aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes/FOCUS_L.html')
-rw-r--r--vignettes/FOCUS_L.html601
1 files changed, 300 insertions, 301 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index c341f104..2b970d1b 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -30,28 +30,28 @@ document.addEventListener('DOMContentLoaded', function(e) {
</script>
<style type="text/css">
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-span.underline{text-decoration: underline;}
-div.column{display: inline-block; vertical-align: top; width: 50%;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-.display.math{display: block; text-align: center; margin: 0.5rem auto;}
-</style>
+ code{white-space: pre-wrap;}
+ span.smallcaps{font-variant: small-caps;}
+ span.underline{text-decoration: underline;}
+ div.column{display: inline-block; vertical-align: top; width: 50%;}
+ div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ ul.task-list{list-style: none;}
+ .display.math{display: block; text-align: center; margin: 0.5rem auto;}
+ </style>
<style type="text/css">
-code {
-white-space: pre;
-}
-.sourceCode {
-overflow: visible;
-}
+ code {
+ white-space: pre;
+ }
+ .sourceCode {
+ overflow: visible;
+ }
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { line-height: 1.25; }
+pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -62,57 +62,58 @@ div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
-{ counter-reset: source-line 0; }
+ { counter-reset: source-line 0; }
pre.numberSource code > span
-{ position: relative; left: -4em; counter-increment: source-line; }
+ { position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
-{ content: counter(source-line);
-position: relative; left: -1em; text-align: right; vertical-align: baseline;
-border: none; display: inline-block;
--webkit-touch-callout: none; -webkit-user-select: none;
--khtml-user-select: none; -moz-user-select: none;
--ms-user-select: none; user-select: none;
-padding: 0 4px; width: 4em;
-color: #aaaaaa;
-}
-pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
+ { content: counter(source-line);
+ position: relative; left: -1em; text-align: right; vertical-align: baseline;
+ border: none; display: inline-block;
+ -webkit-touch-callout: none; -webkit-user-select: none;
+ -khtml-user-select: none; -moz-user-select: none;
+ -ms-user-select: none; user-select: none;
+ padding: 0 4px; width: 4em;
+ color: #aaaaaa;
+ }
+pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
-{ }
+ { }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
-code span.al { color: #ff0000; font-weight: bold; }
-code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
-code span.at { color: #7d9029; }
-code span.bn { color: #40a070; }
-code span.bu { color: #008000; }
-code span.cf { color: #007020; font-weight: bold; }
-code span.ch { color: #4070a0; }
-code span.cn { color: #880000; }
-code span.co { color: #60a0b0; font-style: italic; }
-code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
-code span.do { color: #ba2121; font-style: italic; }
-code span.dt { color: #902000; }
-code span.dv { color: #40a070; }
-code span.er { color: #ff0000; font-weight: bold; }
-code span.ex { }
-code span.fl { color: #40a070; }
-code span.fu { color: #06287e; }
-code span.im { color: #008000; font-weight: bold; }
-code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
-code span.kw { color: #007020; font-weight: bold; }
-code span.op { color: #666666; }
-code span.ot { color: #007020; }
-code span.pp { color: #bc7a00; }
-code span.sc { color: #4070a0; }
-code span.ss { color: #bb6688; }
-code span.st { color: #4070a0; }
-code span.va { color: #19177c; }
-code span.vs { color: #4070a0; }
-code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
+code span.al { color: #ff0000; font-weight: bold; } /* Alert */
+code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
+code span.at { color: #7d9029; } /* Attribute */
+code span.bn { color: #40a070; } /* BaseN */
+code span.bu { color: #008000; } /* BuiltIn */
+code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
+code span.ch { color: #4070a0; } /* Char */
+code span.cn { color: #880000; } /* Constant */
+code span.co { color: #60a0b0; font-style: italic; } /* Comment */
+code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
+code span.do { color: #ba2121; font-style: italic; } /* Documentation */
+code span.dt { color: #902000; } /* DataType */
+code span.dv { color: #40a070; } /* DecVal */
+code span.er { color: #ff0000; font-weight: bold; } /* Error */
+code span.ex { } /* Extension */
+code span.fl { color: #40a070; } /* Float */
+code span.fu { color: #06287e; } /* Function */
+code span.im { color: #008000; font-weight: bold; } /* Import */
+code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
+code span.kw { color: #007020; font-weight: bold; } /* Keyword */
+code span.op { color: #666666; } /* Operator */
+code span.ot { color: #007020; } /* Other */
+code span.pp { color: #bc7a00; } /* Preprocessor */
+code span.sc { color: #4070a0; } /* SpecialChar */
+code span.ss { color: #bb6688; } /* SpecialString */
+code span.st { color: #4070a0; } /* String */
+code span.va { color: #19177c; } /* Variable */
+code span.vs { color: #4070a0; } /* VerbatimString */
+code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
+
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
@@ -146,26 +147,25 @@ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
<style type="text/css">
-
+/* for pandoc --citeproc since 2.11 */
div.csl-bib-body { }
div.csl-entry {
-clear: both;
-margin-bottom: 0em;
+ clear: both;
}
.hanging div.csl-entry {
-margin-left:2em;
-text-indent:-2em;
+ margin-left:2em;
+ text-indent:-2em;
}
div.csl-left-margin {
-min-width:2em;
-float:left;
+ min-width:2em;
+ float:left;
}
div.csl-right-inline {
-margin-left:2em;
-padding-left:1em;
+ margin-left:2em;
+ padding-left:1em;
}
div.csl-indent {
-margin-left: 2em;
+ margin-left: 2em;
}
</style>
@@ -364,33 +364,25 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
<h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data
L1 to L3</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 18 May 2023 (rebuilt 2024-12-19)</h4>
+<h4 class="date">Last change 18 May 2023 (rebuilt 2025-02-16)</h4>
<div id="TOC">
<ul>
-<li><a href="#laboratory-data-l1" id="toc-laboratory-data-l1">Laboratory
-Data L1</a></li>
-<li><a href="#laboratory-data-l2" id="toc-laboratory-data-l2">Laboratory
-Data L2</a>
+<li><a href="#laboratory-data-l1">Laboratory Data L1</a></li>
+<li><a href="#laboratory-data-l2">Laboratory Data L2</a>
<ul>
-<li><a href="#sfo-fit-for-l2" id="toc-sfo-fit-for-l2">SFO fit for
-L2</a></li>
-<li><a href="#fomc-fit-for-l2" id="toc-fomc-fit-for-l2">FOMC fit for
-L2</a></li>
-<li><a href="#dfop-fit-for-l2" id="toc-dfop-fit-for-l2">DFOP fit for
-L2</a></li>
+<li><a href="#sfo-fit-for-l2">SFO fit for L2</a></li>
+<li><a href="#fomc-fit-for-l2">FOMC fit for L2</a></li>
+<li><a href="#dfop-fit-for-l2">DFOP fit for L2</a></li>
</ul></li>
-<li><a href="#laboratory-data-l3" id="toc-laboratory-data-l3">Laboratory
-Data L3</a>
+<li><a href="#laboratory-data-l3">Laboratory Data L3</a>
<ul>
-<li><a href="#fit-multiple-models" id="toc-fit-multiple-models">Fit
-multiple models</a></li>
-<li><a href="#accessing-mmkin-objects" id="toc-accessing-mmkin-objects">Accessing mmkin objects</a></li>
+<li><a href="#fit-multiple-models">Fit multiple models</a></li>
+<li><a href="#accessing-mmkin-objects">Accessing mmkin objects</a></li>
</ul></li>
-<li><a href="#laboratory-data-l4" id="toc-laboratory-data-l4">Laboratory
-Data L4</a></li>
-<li><a href="#references" id="toc-references">References</a></li>
+<li><a href="#laboratory-data-l4">Laboratory Data L4</a></li>
+<li><a href="#references">References</a></li>
</ul>
</div>
@@ -398,13 +390,13 @@ Data L4</a></li>
<h1>Laboratory Data L1</h1>
<p>The following code defines example dataset L1 from the FOCUS kinetics
report, p. 284:</p>
-<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;mkin&quot;</span>, <span class="at">quietly =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a>FOCUS_2006_L1 <span class="ot">=</span> <span class="fu">data.frame</span>(</span>
-<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a> <span class="at">t =</span> <span class="fu">rep</span>(<span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">5</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">21</span>, <span class="dv">30</span>), <span class="at">each =</span> <span class="dv">2</span>),</span>
-<span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a> <span class="at">parent =</span> <span class="fu">c</span>(<span class="fl">88.3</span>, <span class="fl">91.4</span>, <span class="fl">85.6</span>, <span class="fl">84.5</span>, <span class="fl">78.9</span>, <span class="fl">77.6</span>,</span>
-<span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a> <span class="fl">72.0</span>, <span class="fl">71.9</span>, <span class="fl">50.3</span>, <span class="fl">59.4</span>, <span class="fl">47.0</span>, <span class="fl">45.1</span>,</span>
-<span id="cb1-6"><a href="#cb1-6" tabindex="-1"></a> <span class="fl">27.7</span>, <span class="fl">27.3</span>, <span class="fl">10.0</span>, <span class="fl">10.4</span>, <span class="fl">2.9</span>, <span class="fl">4.0</span>))</span>
-<span id="cb1-7"><a href="#cb1-7" tabindex="-1"></a>FOCUS_2006_L1_mkin <span class="ot">&lt;-</span> <span class="fu">mkin_wide_to_long</span>(FOCUS_2006_L1)</span></code></pre></div>
+<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;mkin&quot;</span>, <span class="at">quietly =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>FOCUS_2006_L1 <span class="ot">=</span> <span class="fu">data.frame</span>(</span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a> <span class="at">t =</span> <span class="fu">rep</span>(<span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">5</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">21</span>, <span class="dv">30</span>), <span class="at">each =</span> <span class="dv">2</span>),</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a> <span class="at">parent =</span> <span class="fu">c</span>(<span class="fl">88.3</span>, <span class="fl">91.4</span>, <span class="fl">85.6</span>, <span class="fl">84.5</span>, <span class="fl">78.9</span>, <span class="fl">77.6</span>,</span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a> <span class="fl">72.0</span>, <span class="fl">71.9</span>, <span class="fl">50.3</span>, <span class="fl">59.4</span>, <span class="fl">47.0</span>, <span class="fl">45.1</span>,</span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a> <span class="fl">27.7</span>, <span class="fl">27.3</span>, <span class="fl">10.0</span>, <span class="fl">10.4</span>, <span class="fl">2.9</span>, <span class="fl">4.0</span>))</span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>FOCUS_2006_L1_mkin <span class="ot">&lt;-</span> <span class="fu">mkin_wide_to_long</span>(FOCUS_2006_L1)</span></code></pre></div>
<p>Here we use the assumptions of simple first order (SFO), the case of
declining rate constant over time (FOMC) and the case of two different
phases of the kinetics (DFOP). For a more detailed discussion of the
@@ -414,68 +406,69 @@ like <code>&quot;SFO&quot;</code> for parent only degradation models. The
following two lines fit the model and produce the summary report of the
model fit. This covers the numerical analysis given in the FOCUS
report.</p>
-<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>m.L1.SFO <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;SFO&quot;</span>, FOCUS_2006_L1_mkin, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a><span class="fu">summary</span>(m.L1.SFO)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.2.6
+<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>m.L1.SFO <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;SFO&quot;</span>, FOCUS_2006_L1_mkin, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(m.L1.SFO)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<pre><code>## mkin version used for fitting: 0.9.49.8
## R version used for fitting: 4.4.2
-## Date of fit: Thu Dec 19 10:28:47 2024
-## Date of summary: Thu Dec 19 10:28:47 2024
+## Date of fit: Sun Feb 16 14:25:37 2025
+## Date of summary: Sun Feb 16 14:25:37 2025
##
## Equations:
-## d_parent/dt = - k_parent * parent
+## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 133 model solutions performed in 0.02 s
+## Fitted using 133 model solutions performed in 0.106 s
##
## Error model: Constant variance
##
## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 89.85 state
-## k_parent 0.10 deparm
+## value type
+## parent_0 89.85 state
+## k_parent_sink 0.10 deparm
##
## Starting values for the transformed parameters actually optimised:
-## value lower upper
-## parent_0 89.850000 -Inf Inf
-## log_k_parent -2.302585 -Inf Inf
+## value lower upper
+## parent_0 89.850000 -Inf Inf
+## log_k_parent_sink -2.302585 -Inf Inf
##
## Fixed parameter values:
## None
##
-## Results:
-##
-## AIC BIC logLik
-## 93.88778 96.5589 -43.94389
-##
## Optimised, transformed parameters with symmetric confidence intervals:
-## Estimate Std. Error Lower Upper
-## parent_0 92.470 1.28200 89.740 95.200
-## log_k_parent -2.347 0.03763 -2.428 -2.267
-## sigma 2.780 0.46330 1.792 3.767
+## Estimate Std. Error Lower Upper
+## parent_0 92.470 1.28200 89.740 95.200
+## log_k_parent_sink -2.347 0.03763 -2.428 -2.267
+## sigma 2.780 0.46330 1.792 3.767
##
## Parameter correlation:
-## parent_0 log_k_parent sigma
-## parent_0 1.000e+00 6.186e-01 -1.516e-09
-## log_k_parent 6.186e-01 1.000e+00 -3.124e-09
-## sigma -1.516e-09 -3.124e-09 1.000e+00
+## parent_0 log_k_parent_sink sigma
+## parent_0 1.000e+00 6.186e-01 -1.516e-09
+## log_k_parent_sink 6.186e-01 1.000e+00 -3.124e-09
+## sigma -1.516e-09 -3.124e-09 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
