aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html56
1 files changed, 28 insertions, 28 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 8435ce23..05b9bdbd 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -233,17 +233,17 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>&quot;SFO&quot;</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:06 2016
-## Date of summary: Tue Jun 28 07:38:06 2016
+## Date of fit: Tue Jun 28 08:19:32 2016
+## Date of summary: Tue Jun 28 08:19:32 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.235 s
+## Fitted with method Port using 37 model solutions performed in 0.245 s
##
## Weighting: none
##
@@ -326,10 +326,10 @@ summary(m.L1.SFO)</code></pre>
<pre class="r"><code>plot(m.L1.FOMC, show_errmin = TRUE, main = &quot;FOCUS L1 - FOMC&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:07 2016
-## Date of summary: Tue Jun 28 07:38:07 2016
+## Date of fit: Tue Jun 28 08:19:34 2016
+## Date of summary: Tue Jun 28 08:19:34 2016
##
##
## Warning: Optimisation by method Port did not converge.
@@ -341,7 +341,7 @@ summary(m.L1.SFO)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 188 model solutions performed in 1.119 s
+## Fitted with method Port using 188 model solutions performed in 1.216 s
##
## Weighting: none
##
@@ -423,17 +423,17 @@ plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:09 2016
-## Date of summary: Tue Jun 28 07:38:09 2016
+## Date of fit: Tue Jun 28 08:19:36 2016
+## Date of summary: Tue Jun 28 08:19:36 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 81 model solutions performed in 0.492 s
+## Fitted with method Port using 81 model solutions performed in 0.537 s
##
## Weighting: none
##
@@ -493,10 +493,10 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
<p><img src="" alt /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:11 2016
-## Date of summary: Tue Jun 28 07:38:11 2016
+## Date of fit: Tue Jun 28 08:19:39 2016
+## Date of summary: Tue Jun 28 08:19:39 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -505,7 +505,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 2.04 s
+## Fitted with method Port using 336 model solutions performed in 2.267 s
##
## Weighting: none
##
@@ -582,10 +582,10 @@ plot(mm.L3)</code></pre>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:13 2016
-## Date of summary: Tue Jun 28 07:38:13 2016
+## Date of fit: Tue Jun 28 08:19:41 2016
+## Date of summary: Tue Jun 28 08:19:42 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -594,7 +594,7 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.846 s
+## Fitted with method Port using 137 model solutions performed in 0.924 s
##
## Weighting: none
##
@@ -682,17 +682,17 @@ plot(mm.L4)</code></pre>
<p><img src="" alt /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:14 2016
-## Date of summary: Tue Jun 28 07:38:14 2016
+## Date of fit: Tue Jun 28 08:19:42 2016
+## Date of summary: Tue Jun 28 08:19:43 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.283 s
+## Fitted with method Port using 46 model solutions performed in 0.307 s
##
## Weighting: none
##
@@ -742,17 +742,17 @@ plot(mm.L4)</code></pre>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.43
+<pre><code>## mkin version: 0.9.43.9000
## R version: 3.3.1
-## Date of fit: Tue Jun 28 07:38:14 2016
-## Date of summary: Tue Jun 28 07:38:15 2016
+## Date of fit: Tue Jun 28 08:19:43 2016
+## Date of summary: Tue Jun 28 08:19:43 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.383 s
+## Fitted with method Port using 66 model solutions performed in 0.414 s
##
## Weighting: none
##

Contact - Imprint