aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html66
1 files changed, 33 insertions, 33 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 77b64659..4d0ff166 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -1516,7 +1516,7 @@ div.tocify {
<h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 17 November 2016 (rebuilt 2021-03-31)</h4>
+<h4 class="date">Last change 17 November 2016 (rebuilt 2021-04-21)</h4>
</div>
@@ -1535,10 +1535,10 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>&quot;SFO&quot;</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.4
-## R version used for fitting: 4.0.4
-## Date of fit: Wed Mar 31 19:01:37 2021
-## Date of summary: Wed Mar 31 19:01:37 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:34 2021
+## Date of summary: Wed Apr 21 16:40:34 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -1636,17 +1636,17 @@ summary(m.L1.SFO)</code></pre>
<pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre>
<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.4
-## R version used for fitting: 4.0.4
-## Date of fit: Wed Mar 31 19:01:37 2021
-## Date of summary: Wed Mar 31 19:01:37 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:34 2021
+## Date of summary: Wed Apr 21 16:40:34 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 369 model solutions performed in 0.083 s
+## Fitted using 369 model solutions performed in 0.087 s
##
## Error model: Constant variance
##
@@ -1741,17 +1741,17 @@ plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.4
-## R version used for fitting: 4.0.4
-## Date of fit: Wed Mar 31 19:01:37 2021
-## Date of summary: Wed Mar 31 19:01:37 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:35 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 239 model solutions performed in 0.049 s
+## Fitted using 239 model solutions performed in 0.05 s
##
## Error model: Constant variance
##
@@ -1819,10 +1819,10 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.4
-## R version used for fitting: 4.0.4
-## Date of fit: Wed Mar 31 19:01:38 2021
-## Date of summary: Wed Mar 31 19:01:38 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:35 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1919,10 +1919,10 @@ plot(mm.L3)</code></pre>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.4
-## R version used for fitting: 4.0.4
-## Date of fit: Wed Mar 31 19:01:38 2021
-## Date of summary: Wed Mar 31 19:01:38 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:35 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -2027,17 +2027,17 @@ plot(mm.L4)</code></pre>
<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.4
-## R version used for fitting: 4.0.4
-## Date of fit: Wed Mar 31 19:01:38 2021
-## Date of summary: Wed Mar 31 19:01:38 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:36 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 142 model solutions performed in 0.031 s
+## Fitted using 142 model solutions performed in 0.03 s
##
## Error model: Constant variance
##
@@ -2091,17 +2091,17 @@ plot(mm.L4)</code></pre>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.4
-## R version used for fitting: 4.0.4
-## Date of fit: Wed Mar 31 19:01:38 2021
-## Date of summary: Wed Mar 31 19:01:38 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:36 2021
+## Date of summary: Wed Apr 21 16:40:36 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.045 s
+## Fitted using 224 model solutions performed in 0.046 s
##
## Error model: Constant variance
##

Contact - Imprint