## t-test (unrealistically) based on the assumption of normal distribution
## for estimators of untransformed parameters.
-## Estimate t value Pr(&gt;t) Lower Upper
-## parent_0 92.47000 72.13 8.824e-21 89.74000 95.2000
-## k_parent 0.09561 26.57 2.487e-14 0.08824 0.1036
-## sigma 2.78000 6.00 1.216e-05 1.79200 3.7670
+## Estimate t value Pr(&gt;t) Lower Upper
+## parent_0 92.47000 72.13 8.824e-21 89.74000 95.2000
+## k_parent_sink 0.09561 26.57 2.487e-14 0.08824 0.1036
+## sigma 2.78000 6.00 1.216e-05 1.79200 3.7670
##
## FOCUS Chi2 error levels in percent:
## err.min n.optim df
## All data 3.424 2 7
## parent 3.424 2 7
##
+## Resulting formation fractions:
+## ff
+## parent_sink 1
+##
## Estimated disappearance times:
## DT50 DT90
## parent 7.249 24.08
@@ -502,33 +495,44 @@ report.</p>
## 30 parent 4.0 5.251 -1.2513</code></pre>
<p>A plot of the fit is obtained with the plot function for mkinfit
objects.</p>
-<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">plot</span>(m.L1.SFO, <span class="at">show_errmin =</span> <span class="cn">TRUE</span>, <span class="at">main =</span> <span class="st">&quot;FOCUS L1 - SFO&quot;</span>)</span></code></pre></div>
-<p><img role="img" src="" /><!-- --></p>
+<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(m.L1.SFO, <span class="at">show_errmin =</span> <span class="cn">TRUE</span>, <span class="at">main =</span> <span class="st">&quot;FOCUS L1 - SFO&quot;</span>)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<p><img src="" /><!-- --></p>
<p>The residual plot can be easily obtained by</p>
-<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">mkinresplot</span>(m.L1.SFO, <span class="at">ylab =</span> <span class="st">&quot;Observed&quot;</span>, <span class="at">xlab =</span> <span class="st">&quot;Time&quot;</span>)</span></code></pre></div>
-<p><img role="img" src="" /><!-- --></p>
+<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">mkinresplot</span>(m.L1.SFO, <span class="at">ylab =</span> <span class="st">&quot;Observed&quot;</span>, <span class="at">xlab =</span> <span class="st">&quot;Time&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is
checked.</p>
-<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>m.L1.FOMC <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;FOMC&quot;</span>, FOCUS_2006_L1_mkin, <span class="at">quiet=</span><span class="cn">TRUE</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>m.L1.FOMC <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;FOMC&quot;</span>, FOCUS_2006_L1_mkin, <span class="at">quiet=</span><span class="cn">TRUE</span>)</span></code></pre></div>
<pre><code>## Warning in mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation did not converge:
## false convergence (8)</code></pre>
-<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">plot</span>(m.L1.FOMC, <span class="at">show_errmin =</span> <span class="cn">TRUE</span>, <span class="at">main =</span> <span class="st">&quot;FOCUS L1 - FOMC&quot;</span>)</span></code></pre></div>
-<p><img role="img" src="" /><!-- --></p>
-<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="fu">summary</span>(m.L1.FOMC, <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(m.L1.FOMC, <span class="at">show_errmin =</span> <span class="cn">TRUE</span>, <span class="at">main =</span> <span class="st">&quot;FOCUS L1 - FOMC&quot;</span>)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<p><img src="" /><!-- --></p>
+<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(m.L1.FOMC, <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
<pre><code>## Warning in sqrt(diag(covar)): NaNs produced</code></pre>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
<pre><code>## Warning in cov2cor(ans$covar): diag(V) had non-positive or NA entries; the
## non-finite result may be dubious</code></pre>
-<pre><code>## mkin version used for fitting: 1.2.6
+<pre><code>## mkin version used for fitting: 0.9.49.8
## R version used for fitting: 4.4.2
-## Date of fit: Thu Dec 19 10:28:47 2024
-## Date of summary: Thu Dec 19 10:28:47 2024
+## Date of fit: Sun Feb 16 14:25:37 2025
+## Date of summary: Sun Feb 16 14:25:37 2025
+##
+##
+## Warning: Optimisation did not converge:
+## false convergence (8)
+##
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 342 model solutions performed in 0.045 s
+## Fitted using 342 model solutions performed in 0.242 s
##
## Error model: Constant variance
##
@@ -549,39 +553,29 @@ checked.</p>
## Fixed parameter values:
## None
##
-##
-## Warning(s):
-## Optimisation did not converge:
-## false convergence (8)
-##
-## Results:
-##
-## AIC BIC logLik
-## 95.88782 99.44931 -43.94391
-##
## Optimised, transformed parameters with symmetric confidence intervals:
-## Estimate Std. Error Lower Upper
-## parent_0 92.46 1.2820 89.71 95.21
-## log_alpha 15.08 NaN NaN NaN
-## log_beta 17.43 NaN NaN NaN
-## sigma 2.78 0.4569 1.80 3.76
+## Estimate Std. Error Lower Upper
+## parent_0 92.47 1.2820 89.720 95.220
+## log_alpha 13.20 NaN NaN NaN
+## log_beta 15.54 NaN NaN NaN
+## sigma 2.78 0.4607 1.792 3.768
##
## Parameter correlation:
-## parent_0 log_alpha log_beta sigma
-## parent_0 1.000000 NaN NaN -0.000772
-## log_alpha NaN 1 NaN NaN
-## log_beta NaN NaN 1 NaN
-## sigma -0.000772 NaN NaN 1.000000
+## parent_0 log_alpha log_beta sigma
+## parent_0 1.000000 NaN NaN 0.000603
+## log_alpha NaN 1 NaN NaN
+## log_beta NaN NaN 1 NaN
+## sigma 0.000603 NaN NaN 1.000000
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
## t-test (unrealistically) based on the assumption of normal distribution
## for estimators of untransformed parameters.
-## Estimate t value Pr(&gt;t) Lower Upper
-## parent_0 9.246e+01 NA NA 89.71 95.21
-## alpha 3.555e+06 NA NA NA NA
-## beta 3.719e+07 NA NA NA NA
-## sigma 2.780e+00 NA NA 1.80 3.76
+## Estimate t value Pr(&gt;t) Lower Upper
+## parent_0 9.247e+01 NA NA 89.720 95.220
+## alpha 5.386e+05 NA NA NA NA
+## beta 5.633e+06 NA NA NA NA
+## sigma 2.780e+00 NA NA 1.792 3.768
##
## FOCUS Chi2 error levels in percent:
## err.min n.optim df
@@ -589,8 +583,8 @@ checked.</p>
## parent 3.619 3 6
##
## Estimated disappearance times:
-## DT50 DT90 DT50back
-## parent 7.25 24.09 7.25</code></pre>
+## DT50 DT90 DT50back
+## parent 7.249 24.08 7.249</code></pre>
<p>We get a warning that the default optimisation algorithm
<code>Port</code> did not converge, which is an indication that the
model is overparameterised, <em>i.e.</em> contains too many parameters
@@ -625,21 +619,23 @@ sponsored by the German Umweltbundesamt <span class="citation">(Ranke
<h1>Laboratory Data L2</h1>
<p>The following code defines example dataset L2 from the FOCUS kinetics
report, p. 287:</p>
-<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a>FOCUS_2006_L2 <span class="ot">=</span> <span class="fu">data.frame</span>(</span>
-<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a> <span class="at">t =</span> <span class="fu">rep</span>(<span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">28</span>), <span class="at">each =</span> <span class="dv">2</span>),</span>
-<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a> <span class="at">parent =</span> <span class="fu">c</span>(<span class="fl">96.1</span>, <span class="fl">91.8</span>, <span class="fl">41.4</span>, <span class="fl">38.7</span>,</span>
-<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a> <span class="fl">19.3</span>, <span class="fl">22.3</span>, <span class="fl">4.6</span>, <span class="fl">4.6</span>,</span>
-<span id="cb13-5"><a href="#cb13-5" tabindex="-1"></a> <span class="fl">2.6</span>, <span class="fl">1.2</span>, <span class="fl">0.3</span>, <span class="fl">0.6</span>))</span>
-<span id="cb13-6"><a href="#cb13-6" tabindex="-1"></a>FOCUS_2006_L2_mkin <span class="ot">&lt;-</span> <span class="fu">mkin_wide_to_long</span>(FOCUS_2006_L2)</span></code></pre></div>
+<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>FOCUS_2006_L2 <span class="ot">=</span> <span class="fu">data.frame</span>(</span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a> <span class="at">t =</span> <span class="fu">rep</span>(<span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">28</span>), <span class="at">each =</span> <span class="dv">2</span>),</span>
+<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a> <span class="at">parent =</span> <span class="fu">c</span>(<span class="fl">96.1</span>, <span class="fl">91.8</span>, <span class="fl">41.4</span>, <span class="fl">38.7</span>,</span>
+<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a> <span class="fl">19.3</span>, <span class="fl">22.3</span>, <span class="fl">4.6</span>, <span class="fl">4.6</span>,</span>
+<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a> <span class="fl">2.6</span>, <span class="fl">1.2</span>, <span class="fl">0.3</span>, <span class="fl">0.6</span>))</span>
+<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>FOCUS_2006_L2_mkin <span class="ot">&lt;-</span> <span class="fu">mkin_wide_to_long</span>(FOCUS_2006_L2)</span></code></pre></div>
<div id="sfo-fit-for-l2" class="section level2">
<h2>SFO fit for L2</h2>
<p>Again, the SFO model is fitted and the result is plotted. The
residual plot can be obtained simply by adding the argument
<code>show_residuals</code> to the plot command.</p>
-<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a>m.L2.SFO <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;SFO&quot;</span>, FOCUS_2006_L2_mkin, <span class="at">quiet=</span><span class="cn">TRUE</span>)</span>
-<span id="cb14-2"><a href="#cb14-2" tabindex="-1"></a><span class="fu">plot</span>(m.L2.SFO, <span class="at">show_residuals =</span> <span class="cn">TRUE</span>, <span class="at">show_errmin =</span> <span class="cn">TRUE</span>,</span>
-<span id="cb14-3"><a href="#cb14-3" tabindex="-1"></a> <span class="at">main =</span> <span class="st">&quot;FOCUS L2 - SFO&quot;</span>)</span></code></pre></div>
-<p><img role="img" src="" /><!-- --></p>
+<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>m.L2.SFO <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;SFO&quot;</span>, FOCUS_2006_L2_mkin, <span class="at">quiet=</span><span class="cn">TRUE</span>)</span>
+<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(m.L2.SFO, <span class="at">show_residuals =</span> <span class="cn">TRUE</span>, <span class="at">show_errmin =</span> <span class="cn">TRUE</span>,</span>
+<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">&quot;FOCUS L2 - SFO&quot;</span>)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error
level of 14% suggests that the model does not fit very well. This is
also obvious from the plots of the fit, in which we have included the
@@ -659,22 +655,24 @@ kinetics.</p>
<h2>FOMC fit for L2</h2>
<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is
checked.</p>
-<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" tabindex="-1"></a>m.L2.FOMC <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;FOMC&quot;</span>, FOCUS_2006_L2_mkin, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb15-2"><a href="#cb15-2" tabindex="-1"></a><span class="fu">plot</span>(m.L2.FOMC, <span class="at">show_residuals =</span> <span class="cn">TRUE</span>,</span>
-<span id="cb15-3"><a href="#cb15-3" tabindex="-1"></a> <span class="at">main =</span> <span class="st">&quot;FOCUS L2 - FOMC&quot;</span>)</span></code></pre></div>
-<p><img role="img" src="" /><!-- --></p>
-<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a><span class="fu">summary</span>(m.L2.FOMC, <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.2.6
+<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a>m.L2.FOMC <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;FOMC&quot;</span>, FOCUS_2006_L2_mkin, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(m.L2.FOMC, <span class="at">show_residuals =</span> <span class="cn">TRUE</span>,</span>
+<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">&quot;FOCUS L2 - FOMC&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(m.L2.FOMC, <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<pre><code>## mkin version used for fitting: 0.9.49.8
## R version used for fitting: 4.4.2
-## Date of fit: Thu Dec 19 10:28:48 2024
-## Date of summary: Thu Dec 19 10:28:48 2024
+## Date of fit: Sun Feb 16 14:25:38 2025
+## Date of summary: Sun Feb 16 14:25:38 2025
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 239 model solutions performed in 0.029 s
+## Fitted using 239 model solutions performed in 0.167 s
##
## Error model: Constant variance
##
@@ -695,11 +693,6 @@ checked.</p>
## Fixed parameter values:
## None
##
-## Results:
-##
-## AIC BIC logLik
-## 61.78966 63.72928 -26.89483
-##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 93.7700 1.6130 90.05000 97.4900
@@ -740,15 +733,19 @@ order to explain the data.</p>
<div id="dfop-fit-for-l2" class="section level2">
<h2>DFOP fit for L2</h2>
<p>Fitting the four parameter DFOP model further reduces the <span class="math inline"><em>χ</em><sup>2</sup></span> error level.</p>
-<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a>m.L2.DFOP <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;DFOP&quot;</span>, FOCUS_2006_L2_mkin, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb18-2"><a href="#cb18-2" tabindex="-1"></a><span class="fu">plot</span>(m.L2.DFOP, <span class="at">show_residuals =</span> <span class="cn">TRUE</span>, <span class="at">show_errmin =</span> <span class="cn">TRUE</span>,</span>
-<span id="cb18-3"><a href="#cb18-3" tabindex="-1"></a> <span class="at">main =</span> <span class="st">&quot;FOCUS L2 - DFOP&quot;</span>)</span></code></pre></div>
-<p><img role="img" src="" /><!-- --></p>
-<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" tabindex="-1"></a><span class="fu">summary</span>(m.L2.DFOP, <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.2.6
+<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a>m.L2.DFOP <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(<span class="st">&quot;DFOP&quot;</span>, FOCUS_2006_L2_mkin, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(m.L2.DFOP, <span class="at">show_residuals =</span> <span class="cn">TRUE</span>, <span class="at">show_errmin =</span> <span class="cn">TRUE</span>,</span>
+<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a> <span class="at">main =</span> <span class="st">&quot;FOCUS L2 - DFOP&quot;</span>)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<p><img src="" /><!-- --></p>
+<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(m.L2.DFOP, <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<pre><code>## mkin version used for fitting: 0.9.49.8
## R version used for fitting: 4.4.2
-## Date of fit: Thu Dec 19 10:28:48 2024
-## Date of summary: Thu Dec 19 10:28:48 2024
+## Date of fit: Sun Feb 16 14:25:39 2025
+## Date of summary: Sun Feb 16 14:25:39 2025
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -757,7 +754,7 @@ order to explain the data.</p>
##
## Model predictions using solution type analytical
##
-## Fitted using 581 model solutions performed in 0.08 s
+## Fitted using 572 model solutions performed in 0.399 s
##
## Error model: Constant variance
##
@@ -775,31 +772,26 @@ order to explain the data.</p>
## parent_0 93.950000 -Inf Inf
## log_k1 -2.302585 -Inf Inf
## log_k2 -4.605170 -Inf Inf
-## g_qlogis 0.000000 -Inf Inf
+## g_ilr 0.000000 -Inf Inf
##
## Fixed parameter values:
## None
##
-## Results:
-##
-## AIC BIC logLik
-## 52.36695 54.79148 -21.18347
-##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
-## parent_0 93.950 9.998e-01 91.5900 96.3100
-## log_k1 3.113 1.849e+03 -4369.0000 4375.0000
-## log_k2 -1.088 6.285e-02 -1.2370 -0.9394
-## g_qlogis -0.399 9.946e-02 -0.6342 -0.1638
-## sigma 1.414 2.886e-01 0.7314 2.0960
+## parent_0 93.9500 9.998e-01 91.5900 96.3100
+## log_k1 3.1370 2.376e+03 -5615.0000 5622.0000
+## log_k2 -1.0880 6.285e-02 -1.2370 -0.9394
+## g_ilr -0.2821 7.033e-02 -0.4484 -0.1158
+## sigma 1.4140 2.886e-01 0.7314 2.0960
##
## Parameter correlation:
-## parent_0 log_k1 log_k2 g_qlogis sigma
-## parent_0 1.000e+00 6.765e-07 -9.004e-10 2.665e-01 -1.109e-09
-## log_k1 6.765e-07 1.000e+00 1.112e-04 -2.187e-04 -1.027e-05
-## log_k2 -9.004e-10 1.112e-04 1.000e+00 -7.903e-01 9.553e-09
-## g_qlogis 2.665e-01 -2.187e-04 -7.903e-01 1.000e+00 -1.545e-08
-## sigma -1.109e-09 -1.027e-05 9.553e-09 -1.545e-08 1.000e+00
+## parent_0 log_k1 log_k2 g_ilr sigma
+## parent_0 1.000e+00 5.144e-07 2.339e-09 2.665e-01 -6.798e-09
+## log_k1 5.144e-07 1.000e+00 8.434e-05 -1.659e-04 -7.791e-06
+## log_k2 2.339e-09 8.434e-05 1.000e+00 -7.903e-01 -1.240e-08
+## g_ilr 2.665e-01 -1.659e-04 -7.903e-01 1.000e+00 3.195e-08
+## sigma -6.798e-09 -7.791e-06 -1.240e-08 3.195e-08 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -807,7 +799,7 @@ order to explain the data.</p>
