aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html50
1 files changed, 25 insertions, 25 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 190ab65b..ed150c0a 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -1561,10 +1561,10 @@ model fit. This covers the numerical analysis given in the FOCUS
report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:53 2023
-## Date of summary: Fri Feb 17 10:41:53 2023
+## Date of fit: Fri Feb 17 20:04:32 2023
+## Date of summary: Fri Feb 17 20:04:32 2023
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -1664,17 +1664,17 @@ checked.</p>
<pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre>
<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:53 2023
-## Date of summary: Fri Feb 17 10:41:53 2023
+## Date of fit: Fri Feb 17 20:04:32 2023
+## Date of summary: Fri Feb 17 20:04:32 2023
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 369 model solutions performed in 0.026 s
+## Fitted using 369 model solutions performed in 0.025 s
##
## Error model: Constant variance
##
@@ -1810,17 +1810,17 @@ plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:32 2023
+## Date of summary: Fri Feb 17 20:04:32 2023
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 239 model solutions performed in 0.015 s
+## Fitted using 239 model solutions performed in 0.014 s
##
## Error model: Constant variance
##
@@ -1891,10 +1891,10 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:32 2023
+## Date of summary: Fri Feb 17 20:04:32 2023
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1903,7 +1903,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted using 581 model solutions performed in 0.04 s
+## Fitted using 581 model solutions performed in 0.039 s
##
## Error model: Constant variance
##
@@ -2004,10 +2004,10 @@ as a row index and datasets as a column index.</p>
using square brackets for indexing which will result in the use of the
summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:33 2023
+## Date of summary: Fri Feb 17 20:04:33 2023
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -2126,17 +2126,17 @@ well. The error level at which the <span class="math inline"><em>χ</em><sup>2</
slightly lower for the FOMC model. However, the difference appears
negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:33 2023
+## Date of summary: Fri Feb 17 20:04:33 2023
##
## Equations:
## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 142 model solutions performed in 0.009 s
+## Fitted using 142 model solutions performed in 0.008 s
##
## Error model: Constant variance
##
@@ -2190,10 +2190,10 @@ negligible.</p>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:33 2023
+## Date of summary: Fri Feb 17 20:04:33 2023
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent

Contact - Imprint