diff options
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r-- | vignettes/FOCUS_L.html | 93 |
1 files changed, 49 insertions, 44 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index 095c0ec0..7e0ef4dd 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-06-23" /> +<meta name="date" content="2015-06-26" /> <title>Example evaluation of FOCUS Laboratory Data L1 to L3</title> @@ -65,7 +65,7 @@ img { <div id="header"> <h1 class="title">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-06-23</em></h4> +<h4 class="date"><em>2015-06-26</em></h4> </div> <div id="TOC"> @@ -80,8 +80,13 @@ img { <div id="laboratory-data-l1" class="section level2"> <h2>Laboratory Data L1</h2> <p>The following code defines example dataset L1 from the FOCUS kinetics report, p. 284:</p> -<pre class="r"><code>library("mkin") -FOCUS_2006_L1 = data.frame( +<pre class="r"><code>library("mkin")</code></pre> +<pre><code>## Loading required package: minpack.lm +## Loading required package: rootSolve +## Loading required package: inline +## Loading required package: methods +## Loading required package: parallel</code></pre> +<pre class="r"><code>FOCUS_2006_L1 = data.frame( t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2), parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6, 72.0, 71.9, 50.3, 59.4, 47.0, 45.1, @@ -91,17 +96,17 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> <p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>SFO</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p> <pre class="r"><code>m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet=TRUE) summary(m.L1.SFO)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:14 2015 -## Date of summary: Tue Jun 23 15:18:14 2015 +## Date of fit: Fri Jun 26 14:41:41 2015 +## Date of summary: Fri Jun 26 14:41:41 2015 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 37 model solutions performed in 0.101 s +## Fitted with method Port using 37 model solutions performed in 0.08 s ## ## Weighting: none ## @@ -181,10 +186,10 @@ summary(m.L1.SFO)</code></pre> <pre><code>## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge. ## Convergence code is 1</code></pre> <pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:15 2015 -## Date of summary: Tue Jun 23 15:18:15 2015 +## Date of fit: Fri Jun 26 14:41:41 2015 +## Date of summary: Fri Jun 26 14:41:41 2015 ## ## ## Warning: Optimisation by method Port did not converge. @@ -196,7 +201,7 @@ summary(m.L1.SFO)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 188 model solutions performed in 0.484 s +## Fitted with method Port using 188 model solutions performed in 0.397 s ## ## Weighting: none ## @@ -261,17 +266,17 @@ FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)</code></pre> <p>Again, the SFO model is fitted and a summary is obtained:</p> <pre class="r"><code>m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE) summary(m.L2.SFO)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:15 2015 -## Date of summary: Tue Jun 23 15:18:15 2015 +## Date of fit: Fri Jun 26 14:41:42 2015 +## Date of summary: Fri Jun 26 14:41:42 2015 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 41 model solutions performed in 0.109 s +## Fitted with method Port using 41 model solutions performed in 0.087 s ## ## Weighting: none ## @@ -349,17 +354,17 @@ plot(m.L2.FOMC) mkinresplot(m.L2.FOMC)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:16 2015 -## Date of summary: Tue Jun 23 15:18:16 2015 +## Date of fit: Fri Jun 26 14:41:42 2015 +## Date of summary: Fri Jun 26 14:41:42 2015 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 81 model solutions performed in 0.227 s +## Fitted with method Port using 81 model solutions performed in 0.175 s ## ## Weighting: none ## @@ -421,10 +426,10 @@ plot(m.L2.DFOP)</code></pre> plot(m.L2.DFOP)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:18 2015 -## Date of summary: Tue Jun 23 15:18:18 2015 +## Date of fit: Fri Jun 26 14:41:44 2015 +## Date of summary: Fri Jun 26 14:41:44 2015 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -433,7 +438,7 @@ plot(m.L2.DFOP)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 336 model solutions performed in 0.93 s +## Fitted with method Port using 336 model solutions performed in 0.744 s ## ## Weighting: none ## @@ -498,17 +503,17 @@ FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)</code></pre> plot(m.L3.SFO)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L3.SFO)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:19 2015 -## Date of summary: Tue Jun 23 15:18:19 2015 +## Date of fit: Fri Jun 26 14:41:44 2015 +## Date of summary: Fri Jun 26 14:41:44 2015 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 43 model solutions performed in 0.111 s +## Fitted with method Port using 43 model solutions performed in 0.087 s ## ## Weighting: none ## @@ -574,17 +579,17 @@ plot(m.L3.SFO)</code></pre> plot(m.L3.FOMC)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L3.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:19 2015 -## Date of summary: Tue Jun 23 15:18:19 2015 +## Date of fit: Fri Jun 26 14:41:44 2015 +## Date of summary: Fri Jun 26 14:41:44 2015 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 83 model solutions performed in 0.213 s +## Fitted with method Port using 83 model solutions performed in 0.178 s ## ## Weighting: none ## @@ -640,10 +645,10 @@ plot(m.L3.FOMC)</code></pre> plot(m.L3.DFOP)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L3.DFOP, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:20 2015 -## Date of summary: Tue Jun 23 15:18:20 2015 +## Date of fit: Fri Jun 26 14:41:45 2015 +## Date of summary: Fri Jun 26 14:41:45 2015 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -652,7 +657,7 @@ plot(m.L3.DFOP)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 137 model solutions performed in 0.348 s +## Fitted with method Port using 137 model solutions performed in 0.287 s ## ## Weighting: none ## @@ -722,17 +727,17 @@ FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)</code></pre> plot(m.L4.SFO)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L4.SFO, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:20 2015 -## Date of summary: Tue Jun 23 15:18:20 2015 +## Date of fit: Fri Jun 26 14:41:45 2015 +## Date of summary: Fri Jun 26 14:41:45 2015 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 46 model solutions performed in 0.115 s +## Fitted with method Port using 46 model solutions performed in 0.097 s ## ## Weighting: none ## @@ -787,17 +792,17 @@ plot(m.L4.SFO)</code></pre> plot(m.L4.FOMC)</code></pre> <p><img src="" title alt width="672" /></p> <pre class="r"><code>summary(m.L4.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version: 0.9.38 +<pre><code>## mkin version: 0.9.39 ## R version: 3.2.1 -## Date of fit: Tue Jun 23 15:18:20 2015 -## Date of summary: Tue Jun 23 15:18:20 2015 +## Date of fit: Fri Jun 26 14:41:45 2015 +## Date of summary: Fri Jun 26 14:41:45 2015 ## ## Equations: ## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 66 model solutions performed in 0.169 s +## Fitted with method Port using 66 model solutions performed in 0.143 s ## ## Weighting: none ## |