## for estimators of untransformed parameters.
## Estimate t value Pr(&gt;t) Lower Upper
## parent_0 93.9500 9.397e+01 2.036e-12 91.5900 96.3100
-## k1 22.4900 5.533e-04 4.998e-01 0.0000 Inf
+## k1 23.0400 4.303e-04 4.998e-01 0.0000 Inf
## k2 0.3369 1.591e+01 4.697e-07 0.2904 0.3909
## g 0.4016 1.680e+01 3.238e-07 0.3466 0.4591
## sigma 1.4140 4.899e+00 8.776e-04 0.7314 2.0960
@@ -818,8 +810,8 @@ order to explain the data.</p>
## parent 2.53 4 2
##
## Estimated disappearance times:
-## DT50 DT90 DT50back DT50_k1 DT50_k2
-## parent 0.5335 5.311 1.599 0.03083 2.058</code></pre>
+## DT50 DT90 DT50_k1 DT50_k2
+## parent 0.5335 5.311 0.03009 2.058</code></pre>
<p>Here, the DFOP model is clearly the best-fit model for dataset L2
based on the chi^2 error level criterion.</p>
</div>
@@ -828,21 +820,27 @@ based on the chi^2 error level criterion.</p>
<h1>Laboratory Data L3</h1>
<p>The following code defines example dataset L3 from the FOCUS kinetics
report, p. 290.</p>
-<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" tabindex="-1"></a>FOCUS_2006_L3 <span class="ot">=</span> <span class="fu">data.frame</span>(</span>
-<span id="cb21-2"><a href="#cb21-2" tabindex="-1"></a> <span class="at">t =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">30</span>, <span class="dv">60</span>, <span class="dv">91</span>, <span class="dv">120</span>),</span>
-<span id="cb21-3"><a href="#cb21-3" tabindex="-1"></a> <span class="at">parent =</span> <span class="fu">c</span>(<span class="fl">97.8</span>, <span class="dv">60</span>, <span class="dv">51</span>, <span class="dv">43</span>, <span class="dv">35</span>, <span class="dv">22</span>, <span class="dv">15</span>, <span class="dv">12</span>))</span>
-<span id="cb21-4"><a href="#cb21-4" tabindex="-1"></a>FOCUS_2006_L3_mkin <span class="ot">&lt;-</span> <span class="fu">mkin_wide_to_long</span>(FOCUS_2006_L3)</span></code></pre></div>
+<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a>FOCUS_2006_L3 <span class="ot">=</span> <span class="fu">data.frame</span>(</span>
+<span id="cb29-2"><a href="#cb29-2" aria-hidden="true" tabindex="-1"></a> <span class="at">t =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">30</span>, <span class="dv">60</span>, <span class="dv">91</span>, <span class="dv">120</span>),</span>
+<span id="cb29-3"><a href="#cb29-3" aria-hidden="true" tabindex="-1"></a> <span class="at">parent =</span> <span class="fu">c</span>(<span class="fl">97.8</span>, <span class="dv">60</span>, <span class="dv">51</span>, <span class="dv">43</span>, <span class="dv">35</span>, <span class="dv">22</span>, <span class="dv">15</span>, <span class="dv">12</span>))</span>
+<span id="cb29-4"><a href="#cb29-4" aria-hidden="true" tabindex="-1"></a>FOCUS_2006_L3_mkin <span class="ot">&lt;-</span> <span class="fu">mkin_wide_to_long</span>(FOCUS_2006_L3)</span></code></pre></div>
<div id="fit-multiple-models" class="section level2">
<h2>Fit multiple models</h2>
<p>As of mkin version 0.9-39 (June 2015), we can fit several models to
one or more datasets in one call to the function <code>mmkin</code>. The
datasets have to be passed in a list, in this case a named list holding
only the L3 dataset prepared above.</p>
-<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>
-<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a>mm.L3 <span class="ot">&lt;-</span> <span class="fu">mmkin</span>(<span class="fu">c</span>(<span class="st">&quot;SFO&quot;</span>, <span class="st">&quot;FOMC&quot;</span>, <span class="st">&quot;DFOP&quot;</span>), <span class="at">cores =</span> <span class="dv">1</span>,</span>
-<span id="cb22-3"><a href="#cb22-3" tabindex="-1"></a> <span class="fu">list</span>(<span class="st">&quot;FOCUS L3&quot;</span> <span class="ot">=</span> FOCUS_2006_L3_mkin), <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb22-4"><a href="#cb22-4" tabindex="-1"></a><span class="fu">plot</span>(mm.L3)</span></code></pre></div>
-<p><img role="img" src="" /><!-- --></p>
+<div class="sourceCode" id="cb30"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>
+<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a>mm.L3 <span class="ot">&lt;-</span> <span class="fu">mmkin</span>(<span class="fu">c</span>(<span class="st">&quot;SFO&quot;</span>, <span class="st">&quot;FOMC&quot;</span>, <span class="st">&quot;DFOP&quot;</span>), <span class="at">cores =</span> <span class="dv">1</span>,</span>
+<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">list</span>(<span class="st">&quot;FOCUS L3&quot;</span> <span class="ot">=</span> FOCUS_2006_L3_mkin), <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(mm.L3)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded
+## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded
+## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error
level of 21% as well as the plot suggest that the SFO model does not fit
very well. The FOMC model performs better, with an error level at which
@@ -857,11 +855,13 @@ as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit,
using square brackets for indexing which will result in the use of the
summary and plot functions working on mkinfit objects.</p>
-<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" tabindex="-1"></a><span class="fu">summary</span>(mm.L3[[<span class="st">&quot;DFOP&quot;</span>, <span class="dv">1</span>]])</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.2.6
+<div class="sourceCode" id="cb32"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(mm.L3[[<span class="st">&quot;DFOP&quot;</span>, <span class="dv">1</span>]])</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<pre><code>## mkin version used for fitting: 0.9.49.8
## R version used for fitting: 4.4.2
-## Date of fit: Thu Dec 19 10:28:48 2024
-## Date of summary: Thu Dec 19 10:28:48 2024
+## Date of fit: Sun Feb 16 14:25:40 2025
+## Date of summary: Sun Feb 16 14:25:40 2025
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -870,7 +870,7 @@ summary and plot functions working on mkinfit objects.</p>
##
## Model predictions using solution type analytical
##
-## Fitted using 376 model solutions performed in 0.047 s
+## Fitted using 373 model solutions performed in 0.258 s
##
## Error model: Constant variance
##
@@ -888,31 +888,26 @@ summary and plot functions working on mkinfit objects.</p>
