diff options
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r-- | vignettes/FOCUS_L.html | 155 |
1 files changed, 76 insertions, 79 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index 2934bc99..45d264b4 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -1329,6 +1329,7 @@ if (window.hljs) { + <style type="text/css"> .main-container { max-width: 940px; @@ -1350,6 +1351,9 @@ button.code-folding-btn:focus { summary { display: list-item; } +details > summary > p:only-child { + display: inline; +} pre code { padding: 0; } @@ -1513,7 +1517,7 @@ div.tocify { <h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">Last change 17 November 2016 (rebuilt 2022-03-02)</h4> +<h4 class="date">Last change 17 November 2016 (rebuilt 2022-05-18)</h4> </div> @@ -1533,9 +1537,9 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> <pre class="r"><code>m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE) summary(m.L1.SFO)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.2 -## Date of fit: Wed Mar 2 16:28:09 2022 -## Date of summary: Wed Mar 2 16:28:09 2022 +## R version used for fitting: 4.2.0 +## Date of fit: Wed May 18 20:03:22 2022 +## Date of summary: Wed May 18 20:03:22 2022 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -1574,9 +1578,9 @@ summary(m.L1.SFO)</code></pre> ## ## Parameter correlation: ## parent_0 log_k_parent sigma -## parent_0 1.000e+00 6.186e-01 -1.516e-09 -## log_k_parent 6.186e-01 1.000e+00 -3.124e-09 -## sigma -1.516e-09 -3.124e-09 1.000e+00 +## parent_0 1.000e+00 6.186e-01 -1.712e-09 +## log_k_parent 6.186e-01 1.000e+00 -3.237e-09 +## sigma -1.712e-09 -3.237e-09 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -1623,27 +1627,25 @@ summary(m.L1.SFO)</code></pre> <pre class="r"><code>mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time")</code></pre> <p><img src="" /><!-- --></p> <p>For comparison, the FOMC model is fitted as well, and the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is checked.</p> -<pre class="r"><code>m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE)</code></pre> -<pre><code>## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation did not converge: -## false convergence (8)</code></pre> -<pre class="r"><code>plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")</code></pre> -<p><img src="" /><!-- --></p> +<pre class="r"><code>m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE) +plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")</code></pre> +<p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre> <pre><code>## Warning in sqrt(diag(covar)): NaNs produced</code></pre> <pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre> <pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is ## doubtful</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.2 -## Date of fit: Wed Mar 2 16:28:09 2022 -## Date of summary: Wed Mar 2 16:28:09 2022 +## R version used for fitting: 4.2.0 +## Date of fit: Wed May 18 20:03:22 2022 +## Date of summary: Wed May 18 20:03:22 2022 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 369 model solutions performed in 0.082 s +## Fitted using 357 model solutions performed in 0.07 s ## ## Error model: Constant variance ## @@ -1664,39 +1666,34 @@ summary(m.L1.SFO)</code></pre> ## Fixed parameter values: ## None ## -## -## Warning(s): -## Optimisation did not converge: -## false convergence (8) -## ## Results: ## -## AIC BIC logLik -## 95.88781 99.44929 -43.9439 +## AIC BIC logLik +## 95.88804 99.44953 -43.94402 ## ## Optimised, transformed parameters with symmetric confidence intervals: ## Estimate Std. Error Lower Upper ## parent_0 92.47 1.2820 89.720 95.220 -## log_alpha 13.78 NaN NaN NaN -## log_beta 16.13 NaN NaN NaN -## sigma 2.78 0.4598 1.794 3.766 +## log_alpha 11.37 NaN NaN NaN +## log_beta 13.72 NaN NaN NaN +## sigma 2.78 0.4621 1.789 3.771 ## ## Parameter correlation: ## parent_0 log_alpha log_beta sigma -## parent_0 1.0000000 NaN NaN 0.0001671 +## parent_0 1.0000000 NaN NaN 0.0005548 ## log_alpha NaN 1 NaN NaN ## log_beta NaN NaN 1 NaN -## sigma 0.0001671 NaN NaN 1.0000000 +## sigma 0.0005548 NaN NaN 1.0000000 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. ## t-test (unrealistically) based on the assumption of normal distribution ## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper -## parent_0 9.247e+01 NA NA 89.720 95.220 -## alpha 9.658e+05 NA NA NA NA -## beta 1.010e+07 NA NA NA NA -## sigma 2.780e+00 NA NA 1.794 3.766 +## parent_0 92.47 NA NA 89.720 95.220 +## alpha 87110.00 NA NA NA NA +## beta 911100.00 NA NA NA NA +## sigma 2.78 NA NA 1.789 3.771 ## ## FOCUS Chi2 error levels in percent: ## err.min n.optim df @@ -1704,8 +1701,8 @@ summary(m.L1.SFO)</code></pre> ## parent 3.619 3 6 ## ## Estimated disappearance times: -## DT50 DT90 DT50back -## parent 7.25 24.08 7.25</code></pre> +## DT50 DT90 DT50back +## parent 7.249 24.08 7.249</code></pre> <p>We get a warning that the default optimisation algorithm <code>Port</code> did not converge, which is an indication that the model is overparameterised, <em>i.e.