diff options
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r-- | vignettes/FOCUS_L.html | 52 |
1 files changed, 26 insertions, 26 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index b6ebb606..96a823cf 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -1513,7 +1513,7 @@ div.tocify { <h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">Last change 17 November 2016 (rebuilt 2021-09-16)</h4> +<h4 class="date">Last change 17 November 2016 (rebuilt 2021-11-17)</h4> </div> @@ -1533,16 +1533,16 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> <pre class="r"><code>m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE) summary(m.L1.SFO)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.1 -## Date of fit: Thu Sep 16 13:57:35 2021 -## Date of summary: Thu Sep 16 13:57:35 2021 +## R version used for fitting: 4.1.2 +## Date of fit: Wed Nov 17 12:15:51 2021 +## Date of summary: Wed Nov 17 12:15:51 2021 ## ## Equations: ## d_parent/dt = - k_parent * parent ## ## Model predictions using solution type analytical ## -## Fitted using 133 model solutions performed in 0.031 s +## Fitted using 133 model solutions performed in 0.032 s ## ## Error model: Constant variance ## @@ -1634,9 +1634,9 @@ summary(m.L1.SFO)</code></pre> <pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is ## doubtful</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.1 -## Date of fit: Thu Sep 16 13:57:35 2021 -## Date of summary: Thu Sep 16 13:57:35 2021 +## R version used for fitting: 4.1.2 +## Date of fit: Wed Nov 17 12:15:51 2021 +## Date of summary: Wed Nov 17 12:15:51 2021 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent @@ -1739,16 +1739,16 @@ plot(m.L2.FOMC, show_residuals = TRUE, <p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.1 -## Date of fit: Thu Sep 16 13:57:35 2021 -## Date of summary: Thu Sep 16 13:57:35 2021 +## R version used for fitting: 4.1.2 +## Date of fit: Wed Nov 17 12:15:52 2021 +## Date of summary: Wed Nov 17 12:15:52 2021 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 239 model solutions performed in 0.048 s +## Fitted using 239 model solutions performed in 0.049 s ## ## Error model: Constant variance ## @@ -1817,9 +1817,9 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, <p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.1 -## Date of fit: Thu Sep 16 13:57:36 2021 -## Date of summary: Thu Sep 16 13:57:36 2021 +## R version used for fitting: 4.1.2 +## Date of fit: Wed Nov 17 12:15:52 2021 +## Date of summary: Wed Nov 17 12:15:52 2021 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -1828,7 +1828,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, ## ## Model predictions using solution type analytical ## -## Fitted using 581 model solutions performed in 0.133 s +## Fitted using 581 model solutions performed in 0.134 s ## ## Error model: Constant variance ## @@ -1917,9 +1917,9 @@ plot(mm.L3)</code></pre> <p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p> <pre class="r"><code>summary(mm.L3[["DFOP", 1]])</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.1 -## Date of fit: Thu Sep 16 13:57:36 2021 -## Date of summary: Thu Sep 16 13:57:36 2021 +## R version used for fitting: 4.1.2 +## Date of fit: Wed Nov 17 12:15:52 2021 +## Date of summary: Wed Nov 17 12:15:52 2021 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -1928,7 +1928,7 @@ plot(mm.L3)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted using 376 model solutions performed in 0.079 s +## Fitted using 376 model solutions performed in 0.08 s ## ## Error model: Constant variance ## @@ -2025,9 +2025,9 @@ plot(mm.L4)</code></pre> <p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p> <pre class="r"><code>summary(mm.L4[["SFO", 1]], data = FALSE)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.1 -## Date of fit: Thu Sep 16 13:57:36 2021 -## Date of summary: Thu Sep 16 13:57:36 2021 +## R version used for fitting: 4.1.2 +## Date of fit: Wed Nov 17 12:15:53 2021 +## Date of summary: Wed Nov 17 12:15:53 2021 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -2089,9 +2089,9 @@ plot(mm.L4)</code></pre> ## parent 106 352</code></pre> <pre class="r"><code>summary(mm.L4[["FOMC", 1]], data = FALSE)</code></pre> <pre><code>## mkin version used for fitting: 1.1.0 -## R version used for fitting: 4.1.1 -## Date of fit: Thu Sep 16 13:57:36 2021 -## Date of summary: Thu Sep 16 13:57:36 2021 +## R version used for fitting: 4.1.2 +## Date of fit: Wed Nov 17 12:15:53 2021 +## Date of summary: Wed Nov 17 12:15:53 2021 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent |