aboutsummaryrefslogtreecommitdiff
path: root/vignettes
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes')
-rw-r--r--vignettes/FOCUS_D.html6
-rw-r--r--vignettes/FOCUS_L.html50
-rw-r--r--vignettes/mkin.html2
-rw-r--r--vignettes/web_only/benchmarks.R1
-rw-r--r--vignettes/web_only/benchmarks.html134
-rw-r--r--vignettes/web_only/benchmarks.rmd3
-rw-r--r--vignettes/web_only/mkin_benchmarks.rdabin1656 -> 1810 bytes
-rw-r--r--vignettes/web_only/saem_benchmarks.html132
-rw-r--r--vignettes/web_only/saem_benchmarks.rdabin477 -> 710 bytes
-rw-r--r--vignettes/web_only/saem_benchmarks.rmd3
10 files changed, 208 insertions, 123 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index d1d51ddb..43c4f1fa 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -449,10 +449,10 @@ the <code>mkinparplot</code> function.</p>
<p>A comprehensive report of the results is obtained using the
<code>summary</code> method for <code>mkinfit</code> objects.</p>
<pre class="r"><code>summary(fit)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:52 2023
-## Date of summary: Fri Feb 17 10:41:52 2023
+## Date of fit: Fri Feb 17 20:04:31 2023
+## Date of summary: Fri Feb 17 20:04:31 2023
##
## Equations:
## d_parent/dt = - k_parent * parent
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 190ab65b..ed150c0a 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -1561,10 +1561,10 @@ model fit. This covers the numerical analysis given in the FOCUS
report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:53 2023
-## Date of summary: Fri Feb 17 10:41:53 2023
+## Date of fit: Fri Feb 17 20:04:32 2023
+## Date of summary: Fri Feb 17 20:04:32 2023
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -1664,17 +1664,17 @@ checked.</p>
<pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre>
<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:53 2023
-## Date of summary: Fri Feb 17 10:41:53 2023
+## Date of fit: Fri Feb 17 20:04:32 2023
+## Date of summary: Fri Feb 17 20:04:32 2023
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 369 model solutions performed in 0.026 s
+## Fitted using 369 model solutions performed in 0.025 s
##
## Error model: Constant variance
##
@@ -1810,17 +1810,17 @@ plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:32 2023
+## Date of summary: Fri Feb 17 20:04:32 2023
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 239 model solutions performed in 0.015 s
+## Fitted using 239 model solutions performed in 0.014 s
##
## Error model: Constant variance
##
@@ -1891,10 +1891,10 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:32 2023
+## Date of summary: Fri Feb 17 20:04:32 2023
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1903,7 +1903,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted using 581 model solutions performed in 0.04 s
+## Fitted using 581 model solutions performed in 0.039 s
##
## Error model: Constant variance
##
@@ -2004,10 +2004,10 @@ as a row index and datasets as a column index.</p>
using square brackets for indexing which will result in the use of the
summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:33 2023
+## Date of summary: Fri Feb 17 20:04:33 2023
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -2126,17 +2126,17 @@ well. The error level at which the <span class="math inline"><em>χ</em><sup>2</
slightly lower for the FOMC model. However, the difference appears
negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:33 2023
+## Date of summary: Fri Feb 17 20:04:33 2023
##
## Equations:
## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 142 model solutions performed in 0.009 s
+## Fitted using 142 model solutions performed in 0.008 s
