aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_D.html
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r--vignettes/FOCUS_D.html15
1 files changed, 15 insertions, 0 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index c2599ee5..a1d57b02 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -363,7 +363,11 @@ pre code {
<h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1>
<h4 class="author">Johannes Ranke</h4>
+<<<<<<< HEAD
+<h4 class="date">Last change 31 January 2019 (rebuilt 2021-04-21)</h4>
+=======
<h4 class="date">Last change 31 January 2019 (rebuilt 2021-07-23)</h4>
+>>>>>>> master
</div>
@@ -437,10 +441,17 @@ print(FOCUS_2006_D)</code></pre>
<p><img src="" width="768" /></p>
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p>
<pre class="r"><code>summary(fit)</code></pre>
+<<<<<<< HEAD
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:29 2021
+## Date of summary: Wed Apr 21 16:40:29 2021
+=======
<pre><code>## mkin version used for fitting: 1.1.0
## R version used for fitting: 4.1.0
## Date of fit: Fri Jul 23 15:39:43 2021
## Date of summary: Fri Jul 23 15:39:43 2021
+>>>>>>> master
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -448,7 +459,11 @@ print(FOCUS_2006_D)</code></pre>
##
## Model predictions using solution type analytical
##
+<<<<<<< HEAD
+## Fitted using 401 model solutions performed in 0.144 s
+=======
## Fitted using 401 model solutions performed in 0.152 s
+>>>>>>> master
##
## Error model: Constant variance
##

Contact - Imprint