diff options
Diffstat (limited to 'vignettes/twa.rmd')
-rw-r--r-- | vignettes/twa.rmd | 79 |
1 files changed, 79 insertions, 0 deletions
diff --git a/vignettes/twa.rmd b/vignettes/twa.rmd new file mode 100644 index 00000000..6f283eb2 --- /dev/null +++ b/vignettes/twa.rmd @@ -0,0 +1,79 @@ +--- +title: Calculation of time weighted average concentrations with mkin +author: Johannes Ranke +date: "`r Sys.Date()`" +bibliography: references.bib +output: rmarkdown::html_vignette +vignette: > + %\VignetteIndexEntry{Calculation of time weighted average concentrations with mkin} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +Since version 0.9.45.1 of the 'mkin' package, a function for calculating +time weighted average concentrations for decline kinetics (*i.e.* only +for the compound applied in the experiment) is included. Strictly +speaking, they are maximum moving window time weighted average concentrations, +*i.e.* the maximum time weighted average concentration that can be found +when moving a time window of a specified width over the decline curve. + +Time weighted average concentrations for the SFO, FOMC and the DFOP model are +calculated using the formulas given in the FOCUS kinetics guidance +[@FOCUSkinetics2014, p. 251]: + +SFO: + +$$c_\textrm{twa} = c_0 \frac{\left( 1 - e^{- k t} \right)}{ k t} $$ + +FOMC: + +$$c_\textrm{twa} = c_0 \frac{\beta}{t (1 - \alpha)} + \left( \left(\frac{t}{\beta} + 1 \right)^{1 - \alpha} - 1 \right) $$ + +DFOP: + +$$c_\textrm{twa} = \frac{c_0}{t} \left( + \frac{g}{k_1} \left( 1 - e^{- k_1 t} \right) + + \frac{1-g}{k_2} \left( 1 - e^{- k_2 t} \right) \right) $$ + +HS for $t > t_b$: + +$$c_\textrm{twa} = \frac{c_0}{t} \left( + \frac{1}{k_1} \left( 1 - e^{- k_1 t_b} \right) + + \frac{e^{- k_1 t_b}}{k_2} \left( 1 - e^{- k_2 (t - t_b)} \right) \right) $$ + +Often, the ratio between the time weighted average concentration $c_\textrm{twa}$ +and the initial concentration $c_0$ + +$$f_\textrm{twa} = \frac{c_\textrm{twa}}{c_0}$$ + +is needed. This can be calculated from the fitted initial concentration $c_0$ and +the time weighted average concentration $c_\textrm{twa}$, or directly from +the model parameters using the following formulas: + +SFO: + +$$f_\textrm{twa} = \frac{\left( 1 - e^{- k t} \right)}{k t} $$ + +FOMC: + +$$f_\textrm{twa} = \frac{\beta}{t (1 - \alpha)} + \left( \left(\frac{t}{\beta} + 1 \right)^{1 - \alpha} - 1 \right) $$ + +DFOP: + +$$f_\textrm{twa} = \frac{1}{t} \left( + \frac{g}{k_1} \left( 1 - e^{- k_1 t} \right) + + \frac{1-g}{k_2} \left( 1 - e^{- k_2 t} \right) \right) $$ + +HS for $t > t_b$: + +$$f_\textrm{twa} = \frac{1}{t} \left( + \frac{1}{k_1} \left( 1 - e^{- k_1 t_b} \right) + + \frac{e^{- k_1 t_b}}{k_2} \left( 1 - e^{- k_2 (t - t_b)} \right) \right) $$ + +Note that a method for calculating maximum moving window time weighted average +concentrations for a model fitted by 'mkinfit' or from parent decline model +parameters is included in the `max_twa_parent()` function. If the same is +needed for metabolites, the function `pfm::max_twa()` from the 'pfm' package +can be used. |