##
## Error model: Constant variance
##
@@ -2190,10 +2190,10 @@ negligible.</p>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.3.0
+<pre><code>## mkin version used for fitting: 1.2.2
## R version used for fitting: 4.2.2
-## Date of fit: Fri Feb 17 10:41:54 2023
-## Date of summary: Fri Feb 17 10:41:54 2023
+## Date of fit: Fri Feb 17 20:04:33 2023
+## Date of summary: Fri Feb 17 20:04:33 2023
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
diff --git a/vignettes/mkin.html b/vignettes/mkin.html
index ec3bf5da..a16f3074 100644
--- a/vignettes/mkin.html
+++ b/vignettes/mkin.html
@@ -1614,7 +1614,7 @@ div.tocify {
<h1 class="title toc-ignore">Introduction to mkin</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 15 February 2021 (rebuilt 2023-02-13)</h4>
+<h4 class="date">Last change 15 February 2021 (rebuilt 2023-02-17)</h4>
</div>
diff --git a/vignettes/web_only/benchmarks.R b/vignettes/web_only/benchmarks.R
index 6c9b133e..46081ca9 100644
--- a/vignettes/web_only/benchmarks.R
+++ b/vignettes/web_only/benchmarks.R
@@ -20,6 +20,7 @@ cpu_model <- benchmarkme::get_cpu()$model_name
cpu_model <- gsub("AMD ", "", cpu_model)
cpu_model <- gsub("Intel\\(R\\) Core\\(TM\\) ", "", cpu_model)
cpu_model <- gsub(" Eight-Core Processor", "", cpu_model)
+cpu_model <- gsub(" 16-Core Processor", "", cpu_model)
cpu_model <- gsub(" CPU @ 2.50GHz", "", cpu_model)
operating_system <- Sys.info()[["sysname"]]
diff --git a/vignettes/web_only/benchmarks.html b/vignettes/web_only/benchmarks.html
index 6cce41e6..0800ac48 100644
--- a/vignettes/web_only/benchmarks.html
+++ b/vignettes/web_only/benchmarks.html
@@ -1592,7 +1592,7 @@ div.tocify {
<h1 class="title toc-ignore">Benchmark timings for mkin</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 14 July 2022 (rebuilt 2023-02-17)</h4>
+<h4 class="date">Last change 17 February 2023 (rebuilt 2023-02-17)</h4>
</div>
@@ -1679,14 +1679,6 @@ systems. All trademarks belong to their respective owners.</p>
<p>Constant variance (t1) and two-component error model (t2) for four
models fitted to two datasets, i.e. eight fits for each test.</p>
<table>
-<colgroup>
-<col width="9%" />
-<col width="48%" />
-<col width="9%" />
-<col width="13%" />
-<col width="9%" />
-<col width="10%" />
-</colgroup>
<thead>
<tr class="header">
<th align="left">OS</th>
@@ -1852,19 +1844,27 @@ models fitted to two datasets, i.e. eight fits for each test.</p>
</tr>
<tr class="even">
<td align="left">Linux</td>
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
<td align="left">4.2.2</td>
-<td align="left">1.2.2</td>
-<td align="right">1.308</td>
-<td align="right">1.793</td>
+<td align="left">1.2.0</td>
+<td align="right">1.288</td>
+<td align="right">1.794</td>
</tr>
<tr class="odd">
<td align="left">Linux</td>
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
<td align="left">4.2.2</td>
-<td align="left">1.3.0</td>
-<td align="right">1.287</td>
-<td align="right">1.805</td>
+<td align="left">1.2.2</td>
+<td align="right">1.276</td>
+<td align="right">1.804</td>
+</tr>
+<tr class="even">
+<td align="left">Linux</td>
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">4.2.2</td>
+<td align="left">1.2.3</td>
+<td align="right">1.327</td>
+<td align="right">1.863</td>
</tr>
</tbody>
</table>
@@ -1875,15 +1875,6 @@ models fitted to two datasets, i.e. eight fits for each test.</p>
by variable (t5) for three models fitted to one dataset, i.e. three fits
for each test.</p>
<table>
-<colgroup>
-<col width="8%" />
-<col width="44%" />
-<col width="8%" />
-<col width="12%" />
-<col width="8%" />
-<col width="9%" />
-<col width="8%" />
-</colgroup>
<thead>
