aboutsummaryrefslogtreecommitdiff
path: root/vignettes
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes')
-rw-r--r--vignettes/FOCUS_D.html8
-rw-r--r--vignettes/FOCUS_L.html78
-rw-r--r--vignettes/FOCUS_Z.pdfbin225008 -> 225020 bytes
-rw-r--r--vignettes/compiled_models.html34
-rw-r--r--vignettes/mkin.pdfbin160260 -> 160260 bytes
5 files changed, 60 insertions, 60 deletions
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index 0ec2542c..01d5d4f3 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -135,10 +135,10 @@ print(FOCUS_2006_D)</code></pre>
<p><img src="" title alt width="672" /></p>
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p>
<pre class="r"><code>summary(fit)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:52 2015
-## Date of summary: Tue Jun 23 13:14:52 2015
+## Date of fit: Tue Jun 23 15:18:13 2015
+## Date of summary: Tue Jun 23 15:18:14 2015
##
## Equations:
## d_parent = - k_parent_sink * parent - k_parent_m1 * parent
@@ -146,7 +146,7 @@ print(FOCUS_2006_D)</code></pre>
##
## Model predictions using solution type deSolve
##
-## Fitted with method Port using 153 model solutions performed in 0.682 s
+## Fitted with method Port using 153 model solutions performed in 0.749 s
##
## Weighting: none
##
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index bb012d65..095c0ec0 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -91,17 +91,17 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>SFO</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet=TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:53 2015
-## Date of summary: Tue Jun 23 13:14:53 2015
+## Date of fit: Tue Jun 23 15:18:14 2015
+## Date of summary: Tue Jun 23 15:18:14 2015
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.1 s
+## Fitted with method Port using 37 model solutions performed in 0.101 s
##
## Weighting: none
##
@@ -181,10 +181,10 @@ summary(m.L1.SFO)</code></pre>
<pre><code>## Warning in mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge.
## Convergence code is 1</code></pre>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:54 2015
-## Date of summary: Tue Jun 23 13:14:54 2015
+## Date of fit: Tue Jun 23 15:18:15 2015
+## Date of summary: Tue Jun 23 15:18:15 2015
##
##
## Warning: Optimisation by method Port did not converge.
@@ -196,7 +196,7 @@ summary(m.L1.SFO)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 188 model solutions performed in 0.539 s
+## Fitted with method Port using 188 model solutions performed in 0.484 s
##
## Weighting: none
##
@@ -261,10 +261,10 @@ FOCUS_2006_L2_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L2)</code></pre>
<p>Again, the SFO model is fitted and a summary is obtained:</p>
<pre class="r"><code>m.L2.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L2_mkin, quiet=TRUE)
summary(m.L2.SFO)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:54 2015
-## Date of summary: Tue Jun 23 13:14:54 2015
+## Date of fit: Tue Jun 23 15:18:15 2015
+## Date of summary: Tue Jun 23 15:18:15 2015
##
## Equations:
## d_parent = - k_parent_sink * parent
@@ -349,17 +349,17 @@ plot(m.L2.FOMC)
mkinresplot(m.L2.FOMC)</code></pre>
<p><img src="" title alt width="672" /></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:54 2015
-## Date of summary: Tue Jun 23 13:14:54 2015
+## Date of fit: Tue Jun 23 15:18:16 2015
+## Date of summary: Tue Jun 23 15:18:16 2015
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 81 model solutions performed in 0.228 s
+## Fitted with method Port using 81 model solutions performed in 0.227 s
##
## Weighting: none
##
@@ -421,10 +421,10 @@ plot(m.L2.DFOP)</code></pre>
plot(m.L2.DFOP)</code></pre>
<p><img src="" title alt width="672" /></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:57 2015
-## Date of summary: Tue Jun 23 13:14:57 2015
+## Date of fit: Tue Jun 23 15:18:18 2015
+## Date of summary: Tue Jun 23 15:18:18 2015
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -433,7 +433,7 @@ plot(m.L2.DFOP)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 0.907 s
+## Fitted with method Port using 336 model solutions performed in 0.93 s
##
## Weighting: none
##
@@ -498,17 +498,17 @@ FOCUS_2006_L3_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L3)</code></pre>
plot(m.L3.SFO)</code></pre>
<p><img src="" title alt width="672" /></p>
<pre class="r"><code>summary(m.L3.SFO)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:57 2015
-## Date of summary: Tue Jun 23 13:14:57 2015
+## Date of fit: Tue Jun 23 15:18:19 2015
+## Date of summary: Tue Jun 23 15:18:19 2015
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 43 model solutions performed in 0.112 s
+## Fitted with method Port using 43 model solutions performed in 0.111 s
##
## Weighting: none
##
@@ -574,17 +574,17 @@ plot(m.L3.SFO)</code></pre>
plot(m.L3.FOMC)</code></pre>
<p><img src="" title alt width="672" /></p>
<pre class="r"><code>summary(m.L3.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:58 2015
-## Date of summary: Tue Jun 23 13:14:58 2015
+## Date of fit: Tue Jun 23 15:18:19 2015
+## Date of summary: Tue Jun 23 15:18:19 2015