## parent_0 97.800000 -Inf Inf
## log_k1 -2.302585 -Inf Inf
## log_k2 -4.605170 -Inf Inf
-## g_qlogis 0.000000 -Inf Inf
+## g_ilr 0.000000 -Inf Inf
##
## Fixed parameter values:
## None
##
-## Results:
-##
-## AIC BIC logLik
-## 32.97732 33.37453 -11.48866
-##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 97.7500 1.01900 94.5000 101.000000
## log_k1 -0.6612 0.10050 -0.9812 -0.341300
## log_k2 -4.2860 0.04322 -4.4230 -4.148000
-## g_qlogis -0.1739 0.05270 -0.3416 -0.006142
+## g_ilr -0.1229 0.03727 -0.2415 -0.004343
## sigma 1.0170 0.25430 0.2079 1.827000
##
## Parameter correlation:
-## parent_0 log_k1 log_k2 g_qlogis sigma
-## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -9.671e-08
-## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 7.148e-07
-## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 1.022e-06
-## g_qlogis 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -7.929e-07
-## sigma -9.671e-08 7.148e-07 1.022e-06 -7.929e-07 1.000e+00
+## parent_0 log_k1 log_k2 g_ilr sigma
+## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -6.814e-07
+## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 3.193e-07
+## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 7.661e-07
+## g_ilr 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -8.680e-07
+## sigma -6.814e-07 3.193e-07 7.661e-07 -8.680e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -931,8 +926,8 @@ summary and plot functions working on mkinfit objects.</p>
## parent 2.225 4 4
##
## Estimated disappearance times:
-## DT50 DT90 DT50back DT50_k1 DT50_k2
-## parent 7.464 123 37.03 1.343 50.37
+## DT50 DT90 DT50_k1 DT50_k2
+## parent 7.464 123 1.343 50.37
##
## Data:
## time variable observed predicted residual
@@ -944,8 +939,10 @@ summary and plot functions working on mkinfit objects.</p>
## 60 parent 22.0 23.26 -1.25919
## 91 parent 15.0 15.18 -0.18181
## 120 parent 12.0 10.19 1.81395</code></pre>
-<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" tabindex="-1"></a><span class="fu">plot</span>(mm.L3[[<span class="st">&quot;DFOP&quot;</span>, <span class="dv">1</span>]], <span class="at">show_errmin =</span> <span class="cn">TRUE</span>)</span></code></pre></div>
-<p><img role="img" src="" /><!-- --></p>
+<div class="sourceCode" id="cb35"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb35-1"><a href="#cb35-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(mm.L3[[<span class="st">&quot;DFOP&quot;</span>, <span class="dv">1</span>]], <span class="at">show_errmin =</span> <span class="cn">TRUE</span>)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<p><img src="" /><!-- --></p>
<p>Here, a look to the model plot, the confidence intervals of the
parameters and the correlation matrix suggest that the parameter
estimates are reliable, and the DFOP model can be used as the best-fit
@@ -962,99 +959,106 @@ parameter <code>g</code> is quite narrow.</p>
<h1>Laboratory Data L4</h1>
<p>The following code defines example dataset L4 from the FOCUS kinetics
report, p. 293:</p>
-<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" tabindex="-1"></a>FOCUS_2006_L4 <span class="ot">=</span> <span class="fu">data.frame</span>(</span>
-<span id="cb26-2"><a href="#cb26-2" tabindex="-1"></a> <span class="at">t =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">30</span>, <span class="dv">60</span>, <span class="dv">91</span>, <span class="dv">120</span>),</span>
-<span id="cb26-3"><a href="#cb26-3" tabindex="-1"></a> <span class="at">parent =</span> <span class="fu">c</span>(<span class="fl">96.6</span>, <span class="fl">96.3</span>, <span class="fl">94.3</span>, <span class="fl">88.8</span>, <span class="fl">74.9</span>, <span class="fl">59.9</span>, <span class="fl">53.5</span>, <span class="fl">49.0</span>))</span>
-<span id="cb26-4"><a href="#cb26-4" tabindex="-1"></a>FOCUS_2006_L4_mkin <span class="ot">&lt;-</span> <span class="fu">mkin_wide_to_long</span>(FOCUS_2006_L4)</span></code></pre></div>
+<div class="sourceCode" id="cb37"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb37-1"><a href="#cb37-1" aria-hidden="true" tabindex="-1"></a>FOCUS_2006_L4 <span class="ot">=</span> <span class="fu">data.frame</span>(</span>
+<span id="cb37-2"><a href="#cb37-2" aria-hidden="true" tabindex="-1"></a> <span class="at">t =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">30</span>, <span class="dv">60</span>, <span class="dv">91</span>, <span class="dv">120</span>),</span>
+<span id="cb37-3"><a href="#cb37-3" aria-hidden="true" tabindex="-1"></a> <span class="at">parent =</span> <span class="fu">c</span>(<span class="fl">96.6</span>, <span class="fl">96.3</span>, <span class="fl">94.3</span>, <span class="fl">88.8</span>, <span class="fl">74.9</span>, <span class="fl">59.9</span>, <span class="fl">53.5</span>, <span class="fl">49.0</span>))</span>
+<span id="cb37-4"><a href="#cb37-4" aria-hidden="true" tabindex="-1"></a>FOCUS_2006_L4_mkin <span class="ot">&lt;-</span> <span class="fu">mkin_wide_to_long</span>(FOCUS_2006_L4)</span></code></pre></div>
<p>Fits of the SFO and FOMC models, plots and summaries are produced
below:</p>
-<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" tabindex="-1"></a><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>
-<span id="cb27-2"><a href="#cb27-2" tabindex="-1"></a>mm.L4 <span class="ot">&lt;-</span> <span class="fu">mmkin</span>(<span class="fu">c</span>(<span class="st">&quot;SFO&quot;</span>, <span class="st">&quot;FOMC&quot;</span>), <span class="at">cores =</span> <span class="dv">1</span>,</span>
-<span id="cb27-3"><a href="#cb27-3" tabindex="-1"></a> <span class="fu">list</span>(<span class="st">&quot;FOCUS L4&quot;</span> <span class="ot">=</span> FOCUS_2006_L4_mkin),</span>
-<span id="cb27-4"><a href="#cb27-4" tabindex="-1"></a> <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb27-5"><a href="#cb27-5" tabindex="-1"></a><span class="fu">plot</span>(mm.L4)</span></code></pre></div>
-<p><img role="img" src="" /><!-- --></p>
+<div class="sourceCode" id="cb38"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb38-1"><a href="#cb38-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>
+<span id="cb38-2"><a href="#cb38-2" aria-hidden="true" tabindex="-1"></a>mm.L4 <span class="ot">&lt;-</span> <span class="fu">mmkin</span>(<span class="fu">c</span>(<span class="st">&quot;SFO&quot;</span>, <span class="st">&quot;FOMC&quot;</span>), <span class="at">cores =</span> <span class="dv">1</span>,</span>