<tr class="header">
<th align="left">OS</th>
@@ -2069,21 +2060,30 @@ for each test.</p>
</tr>
<tr class="even">
<td align="left">Linux</td>
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
<td align="left">4.2.2</td>
-<td align="left">1.2.2</td>
-<td align="right">0.783</td>
-<td align="right">2.364</td>
-<td align="right">1.230</td>
+<td align="left">1.2.0</td>
+<td align="right">0.792</td>
+<td align="right">2.378</td>
+<td align="right">1.245</td>
</tr>
<tr class="odd">
<td align="left">Linux</td>
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
<td align="left">4.2.2</td>
-<td align="left">1.3.0</td>
-<td align="right">0.731</td>
-<td align="right">1.984</td>
-<td align="right">1.100</td>
+<td align="left">1.2.2</td>
+<td align="right">0.784</td>
+<td align="right">2.355</td>
+<td align="right">1.233</td>
+</tr>
+<tr class="even">
+<td align="left">Linux</td>
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">4.2.2</td>
+<td align="left">1.2.3</td>
+<td align="right">0.758</td>
+<td align="right">2.050</td>
+<td align="right">1.135</td>
</tr>
</tbody>
</table>
@@ -2095,16 +2095,16 @@ and variance by variable (t10 and t11) for one model fitted to one
dataset, i.e. one fit for each test.</p>
<table>
<colgroup>
-<col width="6%" />
-<col width="35%" />
-<col width="6%" />
+<col width="8%" />
+<col width="19%" />
+<col width="8%" />
+<col width="12%" />
+<col width="8%" />
+<col width="8%" />
+<col width="8%" />
+<col width="9%" />
+<col width="8%" />
<col width="9%" />
-<col width="6%" />
-<col width="6%" />
-<col width="6%" />
-<col width="7%" />
-<col width="6%" />
-<col width="7%" />
</colgroup>
<thead>
<tr class="header">
@@ -2351,27 +2351,39 @@ dataset, i.e. one fit for each test.</p>
</tr>
<tr class="even">
<td align="left">Linux</td>
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
<td align="left">4.2.2</td>
-<td align="left">1.2.2</td>
-<td align="right">0.442</td>
-<td align="right">0.582</td>
-<td align="right">0.658</td>
-<td align="right">1.171</td>
-<td align="right">0.801</td>
-<td align="right">1.093</td>
+<td align="left">1.2.0</td>
+<td align="right">0.445</td>
+<td align="right">0.591</td>
+<td align="right">0.660</td>
+<td align="right">1.190</td>
+<td align="right">0.814</td>
+<td align="right">1.100</td>
</tr>
<tr class="odd">
<td align="left">Linux</td>
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
<td align="left">4.2.2</td>
-<td align="left">1.3.0</td>
-<td align="right">0.400</td>
-<td align="right">0.518</td>
-<td align="right">0.580</td>
-<td align="right">0.990</td>
-<td align="right">0.701</td>
-<td align="right">0.935</td>
+<td align="left">1.2.2</td>
+<td align="right">0.443</td>
+<td align="right">0.586</td>
+<td align="right">0.661</td>
+<td align="right">1.176</td>
+<td align="right">0.803</td>
+<td align="right">1.097</td>
+</tr>
+<tr class="even">
+<td align="left">Linux</td>
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">4.2.2</td>
+<td align="left">1.2.3</td>
+<td align="right">0.414</td>
+<td align="right">0.533</td>
+<td align="right">0.598</td>
+<td align="right">1.020</td>
+<td align="right">0.726</td>
+<td align="right">0.966</td>
</tr>
</tbody>
</table>
diff --git a/vignettes/web_only/benchmarks.rmd b/vignettes/web_only/benchmarks.rmd
index 117dc96a..132e5062 100644
--- a/vignettes/web_only/benchmarks.rmd
+++ b/vignettes/web_only/benchmarks.rmd
@@ -1,7 +1,7 @@
---
title: "Benchmark timings for mkin"
author: "Johannes Ranke"
-date: Last change 14 July 2022 (rebuilt `r Sys.Date()`)
+date: Last change 17 February 2023 (rebuilt `r Sys.Date()`)
output:
html_document:
toc: true
@@ -47,6 +47,7 @@ cpu_model <- benchmarkme::get_cpu()$model_name
