diff options
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r-- | vignettes/FOCUS_D.html | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index abd7d129..84e3748c 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -12,7 +12,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2017-11-16" /> +<meta name="date" content="2018-01-14" /> <title>Example evaluation of FOCUS Example Dataset D</title> @@ -70,12 +70,12 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf <h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2017-11-16</em></h4> +<h4 class="date"><em>2018-01-14</em></h4> <p>This is just a very simple vignette showing how to fit a degradation model for a parent compound with one transformation product using <code>mkin</code>. After loading the library we look a the data. We have observed concentrations in the column named <code>value</code> at the times specified in column <code>time</code> for the two observed variables named <code>parent</code> and <code>m1</code>.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(<span class="st">"mkin"</span>) +<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(<span class="st">"mkin"</span>, <span class="dt">quietly =</span> <span class="ot">TRUE</span>) <span class="kw">print</span>(FOCUS_2006_D)</code></pre></div> <pre><code>## name time value ## 1 parent 0 99.46 @@ -141,10 +141,10 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf <p><img src="" /><!-- --></p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">summary</span>(fit)</code></pre></div> -<pre><code>## mkin version: 0.9.46.2 -## R version: 3.4.2 -## Date of fit: Thu Nov 16 17:07:26 2017 -## Date of summary: Thu Nov 16 17:07:27 2017 +<pre><code>## mkin version: 0.9.47.1 +## R version: 3.4.3 +## Date of fit: Sun Jan 14 17:50:03 2018 +## Date of summary: Sun Jan 14 17:50:03 2018 ## ## Equations: ## d_parent/dt = - k_parent_sink * parent - k_parent_m1 * parent @@ -152,7 +152,7 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf ## ## Model predictions using solution type deSolve ## -## Fitted with method Port using 153 model solutions performed in 1.031 s +## Fitted with method Port using 153 model solutions performed in 1.072 s ## ## Weighting: none ## |