diff options
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r-- | vignettes/FOCUS_D.html | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index 38c597b0..16bc2084 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -11,7 +11,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2020-05-11" /> +<meta name="date" content="2020-05-26" /> <title>Example evaluation of FOCUS Example Dataset D</title> @@ -365,7 +365,7 @@ summary { <h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">2020-05-11</h4> +<h4 class="date">2020-05-26</h4> </div> @@ -439,10 +439,10 @@ print(FOCUS_2006_D)</code></pre> <p><img src="" width="768" /></p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <pre class="r"><code>summary(fit)</code></pre> -<pre><code>## mkin version used for fitting: 0.9.50 +<pre><code>## mkin version used for fitting: 0.9.50.3 ## R version used for fitting: 4.0.0 -## Date of fit: Mon May 11 04:41:12 2020 -## Date of summary: Mon May 11 04:41:12 2020 +## Date of fit: Tue May 26 17:01:07 2020 +## Date of summary: Tue May 26 17:01:07 2020 ## ## Equations: ## d_parent/dt = - k_parent * parent |