</em> contains too many parameters that are ill-defined as a consequence.</p> <p>And in fact, due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the parameters <code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have excessive confidence intervals, that span more than 25 orders of magnitude (!) when backtransformed to the scale of <code>alpha</code> and <code>beta</code>. Also, the t-test for significant difference from zero does not indicate such a significant difference, with p-values greater than 0.1, and finally, the parameter correlation of <code>log_alpha</code> and <code>log_beta</code> is 1.000, clearly indicating that the model is overparameterised.</p> <p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same <span class="math inline"><em>χ</em><sup>2</sup></span> error levels as the kinfit package and the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI was the first widely used standard package in this field. Also, the calculation of <span class="math inline"><em>χ</em><sup>2</sup></span> error levels was compared with KinGUII, CAKE and DegKin manager in a project sponsored by the German Umweltbundesamt <span class="citation">(Ranke 2014)</span>.</p> @@ -1739,16 +1736,16 @@ plot(m.L2.FOMC, show_residuals = TRUE, <p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.2 -## Date of fit: Wed Mar 2 16:28:10 2022 -## Date of summary: Wed Mar 2 16:28:10 2022 +## R version used for fitting: 4.2.0 +## Date of fit: Wed May 18 20:03:22 2022 +## Date of summary: Wed May 18 20:03:22 2022 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 239 model solutions performed in 0.049 s +## Fitted using 239 model solutions performed in 0.043 s ## ## Error model: Constant variance ## @@ -1783,10 +1780,10 @@ plot(m.L2.FOMC, show_residuals = TRUE, ## ## Parameter correlation: ## parent_0 log_alpha log_beta sigma -## parent_0 1.000e+00 -1.151e-01 -2.085e-01 -7.828e-09 -## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.602e-07 -## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.372e-07 -## sigma -7.828e-09 -1.602e-07 -1.372e-07 1.000e+00 +## parent_0 1.000e+00 -1.151e-01 -2.085e-01 -7.637e-09 +## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.617e-07 +## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.387e-07 +## sigma -7.637e-09 -1.617e-07 -1.387e-07 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -1817,9 +1814,9 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, <p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.2 -## Date of fit: Wed Mar 2 16:28:10 2022 -## Date of summary: Wed Mar 2 16:28:10 2022 +## R version used for fitting: 4.2.0 +## Date of fit: Wed May 18 20:03:23 2022 +## Date of summary: Wed May 18 20:03:23 2022 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -1828,7 +1825,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## ## Model predictions using solution type analytical ## -## Fitted using 581 model solutions performed in 0.137 s +## Fitted using 581 model solutions performed in 0.118 s ## ## Error model: Constant variance ## @@ -1859,18 +1856,18 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## Optimised, transformed parameters with symmetric confidence intervals: ## Estimate Std. Error Lower Upper ## parent_0 93.950 9.998e-01 91.5900 96.3100 -## log_k1 3.112 1.842e+03 -4353.0000 4359.0000 +## log_k1 3.113 1.845e+03 -4360.0000 4367.0000 ## log_k2 -1.088 6.285e-02 -1.2370 -0.9394 ## g_qlogis -0.399 9.946e-02 -0.6342 -0.1638 ## sigma 1.414 2.886e-01 0.7314 2.0960 ## ## Parameter correlation: ## parent_0 log_k1 log_k2 g_qlogis sigma -## parent_0 1.000e+00 6.783e-07 -3.390e-10 2.665e-01 -2.967e-10 -## log_k1 6.783e-07 1.000e+00 1.116e-04 -2.196e-04 -1.031e-05 -## log_k2 -3.390e-10 1.116e-04 1.000e+00 -7.903e-01 2.917e-09 -## g_qlogis 2.665e-01 -2.196e-04 -7.903e-01 1.000e+00 -4.408e-09 -## sigma -2.967e-10 -1.031e-05 2.917e-09 -4.408e-09 1.000e+00 +## parent_0 1.000e+00 6.784e-07 -5.188e-10 2.665e-01 -5.800e-10 +## log_k1 6.784e-07 1.000e+00 1.114e-04 -2.191e-04 -1.029e-05 +## log_k2 -5.188e-10 1.114e-04 1.000e+00 -7.903e-01 5.080e-09 +## g_qlogis 2.665e-01 -2.191e-04 -7.903e-01 1.000e+00 -7.991e-09 +## sigma -5.800e-10 -1.029e-05 5.080e-09 -7.991e-09 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -1878,7 +1875,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## for estimators of untransformed parameters. ## Estimate t value Pr(>t) Lower Upper ## parent_0 93.9500 9.397e+01 2.036e-12 91.5900 96.3100 -## k1 22.4800 5.553e-04 4.998e-01 0.0000 Inf +## k1 22.4800 5.544e-04 4.998e-01 0.0000 Inf ## k2 0.3369 1.591e+01 4.697e-07 0.2904 0.3909 ## g 0.4016 1.680e+01 3.238e-07 0.3466 0.4591 ## sigma 1.4140 4.899e+00 8.776e-04 0.7314 2.0960 @@ -1890,8 +1887,8 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## ## Estimated disappearance times: ## DT50 DT90 DT50back DT50_k1 DT50_k2 -## parent 0.5335 5.311 1.599 0.03084 2.058</code></pre> -<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.