diff options
Diffstat (limited to 'vignettes/compiled_models.html')
| -rw-r--r-- | vignettes/compiled_models.html | 34 | 
1 files changed, 17 insertions, 17 deletions
| diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html index 0b77f1c2..8fb08136 100644 --- a/vignettes/compiled_models.html +++ b/vignettes/compiled_models.html @@ -98,19 +98,19 @@ mb.1 <- microbenchmark(  smb.1 <- summary(mb.1)[-1]  rownames(smb.1) <- c("deSolve, not compiled", "Eigenvalue based", "deSolve, compiled")  print(smb.1)</code></pre> -<pre><code>##                            min        lq      mean    median        uq -## deSolve, not compiled 6737.589 6818.2149 6911.3916 6898.8407 6998.2929 -## Eigenvalue based       945.433  968.8592  979.7477  992.2854  996.9051 -## deSolve, compiled      744.785  748.8107  770.7521  752.8364  783.7357 -##                            max neval -## deSolve, not compiled 7097.745     3 -## Eigenvalue based      1001.525     3 -## deSolve, compiled      814.635     3</code></pre> -<p>We see that using the compiled model is by a factor of 9.2 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<pre><code>##                             min        lq      mean    median        uq +## deSolve, not compiled 6896.8680 6933.3330 6963.5277 6969.7979 6996.8575 +## Eigenvalue based       933.0581  937.8984  963.5002  942.7388  978.7213 +## deSolve, compiled      784.9729  807.9919  822.4500  831.0110  841.1886 +##                             max neval +## deSolve, not compiled 7023.9171     3 +## Eigenvalue based      1014.7039     3 +## deSolve, compiled      851.3663     3</code></pre> +<p>We see that using the compiled model is by a factor of 8.4 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>  <pre class="r"><code>smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre>  <pre><code>##                         median -## deSolve, not compiled 9.163798 -## Eigenvalue based      1.318062 +## deSolve, not compiled 8.387131 +## Eigenvalue based      1.134448  ## deSolve, compiled     1.000000</code></pre>  </div>  <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -128,16 +128,16 @@ smb.2 <- summary(mb.2)[-1]  rownames(smb.2) <- c("deSolve, not compiled", "deSolve, compiled")  print(smb.2)</code></pre>  <pre><code>##                             min        lq      mean    median        uq -## deSolve, not compiled 13.955273 13.961009 14.041563 13.966745 14.084708 -## deSolve, compiled      1.350567  1.371225  1.381397  1.391882  1.396812 +## deSolve, not compiled 14.661881 14.668453 14.701870 14.675025 14.721864 +## deSolve, compiled      1.393051  1.394908  1.415653  1.396764  1.426953  ##                             max neval -## deSolve, not compiled 14.202672     3 -## deSolve, compiled      1.401743     3</code></pre> +## deSolve, not compiled 14.768704     3 +## deSolve, compiled      1.457143     3</code></pre>  <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre>  <pre><code>##                         median -## deSolve, not compiled 10.03443 +## deSolve, not compiled 10.50644  ## deSolve, compiled      1.00000</code></pre> -<p>Here we get a performance benefit of a factor of 10 using the version of the differential equation model compiled from C code using the inline package!</p> +<p>Here we get a performance benefit of a factor of 10.5 using the version of the differential equation model compiled from C code using the inline package!</p>  <p>This vignette was built with mkin 0.9.37 on</p>  <pre><code>## R version 3.2.1 (2015-06-18)  ## Platform: x86_64-pc-linux-gnu (64-bit) | 