cpu_model <- gsub("AMD ", "", cpu_model)
cpu_model <- gsub("Intel\\(R\\) Core\\(TM\\) ", "", cpu_model)
cpu_model <- gsub(" Eight-Core Processor", "", cpu_model)
+cpu_model <- gsub(" 16-Core Processor", "", cpu_model)
cpu_model <- gsub(" CPU @ 2.50GHz", "", cpu_model)
operating_system <- Sys.info()[["sysname"]]
diff --git a/vignettes/web_only/mkin_benchmarks.rda b/vignettes/web_only/mkin_benchmarks.rda
index a9a4adbf..0a88d04f 100644
--- a/vignettes/web_only/mkin_benchmarks.rda
+++ b/vignettes/web_only/mkin_benchmarks.rda
Binary files differ
diff --git a/vignettes/web_only/saem_benchmarks.html b/vignettes/web_only/saem_benchmarks.html
index a3bbafef..83e70e79 100644
--- a/vignettes/web_only/saem_benchmarks.html
+++ b/vignettes/web_only/saem_benchmarks.html
@@ -1592,7 +1592,7 @@ div.tocify {
<h1 class="title toc-ignore">Benchmark timings for saem.mmkin</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 14 November 2022 (rebuilt 2023-02-17)</h4>
+<h4 class="date">Last change 17 February 2023 (rebuilt 2023-02-17)</h4>
</div>
@@ -1815,24 +1815,44 @@ systems. All trademarks belong to their respective owners.</p>
<td align="right">4.851</td>
</tr>
<tr class="odd">
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">Linux</td>
+<td align="left">1.2.1</td>
+<td align="left">3.2</td>
+<td align="right">1.352</td>
+<td align="right">2.813</td>
+<td align="right">2.401</td>
+<td align="right">2.074</td>
+</tr>
+<tr class="even">
+<td align="left">Ryzen 9 7950X</td>
<td align="left">Linux</td>
<td align="left">1.2.2</td>
<td align="left">3.2</td>
-<td align="right">1.470</td>
-<td align="right">2.263</td>
-<td align="right">1.840</td>
-<td align="right">2.299</td>
+<td align="right">1.328</td>
+<td align="right">2.738</td>
+<td align="right">2.336</td>
+<td align="right">2.023</td>
+</tr>
+<tr class="odd">
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">Linux</td>
+<td align="left">1.2.3</td>
+<td align="left">3.2</td>
+<td align="right">1.711</td>
+<td align="right">2.028</td>
+<td align="right">2.868</td>
+<td align="right">2.361</td>
</tr>
<tr class="even">
<td align="left">Ryzen 9 7950X 16-Core Processor</td>
<td align="left">Linux</td>
-<td align="left">1.3.0</td>
+<td align="left">1.2.3</td>
<td align="left">3.2</td>
-<td align="right">1.181</td>
-<td align="right">2.199</td>
-<td align="right">2.057</td>
-<td align="right">1.909</td>
+<td align="right">1.444</td>
+<td align="right">2.485</td>
+<td align="right">2.738</td>
+<td align="right">2.946</td>
</tr>
</tbody>
</table>
@@ -1882,24 +1902,44 @@ systems. All trademarks belong to their respective owners.</p>
<td align="right">8.401</td>
</tr>
<tr class="odd">
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">Linux</td>
+<td align="left">1.2.1</td>
+<td align="left">3.2</td>
+<td align="right">2.388</td>
+<td align="right">3.033</td>
+<td align="right">3.532</td>
+<td align="right">3.310</td>
+</tr>
+<tr class="even">
+<td align="left">Ryzen 9 7950X</td>
<td align="left">Linux</td>
<td align="left">1.2.2</td>
<td align="left">3.2</td>
-<td align="right">2.118</td>
-<td align="right">3.528</td>
-<td align="right">3.295</td>
-<td align="right">3.157</td>
+<td align="right">2.341</td>
+<td align="right">2.968</td>
+<td align="right">3.465</td>
+<td align="right">3.341</td>
+</tr>
+<tr class="odd">
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">Linux</td>
+<td align="left">1.2.3</td>
+<td align="left">3.2</td>
+<td align="right">2.347</td>
+<td align="right">3.175</td>
+<td align="right">3.426</td>
+<td align="right">3.588</td>
</tr>
<tr class="even">
<td align="left">Ryzen 9 7950X 16-Core Processor</td>