</p> +## parent 0.5335 5.311 1.599 0.03083 2.058</code></pre> +<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion.</p> </div> </div> <div id="laboratory-data-l3" class="section level1"> @@ -1917,9 +1914,9 @@ plot(mm.L3)</code></pre> <p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p> <pre class="r"><code>summary(mm.L3[["DFOP", 1]])</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.2 -## Date of fit: Wed Mar 2 16:28:10 2022 -## Date of summary: Wed Mar 2 16:28:10 2022 +## R version used for fitting: 4.2.0 +## Date of fit: Wed May 18 20:03:23 2022 +## Date of summary: Wed May 18 20:03:23 2022 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -1928,7 +1925,7 @@ plot(mm.L3)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted using 376 model solutions performed in 0.08 s +## Fitted using 376 model solutions performed in 0.073 s ## ## Error model: Constant variance ## @@ -1966,11 +1963,11 @@ plot(mm.L3)</code></pre> ## ## Parameter correlation: ## parent_0 log_k1 log_k2 g_qlogis sigma -## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -9.664e-08 -## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 7.147e-07 -## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 1.022e-06 -## g_qlogis 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -7.926e-07 -## sigma -9.664e-08 7.147e-07 1.022e-06 -7.926e-07 1.000e+00 +## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -9.632e-08 +## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 7.145e-07 +## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 1.021e-06 +## g_qlogis 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -7.925e-07 +## sigma -9.632e-08 7.145e-07 1.021e-06 -7.925e-07 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -2025,16 +2022,16 @@ plot(mm.L4)</code></pre> <p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p> <pre class="r"><code>summary(mm.L4[["SFO", 1]], data = FALSE)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.2 -## Date of fit: Wed Mar 2 16:28:11 2022 -## Date of summary: Wed Mar 2 16:28:11 2022 +## R version used for fitting: 4.2.0 +## Date of fit: Wed May 18 20:03:23 2022 +## Date of summary: Wed May 18 20:03:23 2022 ## ## Equations: ## d_parent/dt = - k_parent * parent ## ## Model predictions using solution type analytical ## -## Fitted using 142 model solutions performed in 0.03 s +## Fitted using 142 model solutions performed in 0.027 s ## ## Error model: Constant variance ## @@ -2066,9 +2063,9 @@ plot(mm.L4)</code></pre> ## ## Parameter correlation: ## parent_0 log_k_parent sigma -## parent_0 1.000e+00 5.938e-01 3.387e-07 -## log_k_parent 5.938e-01 1.000e+00 5.830e-07 -## sigma 3.387e-07 5.830e-07 1.000e+00 +## parent_0 1.000e+00 5.938e-01 3.440e-07 +## log_k_parent 5.938e-01 1.000e+00 5.885e-07 +## sigma 3.440e-07 5.885e-07 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. @@ -2089,16 +2086,16 @@ plot(mm.L4)</code></pre> ## parent 106 352</code></pre> <pre class="r"><code>summary(mm.L4[["FOMC", 1]], data = FALSE)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.2 -## Date of fit: Wed Mar 2 16:28:11 2022 -## Date of summary: Wed Mar 2 16:28:11 2022 +## R version used for fitting: 4.2.0 +## Date of fit: Wed May 18 20:03:23 2022 +## Date of summary: Wed May 18 20:03:23 2022 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 224 model solutions performed in 0.045 s +## Fitted using 224 model solutions performed in 0.04 s ## ## Error model: Constant variance ## @@ -2133,10 +2130,10 @@ plot(mm.L4)</code></pre> ## ## Parameter correlation: ## parent_0 log_alpha log_beta sigma -## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.468e-07 -## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.478e-08 -## log_beta -5.543e-01 9.889e-01 1.000e+00 5.211e-08 -## sigma -2.468e-07 2.478e-08 5.211e-08 1.000e+00 +## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.563e-07 +## log_alpha -4.696e-01 1.000e+00 9.889e-01 4.066e-08 +## log_beta -5.543e-01 9.889e-01 1.000e+00 6.818e-08 +## sigma -2.563e-07 4.066e-08 6.818e-08 1.000e+00 ## ## Backtransformed parameters: ## Confidence intervals for internally transformed parameters are asymmetric. |