent - k_parent_m1 * parent
## d_m1 = + k_parent_m1 * parent - k_m1_sink * m1
##
-## Model predictions using solution type deSolve
+## Model predictions using solution type odeintr
##
-## Fitted with method Port using 153 model solutions performed in 0.621 s
+## Fitted with method Port using 153 model solutions performed in 0.562 s
##
## Weighting: none
##
@@ -370,7 +370,7 @@ objects.</p>
## parent_0 1.00000 0.6075 -0.06625 -0.1701
## log_k_parent_sink 0.60752 1.0000 -0.08740 -0.6253
## log_k_parent_m1 -0.06625 -0.0874 1.00000 0.4716
-## log_k_m1_sink -0.17006 -0.6253 0.47163 1.0000
+## log_k_m1_sink -0.17006 -0.6253 0.47164 1.0000
##
## Residual standard error: 3.211 on 36 degrees of freedom
##

Contact - Imprint