<td align="left">Linux</td>
-<td align="left">1.3.0</td>
+<td align="left">1.2.3</td>
<td align="left">3.2</td>
-<td align="right">2.384</td>
-<td align="right">3.124</td>
-<td align="right">3.484</td>
-<td align="right">3.518</td>
+<td align="right">2.228</td>
+<td align="right">3.332</td>
+<td align="right">3.257</td>
+<td align="right">3.306</td>
</tr>
</tbody>
</table>
@@ -1944,20 +1984,36 @@ systems. All trademarks belong to their respective owners.</p>
<td align="right">798.580</td>
</tr>
<tr class="odd">
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">Linux</td>
+<td align="left">1.2.1</td>
+<td align="left">3.2</td>
+<td align="right">11.247</td>
+<td align="right">285.216</td>
+</tr>
+<tr class="even">
+<td align="left">Ryzen 9 7950X</td>
<td align="left">Linux</td>
<td align="left">1.2.2</td>
<td align="left">3.2</td>
-<td align="right">12.336</td>
-<td align="right">277.666</td>
+<td align="right">11.242</td>
+<td align="right">284.258</td>
+</tr>
+<tr class="odd">
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">Linux</td>
+<td align="left">1.2.3</td>
+<td align="left">3.2</td>
+<td align="right">11.724</td>
+<td align="right">216.900</td>
</tr>
<tr class="even">
<td align="left">Ryzen 9 7950X 16-Core Processor</td>
<td align="left">Linux</td>
-<td align="left">1.3.0</td>
+<td align="left">1.2.3</td>
<td align="left">3.2</td>
-<td align="right">12.082</td>
-<td align="right">214.433</td>
+<td align="right">11.604</td>
+<td align="right">215.890</td>
</tr>
</tbody>
</table>
@@ -1991,18 +2047,32 @@ systems. All trademarks belong to their respective owners.</p>
<td align="right">1312.445</td>
</tr>
<tr class="odd">
-<td align="left">Ryzen 9 7950X 16-Core Processor</td>
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">Linux</td>
+<td align="left">1.2.1</td>
+<td align="left">3.2</td>
+<td align="right">489.939</td>
+</tr>
+<tr class="even">
+<td align="left">Ryzen 9 7950X</td>
<td align="left">Linux</td>
<td align="left">1.2.2</td>
<td align="left">3.2</td>
-<td align="right">459.051</td>
+<td align="right">482.970</td>
+</tr>
+<tr class="odd">
+<td align="left">Ryzen 9 7950X</td>
+<td align="left">Linux</td>
+<td align="left">1.2.3</td>
+<td align="left">3.2</td>
+<td align="right">389.119</td>
</tr>
<tr class="even">
<td align="left">Ryzen 9 7950X 16-Core Processor</td>
<td align="left">Linux</td>
-<td align="left">1.3.0</td>
+<td align="left">1.2.3</td>
<td align="left">3.2</td>
-<td align="right">392.885</td>
+<td align="right">401.477</td>
</tr>
</tbody>
</table>
diff --git a/vignettes/web_only/saem_benchmarks.rda b/vignettes/web_only/saem_benchmarks.rda
index 7d060f91..564c851b 100644
--- a/vignettes/web_only/saem_benchmarks.rda
+++ b/vignettes/web_only/saem_benchmarks.rda
Binary files differ
diff --git a/vignettes/web_only/saem_benchmarks.rmd b/vignettes/web_only/saem_benchmarks.rmd
index 6e51fa66..6aeefd7f 100644
--- a/vignettes/web_only/saem_benchmarks.rmd
+++ b/vignettes/web_only/saem_benchmarks.rmd
@@ -1,7 +1,7 @@
---
title: "Benchmark timings for saem.mmkin"
author: "Johannes Ranke"
-date: Last change 14 November 2022 (rebuilt `r Sys.Date()`)
+date: Last change 17 February 2023 (rebuilt `r Sys.Date()`)
output:
html_document:
toc: true
@@ -31,6 +31,7 @@ cpu_model <- benchmarkme::get_cpu()$model_name
cpu_model <- gsub("AMD ", "", cpu_model)
cpu_model <- gsub("Intel\\(R\\) Core\\(TM\\) ", "", cpu_model)
cpu_model <- gsub(" Eight-Core Processor", "", cpu_model)
+cpu_model <- gsub(" 16-Core Processor", "", cpu_model)
cpu_model <- gsub(" CPU @ 2.50GHz", "", cpu_model)
operating_system <- Sys.info()[["sysname"]]

Contact - Imprint