aboutsummaryrefslogtreecommitdiff
path: root/vignettes/compiled_models.html
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes/compiled_models.html')
-rw-r--r--vignettes/compiled_models.html51
1 files changed, 23 insertions, 28 deletions
diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html
index c3ffb035..cec76ef9 100644
--- a/vignettes/compiled_models.html
+++ b/vignettes/compiled_models.html
@@ -226,13 +226,8 @@ div.tocify {
<pre><code>## gcc
## &quot;/usr/bin/gcc&quot;</code></pre>
<p>First, we build a simple degradation model for a parent compound with one metabolite.</p>
-<pre class="r"><code>library(&quot;mkin&quot;)</code></pre>
-<pre><code>## Loading required package: minpack.lm</code></pre>
-<pre><code>## Loading required package: rootSolve</code></pre>
-<pre><code>## Loading required package: inline</code></pre>
-<pre><code>## Loading required package: methods</code></pre>
-<pre><code>## Loading required package: parallel</code></pre>
-<pre class="r"><code>SFO_SFO &lt;- mkinmod(
+<pre class="r"><code>library(&quot;mkin&quot;)
+SFO_SFO &lt;- mkinmod(
parent = mkinsub(&quot;SFO&quot;, &quot;m1&quot;),
m1 = mkinsub(&quot;SFO&quot;))</code></pre>
<pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre>
@@ -255,22 +250,22 @@ mb.1 &lt;- microbenchmark(
print(mb.1)</code></pre>
<pre><code>## Unit: seconds
## expr min lq mean median uq
-## deSolve, not compiled 13.694897 13.774112 13.820936 13.853327 13.883956
-## Eigenvalue based 2.087861 2.089503 2.116323 2.091145 2.130555
-## deSolve, compiled 1.794975 1.799892 1.814653 1.804808 1.824492
-## max neval cld
-## 13.914585 3 c
-## 2.169964 3 b
-## 1.844177 3 a</code></pre>
+## deSolve, not compiled 25.422123 25.889685 26.065978 26.357247 26.387905
+## Eigenvalue based 2.243667 2.254539 2.277770 2.265412 2.294821
+## deSolve, compiled 1.849468 1.865343 1.871339 1.881219 1.882274
+## max neval cld
+## 26.41856 3 b
+## 2.32423 3 a
+## 1.88333 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>We see that using the compiled model is by a factor of 7.7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" title alt width="672" /></p>
+<p>We see that using the compiled model is by a factor of 14 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
-<pre><code>## median
-## deSolve, not compiled 7.675788
-## Eigenvalue based 1.158652
-## deSolve, compiled 1.000000</code></pre>
+<pre><code>## median
+## deSolve, not compiled 14.010730
+## Eigenvalue based 1.204226
+## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
<h2>Benchmark for a model that can not be solved with Eigenvalues</h2>
@@ -290,20 +285,20 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
<pre class="r"><code>smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 29.120048 29.170013 29.246607 29.21998 29.309886
-## deSolve, compiled 3.338458 3.343954 3.379437 3.34945 3.399926
+## expr min lq mean median uq
+## deSolve, not compiled 54.386189 54.39423 54.477986 54.402271 54.523884
+## deSolve, compiled 3.424205 3.53522 3.574587 3.646236 3.649778
## max neval cld
-## 29.399796 3 b
-## 3.450402 3 a</code></pre>
+## 54.645498 3 b
+## 3.653319 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>Here we get a performance benefit of a factor of 8.7 using the version of the differential equation model compiled from C code!</p>
-<p>This vignette was built with mkin 0.9.43 on</p>
+<p><img src="" title alt width="672" /></p>
+<p>Here we get a performance benefit of a factor of 14.9 using the version of the differential equation model compiled from C code!</p>
+<p>This vignette was built with mkin 0.9.43.9000 on</p>
<pre><code>## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 8 (jessie)</code></pre>

Contact - Imprint