diff options
Diffstat (limited to 'vignettes/FOCUS_D.html')
-rw-r--r-- | vignettes/FOCUS_D.html | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index f740cfc0..de900708 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -363,7 +363,7 @@ pre code { <h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">Last change 31 January 2019 (rebuilt 2021-03-31)</h4> +<h4 class="date">Last change 31 January 2019 (rebuilt 2021-04-21)</h4> </div> @@ -437,10 +437,10 @@ print(FOCUS_2006_D)</code></pre> <p><img src="" width="768" /></p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <pre class="r"><code>summary(fit)</code></pre> -<pre><code>## mkin version used for fitting: 1.0.4 -## R version used for fitting: 4.0.4 -## Date of fit: Wed Mar 31 19:01:35 2021 -## Date of summary: Wed Mar 31 19:01:35 2021 +<pre><code>## mkin version used for fitting: 1.0.4.9000 +## R version used for fitting: 4.0.5 +## Date of fit: Wed Apr 21 16:40:29 2021 +## Date of summary: Wed Apr 21 16:40:29 2021 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -448,7 +448,7 @@ print(FOCUS_2006_D)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted using 401 model solutions performed in 0.146 s +## Fitted using 401 model solutions performed in 0.144 s ## ## Error model: Constant variance ## |