aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_D.html
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r--vignettes/FOCUS_D.html50
1 files changed, 21 insertions, 29 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index 6573cc7a..b1ea64ea 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -215,13 +215,7 @@ library we look a the data. We have observed concentrations in the column named
named <code>parent</code> and <code>m1</code>.</p>
<pre><code class="r">library(&quot;mkin&quot;)
-</code></pre>
-
-<pre><code>## Loading required package: minpack.lm
-## Loading required package: rootSolve
-</code></pre>
-
-<pre><code class="r">print(FOCUS_2006_D)
+print(FOCUS_2006_D)
</code></pre>
<pre><code>## name time value
@@ -276,7 +270,7 @@ kinetics (SFO) to one metabolite named m1, which also degrades with SFO kinetics
<p>The call to mkinmod returns a degradation model. The differential equations represented in
R code can be found in the character vector <code>$diffs</code> of the <code>mkinmod</code> object. If
-the <code>ccSolve</code> package is installed and functional, the differential equation model
+the gcc compiler is installed and functional, the differential equation model
will be compiled from auto-generated C code.</p>
<pre><code class="r">SFO_SFO &lt;- mkinmod(parent = mkinsub(&quot;SFO&quot;, &quot;m1&quot;), m1 = mkinsub(&quot;SFO&quot;))
@@ -312,7 +306,7 @@ using the <code>plot</code> method for <code>mkinfit</code> objects.</p>
<pre><code class="r">mkinparplot(fit)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p>
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code>
objects.</p>
@@ -321,9 +315,9 @@ objects.</p>
</code></pre>
<pre><code>## mkin version: 0.9.36
-## R version: 3.2.0
-## Date of fit: Fri Jun 5 14:20:31 2015
-## Date of summary: Fri Jun 5 14:20:31 2015
+## R version: 3.2.1
+## Date of fit: Sun Jun 21 01:47:59 2015
+## Date of summary: Sun Jun 21 01:47:59 2015
##
## Equations:
## d_parent = - k_parent_sink * parent - k_parent_m1 * parent
@@ -331,7 +325,7 @@ objects.</p>
##
## Model predictions using solution type deSolve
##
-## Fitted with method Port using 153 model solutions performed in 0.621 s
+## Fitted with method Port using 153 model solutions performed in 0.698 s
##
## Weighting: none
##
@@ -353,17 +347,12 @@ objects.</p>
## value type
## m1_0 0 state
##
-## Optimised, transformed parameters:
-## Estimate Std. Error Lower Upper t value Pr(&gt;|t|)
-## parent_0 99.600 1.61400 96.330 102.900 61.72 4.048e-38
-## log_k_parent_sink -3.038 0.07826 -3.197 -2.879 -38.82 5.601e-31
-## log_k_parent_m1 -2.980 0.04124 -3.064 -2.897 -72.27 1.446e-40
-## log_k_m1_sink -5.248 0.13610 -5.523 -4.972 -38.56 7.087e-31
-## Pr(&gt;t)
-## parent_0 2.024e-38
-## log_k_parent_sink 2.800e-31
-## log_k_parent_m1 7.228e-41
-## log_k_m1_sink 3.543e-31
+## Optimised, transformed parameters with symmetric confidence intervals:
+## Estimate Std. Error Lower Upper
+## parent_0 99.600 1.61400 96.330 102.900
+## log_k_parent_sink -3.038 0.07826 -3.197 -2.879
+## log_k_parent_m1 -2.980 0.04124 -3.064 -2.897
+## log_k_m1_sink -5.248 0.13610 -5.523 -4.972
##
## Parameter correlation:
## parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink
@@ -375,11 +364,14 @@ objects.</p>
## Residual standard error: 3.211 on 36 degrees of freedom
##
## Backtransformed parameters:
-## Estimate Lower Upper
-## parent_0 99.600000 96.330000 1.029e+02
-## k_parent_sink 0.047920 0.040890 5.616e-02
-## k_parent_m1 0.050780 0.046700 5.521e-02
-## k_m1_sink 0.005261 0.003992 6.933e-03
+## Confidence intervals for internally transformed parameters are asymmetric.
+## t-test (unrealistically) based on the assumption of normal distribution
+## for estimators of untransformed parameters.
+## Estimate t value Pr(&gt;t) Lower Upper
+## parent_0 99.600000 61.720 2.024e-38 96.330000 1.029e+02
+## k_parent_sink 0.047920 12.780 3.050e-15 0.040890 5.616e-02
+## k_parent_m1 0.050780 24.250 3.407e-24 0.046700 5.521e-02
+## k_m1_sink 0.005261 7.349 5.758e-09 0.003992 6.933e-03
##
## Chi2 error levels in percent:
## err.min n.optim df

Contact - Imprint