diff options
Diffstat (limited to 'vignettes/web_only/multistart.rmd')
-rw-r--r-- | vignettes/web_only/multistart.rmd | 82 |
1 files changed, 82 insertions, 0 deletions
diff --git a/vignettes/web_only/multistart.rmd b/vignettes/web_only/multistart.rmd new file mode 100644 index 00000000..27a8a96a --- /dev/null +++ b/vignettes/web_only/multistart.rmd @@ -0,0 +1,82 @@ +--- +title: Short demo of the multistart method +author: Johannes Ranke +date: Last change 26 September 2022 (rebuilt `r Sys.Date()`) +output: + html_document +vignette: > + %\VignetteEngine{knitr::rmarkdown} + %\VignetteIndexEntry{Short demo of the multistart method} + %\VignetteEncoding{UTF-8} +--- + +The dimethenamid data from 2018 from seven soils is used as example data in this vignette. + +```{r} +library(mkin) +dmta_ds <- lapply(1:7, function(i) { + ds_i <- dimethenamid_2018$ds[[i]]$data + ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA" + ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i] + ds_i +}) +names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title) +dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]]) +dmta_ds[["Elliot 1"]] <- dmta_ds[["Elliot 2"]] <- NULL +``` + +First, we check the DFOP model with the two-component error model and +random effects for all degradation parameters. + +```{r} +f_mmkin <- mmkin("DFOP", dmta_ds, error_model = "tc", cores = 7, quiet = TRUE) +f_saem_full <- saem(f_mmkin) +illparms(f_saem_full) +``` +We see that not all variability parameters are identifiable. The `illparms` +function tells us that the confidence interval for the standard deviation +of 'log_k2' includes zero. We check this assessment using multiple runs +with different starting values. + +```{r} +f_saem_full_multi <- multistart(f_saem_full, n = 16, cores = 16) +parplot(f_saem_full_multi) +``` + +This confirms that the variance of k2 is the most problematic parameter, so we +reduce the parameter distribution model by removing the intersoil variability +for k2. + +```{r} +f_saem_reduced <- update(f_saem_full, no_random_effect = "log_k2") +illparms(f_saem_reduced) +f_saem_reduced_multi <- multistart(f_saem_reduced, n = 16, cores = 16) +parplot(f_saem_reduced_multi, lpos = "topright") +``` + +The results confirm that all remaining parameters can be determined with sufficient +certainty. + +We can also analyse the log-likelihoods obtained in the multiple runs: + +```{r} +llhist(f_saem_reduced_multi) +``` + +The parameter histograms can be further improved by excluding the result with +the low likelihood. + +```{r} +parplot(f_saem_reduced_multi, lpos = "topright", llmin = -326, ylim = c(0.5, 2)) +``` + +We can use the `anova` method to compare the models, including a likelihood ratio +test if the models are nested. + +```{r} +anova(f_saem_full, best(f_saem_reduced_multi), test = TRUE) +``` + +While AIC and BIC are lower for the reduced model, the likelihood ratio test +does not indicate a significant difference between the fits. + |