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 83 model solutions performed in 0.204 s
+## Fitted with method Port using 83 model solutions performed in 0.213 s
##
## Weighting: none
##
@@ -640,10 +640,10 @@ plot(m.L3.FOMC)</code></pre>
plot(m.L3.DFOP)</code></pre>
<p><img src="" title alt width="672" /></p>
<pre class="r"><code>summary(m.L3.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:58 2015
-## Date of summary: Tue Jun 23 13:14:58 2015
+## Date of fit: Tue Jun 23 15:18:20 2015
+## Date of summary: Tue Jun 23 15:18:20 2015
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -652,7 +652,7 @@ plot(m.L3.DFOP)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.359 s
+## Fitted with method Port using 137 model solutions performed in 0.348 s
##
## Weighting: none
##
@@ -722,17 +722,17 @@ FOCUS_2006_L4_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L4)</code></pre>
plot(m.L4.SFO)</code></pre>
<p><img src="" title alt width="672" /></p>
<pre class="r"><code>summary(m.L4.SFO, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:59 2015
-## Date of summary: Tue Jun 23 13:14:59 2015
+## Date of fit: Tue Jun 23 15:18:20 2015
+## Date of summary: Tue Jun 23 15:18:20 2015
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.12 s
+## Fitted with method Port using 46 model solutions performed in 0.115 s
##
## Weighting: none
##
@@ -787,17 +787,17 @@ plot(m.L4.SFO)</code></pre>
plot(m.L4.FOMC)</code></pre>
<p><img src="" title alt width="672" /></p>
<pre class="r"><code>summary(m.L4.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version: 0.9.37
+<pre><code>## mkin version: 0.9.38
## R version: 3.2.1
-## Date of fit: Tue Jun 23 13:14:59 2015
-## Date of summary: Tue Jun 23 13:14:59 2015
+## Date of fit: Tue Jun 23 15:18:20 2015
+## Date of summary: Tue Jun 23 15:18:20 2015
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.163 s
+## Fitted with method Port using 66 model solutions performed in 0.169 s
##
## Weighting: none
##
diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf
index 43592d51..146e9b23 100644
--- a/vignettes/FOCUS_Z.pdf
+++ b/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html
index a415c735..8d4c36a4 100644
--- a/vignettes/compiled_models.html
+++ b/vignettes/compiled_models.html
@@ -99,18 +99,18 @@ smb.1 &lt;- summary(mb.1)[-1]
rownames(smb.1) &lt;- c(&quot;deSolve, not compiled&quot;, &quot;Eigenvalue based&quot;, &quot;deSolve, compiled&quot;)
print(smb.1)</code></pre>
<pre><code>## min lq mean median uq
-## deSolve, not compiled 6958.1752 7034.5639 7074.0173 7110.9526 7131.9383
-## Eigenvalue based 978.8821 988.5741 1012.6283 998.2660 1029.5014
-## deSolve, compiled 756.0280 767.9740 800.3639 779.9199 822.5318
+## deSolve, not compiled 6555.9044 6654.5464 6693.6732 6753.1885 6762.5577
+## Eigenvalue based 941.4496 949.4094 972.3045 957.3693 987.7320
+## deSolve, compiled 743.6684 756.3411 761.1512 769.0139 769.8926
## max neval
-## deSolve, not compiled 7152.9240 3
-## Eigenvalue based 1060.7367 3
-## deSolve, compiled 865.1437 3</code></pre>
-<p>We see that using the compiled model is by a factor of 9.1 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+## deSolve, not compiled 6771.9268 3
+## Eigenvalue based 1018.0946 3
+## deSolve, compiled 770.7713 3</code></pre>
+<p>We see that using the compiled model is by a factor of 8.8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 9.117542
-## Eigenvalue based 1.279960
+## deSolve, not compiled 8.781621
+## Eigenvalue based 1.244931
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -128,17 +128,17 @@ smb.2 &lt;- summary(mb.2)[-1]
rownames(smb.2) &lt;- c(&quot;deSolve, not compiled&quot;, &quot;deSolve, compiled&quot;)
print(smb.2)</code></pre>
<pre><code>## min lq mean median uq
-## deSolve, not compiled 14.586587 14.604167 14.614147 14.621747 14.627927
-## deSolve, compiled 1.428573 1.449463 1.459828 1.470352 1.475455
+## deSolve, not compiled 14.202106 14.342265 14.430352 14.482424 14.544475
+## deSolve, compiled 1.363102 1.367979 1.377016 1.372857 1.383973
## max neval
-## deSolve, not compiled 14.634107 3
-## deSolve, compiled 1.480558 3</code></pre>
+## deSolve, not compiled 14.606526 3
+## deSolve, compiled 1.395088 3</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 9.944383
-## deSolve, compiled 1.000000</code></pre>
-<p>Here we get a performance benefit of a factor of 9.9 using the version of the differential equation model compiled from C code using the inline package!</p>
-<p>This vignette was built with mkin 0.9.37 on</p>
+## deSolve, not compiled 10.54912
+## deSolve, compiled 1.00000</code></pre>
+<p>Here we get a performance benefit of a factor of 10.5 using the version of the differential equation model compiled from C code using the inline package!</p>
+<p>This vignette was built with mkin 0.9.38 on</p>
<pre><code>## R version 3.2.1 (2015-06-18)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 8 (jessie)</code></pre>
diff --git a/vignettes/mkin.pdf b/vignettes/mkin.pdf
index fe600666..88566e24 100644
--- a/vignettes/mkin.pdf
+++ b/vignettes/mkin.pdf
Binary files differ

Contact - Imprint