aboutsummaryrefslogtreecommitdiff
path: root/vignettes
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes')
-rw-r--r--vignettes/FOCUS_L.html72
-rw-r--r--vignettes/FOCUS_Z.pdfbin214130 -> 214013 bytes
-rw-r--r--vignettes/mkin.pdfbin160326 -> 160326 bytes
3 files changed, 33 insertions, 39 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 614fcf32..ab7ccaee 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -193,13 +193,7 @@ hr {
report, p. 284:</p>
<pre><code class="r">library(&quot;mkin&quot;)
-</code></pre>
-
-<pre><code>## Loading required package: minpack.lm
-## Loading required package: rootSolve
-</code></pre>
-
-<pre><code class="r">FOCUS_2006_L1 = data.frame(
+FOCUS_2006_L1 = data.frame(
t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
@@ -223,8 +217,8 @@ summary(m.L1.SFO)
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:29 2014
-## Date of summary: Mon Jul 21 09:14:29 2014
+## Date of fit: Thu Jul 24 10:32:09 2014
+## Date of summary: Thu Jul 24 10:32:09 2014
##
## Equations:
## [1] d_parent = - k_parent_sink * parent
@@ -315,7 +309,7 @@ summary(m.L1.SFO)
<pre><code class="r">mkinresplot(m.L1.SFO, ylab = &quot;Observed&quot;, xlab = &quot;Time&quot;)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>
<p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level
is checked.</p>
@@ -326,15 +320,15 @@ summary(m.L1.FOMC, data = FALSE)
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:30 2014
-## Date of summary: Mon Jul 21 09:14:30 2014
+## Date of fit: Thu Jul 24 10:32:10 2014
+## Date of summary: Thu Jul 24 10:32:11 2014
##
## Equations:
## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 53 model solutions performed in 0.32 s
+## Fitted with method Marq using 53 model solutions performed in 0.321 s
##
## Weighting: none
##
@@ -420,15 +414,15 @@ summary(m.L2.SFO)
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:30 2014
-## Date of summary: Mon Jul 21 09:14:30 2014
+## Date of fit: Thu Jul 24 10:32:11 2014
+## Date of summary: Thu Jul 24 10:32:11 2014
##
## Equations:
## [1] d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 29 model solutions performed in 0.155 s
+## Fitted with method Marq using 29 model solutions performed in 0.196 s
##
## Weighting: none
##
@@ -502,7 +496,7 @@ plot(m.L2.SFO)
mkinresplot(m.L2.SFO)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-9"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-9"/> </p>
<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic
error observed from the residual plot up to the measured DT90 (approximately at
@@ -523,22 +517,22 @@ plot(m.L2.FOMC)
mkinresplot(m.L2.FOMC)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p>
+<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p>
<pre><code class="r">summary(m.L2.FOMC, data = FALSE)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:31 2014
-## Date of summary: Mon Jul 21 09:14:31 2014
+## Date of fit: Thu Jul 24 10:32:11 2014
+## Date of summary: Thu Jul 24 10:32:11 2014
##
## Equations:
## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 35 model solutions performed in 0.199 s
+## Fitted with method Marq using 35 model solutions performed in 0.223 s
##
## Weighting: none
##
@@ -616,15 +610,15 @@ plot(m.L2.DFOP)
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:31 2014
-## Date of summary: Mon Jul 21 09:14:31 2014
+## Date of fit: Thu Jul 24 10:32:12 2014
+## Date of summary: Thu Jul 24 10:32:12 2014
##
## Equations:
## [1] d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 43 model solutions performed in 0.241 s
+## Fitted with method Marq using 43 model solutions performed in 0.271 s
##
## Weighting: none
##
@@ -703,15 +697,15 @@ plot(m.L3.SFO)
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:32 2014
-## Date of summary: Mon Jul 21 09:14:32 2014
+## Date of fit: Thu Jul 24 10:32:14 2014
+## Date of summary: Thu Jul 24 10:32:14 2014
##
## Equations:
## [1] d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 44 model solutions performed in 0.242 s
+## Fitted with method Marq using 44 model solutions performed in 0.251 s
##
## Weighting: none
##
@@ -789,15 +783,15 @@ plot(m.L3.FOMC)
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:32 2014
-## Date of summary: Mon Jul 21 09:14:32 2014
+## Date of fit: Thu Jul 24 10:32:14 2014
+## Date of summary: Thu Jul 24 10:32:14 2014
##
## Equations:
## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 26 model solutions performed in 0.143 s
+## Fitted with method Marq using 26 model solutions performed in 0.154 s
##
## Weighting: none
##
@@ -862,15 +856,15 @@ plot(m.L3.DFOP)
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:32 2014
-## Date of summary: Mon Jul 21 09:14:32 2014
+## Date of fit: Thu Jul 24 10:32:14 2014
+## Date of summary: Thu Jul 24 10:32:14 2014
##
## Equations:
## [1] d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 37 model solutions performed in 0.21 s
+## Fitted with method Marq using 37 model solutions performed in 0.228 s
##
## Weighting: none
##
@@ -958,15 +952,15 @@ plot(m.L4.SFO)
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:33 2014
-## Date of summary: Mon Jul 21 09:14:33 2014
+## Date of fit: Thu Jul 24 10:32:15 2014
+## Date of summary: Thu Jul 24 10:32:15 2014
##
## Equations:
## [1] d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 20 model solutions performed in 0.109 s
+## Fitted with method Marq using 20 model solutions performed in 0.141 s
##
## Weighting: none
##
@@ -1033,15 +1027,15 @@ plot(m.L4.FOMC)
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
-## Date of fit: Mon Jul 21 09:14:33 2014
-## Date of summary: Mon Jul 21 09:14:33 2014
+## Date of fit: Thu Jul 24 10:32:15 2014
+## Date of summary: Thu Jul 24 10:32:15 2014
##
## Equations:
## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 48 model solutions performed in 0.26 s
+## Fitted with method Marq using 48 model solutions performed in 0.296 s
##
## Weighting: none
##
diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf
index 43f3e2e2..f7b0a65a 100644
--- a/vignettes/FOCUS_Z.pdf
+++ b/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/vignettes/mkin.pdf b/vignettes/mkin.pdf
index b69ddddc..0cc413a1 100644
--- a/vignettes/mkin.pdf
+++ b/vignettes/mkin.pdf
Binary files differ

Contact - Imprint