+<span id="cb38-3"><a href="#cb38-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">list</span>(<span class="st">&quot;FOCUS L4&quot;</span> <span class="ot">=</span> FOCUS_2006_L4_mkin),</span>
+<span id="cb38-4"><a href="#cb38-4" aria-hidden="true" tabindex="-1"></a> <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb38-5"><a href="#cb38-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(mm.L4)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded
+## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error
level of 3.3% as well as the plot suggest that the SFO model fits very
well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is
slightly lower for the FOMC model. However, the difference appears
negligible.</p>
-<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" tabindex="-1"></a><span class="fu">summary</span>(mm.L4[[<span class="st">&quot;SFO&quot;</span>, <span class="dv">1</span>]], <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.2.6
+<div class="sourceCode" id="cb40"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb40-1"><a href="#cb40-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(mm.L4[[<span class="st">&quot;SFO&quot;</span>, <span class="dv">1</span>]], <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<pre><code>## mkin version used for fitting: 0.9.49.8
## R version used for fitting: 4.4.2
-## Date of fit: Thu Dec 19 10:28:49 2024
-## Date of summary: Thu Dec 19 10:28:49 2024
+## Date of fit: Sun Feb 16 14:25:40 2025
+## Date of summary: Sun Feb 16 14:25:40 2025
##
## Equations:
-## d_parent/dt = - k_parent * parent
+## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 142 model solutions performed in 0.018 s
+## Fitted using 142 model solutions performed in 0.096 s
##
## Error model: Constant variance
##
## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 96.6 state
-## k_parent 0.1 deparm
+## value type
+## parent_0 96.6 state
+## k_parent_sink 0.1 deparm
##
## Starting values for the transformed parameters actually optimised:
-## value lower upper
-## parent_0 96.600000 -Inf Inf
-## log_k_parent -2.302585 -Inf Inf
+## value lower upper
+## parent_0 96.600000 -Inf Inf
+## log_k_parent_sink -2.302585 -Inf Inf
##
## Fixed parameter values:
## None
##
-## Results:
-##
-## AIC BIC logLik
-## 47.12133 47.35966 -20.56067
-##
## Optimised, transformed parameters with symmetric confidence intervals:
-## Estimate Std. Error Lower Upper
-## parent_0 96.440 1.69900 92.070 100.800
-## log_k_parent -5.030 0.07059 -5.211 -4.848
-## sigma 3.162 0.79050 1.130 5.194
+## Estimate Std. Error Lower Upper
+## parent_0 96.440 1.69900 92.070 100.800
+## log_k_parent_sink -5.030 0.07059 -5.211 -4.848
+## sigma 3.162 0.79050 1.130 5.194
##
## Parameter correlation:
-## parent_0 log_k_parent sigma
-## parent_0 1.000e+00 5.938e-01 3.387e-07
-## log_k_parent 5.938e-01 1.000e+00 5.830e-07
-## sigma 3.387e-07 5.830e-07 1.000e+00
+## parent_0 log_k_parent_sink sigma
+## parent_0 1.000e+00 5.938e-01 3.430e-07
+## log_k_parent_sink 5.938e-01 1.000e+00 5.885e-07
+## sigma 3.430e-07 5.885e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
## t-test (unrealistically) based on the assumption of normal distribution
## for estimators of untransformed parameters.
-## Estimate t value Pr(&gt;t) Lower Upper
-## parent_0 96.440000 56.77 1.604e-08 92.070000 1.008e+02
-## k_parent 0.006541 14.17 1.578e-05 0.005455 7.842e-03
-## sigma 3.162000 4.00 5.162e-03 1.130000 5.194e+00
+## Estimate t value Pr(&gt;t) Lower Upper
+## parent_0 96.440000 56.77 1.604e-08 92.070000 1.008e+02
+## k_parent_sink 0.006541 14.17 1.578e-05 0.005455 7.842e-03
+## sigma 3.162000 4.00 5.162e-03 1.130000 5.194e+00
##
## FOCUS Chi2 error levels in percent:
## err.min n.optim df
## All data 3.287 2 6
## parent 3.287 2 6
##
+## Resulting formation fractions:
+## ff
+## parent_sink 1
+##
## Estimated disappearance times:
## DT50 DT90
## parent 106 352</code></pre>
-<div class="sourceCode" id="cb30"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" tabindex="-1"></a><span class="fu">summary</span>(mm.L4[[<span class="st">&quot;FOMC&quot;</span>, <span class="dv">1</span>]], <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.2.6
+<div class="sourceCode" id="cb43"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb43-1"><a href="#cb43-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(mm.L4[[<span class="st">&quot;FOMC&quot;</span>, <span class="dv">1</span>]], <span class="at">data =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<pre><code>## mkin version used for fitting: 0.9.49.8
## R version used for fitting: 4.4.2
-## Date of fit: Thu Dec 19 10:28:49 2024
-## Date of summary: Thu Dec 19 10:28:49 2024
+## Date of fit: Sun Feb 16 14:25:40 2025
+## Date of summary: Sun Feb 16 14:25:40 2025
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.027 s
+## Fitted using 224 model solutions performed in 0.151 s
##
## Error model: Constant variance
##
@@ -1075,11 +1079,6 @@ negligible.</p>
## Fixed parameter values:
## None
##
-## Results:
-##
-## AIC BIC logLik
-## 40.37255 40.69032 -16.18628
-##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 99.1400 1.2670 95.6300 102.7000
@@ -1089,10 +1088,10 @@ negligible.</p>
##
## Parameter correlation:
## parent_0 log_alpha log_beta sigma
-## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.456e-07
-## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.169e-08
-## log_beta -5.543e-01 9.889e-01 1.000e+00 4.910e-08
-## sigma -2.456e-07 2.169e-08 4.910e-08 1.000e+00
+## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.447e-07
+## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.198e-08
+## log_beta -5.543e-01 9.889e-01 1.000e+00 4.923e-08
+## sigma -2.447e-07 2.198e-08 4.923e-08 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -1115,7 +1114,7 @@ negligible.</p>
</div>
<div id="references" class="section level1 unnumbered">
<h1 class="unnumbered">References</h1>
-<div id="refs" class="references csl-bib-body hanging-indent" entry-spacing="0">
+<div id="refs" class="references csl-bib-body hanging-indent">
<div id="ref-ranke2014" class="csl-entry">
Ranke, Johannes. 2014. <span>“<span class="nocase">Prüfung und
Validierung von Modellierungssoftware als Alternative zu ModelMaker

Contact - Imprint